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Singly‑excited resonant open 
quantum system Tavis‑Cummings 
model with quantum circuit 
mapping
Marina Krstic Marinkovic 1* & Marina Radulaski 2*

Tavis-Cummings (TC) cavity quantum electrodynamical effects, describing the interaction of N 
atoms with an optical resonator, are at the core of atomic, optical and solid state physics. The full 
numerical simulation of TC dynamics scales exponentially with the number of atoms. By restricting 
the open quantum system to a single excitation, typical of experimental realizations in quantum 
optics, we analytically solve the TC model with an arbitrary number of atoms with linear complexity. 
This solution allows us to devise the Quantum Mapping Algorithm of Resonator Interaction with N 
Atoms (Q-MARINA), an intuitive TC mapping to a quantum circuit with linear space and time scaling, 
whose N+1 qubits represent atoms and a lossy cavity, while the dynamics is encoded through 2N 
entangling gates. Finally, we benchmark the robustness of the algorithm on a quantum simulator and 
superconducting quantum processors against the quantum master equation solution on a classical 
computer.

The Tavis-Cummings (TC) model1, which describes interaction of N atoms with an optical cavity has been a cor-
nerstone in the studies of quantum optical systems. The collective interactions in this model give an 

√
N  increase 

in the light-matter interaction rate (Fig. 1) and a host of subradiant states with rich phenomenology relevant for 
the development of quantum networks2–4, all-photonic quantum simulators5, quantum memories6,7, quantum 
transport8, exciton-polarons in semiconductors9, superconducting quantum circuits10, collective interaction of 
the cavity mode with an ensemble of atoms11–14, and entanglement generation15–20. Rapid progress in experimen-
tal development in the field of nanophotonics, renders the impracticality and scarceness of theoretical approaches 
unsatisfactory, especially in the open quantum system setting where the cavity interacts with the environment. 
Although recent results demonstrate that generalized TC model is integrable and can be solved using a variant 
of Quantum Inverse Methods (QIM)21,22, solutions obtained in this way poise difficulties in extracting physical 
quantities and capturing dynamical correlations in the system. On the other hand, numerical solutions obtained 
through the quantum master equation23 are limited by the exponential runtime complexity in Hilbert space size, 
and have thus far been performed for a single digit number of atoms. Due to the impracticality of analytical 
approaches based on QIM and exponentially rising cost of numerical solutions of the quantum master equa-
tions for such systems, theoretical verifications of experimental results are constrained to low number of atoms. 
Increasing the size of the Hilbert space has been pursued via approximate methods with polynomial scaling, 
such as the effective Hamiltonian24, scattering matrix4 and quantum trajectories25 approaches. Furthermore, 
for applications concerned with the singly-excited regime, exact methods can be derived under linear scaling.

The availability of the Noisy Intermediate Scale Quantum (NISQ) devices has attracted interest for simulating 
open quantum systems. To date, two prevailing directions have emerged, the first using operator sum representa-
tion, where Sz.-Nagy theorem is used to relate Kraus operators with unitary dilatation matrices26,27 that can then 
be directly implemented on a quantum circuit. This result has been further generalised and applied to quantum 
simulate the complex open quantum system, governed by the Fenna-Matthews-Olson Dynamics modelling 
the quantum theory of electron transfer in biological systems28. An alternative approach is starting directly 
from the equations of motion in Lindblad and Gorini-Kossakowski-Sudarshan-Lindblad form and mapping 
the dynamics to a quantum circuit, which has been applied so far to both Markovian and non-Markovian open 
quantum systems consisting of 1 or 2 qubits29. This approach has recently been verified on a canonical model of 
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light matter interaction systems: the Jaynes-Cummings model29. Cavity quantum electrodynamical models that 
involve multiple emitters, such as the TC model, have not yet been considered. However, this in particular is the 
area where classical methods quickly saturate numerical resources and quantum devices may be able to expand 
the Hilbert size of systems studied in quantum communication, memories and simulators. Moreover, studying 
a quantum system on purely quantum hardware may provide representations that are intuitive in nature, as both 
emitters and qubits are two-level systems.

In this work, we study a resonant open Tavis-Cummings model with arbitrary number of atoms and first 
provide an analytical solution for the singly-excited system with linear complexity. We then design the Quantum 
Mapping Algorithm of Resonator Interaction with N Atoms (Q-MARINA) which maps the open TC system with 
N atoms to a gate-based quantum circuit with only N+1 qubits. We simulate the system on a superconducting 
quantum computer available through IBM Quantum program30.

Results
The model
We consider N two-level systems, modeling an ensemble of atoms (or spins), coupling to the environment of 
discrete bosonic modes. The system and the environment Hamiltonians HS and HE are:

while their interaction is described by the Tavis-Cummings Hamiltonian HI:

Here, we use the collective system operators Sz =
∑N

j=1
1
2σ

j
z and S± =

∑N
j=1 σ

±
j =

∑N
j=1

1
2 (σ

j
x ± iσ

j
y) , with 

commutation relations [σj , σk] = 2iǫj,k,lσl and [Sz , S±] = ±S±.
To solve the model analytically, we aim to obtain the time dependent Hamiltonian in the interaction picture 

in the form of:

Here, the form of bk(t) = bke
−iωkt is easily derived, however, finding an elegant expression for S±(t) requires 

closer consideration.
We  f i r s t  n o t e  t h a t ,  i n  t h e  H i l b e r t  s p a c e  o f  t h e  s y s t e m ,  t h e  o p e r a t o r 

Sz = 1
2

∑N
n=1

(

⊗n−1I ⊗ σz ⊗N−n I
)

= diag({xp}) is diagonal in terms we will call xp, 1 ≤ p ≤ 2N . We find that, 
xp is a function of the Hamming weight W(p− 1) , i.e. the digit sum of the binary representation of the number 
p− 1 , as:

Therefore, the term eiHSt = diag({eiωs txp }) must too be diagonal, which allows us to obtain a closed form solution:

(1)HS = ωsSz , HE =
∑

k

ωkb
†
kbk ,

(2)HI =
∑

k

gkbkS
+ + g∗k b

†
kS

−.

(3)HI (t) =
∑

k

gkbk(t)S
+(t)+ g∗k b

†
k(t)S

−(t).

xp =
N

2
−W(p− 1).

(4)S±(t) = S±e±iωs t ,

Figure 1.   (a) An illustration of an open Tavis-Cummings system consisting of an optical cavity of the loss rate 
κ with N atoms each coupled at the interaction rate g. (b) The transmission spectrum of an empty cavity (dashed 
gray line) featuring a lorentzian profile with linewidth κ and a cavity resonantly coupled to N atoms (solid 
orange line) featuring two polariton peaks separated by 2g

√
N .
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thus completing the Eq. (3) for the time-dependent interaction Hamiltonian of the TC model with N identical 
two-level atoms.

Reduced density matrix
The corresponding reduced density matrix ρS(t) of the TC system with N atoms is given by

where csn are the wavefunction coefficients with the following dependence on the cavity loss and cavity-atom 
interaction parameters:

Real and positive coefficients csn(0) are subject to the normalization constraint 
∑N

n=1 �csn(0)�2 = 1 , and full deri-
vation of the density matrix is given in "Reduced density matrix derivation" section. One of the key considerations 
to arrive to an exact solution and study the dynamics of the open TC system with N identical two-level atoms is 
that the total number of excitations in our system is a constant of motion [H ,M] = 0 , where H = HI +HS +HT , 
and M = S+S− +

∑

k ωkb
†
kbk = 1 is the total number of excitations in the system considered here. It has been 

shown that if one exploits the permutational symmetry31 originating from the simplification that we are consid-
ering N identical emitters, one can gain further insights into closed systems beyond a single excitation manifold 
both analytically and numerically32–36. In the case of the open Tavis-Cummings model studied here, this is seen 
in the symmetry of our solution for the wavefunction coefficients obtained in Eq. (7), where the identical choice 
of initial conditions would lead to identical behavior of subradiant states.

In the following, we show that this dynamics can be mapped onto a quantum circuit with N+1 qubit, thus 
enabling quantum modeling of the Tavis-Cummings open quantum system on a gate-based quantum computer. 
While the solution derived in this section is a general one for a single-excitation system, for simplicity, we will 
from now on assume that the first emitter in the system is the one that is initially excited, while others are in 
the ground state ( cS1(0) = 1 , cSm(0) = 0 for m = 2, . . . ,N ), and the proposed quantum circuit will reflect that.

Quantum circuit
Here, we devise the Quantum Mapping Algorithm of Resonator Interaction with N Atoms (Q-MARINA), an 
(N+1)-qubit quantum circuit that evolves an open quantum system of N atoms and a resonant cavity in the 
single-excitation regime. The quantum circuit consists of N system qubits QSn and one environment qubit QE . 
The initial state is the excited state of one of the atoms, here QS1 which is subject to an X-gate. Subsequent appli-
cation of CU3 and CNOT gates between QS1 and QE entangles the first atom and the environment, and then N−1 
sequences of CU3 and CNOT entangling gates are applied to each of the qubits QS2,...,QSN paired with QE , in the 
opposite direction than for the QS1 . The corresponding quantum circuit is shown in Fig. 2. Here, the parameters 
of the CU3 gates, CU3(2θn)=CU3(2θn, 0, 0) are selected to implement the Lorentzian density of states of the cavity 
open to the environment into the circuit:

(5)ρ
n,n
S (t) = �csn(t)�2, 1 ≤ n ≤ N ,

(6)ρ
N+1,N+1
S (t) = 1−

N
∑

n=1

�csn(t)�2,

(7)csn(t) = csn(0)−
1

N

N
∑

m=1

csm(0)

[

1− e−
κt
4

(

κ

D
sinh

Dt

4
+ cosh

Dt

4

)]

,

(8)D =
√

−16Ng2 + κ2.

(9)θ1 = arccos
(

cs1(t)
)

,

Figure 2.   Q-MARINA algorithm that maps an open quantum system of N two-level atoms in a lossy cavity to 
a quantum circuit with N+1 qubits and 2N entangling gates that encode the interaction of atoms ( QSn ) with the 
cavity and environment ( QE).
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thus resulting in excited state measurement probabilities of the system qubits QSn equal to ‖csn(t)‖2 . Importantly, 
this quantum circuit maintains the physical connections typical of the TC model where each atom directly 
interacts only with the cavity, reflected in entangling gates operating solely on system-environment qubit pairs.

Implementation of the Quantum Mapping Algorithm on superconducting circuits
As a testbed for quantum simulations of the lossy TC model, we implement the devised Q-MARINA quantum 
algorithm on the IBM Q Experience hardware. We first demonstrate agreement of the results for open system 
dynamics obtained through the implementation of the quantum circuit on the IBM QASM simulator provided 
via Qiskit library39 . The comparison of the numerical solution of Quantum Master Equation (QME) for N=7 
atoms with the execution of the Q-MARINA quantum circuit in QASM simulator is illustrated in Fig. 3.

We then execute the proposed quantum circuit on the superconducting quantum devices ibmq_quito 
(Falcon r4T processor) and ibm_oslo (Falcon r5.11H processor), available through the IBM Quantum pro-
gram. The quantum circuit requires star connectivity as all system qubits QSn interact with the environment 
qubit QE , therefore we selected devices that can support that layout in a 3- and 4-qubit circuits within the com-
puters’ heavy-hexagon topology. The comparison of our quantum device results with the previously obtained 
benchmarks on the QASM simulator and numerical QME solutions are shown in Fig. 4. The demonstrated 
close agreement between the solutions of the QME with Q-MARINA executed on QASM simulator and IBM 

(10)θn = arcsin

(

csn(t)

sin θ1
∏n−1

m=2 cos θm

)

,

Figure 3.   The evolution of the singly excited open quantum system Tavis-Cummings model of 
N = 7, g = κ = 5 calculated using (a) quantum master equation in QuTiP software37,38 and (b) Q-MARINA 
algorithm in QASM simulator with 40,000 shots per data point.

Figure 4.   Q-MARINA simulation of the singly excited open TC system for evolving upon excitation 
of the Atom 1, executed on (a) ibmq_quito quantum computer with 10,000 shots per point for 
N = 2, g = 10, κ = 5 , and (b) ibm_oslo quantum computer with 10,000 shots per point for 
N = 3, g = 2, κ = 5 . The exact QME solution is plotted for comparison.
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Q quantum devices indicates that NISQ era quantum computers can be used to simulate open quantum system 
dynamics of highly dimensional models.

Discussion
In this work, we have explored quantum circuit mapping of the dynamics of N two-level atoms in a a lossy opti-
cal cavity. By restricting the open quantum system to a single excitation, typical of experimental realizations in 
quantum optics, we have analytically solved the TC model with an arbitrary number of atoms achieving reduced 
modeling complexity. This solution enabled us to devise the Quantum Mapping Algorithm of Resonator Inter-
action with N Atoms (Q-MARINA), an intuitive TC mapping to a quantum circuit with linear space and time 
scaling. We note here that this work does not aim at quantum advantage, but rather to show that the studied 
regime of Tavis-Cumming physics in a lossy resonator can be efficiently mapped to N+1 qubit, as opposed to 
an infinite number of qubits.

It is interesting to note that the execution of the Q-MARINA quantum circuit illustrated in Fig. 2 on the the 
superconducting quantum devices ibmq_quito and ibm_oslo are in good agreement with the numerical 
solution of the QME (c.f. Fig. 4), despite the fact that no error mitigation technique has been considered thus 
far. These results demonstrate that the open quantum system Tavis-Cummings physics can be simulated on the 
existing quantum hardware with an intuitive mapping between atoms and qubits and a substantial reduction 
in complexity implemented through the entangling gates with a single environment qubit. That being said, we 
acknowledge multiple challenges on the hardware side that need to be resolved before achieving e.g. coherence 
stability of the quantum devices with the number of qubits comparable to the number of atoms where classical 
solutions of the master equation become intractable. Therefore, a numerical solution of QME38, as well as ana-
lytical approaches such as mean-field approximation40, or Keldysh’s action formalism41,42 remain valuable go-to 
methods for studying the complex dynamics of quantum fluctuations in the TC-like systems.

The devised mapping of the TC system with N identical atoms constitutes a first step toward using super-
conducting NISQ processors to design new optical quantum devices. The results obtained on existing quantum 
devices are further limited by the quantum computer size and the corresponding topology which provides the 
desired star-connectivity to up to 4 qubits. Alternative quantum platforms which provide all-to-all connectivity, 
such as those based on trapped ions43,44 or atoms45, may provide options to scale the problem size by at least an 
order of magnitude46,47. Once the number of qubits is scaled, the number of entangling gates relative to the qubit 
coherence time will be the measure of the performance of our algorithm, as the circuit depth scales linearly with 
the number of atoms.

Methods
Reduced density matrix derivation
The wavefunction of an N-atom Tavis-Cummings system in the low-excitation regime is given by the super-
position of the vacuum state |g0� , single excitations of the n-th atom |en0� and the single excitations of the k-th 
bosonic mode |g1k�

The Schrödinger equation with Hamiltonian given in Eq. (3) yields a system of differential equations:

We next note that W(2N − 1) = N and W(2N − 2N−n − 1) = N − 1 therefore x2N = −N
2  and x2N−2N−n = 1− N

2  . 
The system of differential equations transforms to

It follows that the k-th cavity mode and the n-th atom amplitude can be expressed as

(11)|�N (t)� = c0|g0� +
N
∑

n=1

csn(t)|en0� +
∑

k

ck(t)|g1k�.

(12)ċsn = −i
∑

k

gke
i[(x2N−2N−n−x2N )ωs−ωk]t ck(t),

(13)ċk = −ig∗k

N
∑

n=1

ei[ωk+ωs(x2N−x2N−2N−n )]t csn(t).

(14)˙csn = −i
∑

k

gke
i(ωs−ωk)t ck(t),

(15)ċk = −ig∗k

N
∑

n=1

ei(ωk−ωs)t csn(t).

(16)ck(t) = −i

∫ t

0
dt′g∗k e

i(ωk−ωs)t
′

N
∑

n=1

csn(t
′),
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where we approximate the environment coupling terms with Lorentzian density of states modeling the cavity 
dynamics 

∑

k �gk�2 =
∫

dωJ(ω) . The term

describes an optical resonator with loss rate κ coupled to an atom at interaction rate g, and represents the channel 
through which the system interacts with the environment. For a closed system, the cavity would respond to only 
a singular frequency ( κ = 0 ). Next, similarly to29, we define

and the atomic amplitudes simplify to

Taking the Laplace transform of l.h.s. and r.h.s. of the previous equation, we obtain:

where c̃sn(s) and f̃ (s) denote the Laplace transforms of the functions csn(t) and f (t − t ′) defined in Eq. (19). 
Solving the system of coupled equations given in Eq. (21) for c̃sn(s) and performing an inverse Laplace transform 
gives us wavefunction coefficients which determine the density matrix:

where D =
√

−16Ng2 + κ2.
To obtain the reduced density matrix ρS(t) that describes the state of the system, we remove the environment 

degrees of freedom through a partial trace:

From here, we express the diagonal elements of the (N+1)-dimensional density matrix as:

where the first N diagonal elements correspond to the excited state measurement probabilities of the two-level 
atoms, represented in Fig. 2 by system qubits QSn.

Quantum mapping algorithm implementation details
Here, we give further details on the implementation of the devised Q-MARINA quantum algorithm on the IBM 
Q Experience hardware. The comparison of the results for open system dynamics illustrated in Fig. 3 is obtained 
by implementing the quantum circuit on the IBM QASM simulator provided via Qiskit39 library and contrasting 
it with the numerical solution of the Quantum Master Equation (QME) modeled in Quantum Toolbox in Python 
(QuTiP)37,38 on a classical computer. The combination of the system parameters—loss rate κ and coupling con-
stant g—determine whether the light-matter interaction is considered to be in the weak or or the strong coupling 
regime. Concretely, in our case with N atoms g

√
N < κ/4 corresponds to the weak coupling strength, while for 

g
√
N ≥ κ/4 we reach the strong coupling regime24, particularly relevant for hybridization of light and matter 

explored in quantum light generation and extension of coherence in quantum memories. Thus, Fig. 3 compares 
the QME and the Q-MARINA QASM results for N=7 atoms in the strong coupling regime.

The Q-MARINA implementation on IBM Q hardware shown in Fig. 4 studies 3-qubit and 4-qubit circuits 
on one-to-all connected subgraphs of ibmq_quito (Falcon r4T processor) and ibm_oslo (Falcon r5.11H 
processor), respectively, simulates the N = 2 TC system in strong coupling regime and the N = 3 TC system in 
the borderline regime where an individual atom couples weakly, while the collective coupling is in the strong 
regime of the cavity QED. The atomic amplitudes follow the exact QME solution closely and leave space for future 
precision improvement via error mitigation techniques.

(17)ċsn(t) = −
∫

dωJ(ω)

∫ t

0
dt′ei(ωs−ω)(t−t′)

N
∑

m=1

csm(t
′),

(18)J(ω) =
g2

2π

κ

(ωs − ω)2 + (κ/2)2

(19)f (t − t ′) =
∫

dωJ(ω)ei(ωs−ω)(t−t′),

(20)ċsn(t) = −
∫ t

0
dt′f (t − t ′)

N
∑

n=1

csn(t
′).

(21)sc̃sn(s)− csn(0) = −f̃ (s)

N
∑

n=1

c̃sn(s),

(22)csn(t) = csn(0)−
1

N

N
∑

m=1

csm(0)

[

1− e−
κt
4

(

κ

D
sinh

Dt

4
+ cosh

Dt

4

)]

,

(23)ρS(t) = �0|�N (t)���N (t)|0� +
∑

k

�1k|�N (t)���N (t)|1k�.

(24)ρ
n,n
S (t) = �csn(t)�2, 1 ≤ n ≤ N

(25)ρ
N+1,N+1
S (t) = 1−

N
∑

n=1

�csn(t)�2,
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Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Code availability
The underlying code for this study [and training/validation datasets] is not publicly available but may be made 
available to qualified researchers on reasonable request from the corresponding author.
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