
Citation: Mihelič, A.; Vrhovec, S.;

Hovelja, T. Agile Development of

Secure Software for Small and

Medium-Sized Enterprises.

Sustainability 2023, 15, 801.

https://doi.org/10.3390/su15010801

Academic Editor: Luis

Hernández-Callejo

Received: 10 November 2022

Revised: 21 December 2022

Accepted: 29 December 2022

Published: 2 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Agile Development of Secure Software for Small
and Medium-Sized Enterprises
Anže Mihelič 1,* , Simon Vrhovec 1 and Tomaž Hovelja 2

1 Faculty of Criminal Justice and Security, University of Maribor, Kotnikova 8, 1000 Ljubljana, Slovenia
2 Faculty of Computer and Information Science, University of Ljubljana, Večna Pot 113, 1000 Ljubljana, Slovenia
* Correspondence: anze.mihelic@um.si

Abstract: Although agile methods gained popularity and became globally widespread, developing
secure software with agile methods remains a challenge. Method elements (i.e., roles, activities, and
artifacts) that aim to increase software security on one hand can reduce the characteristic agility of
agile methods on the other. The overall aim of this paper is to provide small- and medium-sized
enterprises (SMEs) with the means to improve the sustainability of their software development
process in terms of software security despite their limitations, such as low capacity and/or financial
resources. Although software engineering literature offers various security elements, there is one
key research gap that hinders the ability to provide such means. It remains unclear not only how
much individual security elements contribute to software security but also how they impact the
agility and costs of software development. To address the gap, we identified security elements found
in the literature and evaluated them for their impact on software security, agility, and costs in an
international study among practitioners. Finally, we developed a novel lightweight approach for
evaluating agile methods from a security perspective. The developed approach can help SMEs to
adapt their software development to their needs.

Keywords: secure software development; security engineering; agile; small and medium sized
enterprises; software development management; security

1. Introduction

Software development enterprises follow a certain method when developing software,
either an established software development method or a custom in-house method even
if only informally defined. Following a software development method, i.e., using the
right practices, tools, and techniques, makes the process of developing software more
manageable and efficient, resulting in greater competitiveness and success [1]. An adequate
software development method is therefore crucial for any software development enterprise
trying to produce a competitive product in terms of sustainability, costs, quality, and time
invested. Today’s market demands increasingly frequent software releases. Traditional soft-
ware development methods tend to be sequential and rigid, which is not well-suited for the
demands of the market [2,3]. Modifications of software due to frequent changes in software
requirements are time consuming and costly during software development with traditional
methods [4]. To overcome the shortcomings of traditional methods, agile software devel-
opment methods, such as Scrum and eXtreme Programming, emerged [5,6]. Most agile
methods lean on software development iterations and increments, self-organizing teams,
face-to-face daily communications among team members, and short feedback loops with
customers [7,8]. These characteristics are among the key reason why agile methods offer a
highly adaptable, efficient, and fast software development process becoming one of the
most popular paradigms for software development today [9].

Security is one of the key features of any software according to established stan-
dards [10,11]. Software can be considered secure when it is adequately resistant to the

Sustainability 2023, 15, 801. https://doi.org/10.3390/su15010801 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15010801
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-5925-4262
https://orcid.org/0000-0002-6951-6369
https://doi.org/10.3390/su15010801
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15010801?type=check_update&version=1


Sustainability 2023, 15, 801 2 of 23

alterations during intentional or unintentional attacks [12]. Agile software development
methods, however, seem poorly suited for secure software development [13]. They pre-
dominantly focus on functional requirements of the developed software while security, a
quality property, is often neglected [14,15]. Various security-oriented software development
methods exist following both traditional and agile software development paradigms [16].
The key issue of these mostly traditional methods is the additional overhead they require
as it obstructs rapid software development and adaptability to new requirements. It is
therefore unclear how to ensure the development of secure software with agile methods
without compromising their agility [17].

The overall aim of this paper is to provide small and medium-sized enterprises with
the means to improve their software development in terms of software security despite their
limitations, such as low capacity and/or financial resources. The specificities of SMEs are
additionally pronounced in enterprises practicing the DevOps concept since the (DevOps)
teams are traditionally heavily loaded. Such load usually results in software deliverables’
degradation, quality decrease, and minimization of the efficiency of the DevOps teams [18].
Furthermore, SMEs are often focused on providing specific solutions for particular needs of
their customers, hence they frequently base their software development methods on agile
principles [19]. Since such enterprises face highly competitive pressure, their solutions
must rely on highly adaptable and cost-efficient frameworks which provide solutions that
meet their needs [20].

This paper tries to achieve the overall aim gradually. First, this paper aims to identify
security elements found in the literature since the publication of the agile manifesto at
the start of this century. We understand a security element as any role, activity, or artifact
added to software development methods in the literature to improve the security of the
developed software, regardless of its level of abstraction. Even though strong associations
between different components (e.g., a specific role can be associated with a specific artifact
or activity) can be present, these usually appear in enterprises with more complex and
sophisticated software development methodologies (i.e., multinationals). The evaluation of
baseline individual impacts of security elements on costs and agility is, however, especially
relevant in the context of SMEs, where the limited multiteam environment and significantly
lower change resistance from existing power structures often does not require complex
and sophisticated methodologies intricately linking several security components [21]. Ad-
ditionally, roles, for example, in addition to their association with formal activities and
artifacts, also introduce a series of informal activities influencing dynamics and efficiency
of the development team, thus their synergies with other elements can vary greatly case by
case [22].

The published literature does not differentiate between secure software development
methods for large enterprises and SMEs. Therefore, the paper does not focus on security
elements for SMEs. Rather, it embraces the variety of security elements found in the
literature and looks for means to best adapt their use for SMEs. Second, it aims to group
and then evaluate the identified security elements according to three key dimensions:
provided security, cost efficiency, and retained agility with SMEs in mind. Third, it aims to
provide a way for the software development enterprises to take advantage of the evaluation
of security elements. The following research questions operationalize the aims of this paper:

• RQ1: How much does the individual type of security element impact the software
security, costs, and agility of the software development process?

• RQ2: How can assessment of provided security, cost efficiency, and retained agility of
security elements be useful to small and medium software development enterprises?

To answer these research questions, we first review the literature on secure software
development. Since secure software development can be inspired by other security-centric
development contexts [23], the literature from other domains, such as the development of
safety-critical systems, is also included. Safety-critical systems are those whose failure may
result in substantial property, environmental damage, or in some cases in the endangerment
or loss of lives [24]. Since the software is an essential part of such systems, the reliability,



Sustainability 2023, 15, 801 3 of 23

confidentiality, and integrity of software used in safety-critical systems are of utmost
importance [25]. The review focuses on security elements of software development methods
(i.e., activities, roles, and artifacts) compatible with agile software development. The key
dimensions of security elements (increased security, cost efficiency, and retained agility) are
evaluated in an international survey among secure software development practitioners.
Finally, we develop a novel lightweight approach for the evaluation of formal or informal
agile methods used in software development enterprises from the security perspective.

2. Literature Review

Several literature surveys and mapping studies on agile software development meth-
ods can be found in the literature [16,26–33]. Recently, reviews of state-of-the-art agile
secure software development methods [25,34–36] and the DevSecOps framework [37]
emerged. Literature surveys on agile secure software development focus on several perspec-
tives, such as security measures in agile projects [36], agile development of safety-critical
systems [25], agile requirements for secure software engineering [35], agile security engi-
neering methods [34], and challenges and solutions of agile secure software development
methods [5,38]. Although a paper [37] focused on the DevSecOps framework in a multi-
vocal literature survey, it only attempted to consolidate the definition of the framework
rather than identify potential security elements that could be included in the framework
or existing secure software development methods [37]. Additionally, BSIMM [39] offers
an extensive overview of SSD activities, however, some roles and artifacts proposed in
the literature are not included. These surveys offer relatively comprehensive insights into
the current state-of-the-art of agile secure software development. They address several
aspects of secure software development, such as identification of most frequently used
methods, security requirement engineering phases, types of solution approaches [35],
security activities [34], and secure software development challenges [38].

None of these studies provide an overview of security elements designed for the
agile software development process appropriate for small and medium-sized enterprises
(SMEs). Additionally, studies show that more than half of proposed software development
approaches remain fully theoretical [33]. This lack of empirical evidence raises concerns
about their security-enhancing potential, and associated costs and suitability for agile
methods. In this section, we provide an overview of existing approaches to security
elements which will later be evaluated according to the mentioned dimensions.

Literature offers several approaches to motivating developers and other team mem-
bers to "think secure," eventually producing a more secure end product. Gamification as an
approach for achieving increased motivation and productivity in the software development
process was first proposed as Planning Poker in 2002 [40] but has been more thoroughly
discussed in the literature since 2014 [41]. Planning Poker is heavily influenced by the Wide-
band Delphi method, and the rules do not resemble actual Poker rules, except that players
(developers and other team members) hide their cards until a designated time. Incorporat-
ing security into agile software development by implementing gamification elements was
proposed as a variation of Planning Poker as Protection Poker [42] and Threat Poker [43].
However, motivation is not necessarily achieved through gamification. More traditional
approaches to security prioritization include business impact analysis [44], continuous
aligning of business and security goals, security goals’ identification [45] on predominantly
strategic levels, and security triage [46], introducing more security controls [47], security
intention recap meetings [48], and identifying architectural security requirements [49] on
the operational level.

Analyzing and reviewing the code for security issues and security testing are two
important and frequently discussed groups of security elements. Security auditing as code
analyses and security tests may be performed continuously within the project cycle, such
as code analysis [50], analyses performed with automated testing and analysis tools [44,51],
security reviews [52], design and code inspections [53], or towards ends of the project
cycle, such as penetration testing [54] or other security tests [47,55]. However, different



Sustainability 2023, 15, 801 4 of 23

approaches require respective specialized knowledge within the development team. Hence,
several authors propose involvement and incorporation of at least one new subject (role)
into the existing methodology. Most commonly, this is a variation of a security guru,
namely security engineer [56], security master [57], security-matter expert [58], or security
expert [59]. Additionally to these roles, a security developer [44] or a penetration tester [60]
may be included in the process. The core purpose of an additional role is to introduce
expert knowledge into the development team by identifying the features that have a
security risk based on a security principle, documenting risks in the security backlog (if
existent), mitigating identified risks, and performing security testing for selected features.
A more comprehensive approach, proposed by Baca et al. [54], includes a set of security
roles forming a security group. This group should consist of four security roles with
different competencies: (1) a security manager who handles non-technical issues, such
as ISO certification, legal aspects, etc., (2) a security architect who is responsible for a
technical description of the particular features of business use cases, (3) a security master
who is responsible for security activities performed during the development process, and
(4) a penetration tester who is responsible for final security-related quality assurance.
Even though this holistic approach incorporates security by design efficiently, the major
drawbacks are time consumption and an increase in cost. Therefore, holistic approaches
remain most suitable for safety-critical systems. An additional solution to introducing
new knowledge into a development team is the frequently proposed security element, the
security training of the development team [55] or even of all stakeholders [61].

Considering that user stories are a driving force of the agile software development pro-
cess, alteration of product backlog or incorporation of a new security-specific repository, i.e.,
backlog, is a sensible solution proposal. Several approaches for security-conscious software
development can be found in the literature. By adding an additional security-dedicated
backlog [56,57], authors suggest that the development team will have a comprehensive
overview of potential security issues and security requirements. The additional proposed
solution is altering the product backlog by introducing security-related user stories, such
as abuser stories [56] and generic security user stories [62] which are security-related user
stories: a set of possible scenarios and threats to the end product. The main difference be-
tween abuser stories and generic security user stories is in user story development process.
Abuser stories are usually developed in collaboration with all participating parties, whereas
generic security user stories are ready-made for development teams to use. In contrast to
expanding an existing product backlog, it was also proposed that misuse or abuse cases [63]
as an independent element should be incorporated into the development process. This can
help developers see the software from the attackers’ perspective. A sensible approach to
enhance the security-conscious software development is an incorporation of security tags
within security repositories and user stories. Security tags may be included in the form of
S-Tags and S-Marks as suggested by [8] or as security keywords [52].

Building on the premise that a significant drawback of agile methodologies is a lack
of a complete overview of security issues [54], various forms of security planning and
modeling with security prioritization and monitoring activities and risk management
activities are proposed. The main difference is that planning, modeling, prioritization, and
monitoring activities are commonly performed at the operational level. These are activities
such as security "games" (as mentioned earlier), security test cases and test plan reviews,
attack surface recognition and reduction [44], security goals identification [45,51], security
meetings [13], defining criticalities [44], and prioritization of security requirements [64]. On
the other hand, risk management activities are performed at the strategic level. Traditional
activities associated with risk management, such as risk identification, risk analysis, risk
assessment, and their variations, are proposed in the literature [50,54,55,65,66]. Various
reports on security matters (either security issues or audit reports) commonly accompany
security activities [44].

Security elements discussed in this section are grouped and summarized in Table 1.
The table includes the code to which the results section refers, a consolidated name of the



Sustainability 2023, 15, 801 5 of 23

group of security elements, a brief description, and sources in which particular security
elements can be found in the literature.

Table 1. Overview of security element groups.

Security Element Group Description Sources

Roles

Security guru (SGuru)

A security guru (also known as security manager, security
master) is respected for his security knowledge and leads
the development process from a security perspective on

the strategic level.

[53,54,67,68]

Security developer (SDeveloper)
A security developer is not a programming role but a role
that designs security tests, risk analyses, threat models,

and attack surface analysis.
[44,54]

Penetration tester (PenTester)
A penetration tester tests for known vulnerabilities and

attack vectors and tries to find possible exploits in
developed software.

[54]

Security team (STeam)
A security team is a group of several security-related

roles (e.g., penetration tester, security manager,
security architect).

[50,54,67]

Activities

Security auditing (SAudit)

Security auditing includes various audits and reviews
that help assess the end product’s overall security

posture (e.g., security review, code review, test case code
review, security auditing).

[44,50,52,53]

Security analysis and testing (SAnalyTest)

The security analysis and testing group is a set of
activities for analyzing and testing software for their

security performance (e.g., vulnerability analysis,
penetration testing, code inspection, risk-based security tests).

[8,44,45,47,49–53,55,67–69]

Security training (STrain)
Security training is an activity aimed to increase

security-related knowledge among developers and other
stakeholders in the software development activity.

[44,55,61]

Security prioritization and monitoring
(SPriorMoni)

The security prioritization and monitoring group is a set
of activities that prioritize specific security goals,

requirements, activities, and monitor their
implementation (e.g., business impact analysis, protection
poker, continuous aligning of business and security goals).

[42–46,48,51,56,64,70,71]

Risk management (RiskManag)
Risk management activities help identify, assess, and
control threats to the end product on a strategic level
(e.g., risk identification, risk assessment, hazard analysis).

[45,47,50–55,64–66]

Security planning and threat modeling
(SPlanModel)

Security planning and threat modeling are activities for
structured identification of potential operational threats,

such as structural vulnerabilities or the absence of
appropriate safeguards (e.g., security modeling,

threat modeling).

[44,45,51,52,55,67,68]

Security requirements engineering (SReqEng)

Security requirements engineering activities focus on
defining, documenting, and maintaining security

requirements in the engineering design activity (e.g.,
defining security requirements, formulation of abuser stories,

defining security-related user stories).

[49,50,52,55,56,69]

Artifacts

Security requirement artifacts (SReq)

Security requirement artifacts are backlog-related
elements that put a focus on security in the process of

requirement acquisition (e.g., security user stories, abuser
stories misuse cases, abuse cases).

[45,49,51,55,56,62]

Security repositories (SReposi)

Security repositories help manage security risks by
providing a requirement check list for increased

end-product security (e.g., security backlog, security
requirements repository, safety product backlog).

[57,64–66,72]



Sustainability 2023, 15, 801 6 of 23

Table 1. Cont.

Security Element Group Description Sources

Security reports (SReports)

Security reports are documents written after a specific
security activity is performed (e.g., security testing report,

test phase code review report, security mechanism review
report, security audit report).

[44]

Security tags (STags)

Security tags help developers to be aware of the security
relevance of user stories. They identify parts of the

emerging software that need security verification (e.g.,
S-Tags, S-Marks, security keywords).

[8,52]

Security policies (SPolicies)

Security policies are documents that help developers
planning secure software development by providing

security-related standards and solutions (e.g., security test
plan, secure coding policies, security related coding standards).

[44,50,52,55,56,61]

Even though several approaches can be found in the literature proposing a relatively
large amount of security elements, only a fraction (approximately one-fifth) of those ap-
proaches were tested in industrial settings [33]. Hence, little is known about their direct
impact on agility and costs. In rare cases, studies report on cost increases [54] and a possible
compromise of agility of some elements [45,51]. However, to the best of our knowledge,
there is no systematic evaluation of all security elements or their corresponding security
element groups regarding their impact on the agility of the software development process
and costs of their implementation. Therefore, this paper aims to fill this gap by conducting
an evaluation of security element groups from the practitioners’ perspective.

3. Materials and Methods

To answer the first research question, we evaluated the impacts of security element
groups on security, costs, and agility of software development. We conducted an interna-
tional survey among secure software development practitioners between April and May
2022 on the prolific.co platform in two phases. In the first phase, we conducted a screening
survey under the criteria “Industry: Software.” No other limitations were applied. The
screening survey included a definition of secure software engineering and questions on
their work experience with software development and agile software development (in
years) and their work experience with secure software engineering (in years). We received
1053 responses in total, out of which 167 respondents had three or more years of experience
with secure software engineering. These were considered as appropriately knowledgeable
to participate in the second phase of the survey.

In the second phase, we invited the 167 respondents with three or more years of
experience with secure software engineering to participate in a survey to evaluate security
elements. The questionnaire in the second phase was developed to measure three key
performance dimensions of each security element: (1) provided security to developed soft-
ware (i.e., the resistance of software to attacks), (2) increased costs of software development
(e.g., man-hours, direct costs), and (3) compromised agility of the software development
solution (i.e., a departure from the agile principles). The survey questionnaire first included
a short introduction with an explanation of the evaluation criteria presented above. The
main part of the questionnaire consisted of three sections, one for each element group (i.e.,
roles, activities, and artifacts). A description was provided for each security element group,
followed by the question: How would implementing an average element from this cluster affect an
agile method without security-related elements? The three key performance dimensions were
evaluated on 7-point unipolar scales: from 1 (no effect on security) to 7 (considerably improve
security) (provided security), from 1 (no effect on costs) to 7 (considerably increase costs) (in-
creased costs), and from 1 (no effect on agility) to 7 (considerably reduce agility) (compromised
agility). All questionnaire items were self-developed.

Out of the 167 invited participants, we received 117 fully and 13 partially completed
surveys. After the data cleaning, 112 responses were appropriate for further analyses,



Sustainability 2023, 15, 801 7 of 23

returning a response rate of 62.3 percent. Average response duration was 6 min and
46 s. The respondents’ age ranged from 22 to 62, with a mean of 36.2 years (SD = 9.2).
Respondents’ experience in secure software engineering ranged from 3 to 20 years, with
a mean of 6.0 years (SD = 3.8). Other demographic characteristics of the respondents are
presented in Table 2.

Table 2. Demographic characteristics of the sample.

Characteristic Number Share

Gender
Female 27 24.0%
Male 85 76.0%

Primary role

Software developer 73 65.2%
Project manager 24 21.4%
Security expert 4 3.6%
Other 10 8.9%

Formal education

High school or less 17 15.2%
Bachelor’s degree or equivalent 55 49.1%
Master’s degree or equivalent 39 34.8%
Doctoral degree or equivalent 1 0.9%

Country

Australia 1 0.9%
Belgium 1 0.9%
Canada 6 5.4%
Chile 1 0.9%
Denmark 1 0.9%
France 2 1.8%
Germany 3 2.7%
Greece 1 0.9%
Ireland 2 1.8%
Israel 1 0.9%
Italy 6 5.6%
Mexico 4 3.6%
Netherlands 1 0.9%
Poland 9 8.0%
Portugal 7 6.3%
South Africa 6 5.4%
Spain 7 6.3%
Sweden 2 1.8%
United Kingdom 31 27.7%
United States 20 17.9%

4. Results

To facilitate the interpretation of the results, the scores for increased costs and compro-
mised agility were reversed (i.e., recoded from 1, 2, . . . , 7 to 7, 6, . . . , 1, respectively). These
performance dimensions were also renamed to cost efficiency and retained agility, respectively,
to reflect the change. For all three key performance dimensions, a lower score means worse
performance (i.e., less provided security, lesser cost efficiency, and less retained agility) and
a higher score means better performance (i.e., more provided security, better cost efficiency,
and more retained agility). A summary of overall means for roles, activities, and artifacts is
presented in Table 3.

Table 3. Mean values for all roles, activities, and artifacts according to all three evaluation dimensions.

Roles Activities Artifacts

retained agility 4.27 4.40 4.64
cost efficiency 3.27 3.76 5.52
security 5.70 5.26 4.64



Sustainability 2023, 15, 801 8 of 23

In the following, we present means, standard deviations, medians, and modes for
the three key performance dimensions of all security element groups. Security elements
are grouped together into a table for each type. They are sorted descending according to
provided security.

The evaluation of roles is presented in Table 4. The Security team provides most
security not only among roles but among all security element groups. However, it is also
the least cost-efficient and retains the least agility. Although a Security guru is among the
most frequently proposed security elements in the literature, a Penetration tester or Security
developer may be a more cost-efficient alternative providing a similar or higher level of
security and retaining a comparable level of agility. Summarily, roles provide the most
security compared to activities and artifacts (Msecurity = 5.70). Roles are, however, the least
cost-efficient of the three (Mcosts = 3.27) and retain the least agility (Magility = 4.27). The
univariate skewness and kurtosis values for the roles ranged from −1.77 to 0.67 and −0.96
to 2.93, respectively, indicating an approximately normal data distribution [73].

Table 4. Assessment of roles.

Evaluation Criteria Mean SD Median Mode

Security team

retained agility 3.94 1.60 4 3
cost efficiency 2.80 1.50 3 3
security 6.05 1.37 7 7

Penetration tester

retained agility 4.32 1.66 4 6
cost efficiency 3.42 1.45 3 3
security 5.64 1.33 6 7

Security guru

retained agility 4.47 1.52 5 5
cost efficiency 3.38 1.54 3 3
security 5.56 1.37 6 7

Security developer

retained agility 4.36 1.59 4 4
cost efficiency 3.47 1.41 3 3
security 5.54 1.42 6 6

Table 5 presents the evaluation of activities. Security analysis and testing provides the
most security. However, it is also the least cost-efficient and retains the average agility
among the activities. Security training retains the most agility and provides the fourth-most
security while being averagely cost-efficient. Even though Security planning and threat
modeling and Risk management are among those that are most frequently found in the
literature, our results indicate that their provided security is among the lowest among the
activities. In summary, activities seem to be between roles and artifacts regarding provided
security, retained agility, and cost efficiency (Msecurity = 5.26, Mcosts = 3.76, Magility = 4.40).
The univariate skewness and kurtosis values for the activities ranged from −1.23 to 0.29
and −1.04 to 1.87, respectively, indicating an approximately normal data distribution [74].



Sustainability 2023, 15, 801 9 of 23

Table 5. Assessment of activities.

Evaluation Criteria Mean SD Median Mode

Security analysis and testing

retained agility 4.28 1.53 5 5
cost efficiency 3.63 1.40 3 3
security 5.52 1.25 6 6

Security prioritization and monitoring

retained agility 4.13 1.72 4 3
cost efficiency 3.69 1.52 4 3
security 5.29 1.39 5 5

Security auditing

retained agility 4.06 1.76 4 5
cost efficiency 3.54 1.47 3 3
security 5.24 1.53 6 6

Security training

retained agility 4.88 1.85 5 6
cost efficiency 3.65 1.47 3 3
security 5.19 1.35 5 6

Security requirements engineering

retained agility 4.43 1.64 4 4
cost efficiency 3.71 1.39 4 3
security 5.13 1.38 5 6

Security planning and threat modeling

retained agility 4.43 1.46 4 4
cost efficiency 3.98 1.41 4 4
security 5.08 1.32 5 6

Risk management

retained agility 4.55 1.67 5 6
cost efficiency 4.07 1.51 4 3
security 4.81 1.57 5 5

The evaluation of artifacts is presented in Table 6. The only artifacts with a mean value
greater than 5 are Security policies. Besides providing the most security among artifacts, it
retains the least agility but is the second most cost-efficient artifact. Security reports together
with Security tags provide the least security among all security element groups regardless
of their type. Overall, artifacts are the most cost-efficient (Mcosts = 5.52) and retain the most
agility (Magility = 4.64). However, they also provide the least security (Msecurity = 4.64). The
univariate skewness and kurtosis values for the artifacts ranged from −0.67 to −0.13 and
−1.03 to −0.13, respectively, indicating an approximately normal data distribution [74].

To identify possible outliers, we present the results in the boxplots in Figures 1–3 for
roles, activities, and artifacts, respectively. As seen from the figures, only four definite
outliers in all three boxplots can be observed. The outliers are presented in the security
dimension of two elements (security team, security analysis and testing) that already score
very high in security. Thus, removing them would increase their security scores even more
and would not impact the relative position of elements in scatter plot quadrants.



Sustainability 2023, 15, 801 10 of 23

Table 6. Assessment of artifacts.

Evaluation Criteria Mean SD Median Mode

Security policies

retained agility 4.46 1.91 5 6
cost efficiency 4.54 1.68 5 5
security 5.07 1.42 5 6

Security requirement artifacts

retained agility 4.56 1.69 5 5
cost efficiency 4.46 1.52 4 4
security 4.79 1.44 5 5

Security repositories

retained agility 4.58 1.65 4 4
cost efficiency 4.41 1.56 5 5
security 4.68 1.53 5 5

Security reports

retained agility 4.62 1.69 5 4
cost efficiency 3.35 1.57 4 5
security 4.34 1.51 4 5

Security tags

retained agility 4.97 1.69 5 6
cost efficiency 4.85 1.77 5 7
Security 4.29 1.62 4 6

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 24 
 

Table 6. Assessment of artifacts. 

Evaluation Criteria Mean SD Median Mode 

Security policies 

 retained agility 4.46 1.91 5 6 

 cost efficiency 4.54 1.68 5 5 

 security 5.07 1.42 5 6 

Security requirement artifacts 

 retained agility 4.56 1.69 5 5 

 cost efficiency 4.46 1.52 4 4 

 security 4.79 1.44 5 5 

Security repositories 

 retained agility 4.58 1.65 4 4 

 cost efficiency 4.41 1.56 5 5 

 security 4.68 1.53 5 5 

Security reports 

 retained agility 4.62 1.69 5 4 

 cost efficiency 3.35 1.57 4 5 

 security 4.34 1.51 4 5 

Security tags 

 retained agility 4.97 1.69 5 6 

 cost efficiency 4.85 1.77 5 7 

 Security 4.29 1.62 4 6 

To identify possible outliers, we present the results in the boxplots in Figures 1–3 for 

roles, activities, and artifacts, respectively. As seen from the figures, only four definite 

outliers in all three boxplots can be observed. The outliers are presented in the security 

dimension of two elements (security team, security analysis and testing) that already score 

very high in security. Thus, removing them would increase their security scores even 

more and would not impact the relative position of elements in scatter plot quadrants. 

 

Figure 1. Results graphically presented in a boxplot diagram for roles. Figure 1. Results graphically presented in a boxplot diagram for roles.



Sustainability 2023, 15, 801 11 of 23Sustainability 2023, 15, x FOR PEER REVIEW 11 of 24 
 

 

Figure 2. Results graphically presented in a boxplot diagram for activities. 

 

Figure 3. Results graphically presented in a boxplot diagram for activities. 

5. Proposed Model for SMEs 

To answer the second research question, we are proposing a lightweight approach 

for the evaluation of secure software development method elements. The proposed 

Figure 2. Results graphically presented in a boxplot diagram for activities.

Sustainability 2023, 15, x FOR PEER REVIEW 11 of 24 
 

 

Figure 2. Results graphically presented in a boxplot diagram for activities. 

 

Figure 3. Results graphically presented in a boxplot diagram for activities. 

5. Proposed Model for SMEs 

To answer the second research question, we are proposing a lightweight approach 

for the evaluation of secure software development method elements. The proposed 

Figure 3. Results graphically presented in a boxplot diagram for activities.



Sustainability 2023, 15, 801 12 of 23

5. Proposed Model for SMEs

To answer the second research question, we are proposing a lightweight approach for
the evaluation of secure software development method elements. The proposed approach
can be considered lightweight since it has few rules and practices and is simple and easy to
learn. Further, the improvements achieved through the implementation of the approach
can be applied to different development projects later. It is a separate activity that can be
used as a tool or a first steppingstone when planning changes in development methods
from a security perspective or implementing any novelty where compromised agility, cost
efficiency, and added security should be considered. The approach consists of three phases:
(1) identification of security elements comprising the software development method used
by a software development enterprise, (2) evaluation of identified security elements, and
(3) improvement of the existing method (see Figure 4).

Sustainability 2023, 15, x FOR PEER REVIEW 12 of 24 
 

approach can be considered lightweight since it has few rules and practices and is simple 

and easy to learn. Further, the improvements achieved through the implementation of the 

approach can be applied to different development projects later. It is a separate activity 

that can be used as a tool or a first steppingstone when planning changes in development 

methods from a security perspective or implementing any novelty where compromised 

agility, cost efficiency, and added security should be considered. The approach consists of 

three phases: (1) identification of security elements comprising the software development 

method used by a software development enterprise, (2) evaluation of identified security 

elements, and (3) improvement of the existing method (see Figure 4). 

 

Figure 4. The software development method evaluation approach. 

The first phase aims to gain insights into the existing software development method 

needed for evaluating and improving it. This phase enables software development enter-

prises to use the proposed approach for any software development method even if there 

is no formal method or if software development is “as agile as it gets” (i.e., denial of the 

existence of any method). In this phase, enterprises first identify all elements comprising 

their software development method, whether they are focused on security or not. By iden-

tifying all elements, enterprises will get an overview of the elements and the relationships 

between them. An in-depth insight into the existing software development method is nec-

essary to avoid unwanted effects of potential improvements, such as the introduction of 

elements duplicating parts of existing elements or conflicting with them. Next, security 

elements need to be identified. This enables the evaluation of security elements that are 

already in place. 

The second phase aims to evaluate the security elements in place. The results of our 

international evaluation study provide the grounds for such evaluation. In this phase, 

software development enterprises need to determine which security elements in place can 

be mapped to which security element groups (as identified in this Section 2). Since the 

security element groups cover nearly all security elements found in the literature, most if 

not all security elements in place can be mapped to one of the security element groups. 

This enables enterprises to seamlessly evaluate the provided security, cost efficiency, and 

retained agility of the security elements in place. If enterprises, however, identify a secu-

rity element in place that cannot be mapped to any of the security element groups, the 

evaluation needs to be repeated among available experts for all security elements in place 

to avoid skewed results due to potential differences in the respondents’ bias of our study 

and the new evaluation. 

The third phase aims to provide recommendations for improving the existing software 

development method. The existing software development method can be improved in 

various ways. For example, it can be more security-focused, cost efficient, and/or agile. To 

Figure 4. The software development method evaluation approach.

The first phase aims to gain insights into the existing software development method
needed for evaluating and improving it. This phase enables software development enter-
prises to use the proposed approach for any software development method even if there is
no formal method or if software development is “as agile as it gets” (i.e., denial of the exis-
tence of any method). In this phase, enterprises first identify all elements comprising their
software development method, whether they are focused on security or not. By identifying
all elements, enterprises will get an overview of the elements and the relationships between
them. An in-depth insight into the existing software development method is necessary to
avoid unwanted effects of potential improvements, such as the introduction of elements
duplicating parts of existing elements or conflicting with them. Next, security elements
need to be identified. This enables the evaluation of security elements that are already
in place.

The second phase aims to evaluate the security elements in place. The results of our
international evaluation study provide the grounds for such evaluation. In this phase,
software development enterprises need to determine which security elements in place
can be mapped to which security element groups (as identified in this Section 2). Since
the security element groups cover nearly all security elements found in the literature,
most if not all security elements in place can be mapped to one of the security element
groups. This enables enterprises to seamlessly evaluate the provided security, cost efficiency,
and retained agility of the security elements in place. If enterprises, however, identify a
security element in place that cannot be mapped to any of the security element groups, the
evaluation needs to be repeated among available experts for all security elements in place
to avoid skewed results due to potential differences in the respondents’ bias of our study
and the new evaluation.

The third phase aims to provide recommendations for improving the existing software
development method. The existing software development method can be improved in
various ways. For example, it can be more security-focused, cost efficient, and/or agile.
To facilitate decision making, the evaluation of security elements is visualized with scatter



Sustainability 2023, 15, 801 13 of 23

plots. One scatter plot shows the trade-off between provided security and cost efficiency,
and another one shows the trade-off between provided security and retained agility. Dif-
ferent quadrants in the scatter plots provide their own heuristic recommendations for
improving the existing software development method through security elements placed
in it. The quadrants were named as shown in Figure 5 to ease the understanding of the
meaning of security element placements: Goldilocks, Possible overkill, Prospects, and Wastrels.

Sustainability 2023, 15, x FOR PEER REVIEW 13 of 24 
 

facilitate decision making, the evaluation of security elements is visualized with scatter 

plots. One scatter plot shows the trade-off between provided security and cost efficiency, 

and another one shows the trade-off between provided security and retained agility. Dif-

ferent quadrants in the scatter plots provide their own heuristic recommendations for im-

proving the existing software development method through security elements placed in 

it. The quadrants were named as shown in Figure 5 to ease the understanding of the mean-

ing of security element placements: Goldilocks, Possible overkill, Prospects, and Wastrels. 

 

Figure 5. An example of categorization of security elements in the scatter plots. 

The Goldilocks quadrant consists of security elements with above-average provided 

security and above-average cost efficiency or retained agility. Security elements in this 

quadrant have the best ratio between provided security and cost efficiency or retained 

agility and can be thus regarded as the most suitable for small and medium software de-

velopment enterprises that cannot afford less cost-efficient security elements or want to 

lose too much agility in their software development. The Possible overkill quadrant con-

tains security elements with above-average provided security but below-average cost ef-

ficiency or retained agility. Security elements in this quadrant are a potential security 

overkill for small and medium software development enterprises. Even though they pro-

vide above-average security, they may be too costly or compromise too much agility. Nev-

ertheless, they may be suitable for developing safety-critical software and other software 

Figure 5. An example of categorization of security elements in the scatter plots.

The Goldilocks quadrant consists of security elements with above-average provided
security and above-average cost efficiency or retained agility. Security elements in this
quadrant have the best ratio between provided security and cost efficiency or retained
agility and can be thus regarded as the most suitable for small and medium software
development enterprises that cannot afford less cost-efficient security elements or want to
lose too much agility in their software development. The Possible overkill quadrant contains
security elements with above-average provided security but below-average cost efficiency
or retained agility. Security elements in this quadrant are a potential security overkill for
small and medium software development enterprises. Even though they provide above-
average security, they may be too costly or compromise too much agility. Nevertheless, they
may be suitable for developing safety-critical software and other software when security is
a top priority (e.g., online banking). The Prospects quadrant consists of security elements
with below-average provided security and above-average cost efficiency or retained agility.
Security elements in this quadrant can underperform in terms of provided security. If
security is not a top priority, these security elements can be considered as a cost-efficient



Sustainability 2023, 15, 801 14 of 23

way to provide some security while retaining agility. For small and medium enterprises,
they can also be attractive as alternatives for less cost-efficient security elements providing
more security, especially coupled with some such elements. The Wastrels quadrant contains
security elements with below-average provided security and below-average cost efficiency
or retained agility. Since these security elements are less cost efficient or retain less agility
while providing less security, there are poor grounds for including them in software
development methods. Unless they have some other added value justifying their inclusion,
these security elements may be dropped. An analysis of the impact on security may be
needed before dropping any security elements. If needed, the dropped security elements
may be replaced by other security elements.

To demonstrate the use of scatter plots, we visualized the results of the international
survey among published secure software development authors. The x-axis is placed at
the provided security median for all security element groups regardless of their type. The
y-axis is placed at the median of cost efficiency (Figure 6) and retained agility (Figure 7) for
all security element groups regardless of their type.

Sustainability 2023, 15, x FOR PEER REVIEW 15 of 24 
 

 

Figure 6. Scatter plot of security element groups showing their provided security and cost efficiency 

(higher value means better cost efficiency and more provided security). 

Figure 6. Scatter plot of security element groups showing their provided security and cost efficiency
(higher value means better cost efficiency and more provided security).



Sustainability 2023, 15, 801 15 of 23Sustainability 2023, 15, x FOR PEER REVIEW 16 of 24 
 

 

Figure 7. Scatter plot of security element groups showing their provided security and retained agility 

(higher value means more retained agility and more provided security). 

The results seen in Figure 3 indicate a negative relationship between security and 

costs, as less cost-efficient security elements provide more security. A similar negative 

relationship can be seen in in Figure 4, whereas less agile-threatening security elements 

provide more security. Only very few outliers can be observed. 

No security element groups were placed in the Goldilocks quadrant in both scatter 

plots. However, Security training is placed in the Goldilocks quadrant in the security–re-

tained agility scatter plot, while being reasonably close to this quadrant in the security–

cost efficiency scatter plot. Hence, this security element may be the most appropriate for 

small and medium software development enterprises. Security guru was placed in the 

Goldilocks quadrant in one scatter plot but in the Possible overkill quadrant in the other, 

while the Security prioritization and monitoring group was, in both cases, placed in the Pos-

sible overkill quadrant; however, in the security–cost efficiency scatter plot, it was placed 

reasonably close to the Goldilocks quadrant. Hence, the Security guru is not as cost-efficient, 

but it does provide above-average security while not interfering with the agility of the 

method. Since the Security prioritization and monitoring group provides a reasonable cost 

efficiency while offering above-average security, it could be considered in the same con-

text as the Security guru. Small and medium enterprises may consider the trade-off be-

tween costs and agility when deciding among these security elements. Six security ele-

ment groups were placed in the Prospects quadrant in both scatter plots: Security policies, 

Figure 7. Scatter plot of security element groups showing their provided security and retained agility
(higher value means more retained agility and more provided security).

The results seen in Figure 3 indicate a negative relationship between security and
costs, as less cost-efficient security elements provide more security. A similar negative
relationship can be seen in in Figure 4, whereas less agile-threatening security elements
provide more security. Only very few outliers can be observed.

No security element groups were placed in the Goldilocks quadrant in both scatter plots.
However, Security training is placed in the Goldilocks quadrant in the security–retained
agility scatter plot, while being reasonably close to this quadrant in the security–cost
efficiency scatter plot. Hence, this security element may be the most appropriate for small
and medium software development enterprises. Security guru was placed in the Goldilocks
quadrant in one scatter plot but in the Possible overkill quadrant in the other, while the
Security prioritization and monitoring group was, in both cases, placed in the Possible overkill
quadrant; however, in the security–cost efficiency scatter plot, it was placed reasonably
close to the Goldilocks quadrant. Hence, the Security guru is not as cost-efficient, but it does
provide above-average security while not interfering with the agility of the method. Since
the Security prioritization and monitoring group provides a reasonable cost efficiency while
offering above-average security, it could be considered in the same context as the Security
guru. Small and medium enterprises may consider the trade-off between costs and agility
when deciding among these security elements. Six security element groups were placed
in the Prospects quadrant in both scatter plots: Security policies, Risk management, Security
requirements artifacts, Security repositories, Security reports, and Security tags. Although these
element groups provide below-average security for the end product, they may still be



Sustainability 2023, 15, 801 16 of 23

considered when security is essential but not the highest priority or in cases where an
enterprise plans to invest fewer resources or sacrifice agility as little as possible but still
aims to introduce secure software development elements into their method. The Wastrels
quadrant seems to be inhibited similarly to the Goldilocks. No security element groups
were placed in this quadrant in both scatter plots. Only Security requirements engineering
and Security planning and modeling were placed in this quadrant in the security–retained
agility scatter plot. None of the security element groups were placed within Wastrels in
the security–cost efficiency scatter plot. These two security elements should be considered
for incorporation into the development method of an SME when there is a reasonable
justification for their inclusion, mainly since they introduce an approximately average level
of security in comparison to others and may affect the agility of the process.

To provide an informative overview of the placements of security element groups into
quadrants, we summarize the findings of our study in Table 7.

Table 7. Placement of security element groups into quadrants.

Security Element Costs Agility

Roles

Security guru Possible overkill Goldilocks

Security developer Possible overkill Possible overkill

Penetration tester Possible overkill Possible overkill

Security team Possible overkill Possible overkill

Activities

Security training Possible overkill Goldilocks

Security prioritization and monitoring Possible overkill Possible overkill

Security auditing Possible overkill Possible overkill

Security analysis and testing Possible overkill Possible overkill

Risk management Prospects Prospects

Security requirements engineering Prospects Wastrels

Security planning and threat modeling Prospects Wastrels

Artifacts

Security requirement artifacts Prospects Prospects

Security repositories Prospects Prospects

Security tags Prospects Prospects

Security policies Prospects Prospects

Security reports Prospects Prospects

6. Discussion

This paper aimed to provide SMEs with the means to improve their software devel-
opment in terms of software security. To achieve this, it centers around the concept of
security elements—those elements (i.e., activities, roles, artifacts) of software development
methods [73] that provide security. Security elements were first collected from published lit-
erature and then grouped. The security element groups resemble the core phases of secure
software development suggested by [16]: software requirements security, software design
security, software construction security, and software testing security. This paper, however,
breaks down these core phases into smaller parts according to the type of method element.
Several previously proposed secure software development frameworks, approaches, and
maturity models, e.g., [39,75,76], provide some support for the security element groups
presented in this paper.



Sustainability 2023, 15, 801 17 of 23

According to the opinion of the surveyed practitioners, roles provide the most security
among different types of security element groups. All roles have above-average provided
security indicating that security expertise is one of the key factors in ensuring the security
of developed software. The security team typically consists of several security specialists
whose expertise highly impacts the security of the developed software. However, it also
compromises the agility of the software development process (e.g., by introducing various
security controls into existing activities) and significantly increases its costs. It is widely
and commonly known that security specialists, such as penetration testers and security gurus,
are highly sought after and relatively expensive. Such findings are in line with the current
literature reporting up to a 500 percent increase in costs due to the inclusion of several
security roles in the development process [54]. According to the survey results, the security
developer is the most balanced role providing considerable security at relatively low costs
while also retaining agility. Additionally, security developers are actively involved in the
development process and thus importantly improve the expertise of the development
team, which may be complemented by the penetration tester (involved during testing or
later) and security guru (not actively involved in the development process). Roles seem
to compromise agility the most, which can be associated with the prerequisite of more
sequential organization of the development process—e.g., stages at which those roles are
most frequently used at the development stages: analysis, design, coding, and testing [45].

As characteristic for agile methods [73], activities are the most represented type of
security elements both in terms of quantity and diversity. They retain the second least
agility among all three types of security element groups, which may be due the fact that
including new activities into agile methods inherently compromises agility to an extent.
The effects on agility and costs can be especially pronounced if the development team does
not have the necessary knowledge to efficiently perform the introduced activities. Security
training is the only activity in the Goldilocks quadrant for agility and is placed extremely
close to it in terms of cost efficiency. This is especially valuable since its results increase
the security knowledge of the development team, directly affecting one of the key factors
in providing security. Not only does security training not compromise the agility of the
software development process in the long term but also the costs invested are subsidized
across different projects as the acquired security knowledge stays with the development
team members. Additionally, security training is typically held outside of the development
process, hence it does not affect its agility. This finding is also consistent with the published
literature emphasizing the importance of security skills and training [68,77]. Risk manage-
ment is among the more popular security elements for agile methods. Our results, however,
suggest that it provides the least security among activities, which may be attributed to its
focus on the strategic level of security planning and a lacking practical application during
project implementation. This can be also seen in some degree of compromised agility if this
activity is implemented in practice. Consistent with these findings, a study focusing on
secure software development practices indicated that these practices could be characterized
as compliance-based, arbitrary, late, and error-driven rather than risk-oriented [78].

Although artifacts are generally the most cost-efficient and retain the most agility, they
perform relatively poorly in providing security. For example, security reports are among the
most widespread security elements, yet they score very low on the security scale. Not all
artifacts perform poorly, though. For example, security policies fall into the upper part of
the Prospects quadrant for both costs and agility. Security requirement artifacts and Security
repositories do not fall far behind. These artifacts guide the development team to think
about the developed software more from the security perspective, potentially somewhat
making up for lacking security expertise of developers.

6.1. Theoretical Implications

Our research advances the current literature in several ways. First, we have developed
a novel approach for multi-dimensional evaluation (i.e., security, cost, agility) of agile
secure software development methods. Our approach focuses on the evaluation of security



Sustainability 2023, 15, 801 18 of 23

elements. It is designed in a way that enables evaluation of any agile method since even the
least defined methods consist of certain recurring elements (i.e., artifacts, roles, activities)
that can be evaluated. The evaluation of multiple dimensions of security elements provides
insights from different viewpoints, which enables a more comprehensive evaluation of
software development methods from the security perspective.

Second, the results of the international study among practitioners indicate that there
may be a negative relationship between provided security of the developed software and
retained agility of the development process and in the relationship between provided
security and cost efficiency. Future work may focus on identifying prospective security
elements beyond those already known to be applicable to agile methods to confirm such
a finding.

Third, our study provides a list of 16 security element groups. This list can be used as
a baseline for scholars and practitioners developing new security elements or combining
them into holistic secure software development methods. The provided evaluation of
security elements may help them improve their decision-making process when selecting
the security elements that provide the best combination of a desired level of security and
acceptable levels of costs and agility. The list of security element groups may be useful
beyond the current timeframe in which it was created. The list is based on a review of
two decades of agile secure software development research; therefore, it may not be too
surprising if future security elements can be consolidated into one of those already on
the list.

Fourth, the evaluation of security elements appears to point to an interesting finding.
Several relatively cost-efficient security elements that provide ample security while retain-
ing agility (i.e., security training, security requirement artifacts, and security developer) deal
with increasing the security expertise of software developers, thus improving the whole
software development process. Future work may thus focus on developing new long-term
approaches for incrementally improving the security expertise in the development team,
which would not significantly compromise the agility or increase the costs of software
development. However, empirical evidence would be very needed to determine the actual
effectiveness of such approaches in the long run.

6.2. Practical Implications

This paper also has several practical implications. First, the proposed approach offers
a practical and cost-efficient way for small and medium-sized software development
enterprises to evaluate and improve their software development methods from the security
perspective. Based on our approach, enterprises can situationally adapt their software
development methods to fit their needs regarding security, agility, and costs. If the primary
focus is on the cost efficiency of software development or retaining its agility, most artifacts
and several activities may be suitable while roles should generally be avoided. If security,
however, is an absolute priority, roles provide most security even though they may not
be too cost-efficient. The readers should note that security elements may be related to
each other. For example, a security guru can provide security reports, security policies,
both, or neither of them. By summarizing the impacts of individual security elements, we
may obtain a good estimation of the impact of implementing several security elements.
Nevertheless, such an estimation is not perfect since the overall impacts are rarely the sum
of individual impacts.

Second, we assessed provided security, cost efficiency, and retained agility of individ-
ual security element groups in an international study among practitioners. Practitioners
can thus take advantage of this evaluation to make informed decisions regarding which
elements to include in their software development methods and projects depending on
their specific needs. The placement of security elements into quadrants further facilitates
such decision making. For example, practitioners may consider security elements in the
Possible overkill quadrant if security is a top priority and high costs or compromised agility



Sustainability 2023, 15, 801 19 of 23

can be tolerated. However, security elements in the Goldilocks and Prospects quadrants may
be best suitable for most projects, and especially for small and medium-sized enterprises.

6.3. Limitations

This study has some limitations that the readers should note. First, the literature
review was not conducted systematically. Although we were searching the most impactful
bibliographic databases and employed the snowball method to identify the studies, we
might have missed some existing agile software development methods, especially if not
present in the literature. Second, the study focused on agile secure software development.
Future work may investigate security elements beyond those already known to be applica-
ble to agile methods. For example, future studies may investigate elements from traditional
secure software development to determine if and how they perform when used in agile
methods. Such studies may be especially beneficial in identifying prospective security
elements besides existing ones. Third, the results indicate a relatively low diversity among
different security element groups according to cost efficiency and particularly retained
agility. Such distribution of data points in scatter plots can be associated with the fact
that approximately 65 percent of our respondents work in the same job position, i.e., as
software developers. A more evenly distributed sample of software developers, project
managers, security experts, and other software consultants may produce higher response
diversity. Fourth, some roles, artifacts, and activities may be related, and this may have
affected the scores given by practitioners in our survey. However, such relations cannot
be claimed for most security elements, as can be observed by the dispersion of security
elements in the scatter plots. Fifth, this paper investigated security elements for a generic
agile method under the assumption that the used agile method does not affect the outcomes
of implementing security elements (i.e., security, retained agility, cost efficiency). Since
the outcomes of implementing security elements in the context of specific agile methods
(e.g., Scrum, XP) may nevertheless differ, at least for some security elements, future studies
would be needed to investigate whether this is the case and for which security elements.

7. Conclusions and Future Work

This paper has identified and categorized security elements proposed in the literature
on agile secure software development. The security elements were then assessed for
similarity and grouped in 16 distinct security element groups. Security element groups
were then evaluated by practitioners from the software development industry for their cost
efficiency, compromised agility, and added security. The results indicate that roles might
provide the most security but have the highest costs and most compromised agility. On the
other hand, artifacts could contribute to the overall security of the end product the least.
However, they are by far the most cost-efficient and retain the most agility. Activities lie in
between roles and artifacts in all three key dimensions.

We then used these results to develop a lightweight approach for the evaluation of
secure software development method elements. The approach is ready-made for implemen-
tation and does not require specialized knowledge or rules to follow. The approach can help
software development practitioners to adapt their development methods by prioritizing
the adoption of new security elements in their development practice according to their
needs and available resources.

There are several directions that future work may undertake. For example, future
works could investigate additional situational factors related to specific industry contexts.
Unique characteristics of some industries, such as automotive, aviation, and aerospace
industries, may require a very strong security undertaking, not characteristic of the majority
of other industries. Evaluation of security elements individually allows enterprises to adapt
their existing software development methods incrementally, by including a single most
suitable element at a time according to their needs. Hence, the results of our study may act
as a priority checklist for enterprises attempting to improve their software development
methods in terms of software security. Future works may further aim to compare and



Sustainability 2023, 15, 801 20 of 23

evaluate the use of complete off-the-shelf secure software development methods. Such
a holistic approach in which all software development lifecycle stages and architectural
levels are considered may provide an additional view on the usability and appropriateness
of particular methods when compared to each other. To objectively measure the level of
software security and enhance the formal software development in practice, specialized
security metrics should be additionally investigated, developed, and proposed in the future.

This study took a quantitative approach to evaluate the impact of implementing secu-
rity elements. Future studies may employ qualitative research designs, such as interviews
with professionals, focus groups, or the Delphi method, to gain further insights into the
positioning of security element groups into specific quadrants. For example, it may be
possible to determine whether certain security elements are firmly positioned in their
quadrants or not (e.g., due to some contextual factors).

Author Contributions: Conceptualization, A.M., T.H. and S.V.; methodology, A.M., S.V. and T.H.;
validation, T.H. and S.V.; formal analysis, A.M.; investigation, A.M., S.V. and T.H.; resources, S.V.;
data curation, A.M.; writing—original draft preparation, A.M.; writing—review and editing, S.V. and
T.H.; visualization, A.M.; supervision, S.V. and T.H.; funding acquisition, S.V. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by the Faculty of criminal justice and security, University
of Maribor.

Institutional Review Board Statement: The study was approved by the Ethics Committee of Faculty
of criminal justice and security, University of Maribor, on 8 April 2022.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Dataset underlying the research can be found at Mendeley Data
repository. Mihelič, Anže; Vrhovec, Simon; Hovelja, Tomaž (2022), “Evaluation of security elements
for agile secure software engineering”, Mendeley Data, V1, doi: 10.17632/pbywpngwjw.1 (accessed
on 10 November 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bianchi, M.J.; Conforto, E.C.; Amaral, D.C. Beyond the agile methods: A diagnostic tool to support the development of hybrid

models. Int. J. Manag. Proj. Bus. 2021, ahead-of-print. [CrossRef]
2. Saeedi, K.; Visvizi, A. Software development methodologies, heis, and the digital economy. Educ. Sci. 2021, 11, 73. [CrossRef]
3. Mihelič, A.; Hovelja, T.; Vrhovec, S.L.R. Towards a delegation-type secure software development method. In Proceedings of the

Third Central European Cybersecurity Conference, Munich, Germany, 14–15 November 2019. [CrossRef]
4. Nowroozi, A.; Teymoori, P.; Ramezanifarkhani, T.; Besharati, M.R.; Izadi, M. A Crisis Situations Decision-Making Systems

Software Development Process with Rescue Experiences. IEEE Access 2020, 8, 59599–59617. [CrossRef]
5. Oueslati, H.; Rahman, M.M.; Othmane, L. ben Literature Review of the Challenges of Developing Secure Software Using the

Agile Approach. In Proceedings of the 10th International Conference on Availability, Reliability and Security, Toulouse, France,
24–27 August 2015; pp. 540–547.

6. Rindell, K.; Ruohonen, J.; Holvitie, J.; Hyrynsalmi, S.; Leppänen, V. Security in agile software development: A practitioner survey.
Inf. Softw. Technol. 2021, 131, 106488. [CrossRef]

7. Adelyar, S.H.; Norta, A. Towards a Secure Agile Software Development Process. In Proceedings of the 10th International
Conference on the Quality of Information and Communications Technology (QUATIC), Lisbon, Portugal, 6–9 September 2016;
pp. 101–106.

8. Pohl, C.; Hof, H.-J. Secure Scrum: Development of Secure Software with Scrum. In Proceedings of the The Ninth International
Conference on Emerging Security Information, Systems and Technologies Secure, Venice, Italy, 23–28 August 2015; pp. 15–20.

9. Cico, O.; Jaccheri, L.; Nguyen-Duc, A.; Zhang, H. Exploring the intersection between software industry and Software Engineering
education—A systematic mapping of Software Engineering Trends. J. Syst. Softw. 2021, 172, 110736. [CrossRef]

10. ISO/IEC 15408-1:2009. International Organization for Standardization. 2009. Available online: https://www.iso.org/obp/ui/
#iso:std:50341:en (accessed on 3 August 2022).

11. Poth, A.; Kottke, M.; Middelhauve, K.; Mahr, T.; Riel, A. Lean integration of it security and data privacy governance aspects into
product development in agile organizations. J. Univers. Comput. Sci. 2021, 27, 868–893. [CrossRef]

12. Soualmi, A.; Laouamer, L.; Alti, A. Performing Security on Digital Images. In Exploring Security in Software Architecture and Design;
IGI Global: Hershey, PA, USA, 2019; pp. 211–246, ISBN 9781522563136.

http://doi.org/10.1108/IJMPB-04-2020-0119
http://doi.org/10.3390/educsci11020073
http://doi.org/10.1145/3360664.3360728
http://doi.org/10.1109/ACCESS.2020.2981789
http://doi.org/10.1016/j.infsof.2020.106488
http://doi.org/10.1016/j.jss.2020.110736
https://www.iso.org/obp/ui/#iso:std:50341:en
https://www.iso.org/obp/ui/#iso:std:50341:en
http://doi.org/10.3897/jucs.71770


Sustainability 2023, 15, 801 21 of 23

13. Tøndel, I.A.; Jaatun, M.G. Towards a Conceptual Framework for Security Requirements Work in Agile Software Development.
Int. J. Syst. Softw. Secur. Prot. 2020, 11, 33–62. [CrossRef]

14. Türpe, S.; Poller, A. Managing security work in scrum: Tensions and challenges. In Proceedings of the CEUR Workshop
Proceedings, Bloomington, IN, USA, 20–21 January 2017; pp. 34–49.

15. Ansari, M.T.J.; Al-Zahrani, F.A.; Pandey, D.; Agrawal, A. A fuzzy TOPSIS based analysis toward selection of effective security
requirements engineering approach for trustworthy healthcare software development. BMC Med. Inform. Decis. Mak. 2020,
20, 1–14. [CrossRef]

16. Nina, H.; Pow-Sang, J.A.; Villavicencio, M. Systematic mapping of the literature on Secure Software Development. IEEE Access
2021, 9, 36852–36867. [CrossRef]

17. Bishop, D.; Rowland, P. Agile and Secure Software Development: An Unfinished Story. Issues Inf. Syst. 2019, 20, 144–156.
18. Aljaz, T. Improving throughput and due date performance of IT DevOps teams. Elektrotehniski Vestn. Electrotech. Rev. 2021, 88,

121–128.
19. Hering, D.; Schwartz, T.; Boden, A.; Wulf, V. Integrating usability-engineering into the software developing processes of SME:

A case study of software developing SME in Germany. In Proceedings of the 8th International Workshop on Cooperative and
Human Aspects of Software Engineering, CHASE 2015, Florence, Italy, 18 May 2015; pp. 121–122.

20. Boden, A.; Nett, B.; Wulf, V. Operational and Strategic Learning in Global Software Development. IEEE Softw. 2010, 27, 58–65.
[CrossRef]

21. Uludag, O.; Putta, A.; Paasivara, M.; Matthes, F. Evolution of the Agile Scaling Frameworks. In Proceedings of the 22nd
International Conference on Agile Software Development: Agile Proceses in Software Engineering and Extreme Programming,
Virtual Event, 14–18 June 2021; pp. 123–139, ISBN 9781118104354.

22. Pan Fagerlin, W.; Lövstål, E. Top managers’ formal and informal control practices in product innovation processes. Qual. Res.
Account. Manag. 2020, 17, 497–524. [CrossRef]

23. Song, M.; Wang, P.; Yang, P. Promotion of secure software development assimilation: Stimulating individual motivation. Chin.
Manag. Stud. 2018, 12, 164–183. [CrossRef]

24. Knight, J.C. Safety critical systems: Challenges and directions. In Proceedings of the 24th International Conference on Software
Engineering. ICSE 2002, Orlando, FL, USA, 19–25 May 2002; pp. 547–550.

25. Kasauli, R.; Knauss, E.; Kanagwa, B.; Nilsson, A.; Calikli, G. Safety-critical systems and agile development: A mapping study.
In Proceedings of the 44th Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2018, Prague,
Czech Republic, 29–31 August 2018; pp. 470–477.

26. Inayat, I.; Salim, S.S.; Marczak, S.; Daneva, M.; Shamshirband, S. A systematic literature review on agile requirements engineering
practices and challenges. Comput. Hum. Behav. 2015, 51, 915–929. [CrossRef]

27. Medeiros, J.D.R.V.; Alves, D.C.P.; Vasconcelos, A.; Silva, C.; Wanderley, E. Requirements engineering in agile projects: A systematic
mapping based in evidences of industry. In Proceedings of the CIBSE 2015—XVIII Ibero-American Conference on Software
Engineering, Lima, Peru, 22–24 April 2015; pp. 460–473.

28. Heikkila, V.T.; Damian, D.; Lassenius, C.; Paasivaara, M. A Mapping Study on Requirements Engineering in Agile Software
Development. In Proceedings of the 41st Euromicro Conference on Software Engineering and Advanced Applications, SEAA
2015, Madeira, Portugal, 26–28 August 2015; pp. 199–207.

29. Curcio, K.; Navarro, T.; Malucelli, A.; Reinehr, S. Requirements engineering: A systematic mapping study in agile software
development. J. Syst. Softw. 2018, 139, 32–50. [CrossRef]

30. Mellado, D.; Blanco, C.; Sánchez, L.E.; Fernández-Medina, E. A systematic review of security requirements engineering. Comput.
Stand. Interfaces 2010, 32, 153–165. [CrossRef]

31. Khan, N.F.; Ikram, N. Security requirements engineering: A systematic mapping (2010–2015). In Proceedings of the 2016
International Conference on Software Security and Assurance, ICSSA 2016, Pölten, Austria, 24–25 August 2017; pp. 31–36.

32. Mourao, E.; Kalinowski, M.; Murta, L.; Mendes, E.; Wohlin, C. Investigating the Use of a Hybrid Search Strategy for Systematic
Reviews. In Proceedings of the International Symposium on Empirical Software Engineering and Measurement, Toronto, ON, Canada,
9–10 November 2017; pp. 193–198.

33. Mihelič, A.; Vrhovec, S.; Hovelja, T. Sistematični pregled literature agilnih in vitkih pristopov k razvoju varne programske opreme.
Uporab. Inform. 2020, 28, 161–169. [CrossRef]

34. Rindell, K.; Hyrynsalmi, S.; Leppänen, V. Busting a myth: Review of agile security engineering methods. In Proceedings of the
ACM International Conference Proceeding Series, Hong Kong, China, 28–30 December 2017; pp. 1–10.

35. Villamizar, H.; Kalinowski, M.; Viana, M.; Fernández, D.M. A systematic mapping study on security in agile requirements
engineering. In Proceedings of the 44th Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2018,
Prague, Czech Republic, 29–31 August 2018; pp. 454–461.

36. Barbosa, D.A.; Sampaio, S. Guide to the Support for the Enhancement of Security Measures in Agile Projects. In Proceedings of
the 6th Brazilian Workshop on Agile Methods, WBMA 2015, Pernambuco, Brazil, 21–23 October 2015; pp. 25–31.

37. Myrbakken, H.; Colomo-Palacios, R. DevSecOps: A Multivocal Literature Review. In Communications in Computer and Infor-
mation Science; Mas, A., Mesquida, A., O’Connor, R., Rout, T., Dorling, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2017;
Volume 770, pp. 30–42, ISBN 978-3-319-67383-7.

http://doi.org/10.4018/IJSSSP.2020010103
http://doi.org/10.1186/s12911-020-01209-8
http://doi.org/10.1109/ACCESS.2021.3062388
http://doi.org/10.1109/MS.2009.113
http://doi.org/10.1108/QRAM-02-2019-0042
http://doi.org/10.1108/CMS-01-2017-0005
http://doi.org/10.1016/j.chb.2014.10.046
http://doi.org/10.1016/j.jss.2018.01.036
http://doi.org/10.1016/j.csi.2010.01.006
http://doi.org/10.31449/upinf.102


Sustainability 2023, 15, 801 22 of 23

38. Riisom, K.R.; Hubel, M.S.; Alradhi, H.M.; Nielsen, N.B.; Kuusinen, K.; Jabangwe, R. Software security in agile software
development: A literature review of challenges and solutions. In Proceedings of the ACM International Conference Proceeding
Series, Tokyo, Japan, 25–28 November 2018; pp. 1–5.

39. Migues, S.; Erlikhman, E.; Ewers, J.; Nassery, K. Building Security in Maturity Model (BSIMM) Foundations Report—Version 12;
2021. Available online: https://www.bsimm.com/download.html (accessed on 12 February 2022).

40. Grenning, J. Planning poker or how to avoid analysis paralysis while release planning. Hawthorn Woods Renaiss. Softw. Consult.
2002, 3, 22–23.

41. Platonova, V.; Bērziša, S. Gamification in Software Development Projects. Inf. Technol. Manag. Sci. 2017, 20, 58–63. [CrossRef]
42. Williams, L.; Meneely, A. Protection poker: The New Software Security “Game”. IEEE Secur. Priv. 2010, 8, 14–20. [CrossRef]
43. Rygge, H.; Jøsang, A. Threat Poker : Solving Security and Privacy Threats in Agile Software Development. In Proceedings of the

23rd Nordic Conference on Secure IT Systems, Oslo, Norway, 28–30 November 2018; pp. 1–15.
44. Rindell, K.; Hyrynsalmi, S.; Leppänen, V. Securing scrum for VAHTI. In Proceedings of the CEUR Workshop Proceedings, Maribor,

Slovenia, 8–10 June 2015; pp. 236–250.
45. Othmane, L.; Angin, L.; Weffers, H.; Bhargava, B. Extending the Agile Development Process to Develop Acceptably Secure

Software. IEEE Trans. Dependable Secur. Comput. 2014, 11, 497–509. [CrossRef]
46. Giacalone, M.; Paci, F.; Mammoliti, R.; Perugino, R.; Massacci, F.; Selli, C. Security Triage: An Industrial Case Study on the

Effectiveness of a Lean Methodology to Identify Security Requirements. In Proceedings of the Symposium on Empirical Software
Engineering and Measurement—ESEM 2014, Torino, Italy, 18–19 September 2014; pp. 1–8.

47. Maria, R.E.; Rodrigues, L.A.; Pinto, N.A. ScrumS—A model for safe agile development. In Proceedings of the 7th International
ACM Conference on Management of Computational and CollEctive Intelligence in Digital EcoSystems, MEDES 2015, New York,
NY, USA, 25–29 October 2015; pp. 43–47.

48. Tøndel, I.A.; Cruzes, D.S.; Jaatun, M.G.; Rindell, K. The Security Intention Meeting Series as a way to increase visibility of software
security decisions in agile development projects. In Proceedings of the International Conference on Availability, Reliability and
Security, Canterbury, UK, 26–29 August 2019; ACM Press: Canterbury, UK, 2019; pp. 1–8.

49. Daud, M.I. Secure software development model: A guide for secure software life cycle. In Proceedings of the International
MultiConference of Engineers and Computer Scientists 2010, IMECS 2010, Hong Kong, China, 17–19 March 2010; pp. 724–728.

50. Maier, P.; Ma, Z.; Bloem, R. Towards a Secure SCRUM Process for Agile Web Application Development. In Proceedings of the
12th International Conference on Availability, Reliability and Security—ARES ’17, Vienna, Austria, 23–26 August 2017; pp. 1–8.

51. Othmane, L.B.; Angin, P.; Bhargava, B. Using assurance cases to develop iteratively security features using scrum. In Proceedings
of the 9th International Conference on Availability, Reliability and Security, ARES 2014, Fribourg, Switzerland, 8–12 September
2014; pp. 490–497.

52. Koc, G.; Aydos, M.; Tekerek, M. Evaluation of Trustworthy Scrum Employment for Agile Software Development based on the
Views of Software Developers. In Proceedings of the UBMK 2019—Proceedings, 4th International Conference on Computer
Science and Engineering, Samsun, Turkey, 11–15 September 2019; pp. 63–67.

53. Firdaus, A.; Ghani, I.; Jeong, S.R. Secure Feature Driven Development (SFDD) Model for Secure Software Development.
In Proceedings of the Procedia—Social and Behavioral Sciences, Iasi, Romania, 10–12 April 2014; Elsevier B.V.: Amsterdam, The
Netherlands, 2014; Volume 129, pp. 546–553.

54. Baca, D.; Boldt, M.; Carlsson, B.; Jacobsson, A. A Novel Security-Enhanced Agile Software Development Process Applied in an
Industrial Setting. In Proceedings of the ARES Conference International Conference on Availability, Reliability and Security 2015,
Toulouse, France, 24–27 August 2015; pp. 11–19.

55. Singhal, S.; Singhal, A. Development of Agile Security Framework Using a Hybrid Technique for Requirements Elicitation. In
Advances in Computing, Communication and Control; Unnikrishnan, S., Surve, S., Bhoir, D., Eds.; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 178–188. ISBN 978-3-642-18439-0.

56. Boström, G.; Wäyrynen, J.; Bodén, M.; Beznosov, K.; Kruchten, P. Extending XP practices to support security requirements
engineering. In Proceedings of the 2006 international workshop on Software engineering for secure systems—SESS ’06, Shanghai,
China, 20–21 May 2006; pp. 11–17.

57. Azham, Z.; Ghani, I.; Ithnin, N. Security backlog in scrum security practices. In Proceedings of the 5th Malaysian Conference in
Software Engineering, MySEC 2011, Johor Bahru, Malaysia, 13–14 December 2011; pp. 414–417.

58. Hope, P.; McGraw, G.; Anton, A.I. Misuse and abuse cases: Getting past the positive. IEEE Secur. Priv. 2004, 2, 90–92. [CrossRef]
59. Musa, S.B.; Norwawi, N.M.; Selamat, M.H.; Sharif, K.Y. Improved extreme programming methodology with inbuilt security.

Proceedings of 2011 IEEE Symposium on Computers & Informatics, Kuala Lumpur, Malaysia, 20–23 March 2011. [CrossRef]
60. Tomanek, M.; Klima, T. Penetration Testing in Agile Software Development Projects. Int. J. Cryptogr. Inf. Secur. 2015, 5, 1–7.

[CrossRef]
61. Ge, X.; Paige, R.; Polack, F.; Brooke, P. Extreme Programming Security Practices. In Proceedings of the Agile Processes in Software

Engineering and Extreme Programming, Como, Italy, 18–22 June 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 226–230.
62. Siiskonen, T.; Sars, C.; Vah Sipila, A.; Pietikain, A. Generic Security User Stories. In Handbook of the Secure Agile Software Development

Life Cycle; Pietikinen, P., Rning, J., Eds.; University of Oulu: Oulu, Finland, 2014; pp. 9–14.
63. Lee, K.H.; Park, Y.B. Adaption of integrated secure guide for secure software development lifecycle. Int. J. Secur. Its Appl. 2016, 10,

145–154. [CrossRef]

https://www.bsimm.com/download.html
http://doi.org/10.1515/itms-2017-0010
http://doi.org/10.1109/MSP.2010.58
http://doi.org/10.1109/TDSC.2014.2298011
http://doi.org/10.1109/MSP.2004.17
http://doi.org/10.1109/ISCI.2011.5958997
http://doi.org/10.5121/ijcis.2015.5101
http://doi.org/10.14257/ijsia.2016.10.6.15


Sustainability 2023, 15, 801 23 of 23

64. Ionita, D.; Van Der Velden, C.; Ikkink, H.K.; Eelko, N. Towards Risk-Driven Security Requirements Management in Agile Software
Development. Lect. Notes Bus. Inf. Process. 2019, 350, 133–144. [CrossRef]

65. Stålhane, T.; Myklebust, T.; Hanssen, G. The application of safe scrum to IEC 61508 certifiable software. In Proceedings of the
11th International Probabilistic Safety Assessment and Management Conference and the Annual European Safety and Reliability
Conference 2012, PSAM11 ESREL 2012, Helsinki, Finland, 25–29 June 2012; Volume 8, pp. 6052–6061.

66. Stålhane, T.; Johnsen, S.O. Resilience and safety in agile development (Through safescrum). In Proceedings of the Safety and
Reliability—Theory and Applications—Proceedings of the 27th European Safety and Reliability Conference, ESREL 2017, Portoroz,
Slovenia, 18–22 June 2017; pp. 945–954.

67. Nguyen, J.; Dupuis, M. Closing the feedback loop between UX design, software development, security engineering, and
operations. In Proceedings of the 20th Annual Conference on Information Technology Education—SIGITE 2019, Tacoma, WA,
USA, 3–5 October 2019; pp. 93–98.

68. de Vicente Mohino, J.; Higuera, J.B.; Higuera, J.R.B.; Montalvo, J.A.S. The application of a new secure software development life
cycle (S-SDLC) with agile methodologies. Electronics 2019, 8, 1218. [CrossRef]

69. Mougouei, D.; Sani, N.F.M.; Almasi, M.M. S-Scrum : A Secure Methodology for Agile Development of Web Services. World
Comput. Sci. Inf. Technol. J. (WSCIT) 2013, 3, 15–19.

70. Tappenden, A.F.; Huynh, T.; Miller, J.; Geras, A.; Smith, M. Agile Development of Secure Web-Based Applications. Int. J. Inf.
Technol. Web Eng. (IJITWE) 2006, 1, 1–24. [CrossRef]

71. Yu, W.D.; Le, K. Towards a secure software development lifecycle with SQUARE+R. In Proceedings of the International Computer
Software and Applications Conference, Singapore, 9–10 June 2012; pp. 565–570.

72. Ghani, I.; Azham, Z.; Jeong, S.R. Integrating software security into agile-Scrum method. KSII Trans. Internet Inf. Syst. 2014, 8,
646–663. [CrossRef]

73. Fowler, F.M. Navigating Hybrid Scrum Environments; Apress: Sunnyvale, CA, USA, 2019; ISBN 9781484241639.
74. Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Press: New York, NY, USA, 2011.
75. Karim, N.S.A.; Albuolayan, A.; Saba, T.; Rehman, A. The practice of secure software development in SDLC: An investigation

through existing model and a case study. Secur. Commun. Netw. 2016, 9, 5333–5345. [CrossRef]
76. Ansari, M.T.J.; Pandey, D.; Alenezi, M. STORE: Security Threat Oriented Requirements Engineering Methodology. J. King Saud

Univ. Comput. Inf. Sci. 2018, 34, 191–203. [CrossRef]
77. Veracode Secure Coding Best Practices Handbook; Veracode: Burlington, MA, USA, 2021.
78. Tøndel, I.A.; Jaatun, M.G.; Cruzes, D.S.; Moe, N.B. Risk Centric Activities in Secure Software Development in Public Organisations.

Int. J. Secur. Softw. Eng. 2018, 8, 1–30. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/978-3-030-21297-1
http://doi.org/10.3390/electronics8111218
http://doi.org/10.4018/jitwe.2006040101
http://doi.org/10.3837/tiis.2014.02.019
http://doi.org/10.1002/sec.1700
http://doi.org/10.1016/j.jksuci.2018.12.005
http://doi.org/10.4018/IJSSE.2017100101

	Introduction 
	Literature Review 
	Materials and Methods 
	Results 
	Proposed Model for SMEs 
	Discussion 
	Theoretical Implications 
	Practical Implications 
	Limitations 

	Conclusions and Future Work 
	References

