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Molecular dynamics analysis of particle number fluctuations in the mixed phase of a
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Molecular dynamics simulations are performed for a finite non-relativistic system of particles
with Lennard-Jones potential. We study the effect of liquid-gas mixed phase on particle number
fluctuations in coordinate subspace. A metastable region of the mixed phase, the so-called nucleation
region, is analyzed in terms of a non-interacting cluster model. Large fluctuations due to spinodal
decomposition are observed. They arise due to the interplay between the size of the acceptance
region and that of the liquid phase. These effects are studied with a simple geometric model.
The model results for the scaled variance of particle number distribution are compared with those
obtained from the direct molecular dynamic simulations.

Keywords: mixed phase, fluctuations, molecular dynamics

I. INTRODUCTION

The endpoint of a first-order phase transition, noted
as the critical point (CP), occurs under different physical
conditions, including most molecular and ferromagnetic
systems [1, 2], nuclear matter [3], and potentially the hot
QCD matter at nonzero baryon density [4, 5]. In the
thermodynamic limit, particle number fluctuations ex-
hibit singular behavior at the CP. These singularities are
smeared out in finite-size systems. Nevertheless, small
systems also demonstrate specific features of critical be-
havior such as enhancement of fluctuations [6, 7].

Event-by-event fluctuations in nucleus-nucleus colli-
sions are used as an experimental tool to search for
the QCD CP at finite baryon density [4, 5]. The pres-
ence of the QCD CP should manifest itself in the en-
hanced fluctuations of proton number [8] and possi-
bly non-monotonic collision energy dependence of non-
Gaussian fluctuation measures [9, 10]. Measurements of
proton number fluctuations in nucleus-nucleus collisions
have been performed by different experiments such as
STAR [11, 12], HADES [13], and ALICE [14]. The mea-
surements indicate a possible non-monotonic collision en-
ergy dependence of the kurtosis of proton number [11] as
well as a possible enhancement of two-proton correlations
over non-critical baselines [15] but conclusive evidence for
the presence of QCD CP is still lacking.

The grand canonical ensemble (GCE) of statistical me-
chanics is the most suitable framework to study statisti-
cal fluctuations. Within this formulation, the cumulants
of particle number distribution are straightforwardly con-
nected to the chemical potential derivatives of thermody-
namic potential. However, the GCE can not be directly
used for the conditions realized in the experiment [16, 17].
Several essential restrictions should be taken into ac-
count: (i) finite size of systems created in the experi-
ment [18, 19], (ii) influence of the global conservation
laws, for instance, baryon number conservation [20, 21],
and (iii) differences between coordinate and momentum
space acceptances. Recently the subensemble acceptance
method (SAM) to correct the fluctuation measurements
for global conservation laws has been developed [19, 21–
25]. This method is applicable for statistical systems
in the presence of interactions. In the limit of ideal
Maxwell-Boltzmann gas, it reduces to the binomial ac-
ceptance correction procedure [20, 26, 27].
In the present work we continue our studies [7] of parti-

cle number fluctuations within molecular dynamics (MD)
simulations of the Lennard-Jones (LJ) fluid. The model
considered here corresponds to an interacting system of
non-relativistic particles. The presence of both attractive
and repulsive interactions leads to a first-order liquid-
gas phase transition (LGPT). The MD simulations of
the LJ fluid provide a microscopic approach to fluctu-
ations in a system with a phase transition. They also
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Figure 1. The liquid-gas region of the Lennard-Jones fluid
phase diagram. Horizontal dashed lines show the subcritical
isotherm T̃ = 0.76 studied in this work and the supercritical
isotherm T̃ = 1.06 explored in Ref. [7]. Solid and dashed lines
show the binodal and spinodal lines, respectively. The blue
and green regions correspond to the nucleation and cavitation
metastable parts of the mixed phase, respectively. The grey
area denotes the spinodal decomposition region. The black
star represents the CP. The squares denote the (ñ, T̃ ) points
where the MD simulations in the mixed phase have been per-
formed.

allow one to study deviations from the baselines based
on the GCE. This study thus complements earlier anal-
yses of correlations and fluctuations in the first-order
phase transition region performed using hadronic trans-
port with mean fields [28, 29] or fluid dynamics with a
finite-range term [30, 31]. With regard to mean quan-
tities the molecular dynamics of non-equilibrium finite
systems was studied previously in the context of heavy
ion collisions in Refs. [32–36].

Our study is motivated by the measurements of baryon
number fluctuations in heavy-ion collisions to probe the
QCD phase structure. In particular, the LJ fluid can nat-
urally model the nuclear liquid-gas transition between a
dilute gas of nucleons and clusters and the dense nu-
clear liquid, if one regards the LJ particles as nucleon
degrees of freedom. This nuclear LGPT is probed in nu-
clear collisions at low energies [37–39]. Experiments at
higher collision energies, on the other hand, study the
confinement-deconfinement transition, which may con-
tain a critical point and a line of first-order phase transi-
tion at finite baryon density [4, 5]. The relevance of the
LJ fluid to model the confinement-deconfinement transi-
tion may seem less evident, given that it does not describe
the expected change of degrees of freedom from hadrons
to quarks. Nevertheless, simulations of the LJ fluid do

provide useful guidance to understand the behavior of
baryon number fluctuations near the QCD CP, for two
reasons: (i) the behavior of baryon number fluctuations
is universal near the QCD CP and governed by the 3D-
Ising universality class [5] – the same universality class
that characterizes critical behavior in the LJ fluid [40];
(ii) the LJ fluid simulations can test the validity of the
model-independent SAM procedure for subtracting the
canonical ensemble effects on baryon number cumulants,
this is particularly relevant given that the finite-size ef-
fects, that hinder the accuracy of the SAM, can be sig-
nificant in the mixed phase region.

This work focuses on fluctuations in the mixed-phase
region of a first-order phase transition. While signifi-
cant attention has been given to higher-order measures
of fluctuations of conserved charges at supercritical tem-
peratures and in pure phases (see e.g. Refs. [4, 9, 10, 41–
45]), less attention has been paid to the mixed phase.
However, it is possible for a system created in rel-
ativistic nucleus-nucleus collisions to enter the mixed
phase of a first-order phase transition under certain con-
ditions. This is particularly relevant because of the
ongoing program of the HADES collaboration at the
GSI Helmholtzzentrum für Schwerionenforschung mbH
to measure higher-order net-proton and net-charge fluc-
tuations in central Au+Au collisions at collision energies
of 0.2A − 1.0A GeV. The system created in these colli-
sions may undergo freeze-out in the mixed phase of the
nuclear LGPT.

In our previous work [7], we studied a supercritical
isotherm, T = 1.06Tc, observing a sizable increase of par-
ticle number fluctuations near the critical particle num-
ber density n ≈ nc. In the present work, we study parti-
cle number fluctuations along a subcritical temperature
T = 0.76Tc inside the liquid-gas mixed phase. First, we
look at the metastable part of the mixed phase – the
so-called nucleation region. The simulation results are
compared to a simple model of non-interacting particle
clusters. Another part of the liquid-gas mixed phase – the
spinodal decomposition region – demonstrates anomalous
large particle number fluctuations. This happens at tem-
perature T and particle number density n also far away
from the CP. A simple analytical toy model is constructed
to clarify these effects.

The paper is organised as follows. The details of MD
with LJ potential and the results of the simulations for
particle number fluctuations are presented in Sec. II. A
brief description of the mixed phase structure is described
in Sec. III. A simple model of non-interacting clusters in
Sec. IV and a geometrical toy model in Sec. V are devel-
oped to interpret the MD results in the nucleation and
spinodal decomposition regions, respectively. Summary
in Sec. VI closes the article
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Figure 2. The particle number distributions in a subvolume V = αV0 for the system with N0 = 400 particles. The distributions
P (N) obtained from the MD simulations at T̃ = 0.76 and different values of ñ inside the mixed phase.

II. MOLECULAR DYNAMICS WITH
LENNARD-JONES POTENTIAL

We use molecular dynamics simulations of the classi-
cal non-relativistic system of particles interacting via the
Lenard-Jones (LJ) potential,

VLJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
. (1)

The first term in Eq. (1) corresponds to the repulsive
forces at short distances whereas the second one describes
the attractive interactions. The parameter ϵ describes
the depth of the attractive well, and σ corresponds to
the size of the particle, which also defines the distance
scale. It is convenient to introduce dimensionless reduced
variables,

V ∗
LJ(r

∗) = VLJ(r)/ε = 4
(
(r∗)−12 − (r∗)−6

)
, (2)

with r∗ = r/σ being the reduced distance. The reduced
thermodynamic variables are the temperature T ∗ =
T/(ε), particle number density n∗ = nσ3, and pressure
p∗ = pσ3/ε. The particle’s mass can be utilized to define

the dimensionless time variable, t∗ = t
√
ε/(mσ2).

The LJ system possesses a rich phase diagram (see
e.g. Ref. [46] for an overview). At present, there are
no direct analytical tools to compute the phase diagram
in the LJ system. Nevertheless, numerical methods (see,
e.g. Ref. [47]) allow one to compute the approximate
locations of the LGPT binodal and spinodal lines, as well
as the CP location. This part of the phase diagram is of
primary interest in the present work, and it is shown in
Fig. 1 in terms of the reduced temperature and density.
The CP location has been estimated from numerous MD

simulations [48]

T ∗
c = 1.321± 0.007 ,

n∗
c = 0.316± 0.005 ,

p∗c = 0.129± 0.005 .

(3)

In what follows, we use a set of dimensionless variables
scaled by the critical values

T̃ ≡ T

Tc
=

T ∗

T ∗
c

, ñ ≡ n

nc
=

n∗

n∗
c

, p̃ ≡ p

pc
=

p∗

p∗c
. (4)

The quantities (3) correspond to the thermodynamic
limit when the system’s volume V → ∞. For finite
systems, the physical meaning of the LGPT and its CP
should be treated with caution, as they are only rigor-
ously defined for infinite systems.
The MD simulations are performed by numerically in-

tegrating Newton’s equations of motion using the Veloc-
ity Verlet integration method. The simulations are done
for a system of N0 = 400 interacting particles in a cubic
box of volume V0 with periodic boundary conditions with
minimum image convention.
In the mixed phase the time of reaching the thermal

equilibrium can be rather large (see Refs. [49]). After
the equilibration time, t̃eq = 50, the LJ system reaches a
state with a stable temperature1 (see Ref. [7]). The time
of all simulations is τ = 106. This large time interval
guarantees small deviations (less than 1%) of the scaled
variance in independent simulations.

1 During all system evolution some temperature fluctuations can
be seen, but they are relatively small, so the mean value of tem-
perature differs from the desired by no more than 0.4%.
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Figure 3. The scaled variance ω̃ (6) as a function of the particle number density ñ for N0 = 400, α = 0.2 at T̃ = 0.76 (a) and

T̃ = 1.06 (b).

The total particle number N0 in the entire volume is
fixed. To study the fluctuations of particle number one
thus needs to choose a subvolume V = αV0 (0 < α < 1) of
the whole volume. We choose a cubic subvolume placed
in the geometrical center of the system. From the MD
simulations, we obtain the normalized probability distri-
bution P (N) to observe N particles in the subvolume
V .

A useful measure of particle number fluctuations is the
scaled variance:

ω =

〈
N2
〉
− ⟨N⟩2

⟨N⟩
. (5)

In MD simulations, the values ⟨N⟩ and
〈
N2
〉
can be cal-

culated as time averages. In Fig. 2 we present the P (N)

distribution at the subcritical temperature T̃ = 0.76 for
several different particle number densities ñ inside the
mixed phase. The total number of particles is fixed
as N0 = 400 and the subvolume fraction is taken as
α = 0.2. From Fig. 2, one observes substantial deviations
of the resulting distributions from the Poisson distribu-
tion baseline. For ñ ≈ 1, a double-hump distribution is
clearly observed.

Note that for any finite α, fluctuations of N in the sub-
volume V will be influenced by the exact global conser-
vation of the total particle number N0 in the full volume
V0. In the large volume limit, these effects can be taken
into account analytically [21]. One can defined a scaled
variance ω̃ corrected for exact N0 conservation as

ω̃ =
ω

1− α
. (6)

The results for the corrected scaled variance ω̃ as a
function of ñ are presented in Fig. 3 for both (a) the

subcritical and (b) the supercritical isotherms T̃ = 0.76

and T̃ = 1.06, respectively. All results are obtained for
N0 = 400 and α = 0.2, as in Fig. 2.
One can immediately observe that fluctuations are

much larger in the mixed phase at T̃ = 0.76 compared to
those along the temperature T̃ = 1.06, slightly above the
critical point. This indicates that, although the fluctua-
tions exhibit singular behavior in the vicinity of the CP,
they can be even larger in the mixed phase region away
from the critical point.
In the following sections, we provide a brief overlook of

the structure of the liquid-gas mixed phase and analyze
the observed large values of ω̃ in the mixed phase in terms
of simple analytical models.

III. MIXED PHASE STRUCTURE

One can specify three different regions inside the mixed
phase: nucleation, spinodal decomposition, and cavita-
tion (see, e.g., Refs. [50, 51]). They are shown in Fig. 1
by blue, grey, and green colors, respectively. Their mi-
croscopic structures are symbolically illustrated in Fig. 4.
The nucleation region includes a mixture of particles and
small clusters (liquid droplets), whereas the cavitation
region is represented by the liquid with small bubbles of
the gaseous phase. In the context of heavy ion collision
clusters correspond to nuclear fragments whose distri-
butions were previously studied using MD in the case
of expanding system in Refs. [32–35, 52]. Experimen-
tal measurements of nuclear fragment mass distributions
were used to probe the nuclear LGPT and the CP (see,
e.g., Refs. [37, 53–55]). The nucleation and cavitation
regions of the mixed phase correspond to the metastable
states. In the MD simulations one expects to achieve
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Figure 4. Different regions along the supercritical isotherm of the liquid-gas transition: (a) gaseous phase, (b) nucleation, (c)
spinodal decomposition, and (d) cavitation.

Figure 5. Possible position of the liquid phase in the spinodal decomposition region relative to the acceptance subvolume (red
dashed square).

an equilibrated steady state in these regions after a suf-
ficiently long time. In most cases, however, the time to
reach complete equilibrium appears very long. Note also
that a strict physical meaning and location of the bounds
of different regions are dependent on the size of the sys-
tem (see, e.g., Refs. [56–58]) and can be sensitive to the
collective motion [59–61].

The spinodal decomposition region is fundamentally
different from the metastable nucleation and cavitation
ones (see, e.g., Refs. [62, 63]). The LGPT manifests it-
self here as a fast system separation into the gaseous and
liquid phases. The equilibrium states in this region (see,
e.g., Ref. [64]) are achievable in the MD simulations. The
heterogeneous structure of the spinodal decomposition
phase is illustrated in Fig. 5, showing a strong influence
on the particle number fluctuations obtained in the MD
simulations. This is discussed in more detail in Sec. V.
One can note a principal difference between the hetero-
geneous two-phase states in the spinodal decomposition
region and the homogeneous mixtures of particles plus
clusters in the nucleation region and liquid with gaseous
bubbles in the cavitation region.

IV. MIXTURE OF PARTICLES AND
CLUSTERS

To clarify some general features of the nucleation re-
gion, let us consider a non-interacting multi-component
gas of k-particle clusters (k = 1, 2, . . .). The GCE parti-
tion function reads

ZGCE =
∏
k≥1

∞∑
Nk=0

(
V g(k)eµk/T

)Nk

Nk!
(2πkmT )3Nk/2

=
∏
k≥1

exp

[
V (2πkmT )3/2 g(k) exp

(
µk

T

)]
,

(7)

where V , T , and µ are, respectively, the system volume,
temperature, and chemical potential that corresponds to
the total conserved number N of particles over all clus-
ters; g(k) is the “degeneracy” factor (number of internal
states of the k-th cluster), and m the mass of a single
particle, such that the mass of a k-particle cluster equals
Mk = km). The system is considered to be in chemical
equilibrium, thus µk = kµ. The CE partition function
ZCE(V, T,N) of the cluster model (7) is considered in
Appendix A, where it is shown that the moments ⟨kl⟩ of
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Figure 6. Cluster probability distributions Pk extracted from the MD of Lennard-Jones fluid for N0 = 400 and T̃ = 0.76
at gaseous binodal ñ = 0.16 (a) and gaseous spinodal ñ = 0.35 (b). For comparison, Pk distributions are also presented for

supercritical temperature T̃ = 1.06.

the cluster distribution are identical between the CE and
the GCE in the thermodynamic limit.

The cluster distribution (i.e., the normalized probabil-
ity to find the kth cluster in the cluster system) can be
written in a form

Pk(T, µ) ≡
⟨Nk⟩∑

l≥1

⟨Nl⟩
=

k3/2g(k) exp
(

µk
T

)
∑
l≥1

l3/2g(l) exp
(

µl
T

) , (8)

where

k⟨Nk⟩ =
∂ ln [ZGCE(k)]

∂µ
(9)

is the GCE average number of the kth clusters. The
clusters pressure p and particle number density n can be
found as

p = (2πm)3/2T 5/2
∑
k≥1

k3/2g(k) exp

(
µk

T

)
, (10)

n = (2πmT )3/2
∑
k≥1

k5/2g(k) exp

(
µk

T

)
. (11)

Using Eqs. (8) and (10) one can rewrite the pressure as

p =
nT

⟨k⟩
, (12)

and the scaled variance ωgce

ωgce = T

[
dp

dn

]−1

=
T

n

(
∂n

∂µ

)
T

=
⟨k2⟩
⟨k⟩

, (13)

where we defined ⟨kl⟩ ≡
∑

k≥1 k
lPk. Therefore, the first

two moments of the cluster probability distribution Pk

define both the system pressure (12) and scaled variance
(13). Due to the evident inequalities, ⟨k⟩ ≥ 1 and ⟨k2⟩ ≥
⟨k⟩, the results (12) and (13) demonstrate that in the
mixture of noninteracting k-th clusters (k = 1, 2, . . .) the
system pressure becomes smaller and the scaled variance
larger than the corresponding ideal gas values pid = nT
and ωid = 1 with no cluster formation, i.e., when g(k =
1) = 1, g(k > 1) = 0. General expression for cumulants
κn[N ] of any order n can be obtained:

κn[N ] =
∂n ln [ZGCE]

∂
(
µ
T

)n = ⟨kn⟩
∑
k≥1

⟨Nk⟩. (14)

The model of noninteracting clusters discussed above
can be considered as an approximation for the LJ fluid
in the nucleation region. The attractive part of the LJ
potential is responsible for the kth cluster formation. On
the other hand, the particle number density is still suffi-
ciently small to justify the absence of the repulsive inter-
action effects between clusters.

By definition, a cluster is a bound system of particles.
There are several ways to define clusters in molecular
dynamics simulations [65, 66]. In the following, we will
use the Hill algorithm [67]. A pair of particles i and
j is assumed to be bound if their rest frame energy is
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negative,

(ṽi − ṽj)
2 + ṼLJ(|r̃i − r̃j |) < 0. (15)

A given particle is assumed to belong to a cluster if it
is bound to at least one other particle in that cluster.
Finding clusters is thus equivalent to finding connected
components in an undirected graph, whose vertices cor-
respond to particles and where all bound pairs of par-
ticles [i.e. the condition (15) is satisfied] are connected
by edges. We use depth-first search (DFS) to find the
connected components of the graph and thus identify all
the clusters.

Utilizing the above procedure, one obtains the proba-
bility distribution Pk in a Lennard-Jones fluid for given ñ
and T̃ from MD simulations. Examples of the extracted
Pk distributions for T̃ = 0.76 and T̃ = 1.06 are shown
in Figs. 6 (a) and (b) for ñ = 0.16 and ñ = 0.35, re-
spectively. The results indicate that cluster formation
becomes more significant when either temperature T̃ is
decreased or particle number density ñ is increased.
We then use the extracted Pk distributions to evaluate

⟨k⟩ and ⟨k2⟩ which we then plug into (13) to estimate the
GCE scaled variance in the cluster model. These results
are compared with ω̃ calculated in a subvolume V = αV0

directly from MD simulations. The cluster model results
for T̃ = 0.76 are shown in Fig. 7 by the orange line. These
results agree qualitatively with direct MD simulations
data (black line) in the range of densities 0.16 ≲ ñ ≲ 0.35
corresponding to the nucleation region. In particular,
cluster formation explains the strong rise (approximately
by a factor of 20) of the scaled variance with ñ in the
nucleation region. The cluster model, however, fails to
describe the peak in ω̃ seen in MD simulations at higher
densities, indicating its breakdown in the spinodal region.

V. FLUCTUATIONS IN THE SPINODAL
REGION

In Ref. [68], the GCE particle number fluctuations were
calculated in the mixed phase region. It was assumed
that both the liquid and gas phases are entirely inside
the system volume V0 that tends to infinity. In MD sim-
ulations here, we instead study fluctuations in a subvol-
ume V = αV0, which corresponds to a different scenario.
We thus develop new models to understand qualitative
features of the behavior observed in MD simulations.

In the spinodal region, one assumes that the volume
V is partitioned into volumes Vl = xV and Vg = yV
occupied by the liquid and gaseous phases, respectively
(0 < x < 1, y ≡ 1 − x). The corresponding particle
number densities in the liquid and gaseous phases are
ρl ≡ Nl/Vl and ρg = Ng/Vg. The rth moment of the

Figure 7. The points connected by the solid line correspond
to the MD results for N0 = 400 and α = 0.2 at T̃ = 0.76.
The orange line demonstrates the cluster model results in the
nucleation region 0.16 ≤ ñ ≤ 0.35. The dashed line shows the
results of the Minecraft model in the spinodal region 0.35 ≤
ñ ≤ 1.75, and the dash-dotted line is its extension to the
nucleation region.

particle number distribution in the subvolume V = αV0

can then be presented as the following:

⟨Nr⟩ = ⟨(Nl +Ng)
r⟩ = V r ⟨(xρl + yρg)

r⟩ . (16)

The fluctuating quantities are the densities ρl, ρg, and
the volume fraction x, whereas the volume V is fixed.
Following Refs. [69, 70] we assume that the fluctuations
of all these quantities are independent in the thermo-
dynamic limit, i.e., ⟨ρkl ρmg xn⟩ = ⟨ρkl ⟩ ⟨ρmg ⟩ ⟨xn⟩ for any
non-negative integers k, m, and n.
The first moment (r = 1), reduces via Eq. (16) to

⟨N⟩ = x0V nl + y0V ng = V n , (17)

where x0 = ⟨x⟩ is the mean volume fraction occupied by
the liquid phase, y0 ≡ 1−x0, and nl = ⟨ρl⟩ and ng = ⟨ρg⟩
are the mean densities in the liquid and gaseous phases,
respectively. The particle number density is equal to n ≡
⟨N⟩/V = N0/V0. Equation (17) defines x0 in terms of
the mean densities:

x0 ≡ ⟨x⟩ = n− ng

nl − ng
. (18)

At fixed temperature T < Tc the mean densities of the
liquid nl and gaseous ng phases are assumed to remain
constant with respect to system’s particle number den-
sity n in the spinodal region in the thermodynamic limit.
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These quantities coincide with the corresponding values
on the liquid (right) and gaseous (left) binodals.

Using Eq. (16) one finds the variance of particle num-
ber distribution (see Ref. [68] for details):

Var[N ] ≡ ⟨N2⟩ − ⟨N2⟩

= Varx[Nl]

(
1 +

Var[x]

x2
0

)
+Varx[Ng]

(
1 +

Var[x]

y20

)
+ V 2(nl − ng)

2Var[x] . (19)

Here Varx[Nl,g] is the variance of Nl,g at fixed volume
fraction x and Var[x] is the variance of the x distribution.

Suppose that there are several blobs of the liquid and
gaseous phases, and all of them are much smaller than
the subvolume V . This would correspond to a spa-
tially homogeneous mixed phase. In this case, Var[x]
is expressed in terms of cumulants of Vl distribution
as Var[x] ≡ V −2Var[Vl]. In the thermodynamic limit,
V → ∞, all cumulants of extensive quantities are pro-
portional to the system volume, Varx[Nl,g] ∼ V and
Varx[Vl,g] ∼ V . Eq. (19) reduces to

Var[N ] = Varx[Nl] + Varx[Ng]

+ V 2(nl − ng)
2Var[x] , (20)

where all terms are linear in V . The result (21) coin-
cides with that obtained for the GCE in Ref. [68], and it
corresponds to the finite values of the scaled variance at
T < Tc in the thermodynamic limit.

Note that the above derivation is based on the assump-
tion of homogeneity. This assumption is valid for pure
phases. In the mixed-phase region, however, this assump-
tion may only be reasonable when applied to long-lived
metastable phases. Such a configuration of the system,
however, can not be viewed as an equilibrium configu-
ration in a region of spinodal decomposition. There, the
sizes of the liquid and gaseous blobs are both of the order
of the total volume V0, and their volumes are comparable
to the subvolume V . Thus, the whole picture is strongly
heterogeneous (see Fig. 4 (c) and Fig. 5). As a conse-
quence, Var[x] becomes volume independent, thus, the
last term in Eq. (19) is quadratic in V and makes the
dominant contribution to fluctuations. Leaving only this
last term, one obtains:

Var[N ] = V 2(nl − ng)
2Var[x] , (21)

and

ω̃[N ] =
Var[N ]

(1− α)⟨N⟩

= α(1− α)N0
(nl − ng)

2

n2
Var[x] .

(22)

This result indicates that ω̃[N ] scales with N0, i.e. the
scaled variance diverges in the thermodynamic limit. We
checked that for N0 ≫ 400 the substantial increase of
ω̃ is observed within MD simulations, however the scal-
ing behaviour for fluctuations is out of the scope of the
present paper. In the following, we present estimates for
Var[x].
Small α limit. At α ≪ 1 one has Vl ≫ V and

Vg ≫ V . This means that one can neglect the events
when both phases are simultaneously present inside the
subvolume V , and the whole subvolume is entirely in-
side either the gaseous or liquid phase. The probability
distribution P [x] thus reads

P [x] = x0 δ(1− x) + y0 δ(x) . (23)

This means that one can neglect the events when both
phases are simultaneously present inside the subvolume
V . From Eq. (23) one finds

Var[x] = x0y0. (24)

The maximal value of Var[x] = 0.25 is reached at x0 =
3
√
0.5. Using Eqs. (18) and (21) one obtains:

Var[N ] = V 2(n− ng)(nl − n) . (25)

One sees that the scaled variance of particle number dis-
tribution is indeed divergent inside the mixed phase in
the thermodynamic limit, scaling with the subvolume
ω̃ ∼ V .
Minecraft model.2 Now let us calculate Var[x] when

the sizes of the volume, subvolume, and blobs are all com-
parable. For that we consider a simple ”geometric” toy
model of the cubic system with unit volume which con-
tains both liquid and gaseous phases (see Fig. 8). The
cubic subvolume V = α is located in the center of the
system with coordinates (ax, ay, az) = (0, 0, 0). The edge
length of the subvolume is a = 3

√
α. All liquid is con-

densed into a single blob which freely moves within the
system. Here we neglect the effects of a geometric form
and assume that this blob has a shape of a perfect cube.
The volume of the cube of liquid is Vl = x0. Corre-
spondingly its edge length is b = 3

√
x0. The system has

periodic boundary conditions, therefore, the coordinates
(bx, by, bz) of the center of the cube of liquid are limited
by − 1

2 < bx, by, bz <
1
2 . The fraction x of the subvolume

occupied by the liquid phase is the overlap volume be-
tween the cubic subvolume and the cubic liquid divided
by the subvolume V = α.
The system has three degrees of freedom – the coor-

dinates of the liquid cube (bx, by, bz). Since the cube

2 This name is inspired by the popular 3D video game.
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Figure 8. The illustration of the Minecraft toy model of an
equilibrium system in the unstable region of the mixed phase.
The subsystem is shown by the grey cube in the center while
the green cube represents the liquid. The remaining space of
the system is occupied by gas.

center is uniformly distributed over − 1
2 < bx, by, bz < 1

2 ,
the three coordinates are independent. The fraction x as
a function of these three coordinates and can be written
as

x =
f(bx)f(by)f(bz)

α
. (26)

Here f(bi) is the overlap of liquid blob with subvolume
along the coordinate i as a function of bi.

The mean value ⟨x⟩ can be found as

⟨x⟩ = 1

αv

(∫ 1/2

−1/2

f(bi)dbi

)3

= x0 (27)

where v = 1 is the volume of the system. Similarly, one
can calculate the variance of x:

Var[x] = −b6 (28)

+

[
b2(3a− b) + Θa+b−1(a+ b− 1)3 +Θb−a(b− a)3

3a2

]3
where Θ... ≡ Θ[...] is the step function and, as before,
a = 3

√
α and b = 3

√
x0. One sees that Eq. (28) reduces to

Eq. (24) when α → 0. In other limiting cases Var[x] → 0
when α → 1 or x0 → 1 or x0 → 0. Var[x] as a function
of x0 and α is shown in Fig. 9.

The scaled variance ω̃[N ] given by Eq. (22), with Var[x]
estimated using the Minecraft model, Eq. (28), is shown
in Fig. 7 in spinodal and nucleation regions by dashed

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

α

��

�����

����

���
����

������

Figure 9. The variance of the volume fraction occupied by
the liquid phase, Var[x], as a function of ⟨x⟩ ≡ x0 and α
calculated in the Minecraft model [Eq. (28)]. The dashed line
corresponds to the maximum value of Var[x] at fixed α.

and dotted lines, respectively.

VI. SUMMARY

We studied particle number fluctuations inside the
mixed phase of a liquid-gas phase transition by utiliz-
ing molecular dynamics simulations of the Lennard-Jones
fluid. The simulations were performed for N0 = 400 par-
ticles in a cubic box with periodic boundary conditions.
The fluctuations are studied inside a cubic subvolume
V = 0.2V0 located in the geometrical center of the sys-
tem.
First, we briefly explore the supercritical temperature,

where one observes the approximate Gaussian shape of
the P (N) distribution. The scaled variance ω̃ character-
izes the width of the P (N) distribution. It first increases
with density from ω̃ ≈ 1 at small ñ to its maximum above
unity around the critical density ñ = 1, and then it de-
creases with ñ to small values ω̃ < 1. This is illustrated
in Fig. 3 (b).

The situation differs in the mixed phase, T̃ < 1. The
structure of the P (N) distribution is significantly more
intricate. For ñ ≈ 1, the distribution is bi-modal, as
shown in Fig. 2. The corresponding variance of parti-
cle number is much more significant compared to pure
phases [Fig. 3 (a)].
To understand the qualitative features of the observed

behavior, we formulate two phenomenological toy mod-
els.
The first model describes the system as non-interacting

multi-component gas of k-particle clusters, taking the
cluster probability distribution Pk directly from the
MD simulations as input. The model describes semi-
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quantitatively the rapid increase of ω̃ with density in the
nucleation region of the mixed phase, i.e., the region be-
tween the gaseous binodal and spinodal [Fig. 7].

The second model – the Minecraft model – is formu-
lated for the spinodal region of the mixed phase. The
particles are separated into two phases, namely, the liq-
uid blob with volume Vl surrounded by gas. The size
of the blob Vl can be expressed through the total den-
sity of the system ñ and densities on the binodals. The
Minecraft model considers the geometrical effects that
become important when the volumes Vl,g and V are of
comparable size. With this consideration, the model in-
dicates that ω̃ ∼ N0 → ∞, thus the variance is divergent
in the thermodynamic limit inside the spinodal region.

The present work is motivated by the study of event-
by-event fluctuations in nucleus-nucleus collisions to
probe the phase structure of QCD. Our MD simulations
inside the mixed phase were performed for 400 parti-
cles, while the fluctuations were studied in the subvol-
ume V = 0.2V0. These two parameters correspond to
typical total numbers of nucleons and the percentage of
accepted final particles in heavy-ion collisions. The re-
sults indicate that large fluctuations of particle number
in coordinate space can be interpreted as a signal of the
spinodal region of the first-order phase transition. How-
ever, there are significant differences between our calcu-
lations and heavy-ion collisions. One difference is that in
heavy-ion collisions, particles are not detected during the
equilibrium phase of the collision but only after they fly
away to the detector. Another difference is that particle
momenta, not the coordinates, are measured in the ex-
periment. We plan to address these issues by performing
MD simulations of expanding systems.

Our simulations provide a first microscopic model test
of the subensemble acceptance method (SAM) [21, 22] in
the mixed phase region of a first-order phase transition.
The SAM is a method for correcting the baryon num-
ber cumulants in heavy-ion collisions, which is model-
independent in the thermodynamic limit, and it was pre-
viously tested in the crossover region at supercritical tem-
peratures in Ref. [7]. Our simulations reveal that the
SAM remains accurate in metastable regions of the phase
diagram but breaks down in the spinodal decomposition
region. The reason is that the finite-size effects remain
sizable even in large systems in this region of the phase
diagram. The treatment of the canonical effects in the
spinodal region is thus more complex. It will require
appropriate generalizations of the SAM, such as includ-
ing macroscopic geometrical effects encompassed by the
Minecraft model introduced here.

Another future avenue is generalizing the presented
analysis to higher-order moments of particle number dis-
tributions, such as skewness and kurtosis.
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Appendix A: Cluster partition function in the CE

For a system of non-interacting multi-component gas
of kth particle clusters, the canonical ensemble (CE) par-
tition function reads

ZCE(V, T,N) =

N∏
k=1

∑
Nk≥0

(V g(k))
Nk

Nk!
(2πkmT )3Nk/2

× δ

[
N −

N∑
k=1

kNk

]
. (A1)

Applying the integral form of the Kronecker symbol,

δ

[
N −

N∑
k=1

kNk

]
=

2π∫
0

dφ

2π
exp

[
iφ

(
N −

N∑
k=1

kNk

)]
,

(A2)

to Eq. (A1), one obtains

ZCE(V, T,N) =

2π∫
0

dφ

2π
e−iφN exp

∑
k≥1

r(k)eiφk

 . (A3)

Here r(k) ≡ V g(k)(2πkmT )3/2.

Using the Maclaurin expansion, one has

exp

∑
k≥1

r(k)eiφk

 =

∞∑
l=0

Bl(r(1), . . . , l!r(l))

l!
eiφl, (A4)
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where Bl are Bell polinomials [71].
Substituting (A4) into (A3) gives

ZCE(V, T,N) =
BN (r(1), . . . , N !r(N))

N !
. (A5)

From the above equations one finds the GCE partition
function

ZGCE =

∞∑
N=0

ZCE exp

(
µN

T

)
=

N∏
k=1

exp
(
r(k)eµk/T

)
,

(A6)

which coincides with Eq. (7). ZCE can be expressed in
terms of ZGCE through the Mellin transformation

ZCE =

c+i∞∫
c−i∞

ZGCEe
−µN/T dµ . (A7)

The integral (A7) can be evaluated in the large N limit
using the steepest descent method [72]. Therefore,

ZCE(V, T,N) ≈
√

2πT 2∑N
k=1 k

2r(k)eµ0k/T

× exp

(
N∑

k=1

r(k)eµ0k/T − µ0

T
N

)
, (A8)

where µ0(T,N) can be found from the saddle point equa-
tion

N∑
k=1

kr(k)eµ0k/T −N = 0 . (A9)

Equation (A8) indicated that the j-th moment of kth
cluster distribution in the large N limit reads

〈
kj
〉
CE

=
〈
kj
〉
GCE

+ O(N−1) . (A10)

This result shows that all moments j = 1, 2, . . . of the
k-th cluster distribution (k = 1, . . . , N) are the same in
the CE and GCE in the thermodynamic limit N → ∞.

If N is large, this justifies the use of Pk probabilities
from MD simulations as input into the calculations of
fluctuations in the GCE using formulas (12) and (13).
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