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1 Introduction

In a communication network, graph connectivity is a fundamental measure
of its robustness. An undirected graph G = (V,E) is k-edge-connected if the
deletion of any k−1 or fewer edges leaves a connected graph; equivalently, there
exist at least k pairwise edge-disjoint paths between every two vertices. The
connectivity augmentation problem asks to add to a given graph the smallest
number of new edges such that the connectivity of the graph increases up to a
specified value k. The problem has important applications such as the network
design problem [5], and so on (see [4,14] for surveys).

Most of all those researches have dealt with connectivity between two vertices
in a graph. However, in many real-world networks, the connectivity between
every two vertices is not necessarily required. For example, in a multimedia
network, some vertices of the network may have functions of offering several
types of services for users. For a set W of vertices offering certain service i, a
user at a vertex v can use service i by communicating with one vertex w ∈ W
through a path between w and v. In such networks, it is desirable that the
network has some pairwise disjoint paths from the vertex v to at least one of
vertices in W . This means that the measure of reliability is the connectivity
between a vertex and a set of vertices rather than that between two vertices.
From this point of view, Ito et al. considered the node to area connectivity
(NA-connectivity, for short) as a concept that represents the connectivity be-
tween vertices and sets of vertices (areas) in a graph [7,9]. As related problems,
the problem of locating a set W of vertices offering service with requirements
measured by connectivity has been also studied [1,8,9,15].

In this paper, given a graph G = (V,E) with a family W of sets W of vertices
(areas), and a requirement function r : W → Z+, we consider the problem of
asking to augment G by adding the smallest number of new edges so that the
resulting graph has at least r(W ) pairwise edge-disjoint paths between v and
W for every pair of a vertex v ∈ V and an area W ∈ W. We call this problem
r-NA-edge-connectivity augmentation problem (for short, r-NA-ECAP).

Figure 1 gives an instance of r-NA-ECAP with r(W1) = 2, r(W2) = 3, and
r(W3) = 4. In the graph G in (i), some pair of a vertex v ∈ V and an
area W ∈ W (say, v7 and W3) cannot have r(W ) edge-disjoint paths between
them, and r-NA-ECAP asks to add the minimum number of new edges to G to
construct a graph like (ii) in which there are at least r(W ) edge-disjoint paths
between every pair of v ∈ V and W ∈ W. So far k-NA-ECAP in the uniform
case that r(W ) = k holds for every area W ∈ W has been studied, and several
algorithms for solving k-NA-ECAP have been proposed. Miwa and Ito [10]
showed that 1-NA-ECAP is NP-hard and that 2-NA-ECAP is polynomially
solvable. Recently, Ishii et al. [6] proposed a polynomial time algorithm for
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Fig. 1. Illustration of an instance of r-NA-ECAP. (i) An initial graph G = (V,E)
with a family W = {W1 = {v4, v7, v11},W2 = {v1, v8, v9},W3 = {v1, v2, v10}} of
areas, where a requirement function r : W → Z+ satisfies r(W1) = 2, r(W2) = 3,
and r(W3) = 4. (ii) An r-NA-edge-connected graph obtained from G by adding a set
of edges drawn as broken lines; there are at least r(W ) edge-disjoint paths between
every pair of a vertex v ∈ V and an area W ∈ W.

solving k-NA-ECAP in the case of k ≥ 3. However, it was still open whether
the problem in general requirements r ≥ 2 is polynomially solvable or not.
In this paper, we show that if r(W ) ≥ 2 holds for each W ∈ W, then r-
NA-ECAP can be solved in O(m+ pn4 (r∗ + log n)) time, where n = |V |,
m = |{{u, v}|(u, v) ∈ E}|, p = |W|, and r∗ = max{r(W ) | W ∈ W}.

The paper is organized as follows. In Section 2, we define r-NA-ECAP, after
introducing some basic notations. In Section 3, we derive lower bounds on
the optimal value opt(G,W, r) to r-NA-ECAP, and state our main result that
a min-max formula to the r-NA-ECAP with r ≥ 2 is established and that
r-NA-ECAP is polynomially solvable for r ≥ 2. We give an algorithm, called
r-NAEC-AUG, which finds a solution E ′ with |E ′| = opt(G,W, r) in Section 4.
In Sections 5 and 6, we prove the correctness of algorithm r-NAEC-AUG. In
Section 7, we give concluding remarks.

2 Problem Definition

Let G = (V,E) stand for an undirected graph with a set V of vertices and a
set E of edges. An edge with end vertices u and v is denoted by (u, v). We
denote |V | by n and |{{u, v}|(u, v) ∈ E}| by m. A singleton set {x} may be
simply written as x, and “ ⊂ ” implies proper inclusion while “ ⊆ ” means
“ ⊂ ” or “ = ”. In G = (V,E), its vertex set V and edge set E may be denoted
by V (G) and E(G), respectively. For a subset V ′ ⊆ V in G, G[V ′] denotes
the subgraph induced by V ′. For an edge set E ′ with E ′ ∩ E = ∅, we denote
the augmented graph (V,E ∪E ′) by G+E ′. For an edge set E ′, we denote by
V [E ′] the set of all end vertices of edges in E ′.
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An area graph is defined as a graph G = (V,E) with a family W of vertex
subsets W ⊆ V which are called areas (see Figure 1). We denote an area graph
G with W by (G,W). In the sequel, we may denote (G,W) by G simply if
no confusion arises. For two disjoint subsets X, Y ⊂ V of vertices, we denote
by EG(X, Y ) the set of edges e = (x, y) such that x ∈ X and y ∈ Y , and also
denote |EG(X, Y )| by dG(X, Y ). In particular, EG(u, v) is the set of edges with
end vertices u and v. A cut is defined as the subset X of V with ∅ �= X �= V ,
and the size of a cut X is defined by dG(X, V − X), which may also be
written as dG(X). Moreover, we define d(∅) = 0. For two cuts X, Y ⊂ V with
X ∩ Y = ∅ in G, we denote by λG(X, Y ) the minimum size of cuts which
separate X and Y , i.e., λG(X, Y ) = min{dG(S)|S ⊇ X,S ⊆ V − Y }. For two
cuts X, Y ⊂ V with X ∩ Y �= ∅ in G, we define λG(X, Y ) = ∞. The edge-
connectivity of G, denoted by λ(G), is defined as minX⊂V,Y ⊂V λG(X, Y ). For a
vertex v ∈ V and a set W ⊆ V of vertices, the node-to-area edge-connectivity
(NA-edge-connectivity, for short) between v and W is defined as λG(v,W ).
Note that λG(v,W ) = ∞ holds for v ∈ W . We say that a vertex v and an
area W is k-NA-edge-connected if λG(v,W ) ≥ k holds for an integer k. For
an area graph (G,W) and a function r : W → Z+, we say that (G,W) is
r-NA-edge-connected if λ(v,W ) ≥ r(W ) holds for every pair of a vertex v ∈ V
and an area W ∈ W. Note that the area graph (G,W) in Figure 1(ii) is
r-NA-edge-connected, where r(W1) = 2, r(W2) = 3, and r(W3) = 4.

In this paper, we consider the following problem, called r-NA-ECAP.

Problem 1 (r-NA-edge-connectivity augmentation problem, r-NA-ECAP)
Input: An area graph (G = (V,E),W) and a requirement function r : W
→ Z+.
Output: A set E∗ of new edges with the minimum cardinality such that G+E∗

is r-NA-edge-connected. ✷

3 Lower Bound on the Optimal Value

For an area graph (G,W) and a fixed function r : W → Z+, let opt(G,W, r)
denote the optimal value to r-NA-ECAP in (G,W), i.e., the minimum size |E∗|
of a set E∗ of new edges such that G + E∗ is r-NA-edge-connected. In this
section, we derive lower bounds on opt(G,W, r) to r-NA-ECAP with (G,W).
In the sequel, let W = {W1,W2, . . . ,Wp}.

A family X = {X1, . . . , Xt} of cuts in G is called a partition of V , if every two
cuts Xi, Xj ∈ X satisfy Xi ∩ Xj = ∅ and ∪Xi∈XXi = V holds. For a subset
X ⊆ V of vertices, a partition of X is called a subpartition of V . For an area
graph (G,W) and an area Wi ∈ W, let Ai denote the family of cuts X with
X ∩Wi = ∅ and Bi denote the family of cuts X with X ⊇ Wi (note that a cut
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X of Bi satisfies X �= V by the definition of a cut). We easily see the following
property.

Lemma 2 An area graph (G,W) is r-NA-edge-connected if and only if all
cuts X ∈ Ai ∪ Bi satisfy dG(X) ≥ r(Wi) for each area Wi ∈ W. ✷

Let X be a cut in (G,W). If X is a cut of Ai ∪ Bi with dG(X) < r(Wi) for
some area Wi ∈ W, then it is necessary to add at least r(Wi) − dG(X) edges
between X and V − X. It follows since if X belongs to Ai (resp., Bi), then
the NA-edge-connectivity between a vertex in X (resp., V −X) and an area
Wi ∈ W with Wi ∩ X = ∅ (resp., Wi ⊆ X) need be augmented to at least
r(Wi). Here we define αG,W ,r(X) as follows, which indicates the number of
necessary edges incident to X.

Definition 3 For each cut X ∈ Aj∪Bj for some Wj, we define iX as an index
i satisfying r(Wi) = max{r(W ) | W ∈ W, X ∩ W = ∅, or X ⊇ W}, and
define αG,W ,r(X) = max{0, r(WiX) − dG(X)}. For any other cut X, X = ∅,
or X = V , define αG,W ,r(X) = 0. ✷

Lemma 4 It is necessary to add at least αG,W ,r(X) edges between X and
V −X. ✷

Let

α(G,W, r) = max
X

{ ∑
X∈X

αG,W ,r(X)
}
, (1)

where the maximization is taken over all subpartitions of V . Then any feasible
solution to r-NA-ECAP with (G,W) must contain an edge which joins two
vertices from a cut X with αG,W ,r(X) > 0 and the cut V −X. Therefore we
see the following lemma.

Lemma 5 opt(G,W, r) ≥ �α(G,W, r)/2� holds. ✷

The area graph (G,W) in Figure 1(i) satisfies α(G,W, r) = 8. We have∑
X∈X αG,W ,r(X) = 8 for the subpartition X = {{v1}, {v2}, {v4}, {v6, v7, v8},

{v9, v11}, {v10}} of V .

We remark that there is an area graph (G,W) with opt(G,W, r) > �α(G,
W, r)/2�. Figure 2 gives an instance for r = r(W1) = r(W2) = r(W3) = 2.
Each cut {vi}, i = 1, 2, 4, 5 belongs to A3, r − dG(vi) = 1 holds for i =
1, 2, 5, and r − dG(v4) = 2 holds. The cut {v3} belongs to A1 and satisfies
r − dG(v3) = 1. It is not hard to see that in (1) the minimum is achieved
for the subpartition {{v1}, {v2}, {v3}, {v4}, {v5}} and �α(G,W, r)/2� = 3. In
order to make (G,W) r-NA-edge-connected by adding three new edges, we
must add E ′ = {(v1, v2), (v3, v4), (v4, v5)} or E ′ = {(v1, v4), (v2, v4), (v3, v5)}
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without loss of generality. In both cases, G + E ′ is not r-NA-edge-connected
by λG+E′(v1,W3) = 1. We will show that all such instances can be completely

Fig. 2. Illustration of an area graph (G,W) with opt(G,W, r) = �α(G,W ,r)
2 � + 1.

characterized as follows.

Definition 6 We say that an area graph (G,W) has property (P ) if α(G,
W, r) is even and there is a subpartition X of V with

∑
X∈X αG,W ,r(X) =

α(G,W, r) satisfying the following conditions (P1)–(P3) :

(P1) Each cut X ∈ X belongs to Ai for some Wi ∈ W.

(P2) There is a cut X∗ ∈ X with αG,W ,r(X
∗) = 1.

(P3) Let X1 denotes the family of cuts X ∈ X with dG(X) = 0 and αG,W ,r(X)
= 2. For each X ∈ X − X1 − {X∗}, there is a cut YX ∈ Bj for some Wj ∈
W such that the following (i)–(iv) hold: (i) X ∪ X∗ ⊆ YX, (ii) V − YX −
(∪X′′∈X1X

′′) �= ∅, (iii)
∑

X′∈X ,X′⊂YX
αG,W ,r(X

′) ≤ (r(Wj) + 1) − dG(YX), and
(iv) every cut X ′ ∈ X satisfies X ′ ⊂ YX or X ′ ∩ YX = ∅. ✷

Note that (G,W) in Figure 2 has property (P) because α(G,W, r) = 6
holds and the subpartition X = {X∗ = {v5}, X1 = {v1}, X2 = {v2}, X3 =
{v3}, X4 = {v4}} of V satisfies X1 = {X4}, YX1 = C1 ∪ {v1}, YX2 = C1 ∪{v2},
and YX3 = C1 ∪ {v3} for the component C1 of G containing v5.

Lemma 7 If (G,W) has property (P), then opt(G,W, r) ≥ �α(G,W, r)/2�+1
holds.

PROOF. Assume by contradiction that (G,W) has property (P) and there
is an edge set E∗ with |E∗| = α(G,W, r)/2 such that G + E∗ is r-NA-
edge-connected (note that α(G,W, r) is even). Let X = {X1, . . . , Xt} de-
note a subpartition of V satisfying

∑
X∈X αG,W ,r(X) = α(G,W, r) and the

above (P1)–(P3). Since |E∗| = α(G,W, r)/2 holds, each cut X ∈ X satis-
fies dG+E∗(X) = r(WiX), and hence dG′(X) = r(WiX ) − dG(X) = αG,W ,r(X),
where G′ = (V,E∗). Therefore, any edge (x, x′) ∈ E∗ satisfies x ∈ X and
x′ ∈ X ′ for some two cuts X,X ′ ∈ X with X �= X ′. Hence

∑
v∈X′′ dG′(v) =
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dG′(X ′′) for X ′′ ∈ {X,X ′}. From this, there exists a cut X1 ∈ X − {X∗} with
EG′(X∗, X1) �= ∅. Now note that X − X1 − {X∗} �= ∅ holds since otherwise
α(G,W, r) = 2|X1| + 1 by the properties (P2) and (P3), which contradicts
that α(G,W, r) is even.

Assume that X1 ∈ X −X1 holds. Since (G,W) satisfies property (P), there is
a cut YX1 ∈ Bj which satisfies (P3), and hence

∑
v∈YX1

dG′(v) =
∑

X′∈X ,X′⊂YX1

dG′(X ′) =
∑

X′∈X ,X′⊂YX1
αG,W ,r(X

′) ≤ (r(Wj) + 1) − dG(YX1). Since G′[YX1 ]

contains one edge in EG′(X1, X
∗), we have dG′(YX1) ≤ (r(Wj)− 1)− dG(YX1),

which implies that dG+E∗(YX1) = dG(YX1) + dG′(YX1) ≤ r(Wj) − 1. Hence a
vertex v ∈ V − YX1 satisfies λG+E∗(v,Wj) ≤ r(Wj) − 1, contradicting that
G+E∗ is r-NA-edge-connected (note that YX1 ∈ Bj holds and hence we have
Wj ⊆ YX1).

Assume that X1 ∈ X1 holds. From the properties (P2) and (P3), we have
dG′(X∗∪X1) = 1, and this implies that there exists an edge e ∈ E∗ connecting
X1 and some cut in X − {X∗, X1}. Let X ′

1 = {X∗, X1, X2, . . . , Xt′, Xt′+1} be
a family of cuts in X such that we have Xi ∈ X1 for each i = 1, 2, . . . , t′ and
Xt′+1 ∈ X − X1 and EG′(Xi, Xi+1) �= ∅ for each i = 1, . . . , t′ (note that such
Xt′+1 exists by X −X1−{X∗} �= ∅). Note that such X ′

1 is determined uniquely
by

dG′(X∗) = 1 and dG′(X) = 2 for each X ∈ X1. (2)

From the definition of property (P), there is a cut YXt′+1
∈ Bj for some Wj ∈ W

satisfying (P3) for Xt′+1. Let Yt′+1 = YXt′+1
∪(∪X∈X ′

1
X). Note that dG(Yt′+1) =

dG(YXt′+1
) holds by dG(X) = 0 for each X ∈ X1. We have

∑
v∈Yt′+1

dG′(v) ≤ (r(Wj) + 1)− dG(Yt′+1) + 2t′ (3)

by
∑

v∈YX
t′+1

dG′(v) ≤ (r(Wj)+1)−dG(YXt′+1
), (2), and dG(Yt′+1) = dG(YXt′+1

).

Also by (2), we can observe that each edge in E∗ incident to (∪X∈X ′
1−{Xt′+1}X)

is contained in E(G′[Yt′+1]); E(G′[Yt′+1]) contains at least t′ + 1 edges in E∗.
From (3) and this, we have dG′(Yt′+1) ≤ (r(Wj)+1)−dG(Yt′+1)+2t′−2(t′+1)
= r(Wj) − 1 − dG(Yt′+1), which implies that dG+E∗(Yt′+1) ≤ r(Wj) − 1 holds.
Since we have Wj ⊆ YXt′+1

and V −YXt′+1
− (∪X∈X1X) �= ∅ from the property

(P3), it follows that Yt′+1 ∈ Bj , contradicting that G + E∗ is r-NA-edge-
connected. ✷

In this paper, we prove that r-NA-ECAP enjoys the following min-max theo-
rem and is polynomially solvable.

7



Theorem 8 For r-NA-ECAP with r(W ) ≥ 2 for each area W ∈ W, opt(G,
W, r) = �α(G,W, r)/2� holds if (G,W) does not have property (P ), and
opt(G,W, r) = �α(G,W, r)/2� + 1 holds otherwise. Moreover, a solution E∗

with |E∗| = opt(G,W, r) can be obtained in O(m+ pn4 (r∗ + log n)) time,
where n = |V |, m = |{{u, v}|(u, v) ∈ E}|, p = |W|, and r∗ = max{r(W ) |
W ∈ W}. ✷

4 Algorithm

Based on the lower bounds in the previous section, we give an algorithm,
called r-NAEC-AUG, which finds a feasible solution E ′ to r-NA-ECAP with
|E ′| = opt(G,W, r), for a given area graph (G,W) and a requirement function
r : W → Z+−{1}. It finds a feasible solution E ′ with |E ′| = �α(G,W, r)/2�+1
if (G,W) has property (P), |E ′| = �α(G,W, r)/2� otherwise.

To find a minimum set E ′ of new edges, we do not immediately add some new
edges to G. Instead we first try to find the set of vertices in G that are end
vertices of such an E ′. For this, we create a new vertex s outside of G and add
new edges between s and G.

For a graph H = (V ∪ {s}, E) and a designated vertex s /∈ V , an operation
called edge-splitting (at s) is defined as deleting two edges (s, u), (s, v) ∈ E
and adding one new edge (u, v). That is, the graph H ′ = (V ∪ {s}, (E −
{(s, u), (s, v)})∪{(u, v)}) is obtained from such edge-splitting operation. Then
we say that H ′ is obtained from H by splitting a pair of edges (s, u) and
(s, v) (or by splitting (s, u) and (s, v)). A sequence of splittings is complete
if the resulting graph H ′ does not have any neighbor of s. The edge-splitting
operation is known to be a useful tool for solving connectivity augmentation
problems [3].

We here give an outline of algorithm r-NAEC-AUG. In the first step, we add to
a given graph (G,W) a new vertex s and a set F1 of new edges between s and
V with |F1| = α(G,W, r) such that the resulting graph H = (V ∪{s}, E∪F1)
satisfies λH(v,Wi) ≥ r(Wi) for every pair of v ∈ V and Wi ∈ W. (The vertex
s will be discarded upon the completion of the algorithm.) If F1 is odd, then
we add an arbitrary one edge to F1. Then we can check if G has Property
(P) or not. In the next step, we repeat edge-splittings at s while preserving
r(Wi)-NA-edge-connectivity between every pair of v ∈ V and Wi ∈ W. If
(G,W) does not have property (P), then the algorithm finds such a complete
splitting, and hence the set E∗ of added edges satisfies |E∗| = �α(G,W, r)/2�
and λG+E∗(v,Wi) ≥ r(Wi) for every pair of a vertex v ∈ V and an area
Wi ∈ W. If (G,W) has property (P), then the algorithm finds such a complete
splitting by adding one extra edge to G, and hence the obtained edge set E∗
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satisfies |E∗| = �α(G,W, r)/2�+1. In both cases, E∗ is optimal by Lemmas 5
and 7.

More precisely, we describe the algorithm below, and introduce three theorems
necessary to justify the algorithm, which will be proved in the subsequent
sections. An example of computational process of r-NAEC-AUG is shown in
Figure 3.

Fig. 3. Computational process of algorithm r-NAEC-AUG applied to the area graph
(G,W) in Figure 1 and (r(W1), r(W2), r(W3)) = (2, 3, 4). The lower bound in Sec-
tion 3 is �α(G,W)/2� = 4. (i) H = (V ∪{s}, E∪F1) obtained by Step 1. Edges in F1

are drawn as broken lines. Then λH(v,W ) ≥ r(W ) holds for every pair of v ∈ V and
W ∈ W. (ii) H1 = (H − {(s, v1), (s, v2)}) ∪ {(v1, v2)} obtained from H by the ad-
missible splitting of (s, v1) and (s, v2). (iii) H2 = (H1 −{(s, v3), (s, v4)})∪{(v3, v4)}
obtained from H1 by the admissible splitting of (s, v3) and (s, v4). (iv) H3 ob-
tained from H2 by a complete admissible splitting at s. The graph G3 = H3 − s is
r-NA-edge-connected.

Algorithm r-NAEC-AUG

Input: An area graph (G = (V,E),W) and a requirement function r : W
→ Z+ − {1}.

Output: A set E∗ of new edges with |E∗|=opt(G,W, r) such that G+E∗ is
r-NA-edge-connected.

9



Step 1: We add a new vertex s and a set F1 of new edges between s and V
such that in the resulting graph H = (V ∪ {s}, E ∪ F1),

all cuts X ⊂ V of Ai ∪ Bi satisfy dH(X) ≥ r(Wi) for each Wi ∈ W, (4)

and no F ⊂ F1 satisfies this property (as will be shown, |F1| = α(G,W, r)
holds). If dH(s) is odd, then we add to F1 one extra edge between s and V .

Step 2: We split two edges incident to s while preserving (4) (such splitting
pair is called admissible).

If at least one of the following conditions (I)–(III) does not hold, then find a
complete admissible splitting at s in H after replacing at most one edge f1 in F1

with another edge f2 incident to s. Output the set E∗ of all split edges, where
|E∗| = �α(G,W, r)/2� holds. If all conditions (I)–(III) hold, then we can prove
that G has property (P). By adding one new edge e∗ to G, find a complete
admissible splitting at s in H + {e∗}. Output the edge set E∗ := E3 ∪ {e∗},
where E3 denotes the set of all split edges and |E∗| = �α(G,W, r)/2�+1 holds.
(The procedures of finding a complete splitting at s and finding edges f1, f2,
and e∗ are complicated, and hence the details will be described in Section 6
later.)

(I) G has exactly one component C∗ with dH(s, C∗) = 1.

(II) For the edge (s, u∗) with {(s, u∗)} = EH(s, C∗), u∗ is contained in a cut
X ⊆ C∗ with X ∈ Aj and dH(X) = r(Wj) for some area Wj ∈ W.

(III) Let C1 be the family of all components C of G which satisfies dH(C) =
dH(s, C) = 2 and belongs to Ai for some area Wi ∈ W. {(s, u∗), e} is not
admissible in H for any edge e ∈ EH(s, V −∪C∈C1C). ✷

To justify the algorithm r-NAEC-AUG, it suffices to show the following The-
orems 9–11.

Theorem 9 Let (G = (V,E),W) be an area graph, and r(W ) ≥ 0 for each
W ∈ W. Let H = (V ∪{s}, E ∪F1) be a graph with s /∈ V and F1 = EH(s, V )
such that H satisfies (4) and no F ⊂ F1 satisfies this property. Then |F1| =
α(G,W, r) holds. ✷

In the sequel, we shall often consider an area graph (G = (V,E),W), and
a graph H = (V ∪ {s}, E ∪ F ) with a designated vertex s /∈ V and F =

10



Fig. 4. Illustration of a graph H = (V ∪ {s}, E ∪ F ) satisfying the statements (I) –
(III) in Theorem 10. The graph H is constructed from the graph G in Figure 2 by
adding a designated vertex s and a set F of edges between s and V so that H satisfies
(4). Observe that the component C∗ corresponds to the C∗ in the statement (I),
the cut {u∗} ⊆ C∗ satisfies {u∗} ∈ A1 and dH({u∗}) = r(W1) = 2, {(s, u∗), (s, vj)},
j = 1, 2, 3 is not admissible in H, and C1 = {{v4}} holds.

EH(s, V ) �= ∅ satisfying the following (a) – (c):

(a) |F | = dH(s, V ) is even,

(b) r(W ) ≥ 2 holds for each area W ∈ W,

(c) H satisfies (4).

(5)

Theorem 10 Let G = (V,E), H = (V ∪ {s}, E ∪ F ), and r satisfy (5). If
H satisfies the following conditions (I)–(III), then G has property (P ) (see
Figure 4). Otherwise H has a complete admissible splitting at s after replacing
at most one edge in F with a new edge incident to s.

(I) G has exactly one component C∗ with dH(s, C∗) = 1.

(II) For the edge (s, u∗) ∈ F with EH(s, C∗) = {(s, u∗)}, u∗ is contained in a
cut X ⊆ C∗ with X ∈ Ai and dH(X) = r(Wi) for some area Wi ∈ W.

(III) Let C1 be the family of all components C ′ of G such that dH(s, C ′) = 2
and C ′ ∈ Aj for some Wj. For any edge e ∈ EH(s, V −∪C′∈C1C

′), {(s, u∗), e}
is not admissible in H. ✷

Theorem 11 Let G = (V,E), H = (V ∪{s}, E ∪F ), and r satisfy (5). Then
there is a graph H ′ = H + {e} obtained from H by adding some edge e to G
such that H ′ has a complete admissible splitting at s. ✷

By Theorems 10 and 11, for the set E∗ of edges obtained by algorithm r-
NAEC-AUG, the graphH∗ = (V ∪{s}, E∪E∗) satisfies (4), i.e., all cuts X ⊂ V
of Ai ∪ Bi satisfy dH∗(X) ≥ r(Wi) for each area Wi ∈ W. By dH∗(s) = 0, all
cuts X ⊂ V satisfy dG+E∗(X) = dH∗(X). From Lemma 2, it follows that
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G + E∗ is r-NA-edge-connected. Theorem 9 indicates that |F1| = α(G,W, r)
holds. Again by Theorems 10 and 11, we have |E∗| = �α(G,W, r)/2� + 1
in the cases where an initial area graph (G,W) has property (P), |E∗| =
�α(G,W, r)/2� otherwise. By Lemmas 5 and 7, we have |E∗| = opt(G,W, r).

5 Proof of Theorem 9

In the subsequent sections, for a graph H = (V ∪ {s}, E ∪ F ), let s /∈ V ,
F = EH(s, V ), and the graph H−s be the area graph (G,W), if no confusion
occurs.

For two cuts X, Y ⊆ V in a graph G = (V,E), we say that X and Y cross
each other in G or X crosses with Y if none of X ∩ Y , X − Y , Y − X, and
V − (X ∪Y ) is empty. For a family X of subsets of V and a vertex set Y ⊆ V ,
X covers Y if Y ⊆ ∪X∈XX holds. For a graph G = (V,E), every two cuts
X, Y ⊂ V satisfy the following equalities.

dG(X)+ dG(Y )= dG(X − Y ) + dG(Y −X) + 2dG(X ∩ Y, V −(X ∪ Y )).(6)

dG(X)+ dG(Y )= dG(X ∪ Y ) + dG(X ∩ Y ) + 2dG(X − Y, Y −X). (7)

For a graph G = (V,E), every three cuts X, Y, and Z satisfy the following
inequality.

dG(X) + dG(Y ) + dG(Z) ≥ dG(X − Y − Z) + dG(Y −X − Z)

+dG(Z −X − Y ) + dG(X ∩ Y ∩ Z)

+2dG(X ∩ Y ∩ Z, V − (X ∪ Y ∪ Z)).

(8)

In a graph H = (V ∪ {s}, E ∪ F ) satisfying (4), for each area Wi ∈ W, the
following properties hold:

If a cut X ⊂ V belongs to Ai, then every cut X ′ ⊆ X also belongs

to Ai and hence satisfies dH(X ′) ≥ r(Wi).
(9)

If a cut X ⊂ V belongs to Bi, then every cut X ′ ⊇ X with X ′ �= V

also belongs to Bi and hence satisfies dH(X ′) ≥ r(Wi).
(10)

Theorem 9 can be proved from the theory of polymatroids as follows. Let V be
a finite ground set and let p : 2V → Z ∪ {−∞} be an integer-valued function
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with p(∅) = 0. A set function p is called skew-supermodular if p(X) + p(Y ) ≤
p(X ∩ Y ) + p(X ∪ Y ) or p(X) + p(Y ) ≤ p(X − Y ) + p(Y −X) hold for every
two subsets X and Y of V . A set function p is called symmetric if p(X) =
p(V − X) holds for all X ⊆ V . In [3], it was shown that given a symmetric
skew-supermodular integer-valued function p : 2V → Z ∪ {−∞}, a vector
z : V → Z+ such that

∑
v∈V z(v) is the minimum and z(X) ≥ p(X) holds for

every X ⊆ V can be found by a greedy algorithm. Now it is not difficult to
see from (6), (7), (9), and (10) that αG,W ,r is a symmetric skew-supermodular
integer-valued function. Note that H = (V ∪ {s}, E ∪ F ) satisfies (4) if and
only if a vector z : V → Z+ with z(v) = dH(s, v) satisfies z(X) ≥ αG,W ,r(X)
for every X ⊆ V . This observation proves Theorem 9.

Here we also give a graph theoretical proof of Theorem 9. We first show several
properties of a graph H = (V ∪ {s}, E ∪ F ) satisfying (4).

Lemma 12 Let G = (V,E), H = (V ∪ {s}, E ∪ F ), and r satisfy (4), and
two cuts X, Y ⊂ V with dH(X) = r(Wi) and dH(Y ) = r(Wj) cross each other
in H (r(Wi) = r(Wj) may hold). Assume that one of the following (i)-(iii)
holds. Then we have dH(X ∩Y, V ∪{s}− (X ∪Y )) = 0. Moreover, if (i) holds,
then we have X − Y ∈ Ai, dH(X − Y ) = r(Wi), and dH(Y − X) = r(Wj).
If (ii) or (iii) hold, then we have X − Y ∈ Aj, dH(X − Y ) = r(Wj), and
dH(Y −X) = r(Wi).
(i) X ∈ Ai and Y ∈ Aj.
(ii) X ∈ Bi and Y ∈ Bj.
(iii) X ∈ Ai, Y ∈ Bj, and V = X ∪ Y .

PROOF. If (i) holds (resp., (ii) or (iii) hold), then X−Y belongs to Ai (resp.,
Aj) by (9) (resp., (X−Y )∩Wj = ∅). It suffices to show that if (i) holds (resp.,
(ii) or (iii) hold), then dH(X − Y ) ≥ r(Wi) and dH(Y − X) ≥ r(Wj) (resp.,
dH(X − Y ) ≥ r(Wj) and dH(Y − X) ≥ r(Wi)) hold. This follows since if
dH(X − Y ) ≥ r(Wi) and dH(Y − X) ≥ r(Wj) (resp., dH(X − Y ) ≥ r(Wj)
and dH(Y −X) ≥ r(Wi)) hold, then by (6), it follows that r(Wi) + r(Wj) =
dH(X)+dH(Y ) = dH(X−Y )+dH(Y −X) +2dH(X ∩Y, V ∪{s}− (X∪Y )) ≥
r(Wi) + r(Wj), which proves the lemma.

(i) (9) says dH(X − Y ) ≥ r(Wi) and dH(Y −X) ≥ r(Wj).

(ii) There are two areasWi,Wj ∈ W with Wi ⊆ X and Wj ⊆ Y . (Y−X)∩Wi =
∅ says that Y −X ∈ Ai holds. From (4), it follows that dH(X − Y ) ≥ r(Wj)
and dH(Y −X) ≥ r(Wi).

(iii) There are two areas Wi,Wj ∈ W with Wi ⊆ V −X and Wj ⊆ Y . Since
X − Y ∈ Aj holds, we have dH(X − Y ) ≥ r(Wj) by (4). Moreover, from
X ∪ Y = V , it follows that Wi ⊆ Y −X holds. Hence the cut Y −X belongs
to Bi and satisfies dH(Y −X) ≥ r(Wi) by (4). ✷
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Lemma 13 Let G = (V,E), H = (V ∪{s}, E ∪F ), and r satisfy (4) and two
cuts X, Y ⊂ V with dH(X) = r(Wi) and dH(Y ) = r(Wj) cross each other in
H (r(Wi) = r(Wj) may hold). If X ∈ Ai, Y ∈ Bj, and V �= X ∪ Y hold, then
the cut X ∪ Y belongs to Bj and satisfies dH(X ∪ Y ) = r(Wj).

PROOF. We have dH(X∩Y ) ≥ r(Wi) by (9) and dH(X∪Y ) ≥ r(Wj) by (10).
By (7), we have r(Wi)+r(Wj) = dH(X)+dH(Y ) ≥ dH(X∩Y )+dH(X∪Y ) ≥
r(Wi) + r(Wj), which proves the lemma. ✷

PROOF of Theorem 9. We first show |F1| ≥ α(G,W, r). Let X ∗ be a
subpartition of V such that every cut X∗ ∈ X ∗ satisfies αG,W ,r(X

∗) > 0 and∑
X∗∈X ∗ αG,W ,r(X

∗) = α(G,W, r) holds. For any graph H ′ = (V ∪{s}, E∪F ′)
satisfying (4), we have dH′(s,X∗) ≥ r(WiX∗) − dG(X∗) for all cuts X∗ ∈ X ∗.
This means |F ′| ≥ α(G,W, r). Therefore we have |F1| ≥ α(G,W, r).

We next show |F1| ≤ α(G,W, r). From the minimality of F1, there is a cut
Xv ⊂ V of Ai ∪ Bi with some area Wi ∈ W, satisfying v ∈ Xv and dH(Xv) =
r(Wi) for every edge (s, v) ∈ F1. We call such cut Xv a critical cut with
respect to v. Let X be a family of critical cuts Xv, v ∈ V [F1] − s, such that
X covers V [F1] − s and ∪X∈X |X| is the minimum (note that such X exists
from the minimality of F1). We claim that X is a subpartition of V . If X is a
subpartition of V , then we have |F1| = ∑

X∈X (r(WiX )− dG(X)) ≤ α(G,W, r)
by the maximality of α(G,W, r) (note that each critical cut X ⊂ V satisfies
dH(s,X) = r(WiX)−dG(X) = αG,W ,r(X) > 0 by the definition of critical cuts
and (4)).

Assume by contradiction that X is not a subpartition of V . Then there are two
cuts X1, X2 ∈ X which cross each other in H (note that from the minimality
of ∪X∈X |X|, no cut X ′ ∈ X satisfies X ′ ⊂ X for some cut X ∈ X ). There
are the following four possible cases: (I) X1 ∈ Ai and X2 ∈ Aj hold for some
Wi,Wj ∈ W, (II) X1 ∈ Bi and X2 ∈ Bj hold for some Wi,Wj ∈ W, (III)
X1 ∈ Ai and X2 ∈ Bj hold for some Wi,Wj ∈ W and X1 ∪X2 = V , and (IV)
X1 ∈ Ai and X2 ∈ Bj hold for some Wi,Wj ∈ W and X1 ∪X2 �= V .

In the cases of (I) (resp., (II) or (III)), from Lemma 12 (i) (resp., (ii)(iii)), it
follows that X1 −X2 is a critical cut of Ai (resp., Aj). Hence, the new family
X ′ = (X −{X1})∪ {X1 −X2} of critical cuts covers V [F1]−s and contradicts
the minimality of ∪X∈X |X|. In the case of (IV), from Lemma 13, it follows that
X1 ∪X2 is a critical cut of Bj . Hence, the new family X ′ = (X − {X1, X2})∪
{X1 ∪X2} of critical cuts covers V [F1] − s and contradicts the minimality of
∪X∈X |X|. ✷
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6 Proofs of Theorems 10 and 11

In this section, we give proofs of Theorems 10 and 11. In Section 6.1, we first
show several properties about edge-splitting operations and give a proof of
Theorem 11. Based on this, we prove Theorem 10; we show in Section 6.2
that if at least one of conditions (I)–(III) in Theorem 10 does not hold, then
there is a complete splitting at s, and show in Section 6.3 that if all conditions
(I)–(III) hold, then G has property (P).

Through this section, let C1 be the family of all components C of G such that
dH(C) = dH(s, C) = 2 and C ∈ Ai for some Wi ∈ W, and V1 = ∪C∈C1C. Let
C2 be the family of all components C of G such that C /∈ C1 and dH(s, C) > 0,
and V2 = ∪C∈C2C.

6.1 Edge-splitting operations

In this section, we show the following theorem and lemmas, which are keys
for splitting operations in algorithm r-NAEC-AUG.

Lemma 14 Let G, H, and r satisfy (5). If

dH(s, C) ≤ 2 holds for all components C of G, (11)

then we can continue admissible edge-splittings at s until isolating s.

Lemma 15 Let G, H, and r satisfy (5). If

dH(s, C) is even for all components C of G, (12)

then we can continue admissible edge-splittings at s until isolating s.

Theorem 16 Let G, H, and r satisfy (5). Assume that no pair of two edges
in EH(s, V2) is admissible and that neither (11) nor (12) holds. Then G[V2] has
exactly two components C1 and C2. Moreover, C1 and C2 satisfy the followings:
(a) dH(s, C1) ≥ 3 holds, every cut X ⊆ C1 satisfies dH(X) ≥ 2, and every cut
X ⊆ C1 with dH(X) = 2 belongs to Ai for some Wi ∈ W.
(b) dH(s, C2) = 1 holds. ✷

Remark: The second and third properties in Theorem 16 (a) will be used for
further analysis about complete splittings in Section 6.3.

From Lemma 15 and Theorem 16, Corollary 17 follows.
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Corollary 17 Let C1 and C2 be two components of G[V2] in Theorem 16.
Then, in the graph H + e∗ obtained by adding one arbitrary new edge e∗ to
EG(C1, C2), we can continue admissible edge-splittings at s until isolating s.

PROOF. In the graph H ′ = H + e∗ obtained by adding one arbitrary new
edge e∗ to EG(C1, C2), dH′(s, C) is even for every component C of H ′[V ] (note
that dH(s, C1 ∪ C2) is even since dH(s, V ) and dH(s, V1) are both even and
dH(s, C1 ∪ C2) = dH(s, V ) − dH(s, V1) holds). Lemma 15 proves this corol-
lary. ✷

It is not difficult to observe that this corollary proves Theorem 11. Let H ′

denote the resulting graph obtained fromH by continuing admissible splittings
of two edges in EH(s, V2) as possible. If H ′ satisfies (11) or (12), then it follows
from Lemmas 14 and 15 that H ′ has a complete splitting at s. Otherwise H ′

satisfies the assumption of Theorem 16 (note that the case of EH′(s, V2) = ∅
implies that (12) holds by the definition of C1). In this case, it follows from
Corollary 17 that we can obtain a complete admissible splitting in H ′ after
adding one extra edge.

Before proving these theorem and lemmas, we introduce several preparatory
properties about splittings. For a graph H = (V ∪ {s}, E ∪F ) with satisfying
(4), a pair {(s, u), (s, v)} ⊆ F of two edges is not admissible if there is a cut
Y ⊂ V of Ai∪Bi for some i with {u, v} ⊆ Y and dH(Y ) ≤ r(Wi)+1. Such cut
Y is called a dangerous cut. Conversely, a pair {(s, u), (s, v)} is not admissible
only if there is a dangerous cut Y ⊂ V with {u, v} ⊆ Y .

The following two lemmas are used for seeking an admissible pair of two edges
while avoiding dangerous cuts. Lemma 18 says that any dangerous cut cannot
cover V [F ]− s.

Lemma 18 Let G = (V,E), H = (V ∪ {s}, E ∪ F ), and r satisfy (4) and
Y ⊂ V be a dangerous cut. Then we have dH(s, V − Y ) ≥ dH(s, Y ) − 1 > 0.

PROOF. Assume that Y is a dangerous cut of Ai ∪ Bi for an area Wi ∈
W. Since Y is a dangerous cut, we have dH(Y ) = dH(s, Y ) + dH(Y, V − Y )
≤ r(Wi) + 1. Moreover, Y ∈ Ai ∪ Bi holds, and hence so does V − Y , which
implies dH(V − Y ) = dH(s, V − Y ) + dH(Y, V − Y ) ≥ r(Wi) by (4). Hence we
have dH(s, V −Y ) ≥ r(Wi)−dH(Y, V −Y ) ≥ dH(s, Y )−1. From the definition
of dangerous cuts, it follows that dH(s, Y ) ≥ 2 holds. ✷

The next lemma says that any two dangerous cuts containing a common vertex
in V cannot cover V [F ]− s.

16



Lemma 19 Let G = (V,E), H = (V ∪ {s}, E ∪ F ), and r satisfy (4) and
an even dH(s). Assume that there are two dangerous cuts Y1, Y2 ⊂ V with
dH(s, Y1 − Y2) > 0, dH(s, Y2 − Y1) > 0, and dH(s, Y1 ∩ Y2) > 0. Then we have
dH(s, V − Y1 − Y2) > 0.

PROOF. Assume that Yi (resp., Yj) is a dangerous cut of Ai∪Bi (resp., Aj∪
Bj) for an area Wi ∈ W (resp., Wj ∈ W). Assume dH(s, Y1 −Y2) ≥ dH(s, Y2 −
Y1) without loss of generality. By Lemma 18, we have dH(s, Y2−Y1)+dH(s, V −
Y1 − Y2) = dH(s, V −Y1) ≥ dH(s, Y1)− 1 = dH(s, Y1 − Y2)+ dH(s, Y1 ∩Y2)− 1
≥ dH(s, Y2−Y1)+dH(s, Y1∩Y2)−1. Hence dH(s, V −Y1−Y2) = 0 would imply
that the above inequalities hold by equality since dH(s, Y1∩Y2) ≥ 1 holds. This
means dH(s, Y1−Y2) = dH(s, Y2−Y1), which implies dH(s) = 2dH(s, Y1−Y2)+1,
contradicting that dH(s) is even. ✷

The next two lemmas show properties for cuts Y ∈ Ai ∪ Bi with some i
satisfying dH(Y ) ≤ r(Wi) + 1 (note that Y is not necessarily dangerous). We
will be often referred to the next Lemma 20 in the subsequent arguments,
when we observe that a dangerous cut of Ai induces a connected component,
or that a dangerous cut which does not a connected component belongs to Bj .

Lemma 20 Let G = (V,E), H = (V ∪ {s}, E ∪ F ), and r satisfy (4). For
every cut Y ⊂ V of Ai with r(Wi) ≥ 2 and dH(Y ) ≤ r(Wi) + 1, λ(G[Y ]) ≥
r(Wi) − �dH(Y )

2
� (≥ 1) holds.

PROOF. By (9), for any partition {Y1, Y2} of Y , we have dH(Yj) ≥ r(Wi)

for j = 1, 2. Hence, we have dH(Y1, Y2) = 1
2
(dH(Y1) + dH(Y2)) −dH (Y )

2
≥

r(Wi) − dH(Y )
2

> 0 by r(Wi) ≥ 2. ✷

The next lemma is often used under a situation where two crossing dangerous
cuts Y1, Y2 satisfy dH(s, Y1 ∩ Y2) > 0.

Lemma 21 Let G = (V,E), H = (V ∪ {s}, E ∪ F ), and r satisfy (4), and
Y1 and Y2 be two cuts with dH(Y1) ≤ r(Wi) + 1, dH(Y2) ≤ r(Wj) + 1, and
dH(Y1 ∩ Y2, (V ∪ {s}) − (Y1 ∪ Y2)) > 0 such that Y1 and Y2 satisfy one of
the following (i) or (ii). Assume that Y1 and Y2 cross each other in H. Then
we have dH(Y1) = r(Wi) + 1, dH(Y2) = r(Wj) + 1, and dH(Y1 ∩ Y2, (V ∪
{s})− (Y1 ∪ Y2)) = 1. Moreover, if (i) holds, then Y1 − Y2 is a cut of Ai with
dH(Y1 − Y2) = r(Wi) and Y2 − Y1 is a cut of Aj with dH(Y2 − Y1) = r(Wj). If
(ii) holds, then Y1 − Y2 is a cut of Aj with dH(Y1 − Y2) = r(Wj) and Y2 − Y1

is a cut of Ai with dH(Y2 − Y1) = r(Wi).
(i) Y1 ∈ Ai and Y2 ∈ Aj.
(ii) Y1 ∈ Bi and Y2 ∈ Bj.
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PROOF. If (i) (resp., (ii)) holds, then the cuts Y1 − Y2 belongs to Ai (resp.,
Aj) and Y2 −Y1 belongs to Aj (resp., Ai) by (9) (resp., by (Y1 −Y2)∩Wj = ∅
= (Y2 − Y1) ∩ Wi). Hence, from (4), it follows that dH(Y1 − Y2) ≥ r(Wi)
(resp., dH(Y1 − Y2) ≥ r(Wj)) and dH(Y2 − Y1) ≥ r(Wj) (resp., dH(Y2 − Y1) ≥
r(Wi)). By this, dH(Y1 ∩ Y2, (V ∪ {s}) − (Y1 ∪ Y2)) > 0, and (6), we have
r(Wi) + 1 + r(Wj) + 1 ≥ dH(Y1) + dH(Y2) = dH(Y1 − Y2) + dH(Y2 − Y1)
+2dH(Y1 ∩ Y2, (V ∪ {s}) − (Y1 ∪ Y2)) ≥ r(Wi) + r(Wj) + 2. This proves the
lemma. ✷

Based on these, we give proofs of Lemmas 14 and 15. In the subsequent ar-
guments, we will be often referred to the following two conditions (11) and
(12) as evidences that we can continue admissible edge-splittings in H until
isolating s.

PROOF of Lemma 14. Assume that |F | ≥ 4 holds, since otherwise |F | = 2
holds and Lemma 18 implies that the pair of two edges in F is admissible.
Hence G has at least two components C ∈ C, where C denotes the family of
all components C of G with dH(s, C) > 0. We prove the lemma by showing
that there is a pair of two edges in F which is admissible in H (note that
the resulting graph obtained by an admissible splitting at s also satisfies the
assumption of this lemma).

Let C = {C1, C2, . . . , Ct}, t ≥ 2 satisfy dH(s, C1) ≥ dH(s, C2) ≥ · · · ≥
dH(s, Ct). Let (s, uj) ∈ F be an edge with uj ∈ Cj ∈ C for j = 1, 2. It suffices
to show that {(s, u1), (s, u2)} is admissible in H . Assume by contradiction that
there exists a dangerous cut Y1 with {u1, u2} ⊆ Y1. Then Lemma 20 implies
that Y1 ∈ Bi holds for some area Wi ∈ W.

We claim that Wi ∩ C �= ∅ holds for each C ∈ C − {C1, C2}. Assume that
some C ′ ∈ C satisfies C ′ ∩Wi = ∅. Then C ′ ∈ Ai holds and hence dH(C ′) =
dH(s, C ′) ≥ r(Wi) ≥ 2 holds by (4). It follows that dH(s, C ′) = 2, r(Wi) =
2, and dH(Y1) ≤ 3. From the choice of u1, u2 and dH(s, C ′) = 2, we have
dH(s, C1) = dH(s, C2) = 2, and hence dH(C1 ∩ Y1) ≥ 2 and dH(C2 ∩ Y1) ≥ 2
hold. It follows that dH(Y1) ≥ dH(C1 ∩ Y1) + dH(C2 ∩ Y1) ≥ 4, contradicting
dH(Y1) ≤ 3.

Lemma 18 says that there is an edge (s, v1) ∈ EH(s, V − Y1). Then let v1 ∈
C1 ∪ C2 if dH(s, C1 ∪ C2 − Y1) > 0 holds. Let C ′ be the component in C with
v1 ∈ C ′. From (C ′−Y1)∩Wi = ∅ and (4), it follows that dH(C ′−Y1) ≥ r(Wi).
Hence dG(C ′−Y1) = dG(C ′−Y1, C

′∩Y1) ≥ r(Wi)−dH(s, C ′−Y1). From this,
it follows that dH(Y1) ≥ dH(s, Y1)+dG(C ′−Y1, C

′∩Y1) ≥ r(Wi)+dH(s, Y1)−
dH(s, C ′ − Y1). Note that 1 ≤ dH(s, C ′ − Y1) ≤ 2 holds; there are two possible
cases (I) dH(s, C ′ − Y1) = 1 and (II) dH(s, C ′ − Y1) = 2.
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We consider the case of (I). By dH(s, Y1) ≥ 2 and dH(Y1) ≤ r(Wi)+1, we have
dH(s, Y1) = 2, dH(Y1) = r(Wi) + 1, and dG(Y1) = dG(C ′ − Y1, C

′ ∩ Y1). Since
every component C ∈ C satisfies C ∩Y1 �= ∅ and dG(Y1) = dG(C ′−Y1, C

′∩Y1)
holds, every component C ∈ C −{C ′} satisfies C ⊆ Y1. From dH(s, Y1) = 2, it
follows that (a) C = {C1, C2, C

′} and dH(s, C1) = dH(s, C2) = dH(s, C ′) = 1
hold, or (b) C = {C1 = C ′, C2} and dH(s, C1) = 2 and dH(s, C2) = 1 hold.
This contradicts that |F | is even.

We consider the case of (II). By dH(Y1) ≤ r(Wi) + 1, we have dH(s, Y1) ≤ 3.
dH(s, C ′ − Y1) = 2 implies that C ′ ∈ C − {C1, C2}. From the choice of u1

and u2, dH(s, C1) = dH(s, C2) ≥ dH(s, C ′) = 2 hold. From the choice of v1,
dH(s, C1 ∪ C2 − Y1) = 0 holds, from which dH(s, Y1) ≥ 4, a contradiction to
dH(s, Y1) ≤ 3. ✷

PROOF of Lemma 15. We prove the lemma by showing that there is a
pair of two edges in F which is admissible in H (note that the resulting
graph obtained by an admissible splitting at s also satisfies the assumption
of this lemma). Let (s, u) ∈ F . Assume by contradiction that there is no
edge (s, v) ∈ F such that {(s, u), (s, v)} is admissible in H . Then we claim
that there are three dangerous cuts Y1, Y2, and Y3 with u ∈ Y1 ∩ Y2 ∩ Y3,
dH(s, Y1 − Y2 − Y3) > 0, dH(s, Y2 − Y3 − Y1) > 0, and dH(s, Y3 − Y1 − Y2) >
0. Assume by contradiction that the claim does not hold. Then there is a
dangerous cut Y with F = EH(s, Y ) or two dangerous cuts Y1 and Y2 with
F = EH(s, Y1 ∪ Y2), u ∈ Y1 ∩ Y2, dH(s, Y1 − Y2) > 0, and dH(s, Y2 − Y1) > 0.
The former case (resp., the latter case) would contradict Lemma 18 (resp.,
Lemma 19).

Then there are the following four possible cases.

(Case-1) Y1 ∈ Ai, Y2 ∈ Aj, and Y3 ∈ Ak.

(Case-2) Y1 ∈ Bi, Y2 ∈ Bj , and Y3 ∈ Bk.

(Case-3) Y1 ∈ Ai, Y2 ∈ Bj, and Y3 ∈ Bk.

(Case-4) Y1 ∈ Ai, Y2 ∈ Aj, and Y3 ∈ Bk.

Note that in each case, every cut Y� ∈ Ah ∪ Bh satisfies dH(Y�) ≤ r(Wh) + 1
for some Wh and dH(Y1∩Y2∩Y3, V ∪{s}− (Y1∪Y2∪Y3)) ≥ dH(s, Y1∩Y2∩Y3)
≥ dH(s, u) > 0 holds. Also note that we have Y1−Y2−Y3 �= ∅, Y2−Y3−Y1 �= ∅,
and Y3 − Y1 − Y2 �= ∅.

(Case-1) By (9), we have dH(Y1−Y2−Y3) ≥ r(Wi), dH(Y2−Y3−Y1) ≥ r(Wj),
dH(Y3−Y1−Y2) ≥ r(Wk), and dH(Y1∩Y2∩Y3) ≥ r(Wi). From (8), it follows that
r(Wi)+r(Wj)+r(Wk)+3 ≥ ∑3

i=1 dH(Yi) ≥ dH(Y1−Y2−Y3)+dH(Y2−Y3−Y1)
+dH(Y3−Y1−Y2)+dH(Y1∩Y2∩Y3) +2dH(Y1∩Y2∩Y3, V ∪{s}−(Y1∪Y2∪Y3))
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≥ 2r(Wi)+r(Wj)+r(Wk)+2, contradicting r(Wi) ≥ 2. This case cannot occur.

(Case-2) Without loss of generality, let r(Wi) ≤ r(Wj) ≤ r(Wk). By (Y1 −
Y2 − Y3) ∩ Wk = ∅, the cut Y1 − Y2 − Y3 belongs to Ak and hence satisfies
dH(Y1−Y2−Y3) ≥ r(Wk) by (4). Similarly, we have dH(Y2−Y3−Y1) ≥ r(Wk)
and dH(Y3−Y1−Y2) ≥ r(Wj). We have dH(Y1∩Y2∩Y3) ≥ dH(s, Y1∩Y2∩Y3) ≥
1. From (8), it follows that r(Wi) + r(Wj) + r(Wk) + 3 ≥ ∑3

i=1 dH(Yi) ≥
dH(Y1 − Y2 − Y3) + dH(Y2 − Y3 − Y1) +dH(Y3 − Y1 − Y2) + dH(Y1 ∩ Y2 ∩ Y3)
+2dH(Y1 ∩ Y2 ∩ Y3, V ∪ {s}− (Y1 ∪ Y2 ∪ Y3)) ≥ r(Wj) + 2r(Wk) + 3. Hence we
have r(Wi) ≥ r(Wk). This and r(Wi) ≤ r(Wj) ≤ r(Wk) imply that r(Wi) =
r(Wj) = r(Wk) holds and every inequality turns out to be an equality. Hence,
dH(Y1 ∩ Y2 ∩ Y3) = dH(s, Y1 ∩ Y2 ∩ Y3) = dH(s, u) = 1 holds, from which u is
contained in a component C ′ of G with dH(s, C ′) = 1. This contradicts the
assumption of H .

(Case-3) By (9), we have dH(Y1−Y2−Y3) ≥ r(Wi) and dH(Y1∩Y2∩Y3) ≥ r(Wi).
By (Y2−Y3−Y1)∩Wk = ∅ and (4), we have dH(Y2−Y3−Y1) ≥ r(Wk). Similarly,
dH(Y3 − Y1 − Y2) ≥ r(Wj) holds. Similarly to Case-1, by r(Wi) ≥ 2 and (8),
this case cannot occur.

(Case-4) There are the following three possible cases (a)–(c) without loss of
generality. (a) r(Wi) ≤ r(Wj) ≤ r(Wk). (b) r(Wi) ≤ r(Wk) ≤ r(Wj). (c)
r(Wk) ≤ r(Wi) ≤ r(Wj). We show that in each case of (a)–(c), we have
dH(Y3−Y1−Y2) = dH(s, Y3−Y1−Y2) = 1; Y3−Y2−Y1 contains a component
C ′′ of G with dH(s, C ′′) = 1, a contradiction to the assumption of H .

(a) By (9), we have dH(Y1 ∩ Y2 ∩ Y3) ≥ r(Wj). By (Y1 − Y2 − Y3) ∩Wk = ∅ =
(Y2−Y3−Y1)∩Wk, we have dH(Y1−Y2−Y3) ≥ r(Wk) and dH(Y2−Y3−Y1) ≥
r(Wk). We have dH(Y3 − Y1 − Y2) ≥ dH(s, Y3 − Y1 − Y2) ≥ 1. Similarly to
Case-2, we have r(Wi) + r(Wj) + r(Wk) + 3 ≥ 2r(Wk) + r(Wj) + 3 by (8).
Hence r(Wi) ≥ r(Wk) holds. From this and r(Wi) ≤ r(Wj) ≤ r(Wk), we have
r(Wi) = r(Wj) = r(Wk) and we see that every inequality turns out to be an
equality, from which dH(Y3 − Y1 − Y2) = dH(s, Y3 − Y1 − Y2) = 1 holds.

(b) By (9), we have dH(Y2 − Y3 − Y1) ≥ r(Wj), and dH(Y1 ∩Y2 ∩ Y3) ≥ r(Wj).
By (Y1−Y2−Y3)∩Wk = ∅, we have dH(Y1−Y2−Y3) ≥ r(Wk). By (8) we have
r(Wi) + r(Wj) + r(Wk) + 3 ≥ 2r(Wj) + r(Wk) + 3, from which r(Wi) ≥ r(Wj)
holds. Similarly to (a), we have r(Wi) = r(Wj) = r(Wk) and dH(Y3−Y1−Y2) =
dH(s, Y3 − Y1 − Y2) = 1.

(c) By (9), we have dH(Y1 − Y2 − Y3) ≥ r(Wi), dH(Y2 − Y3 − Y1) ≥ r(Wj),
and dH(Y1 ∩ Y2 ∩ Y3) ≥ r(Wj). By (8) we have r(Wi) + r(Wj) + r(Wk) + 3 ≥
r(Wi)+2r(Wj)+3, from which r(Wk) ≥ r(Wj) holds. Similarly to (a), we have
r(Wi) = r(Wj) = r(Wk) and dH(Y3 − Y1 − Y2) = dH(s, Y3 − Y1 − Y2) = 1. ✷
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In the rest of this section, we will give a proof of Theorem 16 via the following
Lemma 22 and Theorem 23. Lemma 22 shows a property of dangerous cuts
containing u, v for {(s, u), (s, v)} ⊆ EH(s, V2). Theorem 23 shows a situation
where for an edge (s, u) ∈ EH(s, V2), {(s, u), e} is not admissible in H for any
edge e ∈ EH(s, V2).

Lemma 22 Let G, H, and r satisfy (5). Let {(s, u), (s, v)} be a pair of edges
in EH(s, V2) which is not admissible in H, and Y ⊂ V be a dangerous cut
with u, v ∈ Y . Then if Y ∩C �= ∅ for some C ∈ C1 and V �= Y ∪C holds, then
Y ∪ V1 is also dangerous.

PROOF. First we claim that Y ∪ C is dangerous. Lemma 20 implies that
Y ∈ Bj holds for some Wj ∈ W because G[Y ] is not connected. Assume
that C − Y �= ∅ holds. Since C ∈ Ai holds for some Wi ∈ W from the
definition of C1, every X ⊆ C satisfies dH(X) ≥ r(Wi) ≥ 2. This indicates
that dH(Y ) = dH(Y ∩C) + dH(Y −C) ≥ 2 + dH(Y −C) = dH(Y ∪C) holds.
From V �= Y ∪ C, it follows that Y ∪ C is a dangerous cut of Bj .

Let Y ′ = Y ∪C. Note that dH(Y ′) ≥ dH(s, Y ′) ≥ dH(s, {u, v})+ dH(s, C) ≥ 4
holds. From the definition of dangerous cuts and Lemma 18, it follows that
r(Wj) ≥ 3 and dH(s, V − Y ′) ≥ dH(s, Y ′) − 1 ≥ 3. r(Wj) ≥ 3 indicates that
any component C ′ ∈ C1 − {C} satisfies C ′ ∩ Y ′ �= ∅, since if C ′ ∩ Y ′ = ∅,
then C ′ ∈ Aj and dH(C ′) = 2 < r(Wj) hold, contradicting that H satisfies
(4). Moreover, dH(s, V − Y ′) ≥ 3 implies that Y ′ ∪ C ′ �= V holds. Hence, by
applying the above claim, we can observe that for each C ′ ∈ C1, Y

′∪C ′ is also
a dangerous cut of Bj and satisfies dH(s, Y ′ ∪ C ′) ≥ 4.

By repeating those arguments, it is not hard to show that Y ∪V1 is a dangerous
cut of Bj . ✷

Theorem 23 Let G, H, and r satisfy (5) such that neither (11) nor (12)
holds. Let e1 = (s, u1) ∈ EH(s, V2) such that u1 is contained in a component
C1 with dH(s, C1) ≥ 2 (note that such e1 exists since H does not satisfy (11)).
Assume that there is no edge e′ ∈ EH(s, V2) such that {e1, e

′} is admissible in
H. Then one of the following statements (i) and (ii) holds:

(i) (11) or (12) hold after splitting one admissible pair of edges in EH(s, V2).

(ii) Exactly one component C of G[V2] other than C1 satisfies dH(s, C) > 0
(we denote the component by C2). Then dH(s, C2) = 1 holds. C1 satisfies one
of the following (a) and (b) :

(a) C1 is a dangerous cut of Ai for some Wi ∈ W.
(b) There are two dangerous cuts Y1 ∈ Ai and Y2 ∈ Aj for some Wi,Wj ∈
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W such that u1 ∈ Y1 ∩ Y2, dH(s, Y1 − Y2) > 0, dH(s, Y2 − Y1) > 0, r(Wi) =
r(Wj), and C1 = Y1 ∪ Y2.

PROOF. Note that dH(s, V2) = |F | − dH(s, V1) is even. We can assume that
dH(s, V2) ≥ 4 holds, since if dH(s, V2) = 2 holds, then H satisfies (11) or (12),
contradicting the assumption of the theorem. There are the following three
possible cases (I)–(III).

(I) There is a dangerous cut Y1 with EH(s, Y1) ⊇ EH(s, V2).

(II) (I) does not hold. There are two dangerous cuts Y1 and Y2

satisfying u1 ∈ Y1 ∩ Y2, EH(s, Y1 ∪ Y2) ⊇ EH(s, V2),

dH(s, V2 ∩ (Y1 − Y2)) > 0, and dH(s, V2 ∩ (Y2 − Y1)) > 0.

(III) Neither (I) nor (II) holds.

(I) If Y1 ∈ Ai holds for some Wi ∈ W, then Lemma 20 implies that V2 is a
component of G and H satisfies (12), a contradiction. So Y1 ∈ Bi holds for
some Wi ∈ W. From dH(Y1) ≥ dH(s, Y1) ≥ dH(s, V2) ≥ 4, it follows that
r(Wi) ≥ 3. Hence, Y1 ∩C �= ∅ holds for each C ∈ C1 since we have C ∈ Aj for
some Wj and dH(C) = 2 < r(Wi). Now Lemma 18 says that dH(s, V − Y1) ≥
dH(s, Y1)−1 ≥ 3 holds, from which V �= Y1 ∪C holds. Lemma 22 implies that
Y1∪V1 is also dangerous, contradicting dH(s, V −Y1−V1) = 0 and Lemma 18.

(II) If Y1 ∈ Ai and Y2 ∈ Aj hold for some Wi,Wj ∈ W, respectively, then
Lemma 20 implies that V2 ⊇ Y1 ∪Y2 is a component of G and H satisfies (12),
a contradiction. Let Y1 belong to Bi for some Wi without loss of generality.
Now V1 �= ∅ holds since Lemma 19 indicates that dH(s, V − Y1 − Y2) > 0. We
claim that Y1 ∩ V1 = ∅ holds. This follows since if C ∩ Y1 �= ∅ holds for some
C ∈ C1, then V2−Y1 �= ∅ and Lemma 22 indicate that Y1∪V1 is also dangerous,
contradicting Lemma 19 and F = EH(s, Y1 ∪ Y2 ∪ V1). From Y1 ∩ V1 = ∅ and
(4), it follows that r(Wi) = 2 (note that each C ∈ C1 belongs to A� for some
W� and satisfies dH(C) = 2).

Assume that Y2 ∈ Bj holds for some Wj. Similarly, r(Wj) = 2 and Y2 ∩V1 = ∅
hold. From Lemma 21 and (s, u1) ∈ EH(s, Y1 ∩ Y2), it follows that dH(Y1) =
dH(Y2) = dH(Y1−Y2)+1 = dH(Y2−Y1)+1 = 3, dH(s, Y1∩Y2) = dH(s, u1) = 1,
Y1 − Y2 ∈ Aj, and Y2 − Y1 ∈ Ai. By Y1 ∪ Y2 ⊆ V − V1, neither Y1 − Y2 nor
Y2−Y1 belongs to C1 and hence dG(Y1−Y2) > 0 and dG(Y2−Y1) > 0 hold. This
implies that dH(s, Y1−Y2) = dH(s, Y2−Y1) = 1 hold by dH(s, Y1−Y2) > 0 and
dH(s, Y2 − Y1) > 0. From this and dH(s, Y1 ∩ Y2) = 1, dH(s, V2) = dH(s, Y1 ∪
Y2) = 3 holds, contradicting dH(s, Y1 ∪ Y2) ≥ 4.
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Assume that Y2 ∈ Aj holds for some Wj . Lemma 20 implies that Y2 ∩ V1 = ∅
holds. Note that since (I) does not hold, Y1 ∪ Y2 is not dangerous and so we
have dH(Y1 ∪ Y2) ≥ 4 by r(Wi) = 2 (note that Y1 ∪ Y2 �= V from V1 �= ∅). By
(7), we have 3 + r(Wj) + 1 ≥ dH(Y1) + dH(Y2) = dH(Y1 ∩ Y2) + dH(Y1 ∪ Y2)
+2dH(Y1−Y2, Y2−Y1) ≥ 4+r(Wj). It follows that dH(Y1∪Y2) = 4, dH(Y1) = 3,
dH(Y1 ∩ Y2) = r(Wj), and dH(Y1 − Y2, Y2 − Y1) = 0. dH(s, Y1 ∪ Y2) ≥ 4 implies
that dG(Y1 ∪ Y2) = 0 and dH(s, Y1 ∪ Y2) = 4 hold. By the connectedness of
G[Y2], we have dG(Y1, Y2 − Y1) > 0. From dH(Y1) = 3, dH(s, Y1 − Y2) ≥ 1,
and dH(s, Y1 ∩ Y2) ≥ 1, it follows that dH(s, Y1 − Y2) = dH(s, Y1 ∩ Y2) = 1,
dG(Y1) = dG(Y1, Y2−Y1) = 1, and dH(s, Y2−Y1) = dH(s, Y1∪Y2)−dH(s, Y1) = 2
hold. Now V [F ] ∩ V2 is not contained in one component of G, since H does
not satisfy (12). This implies that G[V2] contains two components C1 and
C2 with u1 ∈ C1, Y2 ⊆ C1, C2 ⊆ Y1 − Y2, dH(s, C1) = 3, dH(s, C2) = 1,
EH(s, C1) = EH(s, Y2), and EH(s, C2) = EH(s, Y1 − Y2).

If there is an admissible pair of two edges in EH(s, V2), then the resulting
graph satisfies (11) or (12), which indicates the statement (i) of the theorem.
Assume that no pair of two edges in EH(s, V2) is admissible. We then show that
C1 = Y2 holds, which indicates the statement (ii)(a) of the theorem. Assume
by contradiction that Z = C1 − Y2 �= ∅ holds. From dG(Y1 ∪ Y2) = dG(Y1 −
Y2, Y2−Y1) = 0, it follows that Z ⊂ Y1−Y2 and EG(Z, Y2) ⊆ EG(Y1∩Y2) hold.
Note that dH(Y2−Y1) = 3 implies that r(Wj) ∈ {2, 3} holds since Y2−Y1 ∈ Aj

holds. If r(Wj) = 2 holds, then it follows from dH(s, Y2) = 3 = r(Wj) + 1 that
dG(Y2) = 0 and Y2 = C1, which would contradict Z �= ∅. Hence we have
r(Wj) = 3 and dG(Z) = dG(Z, Y1 ∩ Y2) = 1. Let (s, u2) ∈ EH(s, Y2 − Y1)
and {(s, u3)} = EH(s, C2). Now {(s, u2), (s, u3)} is not admissible from the
assumption. Let Y3 be a dangerous cut with {u2, u3} ⊆ Y3. We have Y3 ∈ Bk

for some Wk ∈ W by Lemma 20. Since (I) does not hold, dH(s, Y2 − Y3) > 0
holds. By EH(Y2 ∪ Y3) ⊇ EH(s, V2), we have Y3 ⊆ V − V1, dH(Y3) = 3,
EH(s, Y2 ∩ Y3) = {(s, u2)}, and dG(Y3) = dG(Y3, Y2 − Y3) = 1 by a similar
argument about Y1 and Y2. Now it follows from the connectedness of G[Y2] and
dG(Y2−Y1, Y1∩Y2) = 1 that G[Y2−Y1] and G[Y1 ∩Y2] are both connected. So
from u2 ∈ Y2−Y1, dG(Y3) = dG(Y3, Y2−Y3) = 1, and EH(s, Y2∩Y3) = {(s, u2)},
it follows that EG(Y3) ⊆ E(G[Y2 − Y1]) and C1 ∩Y3 ⊆ Y2 − Y1 hold. Therefore
Z ∩ Y3 = ∅ = Z ∩ Wk holds. From this, it follows that dH(Z) = dG(Z) = 1
contradicts (4).

(III) Let Y be the family of all dangerous cuts Y with u1 ∈ Y and EH(s, Y ∩
(V2−{u1})) �= ∅. Since neither (I) nor (II) holds, then there are three dangerous
cuts Y1, Y2, and Y3 with u1 ∈ Y1 ∩ Y2 ∩ Y3, dH(s, (Y1 − Y2 − Y3) ∩ V2) > 0,
dH(s, (Y2 − Y3 − Y1) ∩ V2) > 0, and dH(s, (Y3 − Y1 − Y2) ∩ V2) > 0. Here
we choose such three cuts Y1, Y2, and Y3 in Y satisfying the property that
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dH(s, Y1∪Y2 ∪Y3) is the maximum. We have the following four possible cases.

(Case-1) Y1 ∈ Ai, Y2 ∈ Aj, and Y3 ∈ Ak.

(Case-2) Y1 ∈ Bi, Y2 ∈ Bj , and Y3 ∈ Bk.

(Case-3) Y1 ∈ Ai, Y2 ∈ Bj , and Y3 ∈ Bk.

(Case-4) Y1 ∈ Ai, Y2 ∈ Aj, and Y3 ∈ Bk.

Similarly to the proof of Lemma 15, observe that neither Case-1 nor Case-3
can occur, and that in both of Case-2 and Case-4, every inequality obtained
from (8) by substituting three cuts Y1, Y2, and Y3 turns out to be an equality.
In Case-2, we have dH(Y1 ∩ Y2 ∩ Y3) = dH(s, Y1 ∩ Y2 ∩ Y3) = dH(s, u1) = 1.
This indicates that dG(Y1 ∩ Y2 ∩ Y3) = 0 holds and the component C ′ of G
containing u1 satisfies dH(s, C ′) = 1, contradicting the choice of (s, u1).

In Case-4, we have dH(Y1 − Y2 − Y3) = dH(Y2 −Y3 − Y1) = dH(Y1 ∩ Y2 ∩ Y3) =
r(Wi) = r(Wj) = r(Wk) and dH(Y3 − Y1 − Y2) = dH(s, Y3 − Y1 − Y2) = 1.
Lemma 20 implies that Y1 ∪ Y2 induces a connected component in G and
Y1 ∪ Y2 ⊆ V − V1 holds. From dH(Y3 − Y1 − Y2) = dH(s, Y3 − Y1 − Y2) = 1,
it follows that dG(Y3 − Y1 − Y2) = 0 and Y3 − Y1 − Y2 ⊆ V − V1 hold, and
there is a component C2 of G[V2] with dH(s, C2) = 1. Hence, for proving that
the statement (ii)(b) of the theorem holds, it suffices to show that V − V1 =
Y1 ∪ Y2 ∪ Y3 holds (note that Y1 ∪ Y2 corresponds to C1).

The maximality of dH(s, Y1 ∪ Y2 ∪ Y3) and dH(s, Y3 − Y1 − Y2) = 1 means that
dH(s, Y1 ∪ Y2) is the maximum among all two dangerous cuts Y ′ and Y ′′ with
u1 ∈ Y ′ ∩ Y ′′, dH(s, V2 ∩ (Y ′ − Y ′′)) > 0, and dH(s, V2 ∩ (Y ′′ − Y ′)) > 0 (note
that neither (I) nor (II) holds). Now we can see the following claim.

Claim 24 For three cuts Y1, Y2, Y3 ∈ Y such that dH(s, Y3 − Y1 − Y2) > 0
and dH(s, Y1 ∪ Y2) ≥ max{dH(s, Y1 ∪ Y3), dH(s, Y2 ∪ Y3)}, we have

dH(s, Y1−Y2 − Y3)> 0, dH(s, Y2− Y1 − Y3) > 0, dH(s, Y3−Y1−Y2)> 0.(13)

✷

Assume by contradiction that V − V1 − Y1 − Y2 − Y3 �= ∅ holds. We first show
the following claim.

Claim 25 EH(s, V − V1 − (Y1 ∪ Y2 ∪ Y3)) = ∅ holds.

PROOF. Assume by contradiction that there is an edge (s, v4) ∈ EH(s, V −
V1 − (Y1 ∪ Y2 ∪ Y3)). Let Y4 be the corresponding dangerous cut in Y with
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{u1, v4} ⊆ Y4. Assume that Y4 ∈ A� holds for some ,. From the maximality
of dH(s, Y1 ∪ Y2) and Claim 24, the cuts Y1, Y2, and Y4 satisfy Case-1, which
cannot occur. Assume that Y4 ∈ B� holds for some W�. From the maximality
of dH(s, Y1 ∪ Y2) and Claim 24, the cuts Y1, Y2, and Y4 satisfy Case-4. Then
we have dG(Y4 − Y1 − Y2) = 0 and dH(Y4 − Y1 − Y2) = 1, implying that Z =
Y4−Y1−Y2−(Y3−Y1−Y2) satisfies Z∩Wk = ∅ but dH(Z) = 1, a contradiction
to (4) and r(Wk) ≥ 2. Therefore we have EH(s, V −V1−(Y1∪Y2∪Y3)) = ∅. ✷

From V −V1−Y1−Y2−Y3 �= ∅, dG(Y3−Y1−Y2) = 0, and dG(V1) = 0, it follows
that dH(V −V1 −Y1 −Y2 −Y3) = dG(V −V1 −Y1 −Y2 −Y3) = dG(Y1 ∪Y2). By
(V −V1−Y1−Y2−Y3)∩Wk = ∅ and (4), dH(V −V1−Y1−Y2−Y3) ≥ r(Wk) holds,
from which dG(Y1 ∪ Y2) ≥ r(Wk) = r(Wi) holds (note that r(Wi) = r(Wj) =
r(Wk)). By dH(s, Y1 − Y2) > 0, dH(s, Y2 − Y1) > 0, and dH(s, Y1 ∩ Y2) > 0, we
have dH(s, Y1∪Y2) ≥ 3, from which dH(Y1∪Y2) ≥ r(Wi)+3 holds. (9) implies
dH(Y1 ∩ Y2) ≥ r(Wi) (note that Y1 ∈ Ai and Y2 ∈ Aj hold). By (7), we have
2(r(Wi)+1) ≥ dH(Y1)+dH(Y2) ≥ dH(Y1∩Y2)+dH(Y1∪Y2) ≥ r(Wi)+r(Wi)+3,
a contradiction. ✷

PROOF of Theorem 16. Let e1 = (s, u1) ∈ EH(s, V2) be an arbitrary edge
such that u1 is contained in a component C1 of G[V2] with dH(s, C1) ≥ 2 (note
that such e1 exists since H does not satisfy (11)). Since no pair of two edges in
EH(s, V2) is admissible, it follows that the statement (ii) of Theorem 23 holds
for the edge (s, u1). Hence, it follows that there are exactly two components
C1 and C2 with dH(s, Ci) > 0, and that the statement (b) of the theorem
holds.

We show that the statement (a) of the theorem holds. We can observe directly
from the proof of Theorem 23 that dH(s, C1) ≥ 3 holds.

We next show that every cut X ⊆ C1 satisfies dH(X) ≥ 2. Assume by con-
tradiction that there is a cut X ⊆ C1 with dH(X) = 1. Since each W ∈ W
satisfies r(W ) ≥ 2, X /∈ Ak ∪ Bk holds for any Wk. Hence, it follows that C1

satisfies the statement in Theorem 23 (ii)(b); C1 = Y1∪Y2 where Y1, Y2 denote
two dangerous cuts with Y1 ∈ Aj and Y2 ∈ Ak for some Wj ,Wk. Moreover,
X−Y1 �= ∅ �= X−Y2 holds. Now by applying Lemma 21 to Y1 and Y2, we have
dH(Y1−Y2) = r(Wj) and dH(Y2−Y1) = r(Wk), Y1−Y2 ∈ Aj, and Y2−Y1 ∈ Ak.
Lemma 20 implies that G[Y1 − Y2] and G[Y2 − Y1] are both connected. Then
it is not difficult to see that dH(X) = 1 would contradict the connectedness
of G[Y1 − Y2] and G[Y2 − Y1].

We finally show that every cut X ⊆ C1 with dH(X) = 2 belongs to Ai for some
Wi ∈ W. Assume by contradiction that X ⊆ C1 does not belong to Ai for
any Wi ∈ W. Hence, it follows that C1 satisfies the statement in Theorem 23
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(ii)(b); C1 = Y1∪Y2 where Y1 and Y2 denote two dangerous cuts of Aj and Ak

for some Wj and Wk. Moreover, we have X−Y1 �= ∅ �= X−Y2. By dH(X) = 2
and dH(C1) ≥ 3, we have C1−X �= ∅. Since G[C1] is connected, it follows that
dG(X) ≥ 1 holds, from which dH(s,X) ≤ 1 holds. This implies that X and
Y1 cross each other in H . From (6) and X − Y1 ⊆ Y2, we have r(Wj) + 1 + 2
≥ dH(Y1)+dH(X) = dH(Y1−X)+dH(X−Y1)+2dH(X∩Y1, V ∪{s}−X−Y1)
≥ r(Wj)+r(Wk). From r(Wk) ≥ 2 and dH(X−Y1) ≥ r(Wk) = r(Wj), it follows
that dH(X∩Y1, V ∪{s}−X−Y1) = 0 and dH(Y1−X) ≤ 3. Hence Y1−Y2−X �= ∅
�= (Y1 ∩ Y2)−X holds by dH(s, Y1 − Y2) > 0 and dH(s, Y1 ∩ Y2) > 0. By these
and X∩(Y1−Y2) �= ∅, Y1−X and Y1−Y2 cross each other in H . From (6) and
dH(Y1−X) ≤ 3, it follows that dH(Y1−Y2)+3 ≥ dH(Y1−Y2)+dH(Y1−X) ≥
dH((Y1−Y2)∩X)+dH(Y1∩Y2−X)+2dH(s, Y1−Y2−X) ≥ r(Wj)+r(Wk)+2.
We have dH(Y1 − Y2) ≥ r(Wj) + 1 by r(Wk) ≥ 2. Now by applying Lemma 21
to Y1 and Y2, we have dH(Y1 − Y2) = r(Wj), a contradiction. ✷

6.2 Hooking up operations

We show via the following two lemmas that if at least one of conditions (I)–
(III) in Theorem 10 does not hold, then there is a complete admissible splitting
at s.

Lemma 26 Let G, H, and r satisfy (5). If one of the following (i)–(iii) holds,
then we can continue admissible edge-splittings at s until isolating s.
(i) Every component C of G[V2] satisfies dH(s, C) ≥ 2.
(ii) There is exactly one component C ′ of G[V2] with dH(s, C ′) = 1 where
{(s, u)} = EH(s, C ′) holds. {(s, u), (s, v)} is admissible for some (s, v) ∈
EH(s, V2) − {(s, u)}.
(iii) There are at least two components C of G[V2] with dH(s, C) = 1. ✷

Lemma 27 Let G, H, and r satisfy (5) such that there is exactly one compo-
nent C ′ of G[V2] with dH(s, C ′) = 1 where {(s, u)} = EH(s, C ′) holds. If u is
contained in no critical cut of Ai for any area Wi in H, then after replacing
the edge (s, u) with a new edge (s, x) for some vertex x ∈ V1 ∪V2 −C ′, we can
continue admissible edge-splittings until isolating s. ✷

For proving these lemmas, we first consider a situation where no admissible
pair exists after a sequence of greedy admissible splittings for a given G and
H . Then we consider hooking up some split edge and resplitting some pair
of edges in order to attain a complete admissible splitting. We say that H ′

is obtained from H by hooking up an edge (u, v) ∈ E(H − s) at s, if we
construct H ′ by replacing the edge (u, v) with two edges (s, u) and (s, v) in H .
Even in the case of opt(G,W, r) = �α(G,W, r)/2�, a greedy splitting in Step
2 of algorithm r-NAEC-AUG may not construct an optimal solution unless
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hooking up operations are used (see Figure 5). Let B(G) denote the set of

Fig. 5. Illustration of a graph H = (V ∪ {s}, E ∪ F1) satisfying (4) for r(W1)
= r(W2) = r(W3) = 3, where edges in F1 are drawn by broken lines. If we first
execute the admissible splitting of (s, v2) and (s, v3), then a complete splitting can
be found. However, the resulting graph H1 = (H − {(s, v1), (s, v2)}) ∪ {(v1, v2)}
obtained from H by the admissible splitting of (s, v1) and (s, v2) has no admissible
splitting pair at s.

bridges in a graph G.

Consider a situation where some pairs of two edges in F have been split and
those split edges can be hooked up, defined as follows. Let G, H , and r satisfy
(5). Let H1 be the family of all graphs H∗ obtained from H by a sequence
of admissible splittings of two edges in EH(s, V2) such that no pair of two
edge in EH∗(s, V2) is admissible in H∗ and H∗ satisfies neither (11) nor (12).
Note that dH∗(s, V2) > 0 holds since H∗ does not satisfy (12). Let F (H∗) =
EH∗(s, V ) and E1(H

∗) be the set of all split edges in H∗ ∈ H1. By Theorem 16,
H∗[V2] has exactly two components C with dH∗(s, C) > 0. Let C1(H

∗) (resp.,
C2(H

∗)) denote the component of H∗[V2] with dH∗(s, C1(H
∗)) ≥ 3 (resp.,

dH∗(s, C1(H
∗)) = 1), corresponding to C1 (resp., C2) in the statement of

Theorem 16.

The next two Lemmas 28 and 29 show situations where re-splittings are avail-
able in H∗ ∈ H1. In particular, Lemma 29 shows cases where we can find a
complete admissible splitting at s in H∗ ∈ H1 after hooking up one split edge;
H has a complete admissible splitting.

Lemma 28 For a graph H∗ ∈ H1, let {(s, u2)} = EH∗(s, C2(H
∗)). Assume

that H∗[V − V1 − C1(H
∗)] has a split edge (v1, v2). Then in the graph H ′

obtained from H∗ by hooking up the edge (v1, v2), there is an admissible pair
{(s, u1), (s, z)} in H ′ for some (s, u1) ∈ EH∗(s, C1(H

∗)) and some (s, z) ∈
{(s, u2), (s, v1), (s, v2)}.
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PROOF. From the definition of H1, no pair of two edges in EH∗(s, V − V1)
is admissible. It follows that the statement (ii) in Theorem 23 holds for any
edge (s, u) ∈ EH∗(s, C1(H

∗)); for any pair {(s, u), (s, v)} ⊆ EH∗(s, C1(H
∗)) of

two edges, there is a dangerous cut Y ⊆ C1(H
∗) with {u, v} ⊆ Y .

Such Y is dangerous also in H ′, and it follows that no pair {(s, u), (s, v)} ⊆
EH′(s, C1(H

∗)) = EH∗(s, C1(H
∗)) is admissible also in H ′. Assume by contra-

diction that this lemma does not hold; H ′ has no admissible pair of two edges in
EH′(s, V − V1), except {(s, u2), (s, v1)}, {(s, v1), (s, v2)}, and {(s, v2), (s, u2)}.
Hence, an edge (s, u1) ∈ EH∗(s, C1(H

∗)) satisfies the assumption in Theo-
rem 23. On the other hand, from dH′(s, V − V1 − C1(H

∗)) = 3, it follows
that the statement (ii) in Theorem 23 for the edge (s, u1) does not hold. Now
dH′(s, C1(H

∗)) ≥ 3 holds and dH′(s, C1(H
∗)) is odd. From these and the as-

sumption, it is not difficult to see that the statement (i) in Theorem 23 for
the edge (s, u1) does not hold, a contradiction. ✷

Lemma 29 For a graph H∗ ∈ H1, let C2(H
∗) contain a split edge in E1(H

∗).
Then we can continue admissible edge-splittings at s until isolating s, after
hooking up one split edge in E1(H

∗).

PROOF. Let C1 = C1(H
∗), C2 = C2(H

∗), and E2 be the set of all split edges
in H∗[C2]. Let {(s, v2)} = EH∗(s, C2). There are the following two possible
cases (i) and (ii). (i) E2 − B(H∗[C2]) �= ∅ holds. (ii) E2 ⊆ B(H∗[C2]) holds.

(i) Let e1 = (u1, u2) ∈ E2 − B(H∗[C2]), and H1 be the graph obtained from
H∗ by hooking up the edge e1. Lemma 28 implies that some pair {e, e′} is
admissible for e ∈ EH1(s, C1) and e′ ∈ EH1(s, C2). Let H2 be the graph ob-
tained from H1 by splitting such two edges e and e′. Since H1[C2] is con-
nected from the choice of e1, H2[C1 ∪C2] is connected. Now dH2(s, C1 ∪C2) =
dH2(s, V ) − dH2(s, V1) is even. So Lemma 15 proves the lemma.

(ii) Let e1 = (u1, u2) ∈ E2 be an edge. Let {X1, X2} be the partition of
C2 such that EH∗(X1, X2) = {(u1, u2)}, u1 ∈ X1 and {u2, v2} ⊆ X2. Let
H1 be the graph obtained from H∗ by hooking up the edge e1. Lemma 28
implies that some pair {e, e′} is admissible for e = (s, v1) ∈ EH1(s, C1) and
e′ = (s, z) ∈ EH1(s, C2). Let H2 be the graph obtained from H1 by splitting
two edges (s, v1) and (s, z). If z = u1 holds, then H2 satisfies (12), proving the
lemma.

We claim that also in the case of z ∈ {u2, v2}, we can continue admissible edge-
splittings until isolating s, which proves the lemma. Assume by contradiction
that z ∈ {u2, v2} holds and we cannot obtain a graph satisfying (11) or (12)
by a sequence of admissible splittings of two edges in EH2(s, V − V1). Hence,
by a sequence of admissible splittings of two edges in EH2(s, V − V1), we
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obtain a graph H3 ∈ H1. Then dH3(X2) = 2, X2 ⊆ C1(H3), and EH3(X2) ⊆
F (H3)∪E1(H3) hold. By Theorem 16, we can observe from dH3(X2) = 2 that
X2 belongs to Ai for some Wi.

If X2 contains no split edge, then it follows from EH3(X2) ⊆ F (H3) ∪E1(H3)
that X2 is the component of G with dH(s,X2) = dH(X2) = 2 and X2 ∈ C1,
which contradicts the construction of H3.

Consider the case where X2 contains a split edge. Note that each of such
split edges belongs to B(H∗[C2]) from the assumption. On the other hand,
by Theorem 16, dH3(X) ≥ 2 holds for each cut X ⊆ C1(H3). Therefore,
it is not difficult to see that there is a cut X ′ ⊂ X2 such that EH3(X

′) ⊆
F (H3) ∪ E1(H3) and dH3(X

′) = 2 hold and H3[X
′] has no split edge. Hence,

X ′ is the component of G with dH(s,X ′) = dH(X ′) = 2. By X2 ∈ Ai, it
follows that X ′ ∈ Ai. Therefore, it follows that X ′ ∈ C1 holds, contradicting
the construction of H3. ✷

Based on these observation, we give proofs of Lemmas 26 and 27.

PROOF of Lemma 26. (i) Assume that we obtain a graph H1 ∈ H1 from H
by a sequence of admissible splittings of two edges in EH(s, V2) (otherwise the
resulting graph H ′ obtained from H by splitting all edges in EH(s, V2) satisfies
(11) and has a complete admissible splitting at s). Then C2(H1) contains a split
edge since every component C of G[V2] satisfies dH(s, C) ≥ 2. By Lemma 29,
we can continue admissible splittings at s until isolating s after hooking up
one split edge.

(ii) Let H1 be the graph obtained from H by splitting edges (s, u) and (s, v).
Assume that we obtain a graph H2 ∈ H1 from H1 by a sequence of admissible
splittings of two edges in EH1(s, V − V1) (otherwise the lemma is proved,
similarly to (i)). Also in this case, C2(H2) contains a split edge, and Lemma 29
indicates that the lemma is proved.

(iii) Assume that we obtain a graph H1 ∈ H1 from H by a sequence of ad-
missible splittings of two edges in EH(s, V2) (otherwise the lemma is proved).
If C2(H1) contains a split edge, then Lemma 29 indicates that the lemma is
proved.

Assume that C2(H1) contains no split edge; C2(H1) is the component of G[V2]
satisfying dH(s, C2(H1)) = 1. Let C ′ and C ′′ be two distinct components of
G[V2] with C ′ = C2(H1) and dH(s, C ′) = dH(s, C ′′) = 1, where {(s, u1)} =
EH(s, C ′) and {(s, u2)} = EH(s, C ′′). Then it follows from dH1(s, C1(H1)) ≥ 3
that u2 is an end vertex of some split edge e2 = (u2, v2) in H1. Note that
u2 /∈ C1(H1) holds, since otherwise C ′′ ⊂ C1(H1) and dH1(C

′′) = 1 hold by
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dH(s, C ′′) = 1, contradicting the statement (a) in Theorem 16. So in the graph
H2 obtained from H1 by hooking up the edge e2, there are three components
C ′, C ′′, and C3 of H2[V − V1] with dH2(s, C

′) = dH2(s, C
′′) = dH2(s, C3) = 1

and EH2(s, C3) = {(s, v2)}. Lemma 28 implies that {(s, v′), (s, z)} is admissible
for some v′ ∈ C1(H1) and some z ∈ {u1, u2, v2}. Let H3 be the graph obtained
from H2 by splitting two edges (s, v′) and (s, z).

Finally we claim that we can continue admissible edge-splittings until isolating
s in H3, which proves the lemma. Assume by contradiction that by a sequence
of admissible splitting of two edges in EH3(s, V − V1), we obtain a graph
H4 ∈ H1. Then it follows that C ′ ⊆ C1(H4), C

′′ ⊆ C1(H4), or C3 ⊆ C1(H4)
hold. In each case, dH4(C

′) = dH4(C
′′) = dH4(C3) = 1 would contradict the

statement (a) in Theorem 16. ✷

PROOF of Lemma 27. Assume that u is contained in no critical cut of Ai for
any area Wi ∈ W in H . Let Xu denote a critical cut of Bj for an area Wj ∈ W
satisfying u ∈ Xu ⊂ V such that no cut X ′ ⊂ Xu with u ∈ X ′ is critical of Bh

for any h if exists, Xu = V otherwise. Then Xu∩(V1∪V2−C ′) �= ∅ holds since
otherwise (V −V1−V2)∪C ′ belongs to Bj and hence dH((V −V1−V2)∪C ′) ≥
r(Wj) ≥ 2 holds by (4), contradicting dH((V −V1 −V2)∪C ′) = dH(s, C ′) = 1.
Let H1 = (H − {(s, u)}) ∪ {(s, x)} be a graph obtained from H by replacing
the edge (s, u) with (s, x) with some x ∈ Xu ∩ (V1 ∪ V2 − C ′) in H .

We claim that H1 also satisfies (4). Assume by contradiction that H1 violates
(4). Then H has a critical cut X ′ ⊂ V with u ∈ X ′ ∩ Xu and x ∈ Xu − X ′.
Note that X ′ ∈ B� holds for an area W� from the assumption of u. We have
X ′−Xu �= ∅ from the minimality of Xu and hence Xu and X ′ cross each other
in H . Lemma 12 says dH(s,Xu ∩X ′) = 0, contradicting u ∈ Xu ∩X ′.

Let C ′′ ⊆ V1∪V2−C ′ be the component of G with x ∈ C ′′. By the assumption,
dH(s, C ′′) ≥ 2 holds and hence dH1(s, C

′′) ≥ 3 holds. Since H1 satisfies (i) in
Lemma 26, the lemma is proved. ✷

6.3 Property (P)

In this section, we prove that G has property (P) if all statements (I) – (III)
of Theorem 10 hold. For this, we show that if H = (V ∪ {s}, E ∪ F ) with
F = EH(s, V ) belongs to the family H2 of graphs defined as follows, then
H − s = (V,E) has property (P). Let H2 be the family of all graphs H such
that G, H , and r satisfy (5) and the following (I)–(III).

(I) There is exactly one component C∗ of G[V2] with dH(s, C∗) = 1 where
EH(s, C∗) = {(s, u∗)}.
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(II) The vertex u∗ is contained in a critical cut of Ai for some area Wi ∈ W.

(III) {(s, u∗), e} is not admissible in H for any edge e ∈ EH(s, V2).

By (III), for each (s, v) ∈ EH(s, V2 − C∗) there is a dangerous cut Y with
{u∗, v} ⊆ Y , which will play a role as a cut YX in Definition 6 in the subsequent
arguments. We first show properties of such dangerous cuts in Lemma 30, and
show by Lemma 31 that for H ∈ H2, G has property (P).

Lemma 30 For a graph H ∈ H2, let (s, v) ∈ EH(s, V2 − C∗) and Yv be a
dangerous cut with {u∗, v} ⊆ Yv (such Yv exists by the property (III) of H2).
Then
(i) dH(s, V2 − Yv) ≥ 1 holds.
(ii) For some (s, w) ∈ EH(s, V2 − C∗) − {(s, v)}, Yv and Yw cross each other
in H, where Yw denotes a dangerous cut with {u∗, w} ⊆ Yw in H. Moreover,
v ∈ Yv −Yw and Yv ⊂ V −V1 hold and Yv −Yw is a critical cut of Ai for some
Wi ∈ W.
(iii) Yv ∪ C∗ is also dangerous.

PROOF. Note that Yv ∈ Bi holds for some i by Lemma 20. Also note that
dH(s, V2) ≥ 4 holds since |F | and dH(s, V1) are even and the property (I) of
H2 holds.

(i) Assume that dH(s, V2 − Yv) = 0 holds. Hence dH(Yv) ≥ dH(s, Yv) ≥
dH(s, V2) ≥ 4 holds. So we have r(Wi) ≥ 3. Hence, each C ∈ C1 satisfies
C∩Yv �= ∅ since dH(C) = 2 < r(Wi) holds (note that C belongs to A� for some
W�). Moreover, each C ∈ C1 satisfies C∪Yv �= V , since otherwise dH(s, Yv) ≥ 4
and dH(s, C−Yv) ≤ 2 would contradict Lemma 18. Lemma 22 says that Yv∪V1

is also dangerous. It follows that dH(s, V − (Yv ∪ V1)) = dH(s, V2 − Yv) = 0,
contradicting Lemma 18.

(ii) Let Y ′
v be a dangerous cut with {u∗, v} ⊆ Y ′

v and Y ′
v ⊇ Yv such that no

Y ⊃ Y ′
v is dangerous in H . By (i), dH(s, V2 − Y ′

v) > 0 holds. Let w ∈ V2 − Y ′
v

be a vertex with dH(s, w) > 0 and Yw be a dangerous cut with {u∗, w} ⊆ Yw.
Then Y ′

v and Yw cross each other in H since we have u∗ ∈ Y ′
v∩Yw, w ∈ Yw−Y ′

v ,
and Y ′

v − Yw �= ∅ by the maximality of Y ′
v . Note that Yw ∈ Bj holds for some

Wj ∈ W. Lemma 21 implies that dH(s, Y ′
v ∩Yw) = 1 holds, and it follows from

u∗ ∈ Y ′
v ∩ Yw that v ∈ Yv − Yw. This implies that Yv and Yw also cross each

other in H .

Again by Lemma 21, Yv−Yw is a critical cut of Aj and G[Yv−Yw] is connected
by Lemma 20. Similarly, G[Yw−Yv] is connected, from which (Yv−Yw)∪(Yw−
Yv) ⊆ V2 holds. Finally, we prove that Yv ∩Yw ∩V1 = ∅ holds in order to show
that Yv ⊂ V −V1 holds (note that V −V1−Yv �= ∅ holds by dH(s, V2−Yv) > 0).
Assume by contradiction that Yv ∩ Yw ∩ C �= ∅ holds for some C ∈ C1. From
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dH(s, V2 − Yv) > 0, dH(s, V2 − Yw) > 0, and Lemma 22, it follows that Yv ∪ V1

and Yw∪V1 are dangerous cuts of Bi and Bj , respectively, and cross each other
in H . dH(s, (Yv ∩ Yw) ∪ V1) ≥ 3 would contradict Lemma 21.

(iii) Let Y ′′
v = Yv ∪C∗. By (i) and u∗ ∈ Yv, we have dH(s, V − Y ′′

v ) ≥ 1. Hence
V −Y ′′

v �= ∅ implies that Y ′′
v also belongs to Bi. By EH(s, C∗) ⊆ EH(s, Yv) and

dH(s, C∗) = dH(C∗), we have dH(Y ′′
v ) ≤ dH(Yv), which proves the lemma. ✷

Lemma 31 For each graph H ∈ H2, G has property (P ).

PROOF. Lemma 30 implies that for each v ∈ V [F ]− V1 − {s, u∗}, there are
two cuts Xv ⊂ V − V1 and Yv ⊂ V − V1 with v ∈ Xv ⊆ Yv satisfying the
following (a) and (b).

(a) Xv is a critical cut of Ai for some area Wi ∈ W, and no cut X ′ ⊂ Xv with
v ∈ X ′ satisfies this property.

(b) Yv satisfies u∗ ∈ Yv and C∗ ⊆ Yv ⊂ V − V1 (by (ii)(iii) in Lemma 30) and
is a dangerous cut of Bk for some area Wk ∈ W.

Let Xu∗ be a critical cut of Ai for some Wi with u∗ ∈ Xu∗ such that no cut
X ′ ⊂ Xu∗ satisfies this property (such Xu∗ exists from the property (II) of H2).
Note that Xu∗ induces a connected component by Lemma 20, and it follows
that we have Xu∗ ⊆ C∗ and Xu∗ ∩ Xv = ∅ for any v ∈ V [F ] − V1 − {s, u∗}.
Let X be the family of all cuts Xv, v ∈ V [F ] − {s} − V1 such that X covers
V [F ]−{s}−V1 and Xv ∈ X does not satisfy Xv ⊂ X for any X ∈ X , and Y be
the family of the corresponding cuts Yv. We will show that α(G,W, r) is even
and the family X ∪C1 is a subpartition of V satisfying

∑
X∈X∪C1

(αG,W ,r(X)) =
α(G,W, r) and (P1)–(P3), which proves the lemma.

We claim that

X is a subpartition of V − V1. (14)

Assume by contradiction that there are two cuts Xu, Xv ∈ X which cross each
other in H . By Lemma 12(i), we have dH(Xu −Xv) = r(Wj), dH(Xv −Xu) =
r(Wk), and dH(Xu ∩ Xv, (V ∪ {s}) − Xu − Xv) = 0, where Xu ∈ Aj and
Xv ∈ Ak hold. Hence u ∈ Xu −Xv holds and Xu −Xv is also a critical cut of
Aj, contradicting the minimality of Xu.

Now each C ∈ C1 is a critical cut of Ai for some Wi ∈ W, since it follows
from dH(C) = 2, (4), and r(W ) ≥ 2 for each W ∈ W that C ∈ Ai holds
for some Wi ∈ W with r(Wi) = 2. Hence, by (14), X ∪ C1 is a subpartition
of V and a family of critical cuts which covers V [F ] − {s}. It follows that
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∑
X∈X∪C1

αG,W ,r(X) = |F | = α(G,W, r). Since |F | is even, α(G,W, r) is even.
Moreover, X ∪ C1 is a subpartition of V satisfying (P1) and (P2) by taking
X∗ = Xu∗. Now for every dangerous cut Y ∈ Y of Bj which does not cross
with any X ∈ X in H , we have

∑
X′∈X ,X′⊆Y αG,W ,r(X

′) ≤ (r(Wj)+1)−dG(Y ).
Moreover, note that each Y ∈ Y is disjoint with any cut C ∈ C1 and satisfies
V − V1 − Y �= ∅. Therefore, by regarding C1 as X1 in Definition 6, in order to
show that X ∪ C1 satisfies (P3), it suffices to prove that for any Xu ∈ X with
u �= u∗, there is a cut Yw ∈ Y with Xu ⊆ Yw such that for any cut X ∈ X , Yw

and X do not cross each other in H . For this, we show that

if there is a cut Yu ∈ Y which crosses with some Xv ∈ X in H ,

then v �= u∗ and Yu ⊆ Yv hold.
(15)

Since each Y ∈ Y satisfies Xu∗ ⊆ C∗ ⊆ Y , v �= u∗ holds. Assume by con-
tradiction that Yu − Yv �= ∅ holds. Let Yu ∈ Bj , Yv ∈ Bk, and Xv ∈ A�. By
Xv − Yu �= ∅ �= Xv ∩ Yu, Yu and Yv cross each other in H . From Lemma 21, it
follows that Yv − Yu ∈ Aj, dH(Yu − Yv) = r(Wk), dH(Yv − Yu) = r(Wj), and
dH(s, u∗) = dH(Yu ∩ Yv, V ∪ {s} − Yu − Yv) = 1. Hence we have v ∈ Xv − Yu,
from which Xv ∩ (Yv −Yu) �= ∅ holds. Note that Xv − (Yv −Yu) �= ∅ holds since
Xv and Yu cross each other in H . Moreover, (Yv − Yu) − Xv �= ∅ holds since
if Yv − Yu ⊆ Xv holds, then the cut Yv − Yu contradicts the minimality of Xv

by dH(Yv − Yu) = r(Wj), v ∈ Yv − Yu, and Xv − (Yv − Yu) �= ∅. This means
that Xv and Yv −Yu cross each other in H . Now dH(Xv ∩ (Yv −Yu), V ∪{s}−
Xv − (Yv − Yu)) > 0 holds by v ∈ Xv − Yu. By applying Lemma 21, we have
dH(Xv) = r(W�) + 1, contradicting dH(Xv) = r(W�) (note that Xv ∈ A� and
Yv − Yu ∈ Aj hold). Hence (15) holds. ✷

Before closing this section, we will analyze the time complexity of algorithm
r-NAEC-AUG, after describing the details of Step 2 in the algorithm. Step 2
is described as follows.

Step 2:
2-1: Check whether H ∈ H2 holds or not.
2-2: If H ∈ H2 holds, then execute 2-2-1 and 2-2-2.
2-2-1: Repeat splitting an admissible pair of two edges in EH(s, V2)

as possible. Denote the resulting graph by H1. /** H1 ∈ H1 holds. **/
2-2-2: After adding one extra edge (x, y) to EH1(C1(H1), C2(H1)), find a

complete admissible splitting at s (according to Corollary 17).
Output the set E∗ = E2 ∪ {(x, y)} of edges, where E2 is the set of all
split edges and |E∗| = �α(G,W, r)/2�+ 1 holds.

2-3: If H /∈ H2 holds, then execute 2-3-1 – 2-3-9.
2-3-1: If G[V2] has exactly one component C ′ with dH(s, C ′) = 1 where

{(s, u′)} = EH(s, C ′) holds and u′ is contained in no critical cut of Ai
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for any area Wi in H , then we replace the edge (s, u′) with a new edge
(s, x) for some x ∈ V1 ∪ V2 − C ′ while preserving (4) (according to
Lemma 27). Redenote the resulting graph by H .

2-3-1-1: If the component C ′′ of G with x ∈ C ′′ belongs to C1, then let
C1 := C1 − {C ′′} and C2 := C2 ∪ {C ′′}.

/** H satisfies one of the statements (i)–(iii) in Lemma 26. **/
2-3-2: If H satisfies (ii) in Lemma 26, we first split the pair {(s, u), (s, v)} ⊆

EH(s, V2) described in Lemma 26 (ii). Redenote the resulting graph by H .
2-3-3: Repeat splitting an admissible pair of two edges in EH(s, V2) as possible.

Denote the resulting graph by H1.
2-3-4: If H1 satisfies (11) or (12), then find a complete admissible splitting

in H1, according to Lemmas 14 or 15. Output the set E∗ of all split
edges, where |E∗| = �α(G,W, r)/2�.

/** In the sequel, H1 satisfies neither (11) nor (12); H1 ∈ H1 holds. **/
/** E(H1[V − V1 − C1(H1)]) contains a split edge from the proof of

Lemma 26. **/
2-3-5: If E(H1[C2(H1)]) contains a split edge, then find a split edge e1 =

(v1, v2) in C2(H1) such that if there are at least one split edge in
E(H1[C2(H1)]) −B(H1[C2(H1)]), then e1 ∈ E(H1[C2(H1)])
−B(H1[C2(H1)]), according to Lemma 29.

2-3-6: If E(H1[C2(H1)]) contains no split edge, then find a split edge e1 =
(v1, v2) ∈ E(H1[V − V1 − C1(H1)]), one of whose end vertices, say v1 is
contained in a component C ′ of G with EH(s, C ′) = {(s, v1)}, according
to the proof of Lemma 26 (iii).

2-3-7: After hooking up the edge e1, split an admissible pair {(s, u), (s, v)}
with some (s, u) ∈ EH1(s, C1(H1)) and some v ∈ {u2, v1, v2}, where
{(s, u2)} = EH1(s, C2(H1)) holds, according to Lemma 28. Denote the
resulting graph by H2.

2-3-8: In H2, repeat splitting an admissible pair of two edges in EH2(s, V2)
until all edges in EH2(s, V2) are split off. Denote the resulting graph by
H3.

/** Lemma 26 says that this is possible. H3 satisfies (11). **/
2-3-9: Find a complete splitting at s in H3, and output the set E∗ of all split

edges, where |E∗| = �α(G,W, r)/2� holds. ✷

Finally, we analyze the time complexity of algorithm r-NAEC-AUG. We first
show that it can be checked in O(p(mn + n2 logn)) time whether H satisfies
(4) or not. Note that for an area Wi ∈ W, we have λH(v,Wi) ≥ r(Wi) for each
vertex v ∈ V if and only if the graph H(i) obtained from H by contracting
Wi satisfies dH(i)(X) ≥ r(Wi) for each cut X ⊂ V (H(i))−{s}. By computing
a family of cuts called extreme sets, in H(i)− s, we can check if H(i) satisfies
dH(i)(X) ≥ r(Wi) for each cut X ⊂ V (H(i))−{s}. In a graph G = (V,E), a cut
X ⊂ V is called extreme if dG(X ′) > dG(X) holds for any subset ∅ �= X ′ ⊂ X,
and it is known [2,11] that the family X (G) of all extreme sets of G enjoys
the following property:
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For a graph H = (V ∪ {s}, E ∪ F ) and an integer k, dH(Y ) ≥ k for all cuts
Y ⊂ V if and only if dH(X) ≥ k for all cuts X ∈ X (G).

Moreover, it was shown that X (G) can be found in O(mn+n2 log n) time [11].
Hence, by computing the family of extreme sets in H(i) − s for each Wi, we
can check in O(p(mn+ n2 logn)) time if H satisfies (4) or not.

In Step 1, for each vertex v ∈ V , after deleting all edges between s and v, we
check whether the resulting graph H ′ satisfies (4) or not. If (4) is violated,
then we add maxx∈V,Wi∈W{r(Wi) − λH′(x,Wi)} edges between s and v in H ′.
So Step 1 takes O(np (mn + n2 logn)) time.

In Step 2, we first remark that for each pair {u, v} ⊆ V of two vertices, we
can check in O(p(mn+n2 log n)) time how many pairs of {(s, u), (s, v)} can be
split. This can be done by checking whether the resulting graph H ′ satisfies (4)
after splitting min{dH(s, u), dH(s, v)} pairs {(s, u), (s, v)}. If (4) is violated,
then we hook up �1

2
maxx∈V,Wi∈W{r(Wi) − λH′(x,Wi)}� pairs in H ′. Hence,

it takes O(p(mn + n2 log n)) time. Moreover, we can observe that it takes
O(|V ′|2p(mn+ n2 logn)) time to execute admissible splittings of two edges in
EH(s, V ′) as possible for a vertex set V ′ ⊆ V .

Step 2 first needs to check whether H ∈ H2 or not. It is not difficult to see
that checking the statement (I) in the definition of H2 takes linear time. For
the statement (II), we need to compute minimal critical cuts containing the
vertex u′, where u′ is in the component C ′ of G with EH(s, C ′) = {(s, u′)}
found by the checking of (I). This can be found in O(p (mn + n2 logn)) time
by computing the family of all extreme sets in H(i) − s for each Wi ∈ W.
For the statement (III), we need splitting O(n) pairs. Hence it takes O(np
(mn + n2 log n)) time to check whether H ∈ H2 or not.

We next claim that Step 2 contains at most one hooking up operations. If H ∈
H2, then we can obtain an optimal solution without hooking up operations,
according to Corollary 17 (see step 2-2 in the above description of Step 2).
We show that the step 2-3 contains at most one hooking up operations. Since
H /∈ H2, H violates at least one of (I)–(III) in the definition ofH2. If H violates
(I) or (III), then H satisfies at least one of conditions (i)–(iii) in Lemma 26.
Then according to the proof of Lemma 26 and the choice of split edges in steps
2-3-5 and 2-3-6, we can continue admissible splitting at s while at most one
hooking up operations is executed (see steps 2-3-2 – 2-3-9). If H satisfies (I)
and (III) but violates (II), then replacing one edge in EH(s, V ) can convert H
to H ′ satisfying (i) in Lemma 26 without violating (4), according to the proof
of Lemma 27 (see step 2-3-1). It follows that the claim is proved.

Note that the above observation about hooking operations indicates that at
most one replacing operations occurs. The time complexity of replacing op-
erations depends on minimal critical cut containing u2, which is the same as
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that of checking the statement (II) in the definition of H2. Also note that
finding a split edge in steps 2-3-5 or 2-3-6 takes linear time. Consequently,
it is not difficult to see that the time complexity of Step 2 depends on that
of splitting O(n2) pairs. It follows that Step 2 can be implemented to run in
O(n2p (mn + n2 log n)) time.

As a result, the total complexity of the algorithm is O(n2p (mn + n2 log n)),
which can be reduced to O(m+ pn4 (r∗ + logn)) time by applying the pro-
cedure to a sparse spanning subgraph of G′ with O(r∗n) edges, where such
sparsification takes O(m+ n log n) time [12,13].

Lemma 32 Algorithm NAEC-AUG can be implemented to run in O(m+ pn4

(r∗ + log n)) time. ✷

Summarizing the argument given so far, Theorem 8 is now established.

7 Concluding Remarks

In this paper, given an area graph (G = (V,E),W) and a requirement function
r : W → Z+, we considered the problem of asking to augment (G = (V,E),W)
by adding the minimum number of new edges such that the resulting graph
becomes r-NA-edge-connected. We first gave a polynomial time algorithm for
the problem in the case where each area W ∈ W satisfies r(W ) ≥ 2. The
time complexity of our algorithm is O(m+ pn4 (r∗ + logn)), where n = |V |,
m = |{{u, v}|(u, v) ∈ E}|, p = |W|, r∗ = max{r(W ) | W ∈ W}. It is a future
work to consider generalized problems in such a way that the connectivity
requirement is general for each pair of a vertex v ∈ V and an area W ∈ W.

We finally introduce a problem of augmenting a symmetric skew-supermodular
integer-valued function by a multigraph G′ as another generalization of r-
NA-ECAP. r-NA-ECAP asks to augment a symmetric skew-supermodular
integer-valued function αG,W ,r by a multigraph G′ with the minimum number
of edges, as observed in Section 5. In [16], Szigeti showed the following Theo-
rem 33 and that the problem of augmenting an integer-valued symmetric skew-
supermodular function by a hypergraph H ′ with the minimum

∑
Y ∈E(H′) |Y |

is polynomially solvable, where E(H ′) denotes the family of hyperedges in H ′.

Theorem 33 [16] Let p be a symmetric skew-supermodular integer-valued
function on the ground set V . Then

min{ ∑
Y ∈E(H′)

|Y | | dH′(X) ≥ p(X) for all X ⊆ V } = max{∑
p(Vi)}
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where the maximization is taken over all subpartitions {V1, . . . , V�} of V . ✷

However, Figure 2 indicates that r-NA-ECAP does not enjoy Theorem 33.
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