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Abstract

Human cognitive performance is a key function whose biological foundations have been partially 

revealed by genetic and brain imaging studies. The sleep electroencephalogram (EEG) is tightly 

linked to structural and functional features of the central nervous system and serves as another 

promising biomarker. We used data from MrOS, a large cohort of older men and cross-validated 

regularized regression to link sleep EEG features to cognitive performance in cross-sectional 

analyses. In independent validation samples 2.5–10% of variance in cognitive performance 
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can be accounted for by sleep EEG features, depending on the covariates used. Demographic 

characteristics account for more covariance between sleep EEG and cognition than health 

variables, and consequently reduce this association by a greater degree, but even with the strictest 

covariate sets a statistically significant association is present. Sigma power in NREM and beta 

power in REM sleep were associated with better cognitive performance, while theta power in 

REM sleep was associated with worse performance, with no substantial effect of coherence 

and other sleep EEG metrics. Our findings show that cognitive performance is associated with 

the sleep EEG (r = 0.283), with the strongest effect ascribed to spindle-frequency activity. This 

association becomes weaker after adjusting for demographic (r = 0.186) and health variables 

(r = 0.155), but its resilience to covariate inclusion suggest that it also partially reflects trait-like 

differences in cognitive ability.
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Sleep EEG; Cognition; Health; Sleep spindle; Intelligence

1. Introduction

Cognitive performance in humans is a fundamental neuropsychological function which 

predicts both sociological outcomes (Gottfredson, 1997; Kuncel and Hezlett, 2010; Strenze, 

2007) and the development or progression of disease (Deary et al., 2021). Human cognitive 

performance varies, among others, as a consequence of genetic factors (Plomin and von 

Stumm, 2018), long-acting environmental influences like schooling or toxin exposure 

(Protzko, 2017; Ritchie and Tucker‑Drob, 2018), proximal environmental factors such as 

stress or sleep deprivation (Alhola and Polo‑Kantola, 2007; Lim and Dinges, 2010; Wickens 

et al., 2015), as well as various somatic and psychiatric illnesses (Karlamangla et al., 2014; 

Kendler et al., 2018; Wraw et al., 2018).

Finding the biological foundations of individual differences in cognitive performance has 

been a mainstay of neuroscience research for the past decades (Haier, 2016; Karlamangla 

et al., 2014). Early studies of human cognitive biomarkers have typically been conducted in 

small samples analyzed with non-standardized methods, a problem generally present in the 

psychological (Giner‑Sorolla, 2012; Lilienfeld, 2017), and neuroscience literature (Cohen, 

2017; Hong et al., 2019). When biomarkers of human cognition have low effect size – that 

is, individual differences in cognitive performance arise due to the summed effects of many 

small biological differences – then the signal-noise ratio of the detected associations is poor 

in small samples, leading to many false positive findings which do not replicate while the 

true associations may remain undetected (Button et al., 2013; Szucs and Ioannidis, 2017). 

Recently, however, large-scale studies have explored some biomarkers of human cognition, 

especially genetic (Davies et al., 2018; Savage et al., 2018) and magnetic resonance imaging 

(MRI) related (Deary et al., 2022; Kharabian Masouleh et al., 2019; Marek et al., 2022; 

Pohl et al., 2019; Ritchie et al., 2015) features. These studies have revealed some biological 

characteristics linked to various aspects of human cognitive performance, however, as they 

account for a small fraction of the variance, they currently do not provide a full mechanistic 

description about the origin of individual differences in cognitive performance.

Ujma et al. Page 2

Neuroimage. Author manuscript; available in PMC 2023 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The sleep electroencephalogram (EEG) is another important biomarker of cognitive 

performance. This is for two main reasons. The first reason that while the sleep EEG 

changes substantially over the course of the human lifespan (Carrier et al., 2001; Feinberg 

and Campbell, 2013, 2010; Sun et al., 2019), sleep EEG measures obtained from the same 

individual on different nights within a reasonably short time period are highly similar 

(Finelli et al., 2001; Reynolds et al., 2019; Tan et al., 2001, 2000) even if the night or 

the preceding day is perturbed (De Gennaro et al., 2005), while they exhibit substantial 

inter-individual variability. In other words, sleep EEG features are trait-like, which renders 

them strong potential candidate biomarkers of other temporally stable traits. The second 

reason relates to the biological significance of the EEG signal. The sleep EEG, when 

recorded from the scalp, reflects the joint activity of relatively large neuronal assemblies 

in the underlying brain tissue with excellent temporal (although limited spatial) precision. 

Thus, the sleep EEG can provide information about both the structural (Buchmann et 

al., 2011; Mander et al., 2017b; Saletin et al., 2013; Vien et al., 2019) and functional 

(Fernandez and Lüthi, 2020; Mander et al., 2017a) features of the central nervous system 

which are potentially not available for other imaging modalities. Notably, certain oscillations 

detectable from the sleep EEG – most importantly, slow waves and sleep spindles – have 

physiologically clearly described generating mechanisms and, in part, functions (Fernandez 

and Lüthi, 2020; Tononi and Cirelli, 2014). If these oscillations are associated with cognitive 

performance or another human characteristic, then this provides mechanistic information 

about the biological foundations of this trait and may highlight intervention targets if the 

trait is clinically relevant. The trait-like nature and intimate link to both structural and 

functional features of the central nervous system render the sleep EEG a highly promising 

biomarker of other individually stable human characteristics linked to the central nervous 

system, such as cognitive performance.

Despite its potential, the sleep EEG is somewhat underutilized in the search for cognitive 

biomarkers, although this is changing with the advent of large, freely available sleep 

EEG cohorts (Redline and Purcell, 2021). Some literature, however, has clearly linked the 

sleep EEG to cognitive performance. Notably, the sleep EEG can be linked to cognitive 

performance for at least two different reasons, both of which are potentially significant, 

although more so for two different fields of scientific inquiry and with different applications.

First, both sleep and cognitive performance changes as a function of age (Mander et al., 

2017a; Salthouse, 2004), as well as in association with various common health conditions 

(García‑Marín et al., 2021; Wraw et al., 2018). Thus, any association between sleep features 

and cognitive performance can arise due to age or poor health serving as either a common 

cause or a mediating factor in both. For example, aging may lead to both a reduction of 

slow wave sleep and worse cognitive performance (common cause), or obesity may lead 

to poor sleep and this in turn may lead to poor cognitive performance (mediation). These 

associations are likely to arise in geriatric sleep cohorts where mean participant age is high, 

its variability is considerable and participants frequently suffer from age-related ailments. 

A recent landmark study (Djonlagic et al., 2021) has explored the association between 

the sleep EEG and cognitive performance considering these issues. The study found that 

numerous features of the sleep EEG, such as features of sleep spindles and slow waves, 

were associated with cognitive performance, even after correcting for chronological age and 
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health-related covariates. It also reported that sleep EEG features associated with higher age 

are also generally associated with worse cognitive performance, even after correcting for 

age.

Second, a line of research has linked sleep in general and the sleep EEG in particular to 

psychometric intelligence (Bódizs et al., 2005; Schabus et al., 2006; Ujma et al., 2016, 2015, 

2014), generally in healthy young participants where comorbidities were not likely an issue. 

A meta-analysis linked the amplitude of sleep spindles to higher scores on IQ tests (Ujma, 

2018). Individual studies found that spectral features were (Geiger et al., 2011; Ujma et al., 

2017), but coherence (Ujma et al., 2019) was not associated with IQ test performance in 

healthy participants. These studies also highlighted the role of spindle-frequency oscillations 

in cognitive functioning.

Our goal in the current study was to extend previous knowledge about the relationship 

between the sleep EEG and cognition by unifying the most advantageous aspects of previous 

studies. Our study used a large sample of over 3000 participants with full-night PSG 

recordings. It was designed to be multivariate and hypothesis-free, using a data-driven, 

cross validated approach to identify sleep features which can be discovered and replicated 

as correlates of cognition. Finally, it used a stepwise application of demographic and health-

related covariates to identify links between sleep and cognition which are underlain by these 

factors.

2. Methods

2.1. Electroencephalography recordings

For our principal exploratory analyses, we used data from the MrOS Sleep Study. MrOS 

Sleep is an ancillary study of the parent Osteoporotic Fractures in Men Study (MrOS). 

Details of the protocol of the study have been documented in previous publications (Blank et 

al., 2005; Orwoll et al., 2005). Briefly, between 2000 and 2002, 5994 community-dwelling 

men 65 years or older were enrolled at 6 clinical centers in a baseline examination (mean 

age in current sample: 73.06 years, SD=5.55 years). Between December 2003 and March 

2005, 3135 of these participants were recruited to the Sleep Study when they underwent 

full unattended polysomnography and 3 to 5-day actigraphy studies (Blackwell et al., 2011; 

Zhang et al., 2018). In these studies, EEG was recorded from C3 and C4 with a sampling 

frequency of 256 Hz and a high-pass hardware filter of 0.15 Hz. Both channels were 

recorded with gold cup electrodes, originally referenced to Fpz, and re-referenced to the 

contralateral mastoids. All recordings were visually scored by experts (see Djonlagic et al. 

(2021) for further recording details). Artifacts were automatically rejected. Artifact rejection 

was performed on a 4-second basis using Hjorth parameters. The three Hjorth parameters 

were calculated for all 4-second epochs and those deviating from the within-participant 

mean of the given vigilance state (NREM or REM) by at least 2 standard deviations were 

rejected as artifactual (Purcell et al., 2017). The selection of participants for the current 

study is illustrated on Fig. 1.
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2.2. EEG feature extraction

From the EEG data, we extracted a set of features as intended predictors of general 

mental functioning. This set of predictors was selected as plausible correlates of cognitive 

performance based on previous literature (see Introduction). Some additional EEG features 

were calculated for exploratory analyses designed to discover if simply calculable global 

EEG features are associated with cognition.

1. Power spectral density (PSD), 0–48 Hz with 0.25 Hz bin resolution, separately 

for C3 and C4 and in REM and NREM sleep. All PSD estimates were 

log10 transformed (to normalize variances) and relativized (to eliminate inter-

individual PSD differences due to voltage differences due to e.g. skull thickness). 

PSD was relativized by subtracting the mean of all PSD values (across bins, 

within each participant, channel and sleep state) from all individual PSD values. 

PSD was selected as a candidate measure based on previous studies (Djonlagic et 

al., 2021; Geiger et al., 2011; Ujma et al., 2017) which linked PSD including, but 

not limited to, the sleep spindle frequency range to cognitive outcomes.

2. PSD laterality: C3-C4 PSD difference in both NREM and REM, calculated 

from the averaged, relativized data. Laterality was selected as an experimental 

candidate measure, based on previous studies showing considerable hemispheric 

lateralization and topographically specific correlates of neurocognitive 

performance (Bódizs et al., 2017; Doucette et al., 2015).

3. NREM-REM PSD difference on the mean of both channels, calculated from 

the averaged, relativized data. NREM-REM PSD differences were chosen as 

experimental measures in order to investigate whether vigilance state specificity 

of frequency components is associated with cognition.

4. Weighted phase lag index (wPLI), 0–48 Hz with 0.25 Hz bin resolution, 

calculated between C3 and C4 in REM and NREM sleep. wPLI (Vinck et al., 

2011) is a measure of signal synchronization in two sources which is designed 

to penalize zero phase lags to reduce the effects of spurious signal similarity 

due to volume conduction. Although wPLI was found not to be associated with 

cognition in a previous smaller study (Ujma et al., 2019), this finding needed 

replication in a better powered sample.

5. Hjorth parameters (Hjorth, 1970) activity, mobility and complexity on both 

channels, in REM and NREM separately. Hjorth parameters are simple measures 

describing the stationarity of a signal, and estimate the total power, the mean 

frequency and the bandwidth of the signal, respectively. Hjorth parameters 

are selected for inclusion because as global descriptors of the EEG waveform 

they might capture relevant inter-individual differences, and because they were 

already calculated for artifact detection (see also Section 2.1).

6. The Modulation Index (Tort et al., 2010) between delta (0.5–4 Hz) phase and 

sigma (10–16 Hz) power on both channels, in REM and NREM separately. 

Modulation Index quantifies the degree to which a higher-frequency signal is 

modulated by a lower-frequency signal. In this case, this measure was intended 
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to estimate the degree to which sleep spindles are coupled by slow waves 

(Gonzalez et al., 2018) a feature which a set of previous studies found to be 

associated with cognition (Bódizs et al., 2005; Djonlagic et al., 2021; Hahn et al., 

2020).

7. Linear and quadratic overnight trends for all previous predictors. These were 

included as experimental predictors in order to investigate whether the rhythm 

and strength of homeostatic and circadian processes, as indexed by sleep EEG 

features (Bódizs et al., 2022; G Horváth et al., 2022), are associated with 

cognitive performance. These were estimated by regressing time since recording 

start at the start of each epoch on the predictor values calculated from each 

epoch. For this we estimated magnitude-squared coherence for each epoch, 

using the mscohere() MATLAB function and splitting each epoch into eight 

overlapping windows to gain a within-epoch estimate of coherency. In order to 

simplify analyses, for PSD and wPLI we calculated the average delta (0.1–4 

Hz), theta (4–8 Hz), alpha (8–10 Hz), low sigma (10–13 Hz), high sigma (13–16 

Hz), beta (16–25 Hz) and gamma (25–48 Hz) power in each epoch instead of 

regressing time on power in each individual frequency bin. Frequency bins on the 

borders between frequency bands were included in the calculation of the higher 

frequency band.

All features (except wPLI) were calculated for each 4-second epochs in the signal with 

50% overlap and then averaged across windows to yield a single value in each participant. 

For wPLI, the imaginary part of the cross-spectrum was calculated for each window in this 

manner, and then averaged by using real components as weights according to the formula 

provided by Vinck et al. For PSD and wPLI, Hamming windowing was used.

For a less fine-grained analysis of EEG spectral components, we averaged PSD estimates 

within the following ranges to obtain band power: delta (0.1–4 Hz), theta (4–8 Hz), alpha 

(8–10 Hz), low sigma (10–13 Hz), high sigma (13–16 Hz), beta (16–25 Hz), gamma (25–48 

Hz). Power at band boundaries was always assigned to the higher-frequency band.

2.3. EEG spectral parametrization

Spectral components of the sleep EEG do not necessarily reflect actual oscillations 

(Bódizs et al., 2021; Donoghue et al., 2020). Much of the variance in spectrum of the 

sleep EEG can be modelled with just two parameters, a spectral intercept and a slope 

coefficient describing the exponent of the 1/f power law function (aperiodic components). 

Oscillations cause a deviation from this deterministic pattern (periodic components). We 

used FOOOF (Donoghue et al., 2020) (“Fitting Oscillations & One Over f”, available 

at https://github.com/fooof-tools/fooof) to decompose absolute spectra into periodic and 

aperiodic components, estimating the power law function in the full (0.25–48 Hz) range. 

We allowed periodic components (spectral peaks) with a width of 0.5–6 Hz and a 

minimum peak height of 2 standard deviations above the aperiodic spectrum. We discarded 

participants for whom periodic and aperiodic components accounted for less than 95% 

of the variance in the power spectrum (N = 81). Spectral parametrization was performed 

separately on both EEG channels and in NREM and REM sleep. Based on the zero-order 
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correlations between cognitive performance and EEG power (see Results) we searched for 

peaks in the REM theta, REM beta and NREM sigma ranges. The bandwidth, frequency and 

power (height above the aperiodic spectrum) of these peaks was saved. If a participant did 

not have a detected peak in these ranges, the value of the spectral peak was set to 0 and 

the value of the bandwidth and frequency were set to the sample average. If a participant 

had multiple peaks in these frequency ranges, we retained the one closest in frequency to 

the maximum of the zero-order correlation between power spectral density and cognitive 

performance (6.5 Hz in REM theta, 23 Hz in REM beta and 14 Hz in NREM sigma).

2.4. Cognitive data

Cognitive testing typically occurred before visits to the sleep laboratory, with some 

flexibility in the protocol. Participants completed cognitive tests on average 6.9 days 

(SD=15.8 days) before the sleep visit. Concurrent with the sleep study, participants filled 

out three cognitive tests: the Modified Mini-Mental State Test (3MS), Trails B, and Digit 

Vigilance (DV). 3MS (Teng and Chui, 1987) is a global test of global functioning and 

orientation. Trails B (Reitan, 1958) is a timed trail-making test which measures attention, 

visual scanning and executive functions. The Digit Vigilance test (Lewis and Rennick, 

1979) requires participant to cross out as quickly as possible each ‘6′ in a large matrix of 

numbers, if they are followed by a larger number. It is a test of vigilance and visual tracking 

ability. From these tests, we considered the following variables: 3MS total score, Trails B 

completion time, DV completion time, and DV omission errors (false negatives). 3MS total 

scores were square root-transformed to improve normality and their inverse was taken to 

ensure that in all tests higher scores mean worse performance. The other scores were used 

without transformation.

In this sample, raw cognitive test scores may have been strongly affected by factors other 

than general mental functioning, most notably age and health. Consequently, we regressed 

out a set of covariates from the raw scores. Because (with the exception of age) the route 

of causation between the confounding variables and test scores is unclear, we explored four 

models with four, increasingly extensive sets of covariates:

• Model 1: no covariates

• Model 2: regressing out technical/demographic variables (recording site, age 

including quadratic, cubic and fourth-order effects, and race/ethnicity)

• Model 3: regressing out technical/demographic variables, plus health (medication 

use, systolic and diastolic blood pressure, caffeine, alcohol and cigarette 

consumption before sleeping, comorbidities listed at the baseline visit [arthritis/

gout, cancer, cataracts, congestive heart failure, diabetes, glaucoma, kidney 

stones, osteoporosis, Parkinson’s, prostatitis, stroke], comorbidities listed at the 

Sleep Study [angina pectoris, peripheral, cerebral or coronary disease, arterial 

fibrillation, heart rate problems, sleep disorders]). At both the baseline and 

sleep visits, participants answered a questionnaire about comorbidities with 

the following formula: “Have you ever had (disease name)?”, except angina 

pectoris, which was measured with the Rose Angina Questionnaire. In order 

to reduce missing data, we considered participants not providing information 
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about a comorbidity to not have that condition. We also used the use of 

49 common medications (based on a physician’s review of the participant’s 

common medications presented during a personal visit) as covariates (see 

Supplementary text for a detailed list).

• Model 4: regressing out demographic/technical variables, physical health and 

quality of life, including mental health and sleep symptoms (SF12 Modified 

Physical/Mental Summary Scale score, Geriatric Depression Scale score, 

Goldberg Anxiety and Depression Scale scores, Epworth Sleepiness Scale 

scores, Pittsburgh Sleep Quality Inventory total score, Functional Outcomes of 

Sleep Questionnaire total score). For simplicity, we refer to the covariates only 

included in Model 4 as ‘quality of life’.

In all models, we also regressed out the effect of confounders from the EEG predictors.

2.5. Statistical analysis

In our main analyses, the principal question was: to what extent can cognitive performance 

be predicted from sleep EEG biomarkers? In order to answer this question, we used sleep 

EEG features as independent variables and cognitive performance as the dependent variable 

in regularized regression models (Tibshirani, 1996; Zou and Hastie, 2005). Regularized 

regression is an iterative learning algorithm which minimizes the following function:

∥ y − y ∥2 + λ[(1 − α) ∥ β ∥2
2 /2 + α ∥ β ∥1 ]

In plain words, regularized regression performs ordinary linear regression, but it also assigns 

a penalty to the prediction error, which increases as a function of 1) more predictors 

with non-zero regression coefficients in the model 2) an iteratively changing λ penalty 

parameter. Regularized regression can use L1 (LASSO regression) or L2 (ridge regression) 

regularization, or a combination of the two (elastic net regression. The combination of 

L1 and L2 regularization can be tuned with a parameter α . α = 0 yields ridge regression 

and α = 1 yields LASSO regression, while interim values yield elastic net regularization. 

Due to regularization, all of these procedures are able to handle more predictors than 

there are cases, while robust results are ensured and overtraining is protected against by 

cross-validation.

We randomly split all MrOS participants into a training (70%) and a validation (30%) 

sample. The size of training samples averaged N = 1890 – 1904 and validation samples 

N = 810 – 816 (depending on covariate availability, see also Fig. 1). Regularized regression 

models were fitted with 10-fold cross-validation in the training sample. We split the training 

sample into 10 random subsamples and iteratively fitted the regression model using a range 

of λ values (penalty parameters) after pooling nine of them, with the tenth serving as a 

holdout sample to assess performance. This was repeated in all combinations of subsamples. 

Finally, the model fitted in this way was carried forward to the validation sample which 

was not used during training. The effect size of interest (henceforth referred to as validity) 

was the correlation between predicted and actual cognitive functioning in the validation 

sample. We performed this analysis 100 times to explore the effect of randomly assorting 
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participants into training and validation samples. We repeated this procedure for dependent 

and independent variables after regressing out the effects of each covariate set (Model 

1–4), and across a range of α values (0–1 with increments of 0.1) that switch between 

ridge (α = 0), elastic net (0 < α < 1) and LASSO (α = 1) regressions, yielding 44 model 

specifications (covariate sets and α) and 100 models with random subsamples for each 

specification.

Regularized regression was performed using the cvglmnet() MATLAB function, based 

on the glmnet() package (Friedman et al., 2010). Due to missingness of data, the 

number of participants slightly varied in the validation samples, but it was on average 

N = 816 in Model 1 and 2, N = 812 in Model 3 and N = 810.25 in Model 4 (minima: 

N = 793, N = 793, N = 788, N = 786, respectively).

2.6. Data and code availability

All PSG data are freely available via the National Sleep Research Resource (http://

sleepdata.org). Model results and code used for analyses are available on Zenodo at 10.5281/

zenodo.7684266.

3. Results

3.1. Covariate effects on cognition and sleep

Potential covariates accounted for up to 20% of the variance in cognitive scores, with the 

least in Digit Vigilance errors and the most in Trails B completion time (Fig. 2). About two 

thirds of this variance in 3MS, Digit Vigilance completion time and Trails B completion 

time and virtually all of this variance in Digit Vigilance errors was accounted for by 

demographic covariates alone. Supplementary Figs. 1–4 provide detailed data about the 

association between covariates and power spectral density. Supplementary Fig. 5 illustrates 

the relationship between covariates and cognitive test scores.

In sleep measures, potential covariates accounted for up to 10% of the total variance, with 

about half attributable to demographics. Covariates accounted for the most variance in 

NREM delta, NREM sigma, REM theta and REM beta power and in wPLI values from 

a broad frequency range encompassing the sigma and beta bands. Notably, health-related 

covariates affected sleep measures in a very similar manner to age, and quality of life 

accounted for very little additional variance, although it encompassed explicit questionnaire-

based measures of sleep.

3.2. Principal component analysis of test scores

Cognitive test scores were all positively correlated, with or without regressing out covariates 

(Supplementary Table S1). In all models, we performed principal component analysis on 

the unstandardized residuals of cognitive scores. In all models, a single principal component 

with eigenvalue>1 emerged. This first principal component accounted for 42.5–46.3% of the 

variance, with values decreasing somewhat with the inclusion of more confounders. In each 

model, we extracted principal component scores on this first unrotated principal component 

as the measure of general cognitive performance. Measures from the 4 models were highly 
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correlated (Supplementary Table S2, r = 0.84 – 0.99), in line with the observation that the 

confounders only accounted for a modest amount of variance in test scores.

3.3. Correlations between the sleep EEG and cognition

In our initial analysis, we calculated zero-order correlations between general cognitive 

functioning and sleep measures in the entire MrOS sample. Results were in line with 

previous reports (Djonlagic et al., 2021; Ujma et al., 2017). In NREM sleep, higher relative 

power in the alpha, sigma and beta range (7.75 Hz-22.5 Hz) range was associated with 

better cognitive performance, with a clear peak in the fast spindle range around 14 Hz. 

High-frequency power (>26 Hz) was associated with lower cognitive performance. In 

REM sleep, power in the beta range (19.5–32 Hz) was associated with better cognitive 

performance, while higher power in the theta (~3.25–8.25 Hz) range was associated with 

lower performance. (Frequencies reported for Model 3 by the broadest possible definition 

including associations from any channel.) This pattern of results was consistent across the 

four models with different covariate sets, although effect sizes were reduced in more heavily 

corrected models and only reached r>0.1 for the NREM sigma association in Model 4 

(demographic, health and quality of life covariates).

We found no consistent correlations between cognitive function and wPLI values or other 

EEG features. Fig. 3 illustrates bivariate correlations between cognitive performance and 

sleep EEG measures.

3.4. The sleep EEG predicts cognitive performance

In our initial models, we used ridge regression (α = 0) to predict general cognitive 

functioning. We used 70% of MrOS participants as training and 30% as validation, repeating 

this process 100 times to get an estimate of the variation in model performance due 

to random sampling of the training and validation samples. Fig. 4 provides a detailed 

illustration of prediction performance. Across the 100 random samples, the mean validity 

(out-of-sample correlation between predicted and actual cognitive performance) amounted to 

0.283 (SD=0.026, range 0.219–0.359) in Model 1 (no covariates), 0.186 (SD=0.027, range 

0.084–0.246) in Model 2 (demographic covariates added), 0.155 (SD=0.026, range 0.077–

0.211) for Model 3 (health covariates added), and 0.152 (SD=0.026, range 0.067–0.212) for 

Model 4 (quality of life covariates added) (Fig. 4, Panel A). Using Spearman correlations 

to estimate validities made minimal difference to the findings (mean validity for Model was 

0.276, for Model 0.171, for Model 3 0.146, and for Model 4 0.147).

Empirical p-values can be considered to be 0 as no model had non-positive validity, but 

with 100 model runs we had a limited resolution of possible empirical p-values. A more 

conservative, semi-parametric p-value was calculated by considering the standard deviation 

of validity across models to be an empirical standard error. Dividing the mean validity by 

this number to obtain a z-statistic and converting it into a p-value yields p-values of <10−13, 

8 × 10−12, 5 × 10−9, and 7 × 10−9 for Models 1–4, respectively. We note that individual 

models were usually all highly statistically significant, as across 400 model runs only a 

single non-significant p-value (p = 0.057) was observed and only 16 p-values exceeded 

0.001.
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3.5. Alpha tuning has no effect on model performance

We found no evidence that models using α > 0 (elastic net or LASSO) performed better 

than α = 0 (ridge regression). Models using such values produced validities significantly 

different from ridge regression in only three cases out of the 40 comparisons: for Model 1 

α = 0.6 produced significantly lower validity than α = 0 (β = − 0.008, p = 0.024); for Model 

2 α = 0.2 produced significantly lower validity than α = 0 (β = − 0.01, p = 0.006); while for 

Model 4, α = 0.7 produced significantly higher validity than α = 0 (β = 0.009, p = 0.028). As 

these deviations were rare, small in magnitude and did not fit into a theoretically expected 

or empirically observed pattern, we considered them to be likely spurious and proceeded 

with the computationally simpler ridge regression as our preferred model. Fig. 4, Panel B 

summarizes the performance of various regularized regression models.

3.6. EEG features other than PSD lack predictive value

In further steps, we explored whether the predictive performance of the sleep EEG 

changes by adding further features or changing their resolution. First, we compared 

models based only on PSD data with models that also incorporated wPLI, phase-

amplitude coupling, Hjorth parameters as well as linear and quadratic overnight trends 

as predictors. We found that these more complex models actually statistically significantly 

underperformed relative to PSD-only models in Model 1 (β = − 0.026, p = 3 × 10−7) and 

Model 2 (β = − 0.017, p = 2 × 10−4), while there was a statistically non-significant trend 

for better performance in PSD-only models in Model 3 (β = 0.006, p = 0.0126) and Model 

4 (β = 0.006, p = 0.122) (Fig. 4, Panel C). That is, PSD remained the best predictor of 

cognitive performance with no meaningful additional variance accounted for by other 

predictors.

3.7. Spectral resolution does not affect predictive validity

In the next step, we run models based on PSD data using two additional levels of PSD 

resolution (1 Hz and 0.1 Hz using zero-padding). Models based on the more sparse PSD (1 

Hz resolution) tended to yield slightly lower out-of-sample correlations (β = − 0.01 – 0.004), 

but this difference only reached significance in Model 2 (β = 0.01, p = 0.016). Models with 

the fine-grained PSD (0.1 Hz resolution) did not produce even a consistent trend for higher 

validity values (β = − 0.005 – 0.002 for the four models, pmin = 0.22) (Fig. 4, Panel C). Thus, 

0.25 Hz remained our preferred resolution for binwise analysis.

3.8. Band power has comparable predictive validity to binwise power

We attempted using band power in seven frequency bands (see Methods for details) as 

predictors of general cognitive functioning. It is of note that from these models we dropped 

not only the fine-grained power estimates, but also PSD laterality and REM-NREM PSD 

differences, using just 28 predictors (power in seven frequency bands over two channels 

in NREM and REM) in the regularized regression model. We found that these models 

significantly underperformed in Model 1 (β = − 0.02, p = 10−8), but actually outperformed 

binwise models in Model 2 (β = 0.01, p = 0.002), Model 3 (β = 0.02, p = 10−8) and Model 

4 (β = 0.02, p = 10−8). The mean out-of-sample correlations across the 100 runs yielded by 
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band power models were 0.262 (SD = 0.028) for Model 1, 0.198 (SD = 0.029) for Model 2, 

0.178 (SD = 0.029) for Model 3 and 0.174 (SD = 0.029) for Model 4 (Fig. 4, Panel C).

3.9. Spectral parametrization

Spectral components of the sleep EEG do not only reflect oscillatory components, but 

also background activity and sinusoidal components introduced by Fourier analysis to 

approximate non-sinusoidal oscillations in the actual signal (Bódizs et al., 2021; Donoghue 

et al., 2020). Therefore, as an alternative analytical strategy, we attempted to decompose 

spectra into aperiodic (an intercept and an exponent to describe non-oscillatory activity in 

a simple power law function) and periodic (oscillations exceeding the trend of the power 

law function) components and use these as predictors of cognitive functioning. Spectral 

parametrization was performed using FOOOF (Donoghue et al., 2020). In each participant, 

on each channel and in NREM and REM separately we calculated spectral intercepts, 

spectral slopes, as well as the bandwidth, frequency and power of REM theta, REM beta and 

NREM sigma peaks.

Results confirmed the findings related to PSD analyses. In univariate analyses, across 

all four covariate sets, better cognitive performance was significantly associated (after 

correction for multiple comparisons) with a higher spectral intercept, a steeper spectral 

slope, higher power in the NREM sigma and lower power in the REM theta ranges, and 

higher REM beta power on C3. The correlation between REM beta power on C4 was only 

found in Model 1 (no covariates) and Model 2 (demographic covariates). No other spectral 

parameter was consistently associated with cognitive performance, but a trend emerged 

between a higher-frequency REM beta peak and better cognitive performance (Fig. 5, Panel 

A). These findings were replicated for peak missingness. Lacking NREM sigma or REM 

beta peaks was significantly associated with lower cognitive performance, while lacking 

REM theta peaks showed a trend level association with higher cognitive performance (Fig. 

5, Panel B), mirroring both PSD-based analyses and bivariate correlations with spectral 

parameters.

As before, we trained regularized regression models to predict cognitive performance 

from EEG spectrum parameters, while controlling for the potential confounders specified 

in Models 1–4. Multivariate models based on these spectral parameters underperformed 

relative to models based on the 0.25 Hz PSD (Fig. 4, Panel D). Out-of-sample correlations 

[empirical standard errors] with cognitive performance were: 0.075 [0.026], 0.096 [0.027], 

0.109 [0.033] and 0.121 [0.031] for Models 1–4, respectively, all differences from the 0.25 

Hz PSD model are significant at p<0.001.

4. Discussion

Our study used a hypothesis-free, multivariate, cross-validated method to identify markers 

of cognitive functioning from the sleep electroencephalogram. We found that such markers 

exist, they mostly consist of power spectral density in the NREM sigma and REM theta and 

beta power, a part of their effect is mediated by observed demographic and health-related 

covariates and quality of life, but another part is independent from these.
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Cognitive functioning is a significant human trait which predicts sociological outcomes 

(Strenze, 2007), the development and progression and disease (Deary et al., 2021), but a 

decline in which is also the symptom of various pathological conditions (Karlamangla et al., 

2014). A search for biomarkers of cognitive function has been ongoing for decades. Early 

studies searching for cognitive function biomarkers were often underpowered and univariate, 

with the choice of the putative biomarker motivated by the intuition of researchers. As 

a result, many failed to yield replicable results, even if the original findings seemed 

biologically plausible (Chabris et al., 2013, 2012). The response to the failure of these 

studies has generally been to launch hypothesis-free, cross-validated association studies 

which rely on very large statistical power to precisely identify even small biological effects 

on the target phenotype, and sum of many small biological effects to yield a predictive score 

whose power is assessed in an independent sample. The most prominent hypothesis-free, 

cross validated studies have been genome-wide association studies (GWAS) using genetic 

data (Tam et al., 2019) and whole-brain regression using magnetic resonance imaging 

data (Marek et al., 2022). Several such studies were concerned with cognitive functioning 

(Deary et al., 2022; Pohl et al., 2019). EEG-based machine learning studies have also been 

published (Al Zoubi et al., 2018; Gemein et al., 2020; Sun et al., 2019), but to date, ours is 

the first to apply a hypothesis-free, cross-validated association method to sleep EEG data to 

identify biomarkers of cognitive functioning.

In our models, NREM sigma, REM theta and REM beta activity clearly emerged 

as correlates of cognitive functioning, with out-of-sample multiple correlations of 

r = 0.15 – 0.3. These validities compare favorably to previously published predictive models 

based on brain imaging (Hilger et al., 2022; Vieira et al., 2022) or genetic information 

(Krapohl et al., 2018; Okbay et al., 2022). For example, a recent genome-wide association 

study using data over 3 million people (Okbay et al., 2022) found that a multiple 

correlation of r = 0.244 can be achieved between genetically predicted and actual cognitive 

performance. The ABCD Neurocognitive Prediction Challenge, a competition in 2019 which 

prompted contestants to design multivariate models predicting cognition from whole-brain 

imaging data, was won by a submission (Mihalik et al., 2019) which showed a correlation of 

0.05–0.15 between predicted and actual cognition (although with data residualized for whole 

brain volume and social characteristics). Whole brain volume correlates about 0.3 with 

intelligence (Pietschnig et al., 2015), usually with significant but modest information added 

by other morphological features (Cox et al., 2019). Notably, these studies rely on a richer 

set of independent variables and much larger samples. This underscores the importance of 

sleep oscillations as trait-level biomarkers of cognition. While our focus was on trait-level 

associations, further studies may find an even stronger correlation between sleep features 

and cognition measured immediately on the following day, where the direct effects of sleep 

play a role.

Regarding NREM sigma activity, our works replicates a larger body of literature (Djonlagic 

et al., 2021; Reynolds et al., 2018; Ujma, 2018) which found associations between 

various aspects of cognitive performance and sleep spindles. As sleep spindles arise from 

thalamocortical networks (Fernandez and Lüthi, 2020), our results point to the importance 

of the integrity of this system as a biological prerequisite of cognitive functioning. Although 
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both sleep spindles and cognition are affected by aging, our findings are robust to statistical 

corrections for age, indicating that this is not the causal mechanism connecting sigma 

power and cognition. We observed the highest correlation (r = 0.132) between sigma 

power and cognition at 14 Hz, which is in the fast spindle frequency range, supporting a 

link between fast spindles and cognition (Ujma, 2018). Although only central derivations 

with a predominance of fast rather than slow spindles were available in the current study, 

previous research with smaller samples but more topographically representative channel sets 

confirmed that cognition is predominantly associated with fast spindles (Ujma, 2018; Ujma 

et al., 2017).

We previously reported (Ujma et al., 2017) that REM beta oscillations had a positive, while 

REM delta-theta oscillations (albeit at a lower frequency with a maximum at 3.5 Hz) had a 

negative association with cognitive performance. A previous analysis of the current sample 

(Djonlagic et al., 2021) also found that REM beta power was correlated with Digit Vigilance 

scores, although it did not consider a composite cognitive score as the dependent variable 

and it failed to find a similar association in another sleep cohort. While an invasive EEG 

study of humans (Vijayan et al., 2017) identified a REM theta-beta network in the anterior 

cingulate and the dorsolateral prefrontal cortex, likely underlying the oscillations identified 

in our current study, more research is needed to understand the functional properties of this 

system. Given the power and replication issues plaguing human neuroscience (Button et al., 

2013; Szucs and Ioannidis, 2017), it is significant that we could replicate the observation 

that NREM sigma, REM theta and REM beta oscillations are correlated to human cognitive 

functioning, which should facilitate research into the biological origins of these oscillations.

We observed that while approximately half of the association between sleep EEG features 

and cognitive functioning was accounted for by measured covariates, the other half persisted 

despite statistical controls for a very large number of potential moderators. The largest 

drop in this association was seen between the first two models, by adding demographic 

covariates, of which we hypothesized age to be the most significant. As age is associated 

with both changes in cognitive performance (Salthouse, 2004) and in changes in the sleep 

EEG (Carrier et al., 2001; Landolt et al., 1996; Sun et al., 2019), an algorithm may find 

age-related sleep biomarkers which are, in turn, also related to worse cognitive performance. 

This expectation was confirmed by the fact that in the second step (Model 2, demographic 

covariates including linear and nonlinear effects of age added) validity dropped substantially 

to from 0.283 to 0.186. In the third step (Model 3, health-related covariates added, including 

comorbidities and medication) validity dropped further, but only slightly, to 0.155. Thus, 

while a small amount of the sleep EEG-cognition covariance was due to some participants’ 

comorbidities and/or medications being related to both sleep EEG patterns and cognitive 

performance, this was comparatively a small effect and even among participants of the same 

medical history we would expect these EEG markers to be related to cognitive performance. 

In the fourth step (Model 4, quality of life covariates added), we did not observe a 

substantial drop validity, which was on average 0.152. Interestingly, the covariates added 

at this step not only included geriatric functioning scales (SF12 and GDS) the scores of 

which could be strongly related to well-preserved cognitive functioning at higher ages, but 

also sleep quality rating scales (ESS, PSQI and FOSQ). Results from Model 4 disconfirm 
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the hypothesis that EEG biomarkers of cognition index poor sleep which impairs next-day 

cognition, or age-related cognitive and physical decline which is also reflected in sleep 

alterations. Controlling for the previously added covariates, self-reported sleep quality and 

geriatric functioning hardly mediates any of the association between sleep EEG markers 

and cognition. We also note that only a small number of participants (N = 44) completed 

cognitive tests on the day after their sleep laboratory visit.

We did not observe substantial zero-order correlations between sleep EEG biomarkers other 

than power spectral density, and consequently we only included this measure as a predictor 

in our base model. Furthermore, based on experiences from brain imaging (Marek et al., 

2022) and genetics (Chabris et al., 2013), we expected that predictive validity will be driven 

by a relatively large number of sleep EEG features, each having only a weak zero-order 

association with cognition. Therefore, our initial models only included PSD as a predictor, 

but with a relatively fine (0.25 Hz) resolution.

Relating to the first expectation, in exploratory analyses we indeed found that adding 

wPLI, Hjorth parameters, delta-sigma coupling and overnight effects of all predictors to 

our models did not improve predictive accuracy. This confirms our finding that sleep 

EEG functional connectivity is not significantly associated with cognitive performance 

(Ujma et al., 2019), but it is in contrast with some studies, generally performed in small 

samples which found that delta-sigma coupling (or a more explicitly measured grouping of 

sleep spindles by slow waves) is associated with cognitive outcomes (Hahn et al., 2020; 

Ladenbauer et al., 2017; Latchoumane et al., 2017; Muehlroth et al., 2019). Notably, it 

is also in contrast with a similar analysis of the present sample (Djonlagic et al., 2021), 

which found that the coupling of individually detected sleep spindles and slow oscillations 

was associated with better performance on some cognitive tests (Trails B and 3MS). In the 

current analyses, the NREM Modulation Index of the delta and sigma frequency ranges was 

only weakly and non-significantly associated with better cognitive composite scores, but 

with the correct sign on both C3 and C4 (r = 0.012 – 0.013). Our current study deliberately 

used measures of spectral power instead of individually detected oscillations due to the 

methodological issues of sleep oscillation detection (Muehlroth and Werkle‑Bergner, 2020; 

Warby et al., 2014), especially in older samples, in particular the issues of various sleep 

spindle detection algorithms in capturing the spindle-cognition association (Ujma, 2018). It 

is possible that adequately parametrized oscillation detectors yield better estimates of slow 

oscillation-spindle coupling than delta-sigma Modulation Index, which may be associated 

with cognition. This finding highlights that while in the case of some biomarkers alternative 

measures yield highly comparable results (for example, sleep spindle amplitude, sigma 

power and sigma peak height in the parametrized spectrum all correlate with cognition), in 

other cases it may be necessary to measure biomarker in a precisely defined way to make 

associations detectable.

Relating to the second expectation, however, we found that 1) even zero-order correlations 

between PSD and cognitive performance are substantial, often excluding r = 0.1) increasing 

spectral resolution does not improve and reducing it does not impair predictive accuracy, 

and 3) very similar validities can be achieved by just retaining a coarse estimate of PSD 

in seven frequency bands as predictors. On the other hand, we also observed that 1) 
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using parametrized spectra (slope, intercept and three spectral peaks) as predictors did 

reduce validity, and 2) the use of LASSO (which assumes sparsity, forcing regression 

coefficients to zero for all except a few predictors from correlated sets) was not preferred to 

ridge regression (which distributes regression weights among correlated predictors). These 

observations, taken together, suggest that while the associations between sleep EEG features 

(especially NREM sigma and REM beta power) and cognition are orders of magnitude 

stronger than what is usually observed in genetics and brain imaging, the set of associated 

features cannot be reduced to a handful of readily observable spectral peaks or one or two 

frequency ranges. Power in spectral components of the sleep EEG which are assigned to the 

‘aperiodic’ part of the spectrum is substantially associated with cognitive performance.

Our work suffers from a number of limitations. First, as we use a cross-sectional design, 

we cannot clearly ascertain routes of causation, which also pertains to covariate selection. 

We emphasize that although Model 1–4 uses an increasingly strict set of covariates, stricter 

models are not necessarily theoretically preferred. This is because various comorbidities 

(Calvin et al., 2017; Wraw et al., 2015), general well-being at a high age (Deary et al., 

2021), and even less pronounced age-related changes in the sleep EEG (Pótári et al., 2017) 

have been associated with premorbid cognitive functioning. Therefore, comorbidities may 

not be true confounders but simply the consequences of pre-existing cognitive abilities 

which are subsequently reflected in both cognitive test scores and sleep EEG patterns. The 

theoretical case is stronger for preferring Model 2 (demographic covariates) over Model 1 

(no covariates), as both age (Carrier et al., 2001; Sun et al., 2019), and self-reported ethnicity 

(Profant et al., 2002; Purcell et al., 2017; Rao et al., 2009) has a likely spurious association 

with sleep EEG patterns, and the same can be assumed for recording site. In any case, it is 

clear that even with a potentially overcontrolling strict covariate set cognitive functioning is 

related to features of the sleep EEG. Second, although our findings are robust to a large set 

of health-related covariates and replicate in an independent sample, it is not fully elucidated 

to what extend we found sleep EEG correlates of age-related cognitive decline or those 

of pre-existing cognitive abilities which persisted into an old age. For this limitation to be 

overcome, similar investigations in healthy, younger samples are necessary. Third, the scope 

of our investigation was limited by the low spatial resolution of our EEG instruments (two 

central channels). It is possible that other EEG features with different, specific topographies 

are also associated with cognition. Finally, we emphasize that the associations we find 

between EEG patterns and cognitive performance are modest and most of the variance in 

cognitive performance is not accounted for by patterns of the sleep EEG.

In sum, our work showed using a large dataset and a data-driven, cross validated approach 

that features of the sleep electroencephalogram are related to cognitive functioning in elderly 

participants, even after controlling for a broad set of covariates. Power in the NREM sigma, 

REM theta and REM beta bands is especially strongly implicated. These features of the 

sleep EEG exhibit zero-order correlations often exceeding r = 0.1, and similar multiple 

correlations to brain imaging-based or genetic predictors (Deary et al., 2022), usually 

established in discovery samples orders of magnitude larger than ours.
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Fig. 1. 
Sample size flowchart. Fractional sample sizes in the training and validation sample sets 

reflect the fact that across the 100 random splits some variation in sample size was observed.
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Fig. 2. 
Variance accounted for by the three covariate sets (Model 2: demographic covariates added, 

Model 3: health covariates added, Model 4: quality of life covariates added). Panel A shows 

power spectral density variance accounted for as a function of frequency. Panel B shows 

wPLI variance accounted for as a function of frequency. Panel C shows variance accounted 

for in raw cognitive test scores. Panel D shows the distribution of R2 values across the 190 

other EEG features. Note that the color codes used for the three models on this panel also 

apply for panels A and B.

Ujma et al. Page 25

Neuroimage. Author manuscript; available in PMC 2023 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Correlations between general cognitive performance, power spectral density (Panel 

A), wPLI-based functional connectivity (Panel B) and other EEG features (Panel C). 

Correlations are shown after increasingly strict covariate sets: no covariates (Model 1), 

demographic covariates added (Model 2), health covariates added (Model 3), quality of 

life covariates added (Model 4). For PSD and wPLI, correlations are shown as a function 

of frequency. For other EEG features, only the distribution of correlation is shown for 

simplicity, as no correlation is significant after adjusting for multiple comparisons. On all 

plots, black lines indicate the critical correlation coefficient.
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Fig. 4. 
Panel A. EEG-based predictive validity (out-of-sample correlation between predicted and 

actual cognitive performance) for four increasingly strict covariate sets. Model 1 contains no 

covariates, Model 2 controls for demographic covariates, Model 3 adds controls for health 

covariates, while Model 4 adds controls for quality of life covariates. Red lines show the 

average performance across 100 model runs with random training-validation splits. gray 

dots show individual model runs. Red shading illustrates the standard error of the mean, 

while blue shading illustrates the standard deviation across model runs. A thick black line 

illustrates the critical correlation coefficient at the mean sample size of validation samples. 

Panel B: out-of-sample correlations between predicted and actual cognitive functioning as 

a function of regularization type and covariate choice. Regularization type is iteratively 

changed between alpha=0 (ridge regression), 0<alpha<1 (elastic net) or alpha=1 (LASSO). 

A thick black line indicates the critical correlation coefficient at the mean sample size 

of the validation samples. Shadings indicate empirical confidence intervals (1.96 standard 

deviations of the out-of-sample correlations calculated from 100 model runs). Panel C: 

model validity with different predictors sets: binwise PSD with three different spectral 

resolutions (0.1, 0.25 and 1 Hz), bandwise PSD, spectral parameters (intercept, slope, 

bandwidth, frequency and power of REM theta/beta and NREM sigma peaks) derived by 

FOOOF, and 0.25 Hz binwise PSD with the other EEG features (see Methods) added.
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Fig. 5. 
Panel A: Bivariate correlations between spectral parameters (intercept, slope, variance 

accounted for, and the frequency, power and bandwidth of NREM sigma, REM theta and 

REM beta peaks) and cognitive performance, residualized for four covariate sets. Dual 

horizontal lines illustrate the critical significance level assuming zero missingness. Asterisks 

mark correlations which remain significant after controlling for multiple comparisons. 

Panel B: Point-biserial correlations between the missingness of spectral peaks (NREM 

sigma, REM theta and REM beta peaks) and cognitive performance, residualized for four 

covariate sets. Dual horizontal lines illustrate the critical significance level assuming zero 

missingness. Asterisks mark correlations which remain significant after controlling for 

multiple comparisons.
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