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Abstract. In this paper, we derive a new RLS algorithm: the Generalized Sliding Window RLS (GSW RLS) algorithm that has a
better tracking ability than the SWC RLS algorithm. This algorithm uses a generalized window which consists of an exponential window
for theL0 most recent data and the same but attenuatedexponential window for the rest of the data. We give a theoritical proof that the use
of this window leads to a better compromise between the Excess Mean Squared Errors due to estimation noise and lag noise. Furthermore,
after providing a fast version of the GSW RLS algorithm, namely the GSW FTF algorithm, we apply the Subsampled-Upadating technique
to derive the FSU GSW FTF algorithm, a doubly-fast version of the GSW RLS algorithm.

1 Introduction
Tracking ability is a desired feature in adaptive �ltering, es-
pecially when the system to identify can vary quickly as in
the case of acoustic echo channels. In the actual state of the
art, two Finite Impulse Response (FIR) adaptive �ltering
algorithms are known for their good tracking ability among
the large set of FIR adaptive �ltering algorithms: the A�ne
Projection (AP) algorithm and the Recursive Least-Squares
algorithm with a Sliding Rectangular Window (SWC RLS).
The AP algorithm has a better tracking ability than the
SWC RLS algorithm. It solves recursively an underdeter-
mined system of linear equations while the SWC RLS al-
gorithm solves recursively an overdetermined system of lin-
ear equations. The SWC RLS algorithm exhibits a better
tracking ability than the classical RLS algorithm with an
exponential window (WRLS). This is explained by the fact
that the rectangular window allows to forget the past more
abruptly than the exponential window does.
In this paper, we propose the GSW RLS algorithm, a new
RLS algorithm that generalizes the WRLS and SWC RLS
algorithms and shows a better tracking ability than the SWC
RLS algorithm. This algorithm uses a generalized window
which consists of the superposition of an exponential win-
dow for the L0 most recent data and the same but attenuated
exponential window for the rest of the data. The improve-
ment of tracking comes from the fact that the length L0 of
the �rst window can be much smaller than the length of the
rectangular window of the SWC RLS algorithm. Moreover,
we prove theoretically that the use of this window leads to
a better compromise between the Excess Mean Squared Er-
rors (EMSE) due to estimation noise and lag noise. The
GSW RLS algorithm turns out to have the same structure
as the SWC RLS algorithm. Its computational complexity
is O(N2), the same as the SWC RLS algorithm. Never-
theless, the exploitation of a certain shift-invariance prop-
erty that is inherent to the adaptive �ltering problem allows
the derivation of fast version and leads to the GSW Fast
Transversal Filter (GSW FTF) algorithm whose computa-

tional complexity is 14N (16N for the stabilized version),
i.e., the same complexity as the SWC FTF algorithm. Fur-
thermore, by applying the Subsampled-Updating technique
to the GSW FTF algorithm, we derive a very fast version
of the GSW RLS algorithm called the FSU GSW RLS algo-
rithm, a mathematically equivalent algorithm to the GSW
RLS algorithm with a low computational complexity when
dealing with long FIR �lters.

2 The GSW RLS Algorithm

An adaptive transversal �lterWN;k combines linearly N con-
secutive input samples fx(i�n); n = 0; : : : ;N�1g to approx-
imate (the negative of) the desired-response signal d(i). The
resulting error signal is given by

�N(ijk)=d(i) +WN;k XN(i)=d(i) +

N�1X
n=0

W
n+1
N;k x(i�n) ; (1)

where XN(i) =
�
xH(i) xH(i�1) � � �xH(i�N+1)

�H
is the in-

put data vector and superscript H denotes Hermitian (com-
plex conjugate) transpose. In the WRLS algorithm, the set
of N transversal �lter coe�cients WN;k =

�
W 1

N;k � � �W
N
N;k

�
are adapted so as to minimize recursively the following LS
criterion

�N (k) =

kX
i=1

�
k�i k�N(ijk)k

2
; (2)

where � 2 (0; 1] is the exponential weighting factor, kvk2� =
v�vH , k:k = k:k

I
. On the other hand, the SWC RLS algo-

rithm minimizes recursively the following criterion:

�N;L0 (k) =

kX
i=k�L0+1

k�N (ijk)k
2

; (3)
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Figure 1: The generalized window.

where L0, the length of the sliding window, must be greater
than the �lter length: L0 > N , in which case, the associated
covariance matrix is invertible. Compared to the WRLS al-
gorithm, the SWC RLS algorithm exhibits better tracking.
In order to improve the tracking of the SWC RLS algorithm,
one should use a rectangular window whose length is smaller
than the �lter length. Doing this renders the problem singu-
lar. Hence, in order to regularize the problem, we add to the
rectangular window of length L0, an attenuated exponential
window. This leads to minimizing the criterion over more
data and weighting the past data less heavily than the most
L0 recent samples (see Fig. 1). Compared to the rectangu-
lar window of the SWC RLS algorithm, the new window
introduces two degrees of freedom, the attenuation and the
forgetting factor of the exponential tail. Furthermore, it has
appeared that the derivation of a recursive algorithm for the
new window requires the use of an exponential window for
the L0 most recent samples instead of the rectangular win-
dow and with the same forgetting factor as the attenuated
exponential window. Hence, consider the following criterion:

�N;L0(k)=

k�L0X
i=1

wk�i k�N(ijk)k
2
; wi =

�
�i 0 � i � L0

(1��)�i i > L0
:

(4)
The new criterion generalizes the WRLS and SWC RLS cri-
teria since the WRLS criterion (2) is obtained from (4) by
setting � = 0 and the SWC RLS criterion (4) is the one
given by the generalized criterion when � = 1 and � = 1.
Let WN;L0 ;k be the adaptive RLS �lter provided by such a
window, the minimization of (4) leads to the following

WN;L0 ;k = �PH
N;L0;k R

�1
N;L0 ;k ; (5)

where

RN;L0;k = (1��)

k�L0X
i=1

�
k�i

XN (i)X
H
N (i) +

kX
i=k�L0+1

�
k�i

XN (i)X
H
N(i)

PN;L0;k = (1��)

k�L0X
i=1

�
k�i

XN (i)d
H(i) +

kX
i=k�L0

�
k�i

XN(i)d
H(i) :

(6)
The use of the same forgetting factor for the two windows
allows the following recursions for the sample second order
moments

RN;L0+1;k = �RN;L0 ;k�1 +XN(k)X
H
N (k)

= RN;L0 ;k � ��L
0

XN (k�L0)XH
N (k�L0)

(7)

PN;L0+1;k = �PN;L0 ;k�1+XN (k)d
H(k)

= PN;L0;k���
L0

XN (k�L
0)dH(k�L0) :

(8)

Hence, we can derive the new algorithm by applying the
strategy for the usual WRLS algorithm twice. The �rst step

will be devoted to the time and order update (k�1; L0) !
(k;L0+1), which is analogous to the update of the usual
WRLS algorithm while the second step will be the order
downdate (k;L0+1) ! (k;L0). The downdate scheme is ob-
tained as follows: By using (8), one has

WN;L0;kRN;L0;k=WN;L0+1;kRN;L0+1;k���
L0

d(k�L0)XH
N(k�L

0): (9)

Using (7) for RN;L0+1;k in term of RN;L0 ;k , we get

WN;L0 ;k =WN;L0+1;k + ��
L0

�N;L0+1(k) eDN;L0+1;k ; (10)

where �N;L0+1(k) = d(k�L0) + WN;L0+1;kXN (k�L
0) andeDN;L0+1;k = �XH

N (k�L0)R�1
N;L0 ;k

are the a posteriori error
signal and the a priori Kalman gain of the downdate part.
Applying the MIL to (7) gives

R
�1
N;L0 ;k=R

�1
N;L0+1;k�D

H
N;L0+1;k�

�1
N;L0+1(k)DN;L0+1;k ; (11)

with DN;L0+1;k = �XH
N (k�L0)R�1

N;L0+1;k and �N;L0+1(k) =

��1��L
0

� DN;L0+1;kXN(k�L0) are respectively the a pos-
teriori Kalman gain and the likelihood variable associated
with the downdate part. Now, it is straigthtforward to �nd
that eDN;L0+1;k = ��1��L

0

��1
N;L0+1(k)DN;L0+1;k and that the

a priori error is �p
N;L0+1(k) = d(k�L0)+WN;L0 ;kXN (k�L0) =

��1��L
0

��1
N;L0+1(k)�N;L0+1(k). By associating the update

part to the downdate part, we �nd the GSW RLS algorithmeCN;L0 ;k = ���1XH
N (k)R�1

N;L0 ;k�1


�1
N;L0(k) = 1� eCN;L0 ;kXN(k)

�
p

N;L0(k) = d(k) +WN;L0 ;k�1XN (k)

�N;L0(k) = �
p

N;L0
(k)N;L0 (k)

WN;L0+1;k = WN;L0 ;k�1 + eCN;L0 ;k�N;L0(k)

R
�1
N;L0+1;k = �

�1
R
�1
N;L0;k�1� eCH

N;L0 ;kN;L0 (k) eCN;L0 ;k

(12)

DN;L0+1;k = �XH
N (k�L0)R�1

N;L0+1;k

�N;L0+1(k) = �
�1
�
�L0

�DN;L0+1;kXN(k�L
0)

�N;L0+1(k) = d(k�L0) +WN;L0+1;kXN (k�L
0)

�
p

N;L0+1(k) = �
�1
�
�L0

�
�1
N;L0+1(k)�N;L0+1(k)

WN;L0 ;k = WN;L0+1;k + ��
L0

DN;L0+1;k�
p

N;L0+1(k)

R
�1
N;L0k = R

�1
N;L0+1;k�D

H
N;L0+1;k�

�1
N;L0+1(k)DN;L0+1;k :

The set of equations (12) constitute the complete time up-
date of the algorithm. The algorithm is initialized with
RN;L0 ;0 = �I where � is a small scalar quantity. The GSW
RLS algorithm shows a computational complexity of O(N2).
One must notice that the GSW RLS algorithm has the same
structure and complexity as the SWC RLS algorithm. More-
over, we prove in the next section that the use of this window
leads to a better compromise between the EMSE due to es-
timation noise and lag noise.

3 Performance analysis

For the purpose of analysis, we consider the following clas-
sical identi�cation model for the desired signal

d(k) =W
o
N;k�1XN (k) + n(k) ; (13)



where n(k) is a centered Gaussian i.i.d. sequence with vari-
ance �2n

�
n(k) � N (0; �2n)

�
and W o

N;k is the unknown �lter
that is time-varying according to a random walk

W
o
N;k = W

o
N;k�1 + Z(k) ; Z(k) i.i.d. � N (0;Q) : (14)

Considering a general window whose coe�cients are denoted

by wi, one can show that the deviation �lter fWN;L0 ;k =
WN;L0 ;k +W o

N;k is given by

fWN;L0 ;k =

 
1X
i=0

wi

 
1X

j=k�i

Z(j)

!
XN (k�i)XN(k�i)

H

�

1X
i=0

win(k�i)XN(k�i)

!
R
�1
N;L0;k :

Let COVk be the covariance matrix of the deviation �l-
ter: COVk = EfWN;L0 ;k

fWH
N;L0 ;k. Using the fact that E(:) =

EXEn;ZjX (:) and assuming that k is big enough so that:

RN;L0 ;k � ERN;L0 ;k =

 
1X
i=0

wi

!
R, we get after some ma-

nipulations

COVk = �
2
n

 
1X
i=0

ew2
i

!
R
�1 +

 
1X
i=0

w
2
i

!
Q ; (15)

where

ewi = wi

 
1X
j=0

wj

!�1

; wi = 1�

i�1X
j=0

ewj (16)

We see from (15) that there are two contributions in COVk :
the �rst one is the contribution related to estimation noise
while the second one is for lag noise and originates from
the variation of the echo path response. Now, assuming

statistical independence between fWN;L0 ;k and XN(k�1), we
can express the variance of the a priori error signal as

var(�pN(k)) = �
2
n + tr (RCOVk�1) (17)

= �
2
n+N

 
1X
j=0

ew2
j

!
�
2
�+

 
1X
j=0

w
2
j

!
tr (RQ) :

Hence, we can compute the EMSE due to estimation noise
for the WRLS, SWC RLS and GSW RLS algorithms:

GSWRLS : �2nN
1��
1+�

1+�(��2)�2L
0

(1���L0 )2

WRLS : �2nN
1��
1+�

SWCRLS : �2n
N
L0

:

(18)

The EMSE of WRLS can be recovered from the EMSE of
the GSW RLS by letting � = 0. The same thing holds for
the SWC RLS algorithm for � = 1 and � ! 1. Taking
R = �2xI and Q = �2zI, leads to the following results for the
EMSE due to lag noise

GSWRLS : N�2x�
2
z
1�2��L

0

(1+���L
0+1)+�2�2L

0

(1+L0�L0�2)

(1��2)(1���L0 )2

WRLS : N�2x�
2
z

1
1��2

SWCRLS : N�2x�
2
z
(L0+1)(2L0+1)

6L0 :

(19)
Figure (2), shows curves that give lag noise misadjustment
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Figure 2: Comparison of SWC RLS and GSW RLS
algorithms (N = 50; �2

x
= �2

z
= :01; �2

n
= :1).

vs. estimation noise misadjustment for N = 50; �2x = �2z =
:01 and �2n = :1. These curves show that for the same value
of the estimation noise misadjustment, the GSW RLS algo-
rithm has a lower lag noise misadjustment than the SWC
RLS algorithm, so we can conclude that the GSW RLS
algorithm is truly better than the SWC RLS algorithm.
Exploitation of the shift-invariance property leads to the
derivation of a fast version of the GSW RLS algorithm,
namely the GSW FTF algorithm.

4 The GSW FTF algorithm

The GSW FTF algorithm can be described in the following
way, which emphasizes its rotational structure (see [1]) :266664

heCN;L0 ;k 0
i

AN;L0;k

BN;L0 ;k�
DN;L0

p;k 0
�

[WN;L0 ;k 0]

377775 = �k

266664
h
0 eCN;L0 ;k�1

i
AN;L0 ;k�1

BN;L0 ;k�1�
0 DN;L0

p ;k�1

�
[WN;L0 ;k�1 0]

377775
e
p

N;L0
(k) = AN;L0 ;k�1XNp(k)

eN;L0
p
(k) = e

p

N;L0(k)N;L0(k�1)


�1
Np;L0 (k) = 

�1
N;L0(k�1)� eC0

Np ;L0 ;ke
p

N;L0 (k)


�1
N;L0 (k) = 

�1
Np;L0 (k)+eCN

Np ;L0 ;kr
p

N;L0
(k)

r
p
N(k) = ���N (k�1) eCN H

Np ;L0 ;k

�
�1
N;L0

p
(k) =�

�1
�
�1
N;L0(k�1)� eC0H

Np ;L0 ;kNp;L0(k) eC0
Np ;L0;k

rN;L0
p
(k) = r

p

N;L0(k)N;L0 (k)

�N;L0
p
(k) = ��N;L0 (k�1) + r

p

N;L0
(k) rHN;L0

p
(k)

aN;L0
p
(k) = AN;L0

p ;kXNp(k�L
0+1) (20)

a
s
N;L0 (k) = aN;L0

p
(k)��1N;L0

p
(k�1)

�N;L0 (k) = �N;L0
p
(k)� ��

L0

a
s
N;L0 (k)as

H

N;L0 (k)

�Np;L0 (k) = �N;L0 (k�1)�D0
Np ;L0

p;k
aN;L0

p
(k)



bN;L0
p
(k) = ��N;L0

p
(k)DNH

Np;L0
p ;k

�N;L0 (k) = �Np;L0 (k) +D
N
Np;L0

p;k
bN;L0

p
(k)

b
s
N;L0 (k) = bN;L0

p
(k)��1N;L0

p
(k)

�N;L0 (k) = �N;L0
p
(k)� ��

L0

b
s
N;L0 (k)bs

H

N;L0 (k) ;

where L0p = L0+1 and Np = N+1. AN;L0;k and BN;L0 ;k are
the forward and backward prediction �lters that are used in
the update part, ep

N;L0
(k) and eN;L0(k) are the a priori and

a posteriori forward prediction errors, rp
N;L0

(k) and rN;L0(k)
are the a priori and a posteriori backward predition errors,eCNp ;k =

h eC0
Np ;k

� � � eCN
Np;k

i
and �N;L0 (k) and �N;L0(k) are

the forward and backward prediction error variances. �k is
a 5� 5 rotation matrix given by

�k = �6
k �

5
k �

4
k �

3
k �

2
k �

1
k ; (21)

where the 5 � 5 matrices �i
k ; i = 1; 2; 3; 4; 5; 6 are

�1
k =

26664
1 a 0 0 0
b 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

37775 �2
k=

26664
1 0 c 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

37775

�3
k =

26664
1 0 0 0 0
0 1 0 0 0
d 0 1 0 0
0 0 0 1 0
e 0 0 0 1

37775 �4
k=

26664
1 0 0 0 0
0 1 0 f 0
0 0 1 0 0
0 g 0 1 0
0 0 0 0 1

37775(22)

�5
k =

26664
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 h 1 0
0 0 0 0 1

37775 �6
k=

26664
1 0 0 0 0
0 1 0 0 0
0 0 1 i 0
0 0 0 1 0
0 0 0 j 1

37775 ;

with a = �epH
N;L0(k)�

�1
N;L0(k) , b = eN;L0

p
(k) , c = �eCN

N;L0;k

, d = rN;L0
p
(k) , e = �N;L0(k) , f = �asN;L0

p
(k) , g =

�aHN;L0
p
(k)��1

N;L0
p
(k) , h = �DN

N;L0
p ;k

, i = �bsN;L0 (k) and

j = ��L
0

�N;L0
p
(k). The computational complexity of the

GSW FTF algorithm is 14N operations, which is also the
complexity of the SWC FTF algorithm. A numerically sta-
bilized version of the GSW FTF algorithm is given in [2]
and has a complexity of 16N operations.

5 The FSU GSW FTF Algorithm

In [3], [4] and [5], we have pursued an alternative way to
reduce the complexity of adaptive �ltering algorithms. The
approach consists of subsampling the �lter adaptation, i.e.
the LS �lter estimate is no longer provided every sample but
every L � 1 samples (subsampling factor L). This strategy
has led us to derive new algorithms that are the FSU FTF,
FSU FNTF and FSU FAP algorithms which present a re-
duced complexity when dealing with long �lters. Here, we
apply this technique to the GSW FTF algorithm. Using the
�lter estimates at a certain time instant, we compute the
�lter outputs over the next L time instants. Using what
we have called a GSW FTF-Schur algorithm, it is possi-
ble to compute the successive rotation matrices of the GSW

FTF algorithm for the next L time instants. Applying the
L rotation matrices to the �lters vectors becomes an issue
of multiplying polynomials, which can be e�ciently carried
out using the FFT. The complexity of the FSU GSW FTF is
O((10N+1

L
+26)FFT (2L)

L
+50N

L
+25L) operations per sample.

This can be very interesting for long �lters. For example,
when (N;L) = (4095; 256); (8191; 256) and the FFT is done
via the split radix (FFT (2m) =mlog2(2m) real multiplica-
tions for real signals) the multiplicative complexity is respec-
tively 2:2N and 1:4N per sample. This should be compared
to 14N for the GSW FTF algorithm and 2N for the LMS
algorithm. The number of additions is somewhat higher.
The cost we pay is a processing delay which is of the order
of L samples. The subsampled updating technique turns
out to be especially applicable in the case of very long �l-
ters such as occur in the acoustic echo cancellation problem.
The computational gain it o�ers is obtained in exchange for
some processing delay, as is typical of block processing.

6 Concluding Remarks

One major drawback of the SWC RLS algorithm is noise
ampli�cation that is due to the fact that the estimation of
the covariance matrix of order N is done using a rectangular
window of a relatively short length L0 (L0 > N). With such
a window, the covariance matrix can be ill- conditionned if
the input signal is not active in a signi�cant portion of the
window. The WRLS algorithm is less sensitive to noise am-
pli�cation because of the larger memory of the exponential
window. Due to its exponential tail, the generalized window
reduces noise ampli�cation. The AP algorithm also su�ers
from noise ampli�cation and the use of the generalized win-
dow with the AP algorithm is the object of ongoing research.
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