
 

VOLUME XX, 2017 1 

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 

Digital Object Identifier 10.1109/ACCESS.2022.Doi Number 

Protecting Android Devices from Malware 
Attacks: A State-of-the-Art Report of Concepts, 
Modern Learning Models and Challenges 

ESRA CALIK BAYAZIT1, OZGUR KORAY SAHINGOZ2, AND BUKET DOGAN3 
1Computer Engineering Department, Fatih Sultan Mehmet Vakif University, Beyoglu, Istanbul, 34421 Turkey  
2 Computer Engineering Department, Biruni University, Topkapi, Istanbul, 34093, Tukey  
3Department of Computer Engineering Faculty of Technology, Marmara University, Aydinevler, Istanbul, 34854Turkey 

Corresponding author: Esra Calik Bayazit (e-mail: ecalik@ fsm.edu.tr). 

“This work was supported in part by Marmara University Scientific Research Projects Coordination Unit under grant number FDK-2020-10066.”  

ABSTRACT Advancements in microelectronics have increased the popularity of mobile devices like 

cellphones, tablets, e-readers, and PDAs. Android, with its open-source platform, broad device support, 

customizability, and integration with the Google ecosystem, has become the leading operating system for 

mobile devices. While Android's openness brings benefits, it has downsides like a lack of official support, 

fragmentation, complexity, and security risks if not maintained. Malware exploits these vulnerabilities for 

unauthorized actions and data theft. To enhance device security, static and dynamic analysis techniques can 

be employed. However, current attackers are becoming increasingly sophisticated, and they are employing 

packaging, code obfuscation, and encryption techniques to evade detection models. Researchers prefer 

flexible artificial intelligence methods, particularly deep learning models, for detecting and classifying 

malware on Android systems. In this survey study, a detailed literature review was conducted to investigate 

and analyze how deep learning approaches have been applied to malware detection on Android systems. The 

study also provides an overview of the Android architecture, datasets used for deep learning-based detection, 

and open issues that will be studied in the future. 

INDEX TERMS Android, Deep Learning, Malware Detection System, Malware Analysis, Machine 

Learning 

I. INTRODUCTION 

As smart mobile devices continue to capture global interest, 

manufacturers have responded to this demand by developing 

various devices that cater to different status groups. This has 

resulted in a remarkable shift from traditional computers to 

mobile devices, as evidenced in Fig. 1 [1]. The worldwide 

market share of mobile devices has surged tenfold due to 

increasing demand and technological advancements. 

According to the “Digital 2023” report, the number of smart 

mobile devices in use worldwide has reached a staggering 5.3 

billion, with 71.63% of these devices running on the Android 

operating system [2]. Android’s open-source architecture, 

accessibility, and scalability advantages have made it the most 

popular operating system for mobile devices, as shown in Fig. 

2 [3]. Despite its popularity, the Android operating system has 

become a prime target for cyber attackers due to the valuable 

information it contains. Attackers use malicious applications 

that can be uploaded to Google Play, and particularly Android.  

FIGURE 1. Worldwide market share of platforms. 

 

applications that can be downloaded from third-party sources, 

to gain access to users’ systems This has led to an increase in 

the number of applications on Android devices, making it

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3323396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

FIGURE 2.  Market share of operating systems. 

 

 easier for malware to penetrate mobile devices, which, in turn, 

results in many security vulnerabilities. Cyber attackers can 

steal sensitive information from users, damage their devices, 

and send text messages to their contacts. In 2022, there were 

3.48 million downloadable mobile applications, while the total 

number of Android malware was 3.36 million [4]. The number 

of Android malware is on the rise, and therefore, there is a 

need for malware detection and system analysis [5].  

Current Android malware analysis approaches are 

categorized into static analysis, dynamic analysis, and hybrid 

analysis. Static analysis tries to detect Android malware by 

examining some files such as permissions, API calls, byte 

code extracted from the Android Manifest file of the 

application without running the application on the device. 

Therefore, its features are to analyze the semantic information 

of source and byte codes of the application package with 

reverse engineering methods [6]. Due to testing applications 

without running them, static analysis is safe and cost-effective. 

However, they are more vulnerable to code obfuscation and 

code polymorphism [7]. 

Dynamic analysis is a malware detection method that works 

by running malicious code in a real environment. The primary 

benefit of this method is that it identifies dynamic code loading 

and records the application’s behavior during run time [8], [5]. 

It requires a virtual environment to monitor sensitive 

information during execution such as files, processes, 

connection requests, data flow, network traffic, processes. It 

monitors all suspicious requests and actions of malware, 

ensuring detection before it released into the network. This 

approach is time and resource costly but is an effective method 

for malware detection [9]. 

Static and dynamic analysis methods have some advantages 

and disadvantages compared to each other. For example, 

malware writers can pass static analysis with code obfuscation 

techniques, on the other hand dynamic analysis can easily 

catch it. On the other hand, dynamic analysis techniques are 

time costly and have less accuracy in the used classification 

model [9, 10]. Therefore, hybrid analysis which combines 

both static and dynamic analyses is preferred in many 

application domains. However, it also necessitates additional 

deficiencies in terms of feature engineering [11]. 

Artificial intelligence (AI) research has made significant 

progress in recent decades, and it has begun to shape our daily 

lives in every field of the cyber domain [12,13]. Various 

machine learning models, as a subset of artificial intelligence, 

can be used for adding intelligence to the implemented model 

[14]. Recent studies have shown that the focus is shifting from 

machine learning based systems to deep learning-based 

systems implementation due to their better efficiencies, 

especially with the use of larger datasets. Although in the 

literature there are many machines learning-based solutions 

for Android malware detection, in recent years deep learning 

based approaches have gained a huge importance and applied 

in some malware analysis implementations [15-17]. 

In this paper, it is aimed at providing an up-to-date and 

global survey of the Deep Learning-based Android Malware 

Detection implementations that have been published in recent 

years. With this work, not only researchers but also 

practitioners can find most of the background knowledge 

about the topic, which includes current Android malware 

datasets, malware analysis techniques, and deep learning 

algorithms. Although, in the literature, there are some surveys 

[8], [15-20] which examine different learning methods, it is 

seen that the studies are based on traditional machine learning 

models (RF, DT, SVM etc.) with older datasets.  

In this survey, we examined more comprehensive research, 

which is separate from the former ones, with the following 

highlighting features: 

• In this article, the Android architecture, new malware 

targeting Android systems, and malware analysis techniques 

are examined to provide an overview of Android systems and 

to create a framework for researchers. 

• Current studies on deep learning-based malware detection 

in Android systems have been detailed. 

• A comparative table is presented that includes the analysis 

methods, learning models, datasets used, characteristics of 

the dataset, and system performance results in the current 

literature studies examined. 

•  Deep learning models are defined by depicting their 

discriminative features. 

•A comparative table of malware detection approaches is 

shown. 

• A comparative table of current datasets is depicted. 

The remainder of this article is organized as follows: 

Sections 2 and 3 discuss the Android overview and malware 

analysis that are fundamental in an efficient malware detection 

system, respectively. In Section 4, datasets used in the current 

Android malware detection systems in the literature are 

compared; the use of deep learning- based models in Section 

5, current literature studies and their comparison table are 

presented in Section 6. Finally, clarifications for future work 

are drawn in Section 7 and conclusions are given in Section 8. 

 
II. ANDROID OVERVIEW 

This section provides an overview of the structures that make 

up Android systems and provides information on potential 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3323396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

threats to Android systems that are the subject of malware 

analysis. It also introduces the deep learning-based malware 

analysis process, which will help background readers 

understand the content of this article. 

A. ANDROID APPLICATION PACKAGE 

An Android Package Kit (APK) is an archive file in the 

Android system with the “.apk” extension that contains all the 

data and resource files needed to distribute and install 

applications to Android devices. Google Play serves as the 

primary store where users can search for and find their desired 

apps, movies, and shows, offering two million different apps 

and games to a vast number of users worldwide. To provide 

the best experience for specific devices, optimized APKs are 

created and delivered. Before uploading these apps to Google 

Play, the”.apk” archive files are created and then added to the 

store in an executable format after undergoing necessary 

security checks. Although APK files can also be downloaded 

manually from third-party sources, caution should be 

exercised because these files contain all the necessary 

components, and downloading from unknown or unofficial 

sources can pose a security risk. 

FIGURE 3. APK conversion steps. 

 

Although Android is an open-source operating system, the 

source codes of system files are not readily accessible. 

However, it is possible to access all or part of the source codes 

using reverse engineering methods [21]. Once these codes are 

obtained, they can be modified and converted back into APK 

files. Typically, Android applications are written in Java, 

which is then compiled and converted into byte codes. Since 

Android cannot directly execute byte codes, they must first be 

converted into workable codes in the Dalvik virtual machine, 

which is the virtual machine that Android runs on. Once the 

APK conversion steps illustrated in Fig. 3 are completed, 

Android devices can run these codes. 

B. APK FILE STRUCTURE 

An APK file is a compressed file format that contains various 

components, including native libraries, resources, assets, 

certificates, and manifest files and directories. The most 

critical component of this compressed APK file is the 

“AndroidManifest.xml” file, where permissions for access and 

control are declared. Malware detection features are extracted 

from the APK file, which contains all the data and source files 

of the application, making the manifest file a crucial part of the 

process [22]. 

For an app to access resources, system files, and sensors like 

cameras, internet, contacts, and location, it must obtain 

necessary permissions. These permissions are categorized as 

normal and dangerous and are required by all applications. 

Additionally, an APK file must be signed by its creator, using 

the same certificate for updates to take effect. Certificates are 

crucial for ensuring the security of applications. 

Unfortunately, some unofficial providers may certify 

hundreds of developers’ applications with the same signature, 

creating security vulnerabilities in various aspects such as the 

certificate signature. The Android file structure includes 

components such as “AndroidManifest.xml”, Meta-Inf, assets, 

resources. arsc, lib, classes.dex, and res. Fig. 4 displays the 

structure of these components. 

 

 

FIGURE 4. APK file structure. 

 

AndroidManifest.xml The Android Manifest file contains 

the static analysis features of the applications, the package 

name of the application, the application per- missions, etc. 

XML file containing information. It is written in readable 

XML format and converted to binary XML during application 

execution. The AndroidManifest.xml file is the basic 

configuration file that configures the permissions and other 

parameters, used to guarantee the correct execution of 

applications. Permissions are a feature included in the Android 

Manifest file and are often used for malware detection. In this 

respect, permissions in Android systems act as a security 

mechanism that limits the direct access of applications to user 

sensitive data, as well as to resources and actions that are 

important to the system [23] 

meta-inf — Directory containing APK metadata such as 

signature and certificate. 

assets — It is the directory containing the files where the 

assets are kept. 

resources.arsc — It is the file where XML files are 

compiled and put together. File with precompiled resources 

such as strings, colors, or styles. 

lib— There are libraries (like armeabi, x86) needed by the 

application that are not included in the Android SDK. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3323396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

classes.dex— It is a file containing application code in 

Dex file format, where Java codes are compiled into Dalvik 

Byte code. 

res — The directory containing all uncompiled resources” 

resources. arsc” is all resources except files. 

C. ANDROID SYSTEM ARCHITECTURE 

The layers of the Android system, which has a layered system 

architecture, and the components they contain are presented in 

Fig. 5. Android has a customized Linux operating system 

(Linux Kernel) in its lowest layer that communicates with the 

phone hardware. The libraries layer on the Linux kernel 

includes the Web browser engine WebKit, Libc, SQLite 

database, a repository for storing and sharing application data, 

audio and video playback and recording libraries, SSL, 

internet security. In this category, there are Java-based 

libraries offered for application development [24]. 

 

 

FIGURE 5. Android system architecture. 

 

Examples of some core libraries are: 

• android.content which enables messaging between 

applications and their components. 

• android.opengl provides a Java interface to the 

graphics rendering API, 

• android.widget contains a collection of UI 

components such as buttons, labels, list views, 

• android.text renders text-based functions on the 

screen, 

• android.webkit- allows the use of Web browser 

features in applications, 

• android.os provides access to standard operating 

system services, 

• android.view is one of the libraries that provide the 

basis of the user interface. 

Android Runtime offers the Dalvik VM component, which 

is the Java Virtual Machine on which Android applications are 

run. Java-based libraries and application frameworks 

(Application Framework) are in the middle layer.  

Some of the services provided by the Application Layer 

structure serving applications are: 

• Activity Manager: Workload stack checks, 

• Content Providers:  Distributed application data, 

• Resource Manager: Resource access to user interface 

edits, 

• Notifications Manager: Permission to manage 

application notifications, 

• View System: Provides services such as application 

interface settings. 

In the Application Layer, which is the top layer, there is 

software developed using the Android Application 

Programming Interface (API) to interact with the end user. 

Permissions such as sending SMS, location notification, 

reading/writing to external memory requested by applications 

are authorized through the application framework and 

communicate with system resources. For example, to perform 

check-in on Android, at least one of the ACCESS COARSE 

LOCATION or ACCESS FINE LOCATION permissions 

must be requested by the applications. If the users approve 

these permissions, the Location Manager Service, which is 

one of the middle layer application framework components, 

provides location access information. 

D. MALWARE TERMS AND TARGETS 

Many definitions are used to refer to malware, one of which is 

the words “malicious” and” software”, while another is 

defined as code that causes damage by causing the system to 

intentionally change its intended task” [25]. In other words, 

malware is defined as “a general term covering code that 

interferes with the system, such as viruses, Trojans and 

spyware” [26]. By other definition, malware is capable of 

infecting executable code, boot partitions of drives, data, and 

system files, generating excessive traffic that leads to DoS on 

the network; are programs that become memory resident when 

the user executes the file and infect other files that are then 

executed. In vulnerable operating systems, they can take 

control of the system and infect other systems on the network. 

This type of malware program generally affects the 

performance of the system negatively and causes slowdowns. 

Based on the definitions mentioned above; all code that 

poses a risk to device users, data or devices is classified as 

malware. Malware aims to corrupt the Android ecosystem and 

devices with malicious behavior. For this purpose, malware 

categories are updated every day and new ones are added. 

Even though malware may differ in behavior, it does show at 

least one of the targets listed below. 

•Creating a security breach by disrupting the holistic 

behavior of the device, 

•Making device control independent from the user, 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3323396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

•Activating device features independent of use with 

malicious remote access tools, 

•Transferring personal data to other areas by abusing 

consent and intentions, 

•To adversely affect other networks and devices with 

unnecessary commands, 

•To defraud device users. 

Applications downloaded from various sources can 

sometimes become the source of malware behavior, even if 

they do not tend to harm. The applications that cause this are 

the differences in the ways they work due to the framework 

changes. In other words, due to Android operating system 

version differences between devices, malicious software for a 

device may not pose a risk to the Android device using the new 

version. Malware, on the other hand, is any version of an 

Android device or app that could put its users in danger. The 

malware takes advantage of the device vulnerability and 

damage the system through unauthorized access by 

applications. 

E. MALWARE TYPES 

Malware can be installed on devices due to human or system 

vulnerabilities, spreading in the system they participate in, 

keeping the system busy, scaring, stealing, etc. shows typical 

behavioral traits. The similarities or differences between these 

behaviors allow classification of malware behaviors as shown 

in Fig. 6. In addition, classification allows the detection of 

malicious software according to their potential attack behavior 

[16], [27]. The types of malwares described below vary in their 

intended targets and are named according to their behavior. 

 

 

FIGURE 6. Malware types and behavior. 

 

Ransomware is an ever-evolving strain of malware 

designed to encrypt files on a device, rendering files and 

systems based on them unusable. Malware actors demand a 

ransom for decryption, threatening to sell or leak personal data 

or authentication information if the ransom is not paid [27]. 

These types of software pose an access problem through social 

engineering methods, such as sending phishing emails or 

hijacking that system to distribute the malware, which can 

occur when downloading any file to an unknown recipient. 

Ransomware has been infecting software installed on many 

devices, especially mobile devices, in recent years. 

Ransomware harms Android systems by targeting them [28]. 

Ransomware types that affect Android systems are generally 

categorized as lock screen, crypto, and PIN locker. 

Ransomware, which affects the lock screen, prevents device 

use with an image that fills the screen completely. Crypto 

ransomware, on the other hand, is a threat that restricts the 

user’s file access. The PIN locker targets Android devices and 

changes access codes to lock users. In order not to be affected 

by the damage caused by this software, it is necessary to use 

learning-based malware detection systems by keeping the 

operating systems patched and up to date.  

Botnet is a type of attack in which the attacker spreads 

malware to many devices, breaching their security and taking 

control of these devices, remotely controlling all the infected 

devices. It is quite easy to attack the operating systems of 

Android devices because they are open source. The Android 

botnet is one of the most important threats to devices. Android 

botnets are a group of compromised smart devices controlled 

by remote bot administrators via Command and Control 

(C&C) servers [29]. The internet permission is the one most 

needed and requested by all applications, be it good or 

malicious. In second place is the most READ PRONE STATE 

permission, which is requested twice by malicious or benign 

applications. Apart from these permissions, the most requested 

SMS group permission, which includes SEND SMS, 

RECEIVE SMS, WRITE SMS and READ SMS, is requested 

in Botnet specific attacks [30].  

Trojan is a malware that acts to provide functions that 

benefit the user, but instead allows a malware program to be 

installed on devices. Also, a Trojan has a user dialog that will 

be constantly activated [31]. Trojans are also known as 

software that copies and abuses SMS by following the 

notifications of other applications on the device. It is used to 

receive messages from the user from other applications and 

send emails through applications that require two permissions, 

“Notification Access” and “Internet” [32]. The required 

permissions for the applications need to be verified. The lack 

of validation makes the detection and blocking of Trojans 

problematic. For example, more than half of the apps that 

require the “READ SMS” permission is classified as 

malicious, while only some of the apps that require the same 

permission are benign. Configuration of Android system 

notifications is app controlled. Android device developers 

allow the disabling of all or some notifications of the 

applications to be customized without restriction. However, 

when configuring these notifications, restrictions may need to 

be put in place to track activities that may be caused by 

malware. For example, turning off SMS alerts for banking 

applications will also prevent uninformed money transfers and 

suspicious transaction notifications that may be caused by 

malware actions.  

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3323396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

Adware is a type of malware application that targets user 

privacy and security. This malware harms the user by taking 

screenshots of them, stealing their data, sending them to a 

remote server, or forcibly displaying advertisements in the 

notification bar. The adware can hack the speaker and camera 

of the smartphone. The main purposes of adware are to collect 

the data of the websites visited by the user, display customized 

advertisements on the computer, redirect them to the websites, 

and collect marketing data. The aggressive adware of adware 

attacks can create alternative paths on the user’s screen, 

change the default internet browser, internet settings, search 

engine, and send meaningless notifications. This adware can 

exploit vulnerabilities through applications downloaded from 

unofficial sources [33]. 

Backdoor is a software that provides the basis for the 

installation structure of other malicious software on the 

devices that are exposed to the attack. The methods that allow 

remote access to that computer by a person who bypasses the 

normal identity verification processes or is aware of this 

established structure, which cannot be found with ordinary 

examinations on the computer, is called a backdoor. It is a type 

of malware that provides a backdoor on victim devices, paving 

the way for other malware. The backdoor virus hides and runs 

in the background, making it extremely difficult to detect. This 

works by taking advantage of the DoS attack. Installing 

several malware apps containing hidden codes on mobile 

devices leads to backdoor attacks [34]. 

A worm is a type of software program that produces copies 

and spreads them over a network. Sharing features such as 

music, videos, and photos via smart mobile devices or 

providing users with games, etc. By sending benign-appearing 

files through applications and directing such files to download, 

attackers exploit such vulnerabilities to autonomously 

propagate worms. When users click on the sent link, the worm 

infects the device and spreads by sending the same message to 

the people on the infected device and tries to infect other 

devices. Worm attacks can cause minor or considerable 

damage to a single user, depending on what the worm is doing. 

This multiplies proportionally to the number of users who 

clicked on the link embedded in the message [35]. 

Scareware is software that encourages the user to buy by 

scaring them with unrealistic scenarios. It is done to intimidate 

users by trapping them on phishing web- sites. Scareware is 

malware that allows the presence of security-threatening 

elements, such as “against malware programs” or “has 

malware on the device”, to be down- loaded onto the device 

by presenting legitimate-looking applications. In addition, 

they harm the system by deceptively presenting many 

methods, such as deceptive pop-up notifications, fake progress 

bars, and fake filtering. Also, scareware can cause harm by 

displaying forged documents that are not on the device or 

having regulations that are inconsistent with the operating 

framework [36]. 

Cryptominers is called attackers infecting computers with 

viruses using hardware that does not belong to them or 

deceiving their victims through mining sites. Most of this 

malware, which have gained popularity recently, are classified 

as potentially unwanted applications [37]. 

III. ANDROID MALWARE ANALYSIS TECHNIQUES 

Android malware analysis is the process of understanding its 

code, determining its behavior and functionality, and 

determining whether it is malicious or not. There are various 

methods used for this purpose. These methods are categorized 

as static analysis, dynamic analysis, and hybrid analysis, 

which is a combination of these two approaches [38], [39]. 

It is necessary to perform classification processes according 

to the data obtained by performing malicious software analysis 

of applications. For this reason, feature extraction processes 

are performed first for software analysis of Android 

applications, which naturally contain many features. The 

process of obtaining the properties requires reverse 

engineering. For learning-based models, the results obtained 

by reverse engineering are important. Because the amount of 

data to be obtained from APKs for analysis purposes is directly 

proportional to the features to be used in learning models. 

While Android APKs are input for reverse engineering, the 

output is usually raw codes, APIs, permissions, purposes 

extracted from various files. The files obtained from the APK 

file by reverse engineering are classified in terms of containing 

static or dynamic features. Extracted features; permissions and 

intents are expressed as static properties, while network flow, 

system calls etc. referred to as dynamic properties. The 

features extracted from the file according to the analysis type 

shown in Fig. 7 are used to detect malware in learning-based 

systems and to give effective results in classification [10]. 

 

 

FIGURE 7. Feature extraction methods for static and dynamic analysis 
types. 

 

Intrusion detection comes automatically because of training 

static, dynamic, and hybrid analysis features by using learning 

algorithms. Thus, it facilitates the detection of attacks that 

cannot be detected manually. Due to the diversity of the 

extracted information, the features that need to be used to use 

the categorized data in learning-based attack detection usually 

need to be transformed into a vectorized representation. In 

studies in the literature, APKs are processed and analyzed 

first, and then processing is carried out on the information 

extracted from the applications [15], [20], [38]. 

A. STATIC ANAYSIS 

Static analysis is a safe method for detecting malware that 

doesn’t require running an application, ensuring that the 

mobile device remains unaffected by malicious code. This is 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3323396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

just one of the benefits of static analysis. At its simplest, static 

analysis can gather metadata such as the filename, type, and 

size of the malware, which can provide insights into its nature, 

without requiring the code to be viewed. Additionally, MD5 

check sums or hashes can be used to compare malware against 

a database of known malicious software. This approach offers 

a quick and cost-effective means of identifying harmful 

features and code in an application before it runs [40], [20]. 

Below, we describe some of the methods used in the static 

analysis approach to detect malware, including code analysis, 

API calls, and permissions. 

1) METHODS BASED ON MANIFEST ANALYSIS 

The AndroidManifest.xml file is an essential component of the 

Android app development process. It is a configuration file 

that contains information on the structure of the application, 

its components, the rights that are utilized, and the libraries 

that are necessary. It contains properties that can be used for 

static analysis. With reverse engineering methods, the 

permission properties are used by bringing the permission 

properties into binary property vector form by means of a 

parser from the Android- Manifest.xml file, which contains 

the list of all permissions requested by the application [41]. It 

can be achieved by detecting risky permissions and keywords 

and examining target applications. It can be determined by a 

method based on the comparison of the MD5 cryptography 

hash values of the applications and the suspicion levels 

assigned to the keywords [42]. These levels of suspicion are 

the permissions requested by applications as codes containing 

permissions such as the internet, sending SMS, location 

access, and writing to a file. These permissions are classified 

as normal, dangerous, signature, and special permission levels. 

Normal permissions are low-level user secrets or permissions 

that affect other applications; dangerous permissions require 

access to user data and affect the operation of other 

applications; signature permissions are permissions signed by 

the same certificate as the permission contained in the 

application; and special permissions are sensitive permissions 

that require authorization and require intents that specify 

permission to the manifest file, requesting user authorization 

[43]. 

2) METHODS BASED ON CODE ANALYSIS 

Android, a Dalvik registry-based virtual machine, and these 

applications are developed in Java, compiled into Java 

bytecode, and then translated into Dalvik bytecode. With the 

help of byte-code analysis, application behavior analysis, 

control and data flow analysis, and harmful functions 

performed by malicious applications are detected. The 

analysis of these functions can be done by running and 

debugging line by line, and by searching for specific 

instruction sets, code analysis can be done. However, the most 

important factor in code analysis is reverse engineering 

because of the DLLs, libraries etc. used by the software [54]. 

Source code conversion is an important part of code analysis. 

The better the source code conversion is done, the better the 

code analysis is at figuring out malicious software that has 

been analyzed and packaged or code obfuscated. 

B. DYNAMIC ANALYSIS 

Dynamic analysis requires executing the application in an 

isolated environment to observe application behavior. Unlike 

static analysis, dynamic analysis allows the natural behavior 

of malware to be revealed because of the code execution 

processes. This natural behavior is observed by establishing a 

virtual environment so that it is not included in other systems; 

therefore, it requires cost. In this virtual environment, 

monitoring network activities, monitoring file changes, and 

determining system calls are performed. Therefore, the 

functionalities of the actions performed by the analyzed 

malware require it to be a behavior-based system [20], [45]. 

The methods used for malware detection in the dynamic 

analysis approach, including system calls and monitoring of 

user and kernel level system behavior, are explained below. 

1) SYSTEM CALLS ANALYSIS 

Android apps interact with the operating system through 

system calls. It is an analysis technique with data obtained by 

recording the frequency of clicks, voice interactions, and taps 

that trigger system calls. When malware makes a system call 

while it is executing, it intercepts with the hook method to save 

the function’s name and input parameters. While this method 

is called Function Hooking, the method that pro- vides 

information about the operation of the malware, in other 

words, that keeps the sequence of system calls and monitors 

the results is called Function Call Traces [46]. Also, Android 

systems is a mobile operating system whose system calls are 

an interface provided by the Linux kernel. Because Linux 

kernel system calls are version independent, they are more 

resistant to avoidance strategies than API calls. 

2) USER INTERACTION ANALYSIS 

Various activities related to malware, including behavioral 

analysis of the malware, registry, file system, and network, are 

constantly monitored. When malware runs as a process, it can 

perform various operations such as loading images and 

creating files in the Registry. File system behaviors of 

malware can be identified by analyzing activities such as 

reading, creating, and rewriting system files. Additionally, 

malware behavior can be monitored by working as a fake 

DNS, HTTP, or FTP server to analyze network traffic [47]. 

Information related to API-level calls is also monitored at the 

User-Space Level. If malware software is detected in user 

mode, the infection can be easily removed by undoing the 

changes or completely reformatting the system. The kernel, on 

the other hand, is responsible for managing and allocating 

system resources as part of the operating system. To monitor 

malware behavior in the kernel space, the kernel execution 

traces are analyzed [47], [48]. The kernel space component 

registers itself with the operating system to track the existence 

of functions such as processes, registries, and files. 

3) NETWORK TRAFFIC ANALYSIS 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3323396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

Malware requests to connect to and/or request commands 

from the server are often periodically. For example, the most 

known Plankton software sends a packet every four seconds 

[49]. Therefore, the average number of packets sent and 

received per stream, average packet size, and average bytes 

size application run time are generally low and stable for 

malware. However, since malware makes requests 

periodically, it increases network traffic because it is not so 

periodic in normal internet surfing. Although network traffic 

analysis, which is frequently used in dynamic analysis 

technique, is costly in terms of time, it provides high 

performance in detecting malware apps interact with the 

operating system through system calls. It is an analysis 

technique with data obtained by recording the frequency of 

clicks, voice interactions, and taps that trigger system calls. 

When malware makes a system call while it is executing, it 

intercepts with the hook method to save the function’s name 

and input parameters. While this method is called Function 

Hooking, the method that provides information about the 

operation of the malware, in other words, that keeps the 

sequence of system calls and monitors the results is called 

Function Call Traces [46]. Also, Android systems is a mobile 

operating system whose system calls are an interface provided 

by the Linux kernel. Because Linux kernel system calls are 

version independent, they are more resistant to avoidance 

strategies than API calls. 

C. HYBRID ANALYSIS 

Hybrid analysis is an analysis approach that is a combination 

of static and dynamic analysis methods. Static and dynamic 

analysis techniques have advantages and dis- advantages 

compared to each other. For example, while malicious 

software can often avoid static analysis techniques with code 

obfuscation methods, it can be detected more easily at 

execution time with dynamic analysis techniques [11]. The 

hybrid analysis technique, on the other hand, increases the 

detection accuracy since it is designed to benefit from both 

static and dynamic analysis, but takes longer than the run-time 

dynamic analysis technique because it is computationally 

intensive. In other words, it is an analysis method that works 

collaboratively with the static analysis technique to detect the 

presence of malware behavior with the data obtained during 

the execution of the application [50]. 

D. STATIC AND DYNAMIC ANALYSIS FOR DETECTION 
APPROACHES 

Static, dynamic and hybrid analysis are used to detect malware 

attacks and prevent system infiltration. Attackers use multiple 

techniques (e.g., bundling, code obfuscation, and encryption) 

to evade static analysis (signature-based) and dynamic 

analysis (behavior-based) detection. Static analysis is a 

passive approach that extracts features from the APK file 

without running the application. This methodology is cost-

effective in terms of resources and time as detection takes 

place before the application is executed. 

Dynamic analysis is an active approach; it describes attacks 

in the real environment. Permissions, API calls,.dex files, and 

metadata for transaction codes are examples of static analysis 

features, whereas dynamic analysis includes network traffic, 

battery usage, CPU usage, and IP address opcodes. Hybrid 

analysis includes the features of both static and dynamic 

analysis methods. Generally, there are two categories of static 

analysis: Op-code analysis and manifest API call analysis. In 

Op-Code analysis, malware and benign applications are 

classified using machine learning algorithms by removing N-

Gram Opcodes from the dataset. In manifest and API call 

analysis, features such as permissions and purposes of the 

applications are obtained from the manifest file and used [51]. 

The dynamic detection category consists of two categories: in-

the-box analysis and out of the box analysis [19]. In the box 

analysis, data collection and analysis are treated at the same 

level as malware. This approach allows capturing data at the 

operating system level, accessing memory architecture, 

libraries, APIs, and other methods. But it also makes critical 

data vulnerable to attacks. In the out-of-the-box analysis 

approach, it is done by considering the security of the system. 

A sandbox is created, and analysis behavior pattern is found to 

fend off the attack. 

When the static and dynamic analysis mechanisms are 

compared, the dynamic analysis mechanism performs better 

than the static analysis mechanism in detecting attacks using 

the code hiding technique since the application is analyzed at 

run time. The static analysis mechanism, on the other hand, is 

more efficient for detecting previously known attacks. The 

comparison of the analysis methods, which is about the 

superiority of the analysis methods over each other, is 

presented in Fig. 8.  

 

 

FIGURE 8. Comparison of analysis approaches. 

 

Malware detection systems are generally known to be host-

based or network-based [19]. In a host-based system with the 

detection tool in the system itself, malware activities occurring 

in the system can be well analyzed. However, it is less able to 

protect the system against external attacks. They are easy 

targets for attackers because they are in the system itself. The 

network-based detection system, on the other hand, can access 

the entire network and system to which the computer is 

connected. However, in the network-based detection 

mechanism, the details of malware activities occurring at the 

core level of the system are hidden, so they cannot be 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3323396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

analyzed. In addition, it is more costly because it requires more 

software and hardware resources. A network-based detection 

system fails to detect previously unknown attacks. The goal of 

detection system mechanisms is to cut down on the number of 

false alarms that happen during malware analysis and 

detection. 

E. ANALYSIS DETECTION SYSTEMS 

In this survey study, static, dynamic, and hybrid detection 

approaches used for the detection and prevention of malware 

in the literature are mentioned. Hybrid analysis tools, which 

are a combination of static analysis-based, dynamic-based 

analysis that can detect malware activities at run-time, and a 

combination of these analysis methods, are offered. These 

tools, called systems, detect malware at a low alert level by 

using features extracted from applications according to the 

analysis method. Some examples of intrusion detection 

systems in the literature are shown below to give researchers 

a framework to work with. 
TABLE I 

ANALYSIS DETECTION SYSTEMS 

Analysis 

Approach 

Analysis  

Method 
Source 

Taintdroid [64] Dynamic Google Play Store 

Apptrace [65] Dynamic Google Play Store, F-Droid 

Artist [66] Dynamic Google Play Store 
Flowdroid [6] Static Google Play Store 

Droidsafe [67] Static Google Play Store 

Amandroid [68] Static Google Play Store, AMD Dataset 
Cuckoodroid [69] Hybrid Google Play Store 

Flowintent [70] Hybrid 
Drebin Dataset, Virusshare, Google 

Play Store, Baidu App Market 

 

TaintDroid is a detection system that monitors how third-

party applications downloaded to the Android system access 

and manipulate users’ personal data [52]. 

AppTrace is to establish the relationship between the 

behavior of the user and the codes executed by listing the 

activities and services declared in the Android-Manifest [65]. 

ARTist is a compiler-based application analysis detection 

system that does not depend on Android operating system 

changes and works only at the application layer [54]. 

FlowDroid, it is a detection system that offers analysis with 

context, flow, space, and object sensitivity by handling 

Android-initiated back calls [6]. 

DroidSafe is an application analytic detection system that 

uses API calls to analyze sensitive information flow in 

Android applications [55]. 

Amandroid, it is a detection system that performs data 

flow, data dependency and inter-component communication 

activities analysis for all objects in the Android application 

component [56]. 

CuckooDroid is a hybrid detection and classification 

system, which is a combination of signature detection module 

as static analysis and abnormal behavior detection module as 

dynamic analysis [57]. 

FlowIntent, it is a detection system designed to detect non-

functional transmissions at both the software and network 

level by automatically identifying suspicious transmissions 

from application visual interfaces. It is included in the hybrid 

analysis technique in terms of application inspector and traffic 

analyzer methods [58]. 

The methods used by the detection systems, whose 

descriptions are given above, to detect malicious software by 

running applications, comparing their signatures, or using both 

methods, and testing resources as datasets are summarized in 

Table I. 

IV. DATASETS 

Android malware detection is one of the areas that researchers 

have focused on in recent years. datasets of applications 

collected from various sources were created to evaluate 

technical approaches to malware analysis. datasets created 

with static or dynamic features obtained from Android 

applications differ according to the way the good or malicious 

software they contain is collected or brought together from 

various sources, and the features they contain. The current 

datasets from the literature that enable researchers to develop 

and test detection systems according to their characteristics are 

explained below. 

The CICMalMem2022 dataset is a balanced dataset 

created for the detection of Spyware, Ransomware and Trojan 

malware hidden in memory. There are a total of 58,596 

records in the dataset, where each malware’s families are 

included. The generated dataset uses the debug mode of 

memory dumps [59].  

CICMalDroid2020 is a new dataset created by collecting 

more than 17,341 Android samples collected from Contagio 

security blog, VirusTotal, MalDozer, AMD and other datasets. 

The analysis results of 13,077 were obtained successfully 

according to the analysis results of the samples obtained by 

collecting 17,341 APKs. It consists of static and dynamic data 

belonging to five different Android application categories. 

The dataset, which includes samples collected from December 

2017 to December 2018, consists of five different categories: 

Banking Malware, Adware, Mobile Riskware, SMS Malware, 

and benign. All APK files are collected and executed using 

CopperDroid. Runtime behaviors are recorded in log files and 

divided into groups according to static, dynamic, and net- 

work traffic behaviors monitored during analysis according to 

output analysis results. Statically extracted information, 

intentions; services and permits; frequency numbers for 

different file types; sensitive API calls and obfuscation events; 

system calls, binding calls, and composite behaviors; 

permanently observed behaviors; and PCAP of all network 

traffic captured during analysis. The CICAndMalDroid2020 

dataset contains a total of 17,341 APK files belonging to the 

five different categories mentioned above. In addition, three 

CSV files are presented in this dataset. These are for 11,598 

APK files belonging to five categories; firstly, it is the csv file 

that contains the frequencies of binders, system calls and 

composite behaviors and offers 470 features, and secondly, it 

is the csv file of system calls that offers 139 features. The 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3323396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

dataset offers 50,621 csv files that contain all the properties 

vectors of these APK files, such as intents, permissions, 

sensitive APIs, services [60]. 

The CICAndMal2020 dataset is a new dataset containing 

200,000 benign and 200,000 malware samples with 14 

malware categories and 191 malware families, with a total of 

400,000 Android applications. These 14 categories are: 

Including adware, backdoor, file infector, no categories, 

Potentially Unwanted Apps (PUA), ransomware, riskware, 

scareware, trojan, trojan banker, trojan reducer, trojan SMS, 

trojan spy, and zero-day. Benign applications were collected 

from the Androzoo dataset, while malware applications were 

obtained in cooperation with the Canadian Center for Cyber 

Security (CCCS). VirusTotal was used to label the malware 

dataset. The classification of malware families is divided into 

eight categories: media, data collection, hardware, internet 

connection, actions-events, antivirus, C&C, storage, and 

settings. This dataset contains static and dynamic analysis data 

[51]. The features extracted from the AndroidManifest.xml 

file as static analysis features are Activities, Broad- cast 

Receivers and Provider, Metadata, Permissions, System 

Features (such as camera and internet). For dynamic analysis, 

six categories of features are extracted: Memory, API, 

Network, Battery, Logcat, Process [62]. 

The InvesAndMal2019 [51] dataset, which includes static 

and dynamic features, includes 426 malware and 5,065 benign 

labeled samples divided into four categories: Ransomware, 

Adware, SMS Malware, Scareware. There are family types 

belonging to each category. For example, it includes family 

kinds in other categories such as Downgin family, Ewind 

family belonging to the Adware category. It is presented as the 

second part of the CICAndMal2017 [63] dataset, which 

includes more than 10,854 samples created by combining 

benign samples collected from Google play and malicious 

samples collected from various sources, published in 2015, 

2016, 2017. The InvesAndMal2019 dataset was created by 

expanding the 80 network flows contained in the 

InvesAndMal2019 dataset was created by expanding the 80 

network flows contained in the CICAndMal2017 dataset, by 

combining API calls with sequential relations of API calls. 

This dataset has discrete and continuous features. In the 

CICAndMal2017 dataset, continuous features are logs, 

network traffic and API calls, and discrete features are 

permissions, battery usage, memory dumps and network. 

The AMD dataset, which contains 24,553 malwares 

belonging to 71 malware families, consists of adware, 

backdoor software, ransomware, hacking tools and different 

types of trojans developed between 2010 and 2016. There is 

no benign example of AMD. The Web page of the dataset 

contains detailed information about the characteristics of the 

malware families in the dataset [64]. 

AndroZoo is one of the largest datasets of Android apps. It 

contains 17,188,349 different APKs from applications 

analyzed as malicious by antivirus programs. In addition, each 

application is scanned by more than ten antivirus programs 

and the results are reported [65]. 

The DroidCollector is dataset collected by collecting 

traffic network data con- taining data from the Drebin project. 

DroidCollector consists of the traffic data obtained from the 

control unit, data storage unit, and traffic generation and 

collection units of network traffic packets on a per-minute 

basis [66]. 

The Drebin dataset contains 5,560 malware applications 

collected between August 2010 and October 2012. Drebin 

dataset also includes samples from the Genome dataset. 5,560 

malware applications are divided into 179 families by the 

publishers of the Drebin dataset [67]. 

The GENOM dataset is an outdated dataset due to the 

limited resources created by the Android Malware Genome 

Project and discontinued due to the graduation of the students 

participating in the project. It is available as a systematically 

characterized dataset created by collecting 1,260 malware 

samples, covering most of the existing Android malware 

families, from its initial release in August 2010 until late 

October 2011 [33]. 

Android datasets in the literature are presented in Table II 

from 2020 to the past. The table includes the publication years 

of these datasets, the size of the datasets, the family/category 

information in the dataset, the number of features, the types of 

feature analysis, and literature examples of the analyzed 

datasets. 

V. DEEP LEARNING MODELS 

Since mobile devices have become an indispensable element 

of daily life, the value of detecting malicious software has 

become much more important in terms of personal data. Given 

the prevalence of Android systems on mobile platforms and 

the threats to this issue, effective malware detection is needed 

to support the development of reliable detection and 

classification tools. 

The rapid growth of Android malware applications and 

technologies to evade detection systems is rendering 

traditional defenses ineffective. Deep learning has become a 

prominent research area in recent years, taking place in almost 

every field with its strong feature abstraction ability. The 

limited capabilities of machine learning are limiting emerging 

malware detection systems. First, the amount of data 

increasing day by day requires the system features to be 

processed and used in the most functional way. Deep Learning 

algorithms are algorithms that can give the best results with 

large amounts of data. On the other hand, machine learning 

algorithms, which can now be described as traditional, yield 

results with fewer data points [68]. However, this situation is 

not at a level to meet today’s needs because the amount of data 

is increasing day by day. While deep learning algorithms try 

to extract features from the data automatically, in machine 

learning, distinctive features are determined and given to the 

system. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3323396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

TABLE II 

COMPRESSION OF DATASETS 

Dataset Year Size Contents Category Feature Type 
Analysis 

Method 
Ref 

CICMalMem2022  2022 58,596 
Family 

&Category 

3 Malware 

Categories and 
Benign 

Memory Dumps 

It is balanced, with 

half of the memory dumps 
being malicious and the 

another half being safe. 

Dynamic [59] 

CICMalDroid2020 2020 13,077 Category 
4 Malware 
Categories and 

Benign 

11,598 APK and 50,621 Extracted 
Feature (static information, such as 

intent actions, permissions,intent 

consts, files, method tags, sensitive 
APIs, services, packages, receivers, 

etc.) 

Static & 

Dynamic 
[60] 

CICMalDroid2020 2020 400,000 
Family 

&Category 

14 Malware 
Categories and 

191 Malware 

Families 

365 Static Features (Activities, API 
Calls, Intent, etc.) and 141 Dynamic 

Features (Memory, API, Network 

Flows, etc.) 

Static & 

Dynamic 
[61] 

InvesAndMal2019 2019 5,491 
Family 

&Category 

14 Malware 
Categories and 

42 Malware 

Families 

8115 Static Feature (Permissions, 

API Calls, Intent, etc.) and 84 

Dynamic Features (Network Flows, 
Battery States, Log States, Packages, 

Process Logs, etc.) 

Static & 

Dynamic 
[74] 

AMD 2017 24,650 Family 
71 Malware 
Families 

24,553 APK Static [70] 

AndroZoo 2017 17,367,766 Family 

AndroZoo is a 

growing 
collection of 

Android apps 

17,362,964 APK Static  [65] 

DroidCollector 2016 
150,099 Benign 
196,760 Malware 

Applications 

Family 
797 Malware 

Families 

Traffic Data, 683.4 GB 

Benign,1,062.9 GB Malware 
Dynamic [66] 

Drebin 2014 5,560 Family 
179 Malware 
Families 

123,453 APK (Permissions, Intents, 
API Calls and Network Addresses) 

Static [67] 

MalGenom 2012 1,260 Family 
49 Malware 

Families 

215 Features Extracted from 1,260 

APK (Permissions, API Calls, 
Manifest Permission, Intent) 

Static [33] 

 

Malware applications in Android systems have become a 

serious threat to users, researchers have developed effective 

approaches in this area. Although there are studies involving 

Android malware detection systems in the literature, 

researchers need an up-to-date and comprehensive survey 

based on deep learning-based Android malware analysis. In 

this survey, a literature review focusing on deep learning 

approaches was conducted, and interests, datasets, and trends 

related to deep learning-based Android malware analysis were 

analyzed. 

Artificial Intelligence (AI) applications, which have made 

great progress in the last decade, continue to develop rapidly. 

Deep learning, on the other hand, is a subset of techniques in 

artificial intelligence that use neural network to extract 

patterns from data [69]. In recent years, deep learning has 

often been applied to malware analysis. Different types of 

deep learning algorithms such as convolutional neural 

networks (CNN), recurrent neural networks (RNN), and feed-

forward neural networks are implemented in malware analysis 

for various use cases such as API calls, permissions, intents, 

HTTP traffic, and network behavior. Deep learning algorithms 

are divided into three categories: supervised, semi-supervised, 

and unsupervised according to the form of the learning process 

[69].  

A. SUPERVISED DEEP LEARNING 

It is trained using labeled datasets with inputs and expected 

outputs. Supervised deep learning algorithms are structures 

that teach to apply it to unforeseen situations by analyzing 

training data, producing an inference function for mapping 

unknown new state data. It includes Multi-Layer Perceptron 

(MLP), Convolutional Neural Networks (CNN), Recurrent 

Neural Networks (RNN), Long Short-Term Memory 

Algorithm (LSTM). 

Multi-Layer Perceptron’s (MLP) are feed-forward 

models that have at least three or more layers and multiple 

perceptron. They are structures that fully connect the neural 

network by connecting each neuron in the layer to each neuron 

in the next layer, usually using non-linear activation functions 

in the hidden layers, the output of each layer being the input 

of the next layer, and the output layer at the end. The output 

layer processes the data from the hidden layers and determines 

the output of the network. MLP is especially preferred in 

classification and generalization situations [71]. 

Recurrent Neural Networks (RNN) outperform many 

related statistical models, such as recurrent neural network 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3323396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

latent Markov models, as the Input data is time-ordered data. 

Other deep learning methods accept a fixed size vector as input 

and produce a fixed size vector as output. The feed forward 

RNN architecture is called “recurrent” [72]. This is because 

for each element of an array it performs the same task again 

based on previous outputs. 

Long short-term memory (LSTM) is an RNN-based deep 

learning method. It has a learning architecture that can 

remember long-term dependencies at random intervals. It is a 

very successful method, especially in analyzing data that 

comes in order according to time or events with a certain 

relationship [73]. LSTM is a modified RNN network proposed 

to learn long-range dependencies in time-varying models. In 

general, LSTM is a subject that includes gradient-based 

learning methods of artificial neural networks and back 

propagation training. Exploding gradients are (exploding 

gradients - Exploding gradient problem in machine learning) 

a quadratic recurrent neural network that solves the problem 

[74] when large error gradients accumulate and cause huge 

updates in neural network model weights during training. 

Bidirectional Long Short-Term Memory (BiLSTM) 

model is a bidirectional structure created using LSTM. These 

networks run inputs from the past to the future and from the 

future to the past [75]. With this approach, BiLSTM goes 

backwards and preserves information from future-related 

situations. 

Convolutional Neural Network (CNN) is the most 

preferred type of super- vised Deep learning in computer 

image recognition. CNN has multiple layers that process and 

extract important features from the image. CNN consists of 

four basic steps. The Pooling Layer uses the pooling process 

to sample the output of the previous convolutional layer to 

reduce the effect of small position shift [76]. 

B. UNSUPERVISED DEEP LEARNING 

Unsupervised Deep Learning is trained using datasets that do 

not have a specific structure. It includes Restricted Boltzmann 

Machines (RBM), Deep Auto Encoders (DAE) and Deep 

Belief Networks (DBN). 

Restricted Boltzmann Machine (RBM) is a network 

structure consisting of two layers: input (visible) and hidden. 

Although neurons in the input layer relate to neurons in the 

hidden layer, neurons in the same layer are not connected to 

each other. This structure is hence called the constrained 

Boltzmann machine. It randomly decides whether to transmit 

the inputs calculated in each neuron to the next neuron. This 

algorithm is a network that performs classification, feature 

detection and prediction calculations by predicting the 

probability distribution on the inputs [77]. 

Auto Encoder (AE) feed-forward networks are inefficient 

for complex multidimensional input definitions. The deep auto 

encoder (DAE) structure, which is another type of artificial 

neural network, was created by developing the functional 

structures of feed-forward networks. DAE provides effective 

feature extraction for learning by reducing unclassified and 

unlabeled multidimensional input data. DAE networks consist 

of encoder, decoder, and hidden layer structures [78]. 

Deep Belief Networks (DBN) are a special type of deep 

networks, and they are formed by training the superimposed 

RBM layers in two stages. The DBN, which is formed by 

connecting more than one RBM in a row, is learned by training 

the RBMs that make up its structure, respectively. In this way, 

a common probability distribution is modeled between the 

data applied to the input and the hidden layer in between [69]. 

C. SEMI-SUPERVISED DEEP LEARNING 

Semi-supervised learning is a combination of the features of 

supervised and unsupervised learning algorithms; It includes 

algorithms in which the number of labeled data is lower in the 

training data, but there is more unlabeled data, and the 

algorithms are executed without providing the complete set of 

rules. In other words, semi-supervised learning is a learning 

model that represents a middle class between unsupervised 

learning (without labeled training data) and supervised 

learning (with labeled training data). Learning accuracy can 

typically be increased in this model. Algorithms working in 

this structure are Generative Adversarial Networks (GAN) 

and Variational AutoEncoder (VAE). 

Unlike other machine learning algorithms, the Generative 

Adversarial Networks (GAN) algorithm has the ability to 

produce as well as learn. The purpose of the algorithm is to 

train two models simultaneously. These two models consist of 

the generating model and the discriminant model, which 

provide data distribution. The discriminant model oversees 

making sure that the data from the generative model is as 

accurate as possible [69]. 

Variational Autoencoders (VAE) are algorithms that 

generate highly realistic pieces of content of various types, 

such as deep generative models, images, texts, and sounds, 

based on well-designed network architectures and intelligent 

training techniques with large amounts of data. It is an 

architecture that has both an encoder and a decoder and is 

trained to make the difference between the encoded data and 

the original data as small as possible [79]. 

VI. LITERATURE REVIEW 

Recently, there has been significant research on Android 

malware detection using deep learning techniques. This 

section aims to summarize the relevant studies and provide a 

detailed comparison table of their features. Table 3 provides 

detailed information about each study, including publication 

year, dataset and algorithms used, accuracy rates, 

environment, method, and platform. 

Kim et al. [80] proposed a malware detection system called 

MAPAS, which efficiently uses system resources. MAPAS 

analyzes the behavior of malicious applications using API call 

graphs and the CNN model to explore the common features of 

API call graphs of malware. The study compared MAPAS and 

the Android malware detection approach called MaMaDroid 

in terms of memory usage, classification speed, and accuracy. 

Utku [81] proposed LSTM based detection systems by 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3323396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

analyzing network traffic on mobile applications and 

comparing them with NB, RF, SVM, MLP, CNN, RNN, and 

GRU algorithms. The developed LSTM-based deep learning 

model has been more successful than the other proposed 

methods with a 95% accuracy rate. In the study, 10 features 

of 7845 applications obtained from pcap files of 4704 benign 

and 3141 malicious applications obtained from the 

DroidCollector project were used. 

Fallah and Bidgoly [82] proposed a method based on the 

LSTM algorithm for malware detection, classification, and 

new and invisible malware families. In the proposed study, the 

analysis of network traffic data containing dynamic features 

was carried out on the CICAndMal2017 dataset. In the study, 

it was detected with an accuracy rate of 99.96\% immediately 

after capturing 50 network traffic flows, and an accuracy rate 

of 80% was obtained in the detection of new malware. 

Xing et al., [83] proposed the autoencoder method to 

analyze a gray-scale image representation of the malware 

using dimensionality reduction features. In the study, the 

dataset obtained from categories such as office, video, gaming, 

finance, photography, and reading, collected from Google 

Store and VirusShare, with benign and malicious software, 

was used. When the proposed AE model is compared with 

machine learning algorithms, the highest accuracy rate of 96% 

is achieved. 

Amer & El-Sappagh [84] proposed a behavioral Android 

malware odor predictive model in their study. The model is 

based on reconstructed API calls, permissions, and system call 

sequences as static and dynamic properties. The proposed 

model uses the LSTM model to classify snapshots of API and 

system call sequences. The model is tested against common 

ransomware attacks on heterogeneous datasets. In the study, 

in which machine learning algorithms were used for 

comparison, the highest accuracy rate was obtained at 99.3% 

with permission classification. 

In the proposed study [85], malware detection based on a 

hybrid classification method was carried out on the 

CICMalDroid 2020 dataset. In the study, 97.5% accuracy rate 

was obtained from the use of MLP and RF algorithms applied 

with hybrid detection techniques of Android malware. In the 

study, a classification study is presented on the 

CICAndMal2017 dataset, which uses network traffic features 

for Android malware detection. By extracting the features 

from the network traffic with the one- dimensional CNN 

algorithm, the relationship between the features was 

determined using the LSTM algorithm. With the model 

presented in the study, it was stated that the result of binary 

classification was 99.79% accuracy with CNN-LSTM, 98.9% 

accuracy with CNN-LSTM in categorical classification, and a 

97.29% accuracy rate with CNN-LSTM in family 

classification [86]. 

A hybrid DL capable Android malware detection 

framework is proposed that uses permissions, API calls, and 

intents to detect malware from Android apps. With the 

designed approach, CNN and BiLSTM were utilized by using 

10-fold cross-validation in classifying malware. The study 

was carried out on Androzoo and AMD datasets. In the 

proposed study, hybrid DL models and comparative DL-based 

algorithms were critically evaluated [87]. The authors 

proposed a malware classification model to detect Android 

malware samples, as well as an algorithmic model and an 

artificial intelligence- based learning solution based on static 

analysis and feature extraction from source code. The 

accuracy of the data was found to be approximately 94.4% 

after 200 rounds of training, and the e-validation set was used 

to validate the model [88]. 

Zhu et al. proposed a framework called SEMDroid for the 

detection of Android malware. To reduce the variety of 

features, the system using PCA uses the MLP learning 

algorithm. In the next step, the SVM algorithm was used as a 

fusion class, and studies were carried out on two different 

datasets. Accuracy rates were obtained using static properties; 

an 89.07% accuracy rate was obtained when multi-level static 

features were used, and a 94.92% accuracy rate was obtained 

when sensitive data streams were used as static features [89]. 

 In the study, the MobiTive detection system, which is 

stated to be more efficient and effective compared to existing 

security engines, is recommended for deep learning-based 

malware detection on Android mobile devices. In the study, 

comparative evaluations are presented in five different 

categories: feature extraction performance, feature selection 

types of performance, performance accuracy of deep learning 

algorithms, real-time detection performance accuracy on 

different devices, and device feature evaluations from 

MobiTive are presented in [90]. 

In the study [91], a structure containing a two-layer method 

is presented to detect malware found in Android applications. 

While the first layer of the system creates a fully connected 

neural network model in which static properties are analyzed, 

the outputs obtained from the first layer are given as input to 

the second layer, and the analysis of dynamic properties is 

classified by the proposed CACNN method based on CNN 

and AutoEncoder algorithms. While the accuracy rate of the 

first layer of the binary classification system is 95.22%, the 

classification accuracy performance of the second layer of the 

system is reported as 99.3%. In addition, in the experimental 

study in which the proposed system classified malware as 

categories and families, it was presented that it classified it 

with an accuracy rate of 98.2% on a category basis and 71.48% 

on a class basis. 

A multi-modal malware detection model called 

MDNMDroid to explore the potential relationship between 

permissions by combining two different networks in [92]. 

Compared to a single network, a multi-mode network has 

stronger learning ability and can filter more meaningful 

features to distinguish malware and benign samples. 

Evaluation results based on the permission dataset collected 

show that MDNMDroid achieves 93.18% accuracy. In the 

study, the effect of using convolutional neural networks, 

especially startup-based and multi-channel architectures, on 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3323396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

network performance for the detection of mobile malware, is 

mentioned. It has been reported that an accuracy of 92% was 

obtained by using a multi-channel model on the Koodous 

dataset [93]. 

Wenbo et al. have proposed a multi-mode deep learning-

based Android malware detection system. In the system where 

API calls, permissions, hardware components, and intent 

features of applications are used, deep learning algorithms are 

modeled in three different ways. In the system in which DNN, 

CNN, and CNN-GRU deep learning algorithms are used, it is 

shown that a 98.74% accuracy rate is obtained by using 5,560 

malware samples and 16,666 benign samples [94]. 

In [95] static and dynamic analysis techniques were used to 

compile API calls, system commands, manifest permissions, 

and intent attributes of benign and malicious applications from 

APK files. To obtain the highest performance value with 

different configuration values of deep learning 

hyperparameters, the highest accuracy rate of 99% was 

obtained because of experimental studies. Mu et al. proposed 

a solution to the malware detection problem in Android 

systems by extracting the API sequence of the malware with 

the text processing method in the Cuckoo sandbox. A total of 

11000 samples containing 8000 Android malware and 3000 

benign applications were used in the study. Among them, 

Android malware is mostly collected from Virus Share, 

Google Play Market. Benign apps are usually downloaded 

from the Android app store. They used the Dalvik analysis 

method-based Bi-LSTM method, one of the malware static 

analysis methods, to evaluate the performance of the system. 

In the study, an accuracy rate of 96.74% was obtained [96]. 

 In [97] the authors carried out malware detection system 

for Android devices. The classification study is carried out 

using static analysis features of benign and malicious 

applications collected from Google Play and Virus Share. The 

DBN classification framework is presented in the study, in 

which 331 features, including API calls and permissions, are 

used. The obtained accuracy success rate has been reported as 

94.64%. 

In [98] a new preprocessing method is described to solve 

the long sequence problem that the LSTM model will face to 

achieve fast training and high accuracy. In the study using the 

Drebin dataset, an accuracy rate of 95.58% was obtained with 

the proposed model. In the proposed study, which uses the 

Deep Learning-based LSTM algorithm for ransomware 

detection on Android systems, Feature selection was made 

using eight different machine learning algorithms: Chi Square, 

CV Attribute Eval, Gain Ratio Attribute, One Attribute Eval, 

Information Gain Attribute, Significance Attribute Eval, 

Relief Attribute Eval, and Symmetrical Uncert Attribute Eval. 

The nineteen features were selected by a simple majority 

voting process by comparing the results of all feature filtering 

techniques. In the study, ransomware detection was performed 

on the CICAndMal2017 dataset. The feature filtration 

experiment was conducted on WEKA, on a total of 40,000 

samples, of which 20,000 were benign and 20,000 were 

ransomware labeled. It was stated that the accuracy rate 

obtained in the study was 97% [99]. 

The Deep Droid framework was proposed in [100] and 

consists of three phases: the data collection phase, the feature 

selection phase, and the machine learning phase.120,000 

Android apps were evaluated in the study. API calls and 

permissions were used as inputs in the study. Research was 

conducted on 100,000 APK files and 20,000 infected APKs 

collected from Google Play. An accuracy rate of 94% was 

obtained in the proposed model. 

In [101] a factoring machine-based malware detection 

method is proposed. The model was applied to the DREBIN 

and AMD dataset and 100% accuracy was obtained using the 

DREBIN dataset and 99.22% accuracy was obtained using the 

AMD dataset. It uses an AE-based approach to classify 

malware. In the study using static analysis methods, API calls 

and permissions features are used. With the proposed method, 

it is said that 96.81% of malware can be reached. 

The Droid-NNet model is presented as a deep learning-

based malware classifier [102]. Experimental studies were 

conducted using 215 features of malicious and benign 

applications, using Malgenome-215 datasets containing 3,799 

application examples and Drebin-215 datasets containing 

15,036 application examples. The proposed framework is 

evaluated by comparing it with DT, LR, and SVM. To verify 

the consistency of the model, 10-fold cross-validation was 

applied to each of the models. The accuracy rate of the 

proposed framework, Droid-Net, is 98.81%. 

A CNN based model for malware detection in the study, 

API calls and Opcode sequences are used as features [103]. 

API function calls are used to represent the behavior of the 

Android application. Bluetooth in the study, user location 

information, SMS text messages, phone numbers, etc. As 

such, eleven class packages were selected. These packages 

also contain many API calls. The attribute size has been 

reduced by selecting 1500 API calls among the API calls that 

represent the best in their class according to their entropy. In 

the study using the Drebin dataset, the accuracy rate of the 

proposed fusion model was 97.5%. 

The MobiDroid framework [104] is a deep learning-based 

real-time and fast detection system recommended for Android 

malware detection, is presented. The first part of MobiDroid, 

which consists of two parts, contains the feature extraction and 

the related learning model, while the second part transmits the 

feature vector of the applications downloaded from official 

and unofficial sources to the detection system. Features that 

are found in the manifest files of the applications are used as 

input to the CNN learning model. The accuracy rate of the 

proposed system was 97.35. Presents a multimodal deep 

learning framework in which Android malware is detected, 

and it consists of four parts: raw data extraction, feature 

extraction, feature creation, and detection processes. The 

properties extracted in the study are string, opcode, API 

property, shared library function code, permissions, 

component, and environmental property. As a result of the

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3323396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

TABLE III 

COMPRESSION OF THE RELATED WORKS 

Ref Year 
Analysis 

Method 
Learning Model Features Dataset Names 

Performance 

Results 

[80] 2022 Static Lightweight CNN API Calls Graphs 
Google Play, AMD Virus 

Share 
%91.27 

[81] 2022 Dynamic 
LSTM, NB, RF, 
SVM, MLP, 

CNN, GRU, RNN 

Network Traffic DroidCollector %95 

[83] 2022 Static AE API Calls Permissions 
Google Play and Virus 
Share 

%96 

[82] 2022 Dynamic LSTM Network Traffic CICAndMal2017 %99.96 

[84] 2022 
Static & 
Dynamic 

LSTM API Calls, System Calls Permissions Heterogeneous dataset %99.3 

[85] 2022 Dynamic MLP, RF 
System calls, Binder Calls Composite 

Behaviors 
CICMalDroid 2020 %97.5 

[86] 2021 Dynamic LSTM, CNN Network Traffic CICAndMal2017 %99.79 

[87] 2021 Static 
CNN-LSTM, 

BiLSTM- GRU 
API Calls, Intents, Permissions Androzoo, AMD %99.2 

[88] 2021 Static CNN Androidmanifest.xml MalDroid-2020 %94.4 

[89] 2021 Static MLP Monitoring System Event, Permission-Rate 
Android Market, 

VirusShare 
%94.92 

[90] 2021 Static 
CNN, LSTM, 

GRU, RNN 

Androidmanifest.xml, Properties, API Calls 

and Opcode Sequences 

Google Play Store, 

VirusShare 
%96.78 

[91] 2020 Hybrid CNN- AE Permissions, Intents, Network Traffic CICAndMal2017 %99.3 

[92] 2020 Static CNN Permissions 
Google Play and Virus 

Share 
%93.18 

[93] 2020 Static CNN Permissions Koodous %92 

[94] 2020 Static DNN, CNN, GRU 
Permissions, API, Intent, Hardware 

Components 
Drebin %98.74 

[95] 2020 Hybrid DNN 
API Call Sequence, System Command, 
Manifest Permission and ˙Intent 

VirusShare %99.08 

[96] 2019 Static 
GRU, BGRU, 

LSTM, Bi-LSTM 
API Calls 

Google Play Market, Virus 

Share 
%96.74 

[97] 2019 Static DBN API Calls, Permission 
Google Play Market, 

Virusshare 
%94.65 

[98] 2019 Static LSTM Dalvik Opcode Drebin %95.58 
[99] 2019 Dynamic LSTM APK File CICAndMal2017 %97 

[100] 2019 Static DBN API Calls, Permissions Google Play Market %94 

[70] 2019 Static FM Manifest Files and Source Code Drebin, AMD 
%100 on Drebin, 
%99.22 on AMD 

[101] 2019 Static AE API Calls, Permissions 
Google Play Store, 

APKpure 
%96.81 

[102] 2019 Static Droid-NNET Permissions, API Calls Malgenome, Drebin %98.81 

[103] 2019 Static CNN API Calls, Opcode Drebin %97.5 

[104] 2019 Static DNN 
Android Manifest.Xml, API Calls, Opcode 

Sequences 

Google Play, Virusshare, 
Drebin, Genom, Contagio 

Mobile Website, Pwnzen 

Infotech Inc. 

%97.35 

[71] 2019 Static DNN 
API Calls, Opcode, Permission, Component 

Feature, Environmental Feature 

Virusshare, Malgenome 

Project,Virustotal 
%98 

[106] 2019 Static LSTM 

Requested Permissions, Hardware 

Components, APP Components, Filtered 

Intents, Used Permissions, Restricted API 
Calls, Suspicious API Calls, and Network 

Addresses 

Drebin %99.32 

[105] 2018 Static CNN, LSTM Android Manifest.xml and dex files Genom, %97.4 

[107] 2018 
Static & 
Dynamic 

LSTM 

Battery & Permission, Binder & Permission, 

Memory, Cpu & Permission, Network & 

Permission 

Malgenome 

%99.7 on 

Dynamic, %97.5 

on Static 

[108] 2018 Static CNN API Calls 
Malgenome, Drebin, 

Playdrone 
%96.33 F1 -Score 

[110] 2017 Static DBN API Method Calls 
Genome, Virustotal, 
Drebin 

%95.05 F1 Score 

 

model’s performance, the accuracy rate was reached as 98% 

[71]. 

The MalResLSTM [105] framework model was proposed 

to detect malware, and it is presented by a deep residual long-

term memory-based system with the Drebin dataset. The 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3323396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

accuracy of the MalResLSTM model was 99.32%. The 

proposed deep learning based DeepClassifyDroid detection 

system consists of three steps. These steps are feature 

extraction, feature placement, and detection. In the first stages, 

five different feature sets are created using the static analysis 

method, and in the next stage, CNN-based malware detection 

is performed. According to the performance result of the 

proposed study, an accuracy rate of 97.4% was obtained [106]. 

An LSTM-based system [107] is proposed for Android 

malware detection based on static and dynamic features. Static 

analysis used 279 applications in AMD dataset and 279 

malicious applications in MalGenome dataset. 

AndroidManifest.xml file is used for 558 APK using 

APKTool 2.0.3. Each APK contains detailed permissions as 

feature vectors with 330 benign and malware class tags. AMD 

dataset was used for dynamic analysis. Shell scripts with the 

“adb-monkey” emulator tool were used to analyze APK files 

and generate random user events in communication with the 

application interface. The study collected battery, connector, 

memory, and permissions feature vectors by sending user 

login mock events to 1330 malicious apps and 408 benign 

apps in a 5- second time frame. In the study, an accuracy rate 

of 99.7% in the dynamic analysis method and 97.5% in the 

static analysis method was obtained with the LSTM model. 

Android malware detection framework called MalDozer 

was proposed in [108] the classification-based study with API 

calls. MalDozer automatically detects and learns malware and 

benign with the application’s API calls. Automatic feature 

extraction is offered using raw API call sequences extracted 

from the DEX assembly. Malgenome and Drebin datasets 

were used as a mixed dataset containing malware and benign 

applications. Benign applications are from the PlayDrone 

dataset [109]. The F1 score rate obtained in the study was 

96.33%. 

In the study [110], a deep learning-based framework model, 

the Deep Flow model, is proposed. The performance 

evaluation of the DBN-based DeepFlow system is presented 

in the study, which uses a dataset of 8,000 malware 

applications and 3,000 benign applications collected from 

VirusShare (which is publicly computer virus repositories on 

the net) and Genome. In the study, traditional machine 

learning algorithms and deep learning performances were 

compared. The F1-Score of the DeepFlow model is reported 

as 95.05%. 

When the literature studies are examined, there is a decrease 

in the traditional methods in the techniques used for malware 

detection and shifting to more effective and effective methods. 

The increasing aggression and complexity of malware reveals 

that more dynamic systems must be predictive, especially due 

to zero-day attacks rather than detection. Due to the ever-

increasing capabilities of Android devices, it becomes 

imperative to take comprehensive security measures instead of 

basic security methods. 

In this part of the study, it is presented comparatively in 

Table III to create a framework for the studies mentioned in 

the literature summary. 

VII. CHALLENGES AND FUTURE DIRECTIONS 

The growing number of attacks on Android systems and their 

focus on stealing valuable information have made Android 

security a top priority for the cybersecurity community. 

Malicious software is often used by attackers to gain access to 

Android devices and target various aspects of these devices. 

Android users are particularly vulnerable due to the platform’s 

open-source architecture and ease of application development. 

Based on the insights obtained in the previous sections, we can 

draw several key lessons and outline some challenges for 

future research. 

Reducing detection times: In order to reduce the impact of 

malware threats, it is necessary to develop methods that will 

increase the speed of threat detection and evaluation, and to 

produce security solutions. Although the use of machine/deep 

learning models results in some efficient solutions, it will be 

better to produce some hybrid approaches or parallel detection 

mechanisms to increase the efficiency of the system. Systems 

are susceptible to novel forms of attack. Consequently, zero- 

day attacks must be identified utilizing an anomaly-based 

detection method and an appropriate model for rapid malware 

detection. 

Supporting other detection systems: Existing antivirus 

programs that protect Android devices against threats should 

be supported in the analysis of applications with methods 

based on dynamic, static and hybrid analysis. These programs 

should be tools to ensure that applications’ actions are only 

analyzed for compliance with expected security policy, 

regardless of blacklisting or signature. The development of 

such software tools is a popular area supported by industrial 

and academic research. 

Development of hybrid analysis detection systems: More 

work should be done in the future on hybrid analysis 

techniques, which are a combination of static and dynamic 

analysis methods. However, dynamic analysis techniques are 

less preferred than others due to their accessibility and cost. 

Static analysis can reveal information that cannot be revealed 

through the dynamic run time process, while dynamic analysis 

can reveal run time information. This is because it’s hard to 

hide code by taking advantage of both static and dynamic 

analysis techniques. This makes it important to offer more 

solutions in this field. 

Need for up-to-date datasets: Existing Android-based and 

publicly available datasets should be expanded for researchers 

working in the field of malware detection. Datasets created by 

researchers in my Android malware detection approaches 

have several limitations. For example, collected malware may 

be removed by Google play at intervals between two 

snapshots, or metadata and APKs may change during that 

time. Therefore, malicious applications collected may not 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3323396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

fully explain the situation when they are removed. This is a 

limitation of the datasets created by researchers. 

Using new and/or deeper models: Android malware detection 

remains a popular research topic. It is concluded that deep 

learning-based detection methods in Android systems will still 

be a trend topic in the near future, and these systems will be 

faster, stable, robust and agile with the constantly developing 

new detection technologies. 

Using new feature selection strategies for increasing the 

accuracy rate: Android malware detection utilizes a vast 

amount of network data, which includes redundant and 

irrelevant features. This results in extensive training and 

testing procedures, which cost more resources and produce a 

low detection rate. Feature selection refers to the process of 

picking a subset of the most relevant and usable information 

from an entire dataset, while discarding irrelevant and 

redundant characteristics, to construct an effective learning 

system. In order to choose the optimal feature selection 

methods, such as intelligent agents, evolutionary algorithms, 

fuzzy techniques, neural networks, rough sets, and swarm 

optimization techniques, it is crucial to be able to precisely 

quantify the importance of features to malware detection and 

the redundancy of features. This decision reduces the system’s 

storage requirements and its processing expenses. The 

appropriate one is determined by the learning models of the 

systems and the dataset’s structure. Consequently, the 

selection of these indicators is a complex matter. 

Reducing the training time: Almost all learning-based 

Malware detection systems require a longer training period, 

which reduces the security system’s effectiveness. This 

problem becomes more important when deep learning models 

are employed due to the increasing number of layers involved. 

Either the adoption of new technology or incremental learning 

models could be the solution. Transfer learning, a model of 

machine learning, can be used in conjunction with 

reinforcement learning as an incremental learning strategy. 

With this strategy, the adaptation of an existing model to a new 

issue area, particularly with respect to big data platforms, is 

performed by utilizing prior employment experience to 

improve the generalization over another. In addition, the 

majority of developers’ favor GPU technology as a hardware-

based solution. 

We hope this survey study inspires further research in the 

context of malware detection. In the future, there will be a lot 

of research to do about interesting features of different 

malware, how to search for and find out about attacks, how to 

predict how malware works, how to extract features, and how 

to make detection more effective. 

VIII. CONCLUSION 

The secure use of Android devices has become increasingly 

important due to their significant market share in the digital 

world. When users cannot interact with their devices 

effectively, the reliability and usability of smart mobile 

devices can be inconvenient. Therefore, providing a secure 

service against malware is a fundamental requirement for the 

effective use of these devices. Deep learning algorithms, 

which have emerged with the development of artificial 

intelligence, can expedite the learning process, and improve 

the operation of products, technologies, or services. In this 

survey study, a detailed literature review was conducted to 

investigate and analyze the application of deep learning 

approaches in the context of malware detection on Android 

systems. The study includes comparison tables about datasets, 

used models and analysis of detection methods, which present 

many current datasets and articles. Additionally, the study 

provides an overview of the Android architecture, explains the 

systems developed for deep learning-based Android malware 

detection, and high- lights future research trends. Therefore, 

Android system security and deep learning algorithms are 

presented as a solution for malware detection in this active 

research area with many aspects. Furthermore, we also discuss 

open research issues for android malware detection systems, 

along with the cross-layer design and different approaches. 

REFERENCES 
[1] Statcounter:Desktop vs Mobile vs Tablet Market Share Worldwide 

2009 to 2022, (2022), https://gs.statcounter.com/platform-market-

share/ desktop-mobile-tablet, (accessed May 1, 2023) 

[2] S. Kemp: Digital 2022: Global overview report. Datareportal, 2023 

(accessed May 1, 2023), https://datareportal.com/reports/ digital-

2023-global-overview-report 

[3] Statcounter: Mobile Operating System Market Share Worldwide from 
2012 to 2022 (2022). https://gs.statcounter.com/os-market-

share/mobile/worldwide, (accessed May 1, 2023) 

[4] Y. Kanchhal and S. Murugaanandam, "Android Malware an Oversight 
on Malware Detection Using Machine Learning," 2022 International 

Conference on Computer Communication and Informatics (ICCCI), 
pp. 1-5, 2022. doi: 10.1109/ICCCI54379.2022.9741025. 

[5] N. Usman, S. Usman, F. Khan, M.A. Jan, A. Sajid, M. Alazab, P. 

Watters, Intelligent dynamic malware detection using machine 
learning in ip reputation for forensics data analytics. Future Generation 

Computer Systems, vol. 118, pp. 124–141, 2021. doi: 

10.1016/j.future.2021.01.004. 
[6] S. Arzt, S.Rasthofer, C.Fritz, E.Bodden, A. Bartel, J. Klein,Y. Le 

Traon, D. Octeau, P. McDaniel,: Flowdroid: Precise context, flow, 

field, object- sensitive and lifecycle-aware taint analysis for android 
apps. SIGPLAN Not., vol. 49, Art. no. 6, 2014. 

doi:10.1145/2666356.259429 

[7] E. Amer, I. Zelinka, and S. El-Sappagh, “A multi-perspective malware 
detection approach through behavioral fusion of api call sequence,” 

Computers & Security, vol. 110, p. 102449, 2021. doi: 

10.1016/j.cose.2021.102449. 
[8] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach, “Dynamic malware 

analysis in the modern Era-A state of the art survey,” ACM 

Compututain Survey., vol. 52, no. 5, 2019. doi:10.1145/3329786. 
[9] A. Damodaran, F. D. Troia, C. A. Visaggio, T. H. Austin, and M. 

Stamp, “A comparison of static, dynamic, and hybrid analysis for 

malware detection,” Journal of Computer Virology and Hacking 
Techniques, vol. 13, Art. no. 1, 2017. doi:10.1007/s11416-015-0261-

z. 

[10] E. C. Bayazit, O. K. Sahingoz and B. Dogan, "Malware detection in 
android systems with traditional machine learning models: a 

survey,"2020 International Congress on Human-Computer 

Interaction, Optimization and Robotic Applications (HORA), Ankara, 
Turkey, 2020. pp. 1-8. https://10.1109/HORA49412.2020.9152840. 

[11] F. Tong, Z. Yan, Z., A hybrid approach of mobile malware detection 

in Android,” Journal of Parallel and Distributed Computing, vol. 103, 
pp. 22–31, 2017, doi: 10.1016/j.jpdc.2016.10.012 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3323396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

[12] D. Kreuzberger, N. Kühl and S. Hirschl, "Machine Learning 

Operations (MLOps): Overview, Definition, and Architecture," 

in IEEE Access, vol. 11, pp. 31866-31879, 2023, doi: 
10.1109/ACCESS.2023.3262138. 

[13] M. N. Al-Andoli, K. S. Sim, S. C. Tan, P. Y. Goh and C. P. Lim, "An 

Ensemble-Based Parallel Deep Learning Classifier With PSO-BP 
Optimization for Malware Detection," in IEEE Access, vol. 11, pp. 

76330-76346, 2023, doi: 10.1109/ACCESS.2023.3296789. 

[14] I. Almomani, A. Alkhayer and W. El-Shafai, "An Automated Vision-
Based Deep Learning Model for Efficient Detection of Android 

Malware Attacks," in IEEE Access, vol. 10, pp. 2700-2720, 2022, doi: 

10.1109/ACCESS.2022.3140341. 
[15] N. Sharma and A. L. Sangal, "Machine Learning Approaches for 

Analysing Static features in Android Malware Detection," 2023 Third 

International Conference on Secure Cyber Computing and 
Communication (ICSCCC), Jalandhar, India, 2023, pp. 93-96, doi: 

10.1109/ICSCCC58608.2023.10176445. 

[16] Y. Liu, C. Tantithamthavorn, L. Li, Y. Liu” Deep learning for android 
malware defenses: a systematic literature review.”, ACM Journal of 

the ACM (JACM), vol. 37, no. 4, 2022. doi:10.1145/3544968 

[17] L. Meijin et al., “A systematic overview of android malware 
detection,” Applied Artificial Intelligence, vol. 36, no. 1, pp.1-33, 

2022. doi:10.1080/08839514.2021.2007327 

[18] M. Esmail, A. Esmaeilzadeh, Y. Kim, and K. Taghva, “A survey on 
mobile malware detection methods using machine learning”, In: 2022 

IEEE 12th Annual Computing and Communication Workshop and 
Conference (CCWC), pp. 0215–0221 ,2022. 

doi:10.1109/CCWC54503.2022.9720753 

[19] P. Bhat and K. Dutta, “A survey on various threats and current state of 
security in android platform,” ACM Comput. Surv., vol. 52, no. 1, 

pp.1-35, 2019. doi:10.1145/3301285. 

[20] E. C. Bayazit, Esra, O. K. Sahingoz, and B. Dogan, “Deep learning-
based malware detection for android systems: A comparative 

analysis,” Tehnički vjesnik, vol. 30, no. 3, pp. 787–796, 2023. 

doi:10.17559/TV-20220907113227. 
[21] R. M. G, “On reverse engineering,” IEEE Transactions on Systems, 

Man, and Cybernetics, vol. SMC-15, no. 2, pp. 244–252 ,1985. 

doi:10.1109/TSMC.1985.6313354. 
[22] D. Barrera, J. Clark, D. McCarney, and V. Oorschot, “Understanding 

and improving app installation security mechanisms through empirical 

analysis of android”, Proceedings of the Second ACM Workshop on 
Security and Privacy in Smartphones and Mobile Devices, SPSM'12, 

pp. 81–92, 2012. doi:10.1145/2381934.2381949. 

[23] H. Kim, T. Cho, G.-J. Ahn, and H. Yi, “Risk assessment of mobile 
applications based on machine learned malware dataset,” Multimedia 

Tools and Applications, vol. 77, no. 4, pp. 5027-5042, 2018. 

doi:10.1007/s11042-017-4756-0. 

[24] A. Kumar and I. Sharma, "Understanding the Behaviour of Android 

Ransomware Attacks with Real Smartphones Dataset," 2023 

International Conference for Advancement in Technology (ICONAT), 
pp. 1-5, 2023. doi: 10.1109/ICONAT57137.2023.10080696. 

[25] G. McGraw and G. Morrisett, “Attacking malicious code: A report to 

the infosec research council,” IEEE software, vol. 17, no. 5, pp. 33-
41, 2000. doi:10.1109/52.877857 

[26] A. Vasudevan and R. Yerraballi, “Spike: engineering malware 

analysis tools using unobtrusive binary-instrumentation,” in 
Proceedings of the 29th Australasian Computer Science Conference 

Citeseer, vol. 48, pp. 311–320, 2006. doi:10.1145/1151699.1151734. 

[27] F. De Gaspari.et al. “Evading behavioral classifiers: a comprehensive 
analysis on evading ransomware detection techniques,” Neural 

Comput & Applic, vol. 34, pp. 12077–12096, 2022. 

doi:10.1007/s00521-022-07096-6 
[28] M. Masum et al., "ransomware classification and detection with 

machine learning algorithms,"2022 IEEE 12th Annual Computing and 

Communication Workshop and Conference (CCWC), Las Vegas, NV, 
USA, pp. 0316-0322, 2022. doi: 

10.1109/CCWC54503.2022.9720869. 

[29] A. M. Almuhaideb and D. Y. Alynanbaawi, “Applications of artificial 
intelligence to detect android botnets: a survey,” IEEE Access, vol. 10, 

pp. 71737–71748, 2022. doi:10.1109/access.2022.3187094. 

[30] S. Anwar et al., “A static approach towards mobile botnet detection,” 
in IEEE, pp. 563–567, 2016. doi:10.1109/ICED.2016.7804708 

[31] S. A. Sheikh, M. T. Banday, "Multi-Recipient E-mail Messages: 

Privacy Issues and Possible Solutions," Advances in Electrical and 

Computer Engineering, vol.21, no.4, pp.115-126, 2021. 
doi:10.4316/AECE.2021.04013 

[32] H. Abualola, K. Maha, H. Otrok, and A. Mourad, “An android-based 

trojan spyware to study the notification listener service vulnerability,” 
Procedia Computer Science, vol. 83, pp. 465–471, 2016. doi: 

10.1016/j.procs.2016.04.210 

[33] Y. Zhou and X. Jiang, "Dissecting Android Malware: Characterization 
and Evolution," 2012 IEEE Symposium on Security and Privacy, San 

Francisco, CA, USA, 2012, pp. 95-109. doi: 10.1109/SP.2012.16 

[34] C. Li et al., "Backdoor attack on machine learning based Android 
malware detectors," in IEEE Transactions on Dependable and Secure 

Computing, vol. 19, no. 5, pp. 3357-3370, 2022. 

doi:10.1109/TDSC.2021.3094824 
[35] M. Omar and M. Dawson, "Research in progress defending Android 

smartphones from malware attacks," 2013 Third International 

Conference on Advanced Computing and Communication 
Technologies (ACCT), Rohtak, India, pp. 288-292, 2013. 

doi:10.1109/ACCT.2013.69 

[36] S. Omeleze and H. S. Venter, "Testing the harmonised digital forensic 
investigation process model-using an Android mobile phone," 2013 

Information Security for South Africa, Johannesburg, South Africa, 

2013. pp. 1-8, doi:10.1109/ISSA.2013.6641063. 
[37] M. Caprolu, S. Raponi, G. Oligeri, and D. Pietro, “Cryptomining 

makes noise: Detecting cryptojacking via machine learning,” 
Computer Communications, vol. 171, pp. 126–139, 2021. doi: 

10.1016/j.comcom.2021.02.016 

[38] M. Gopinath,S.C. Sethuraman, S,”A comprehensive survey on deep 
learning based malware detection techniques”, Computer Science 

Review, vol. 47, pp. 00529, 2023. doi: 10.1016/j.cosrev.2022.100529. 

[39] A. Gombe, et al., "Toward a more dependable hybrid analysis of 
android malware using aspect-oriented programming. “Computers & 

Security, vol. 73, pp. 235-248, 2018. https://doi. 

org/10.1016/j.cose.2017.11.006 
[40] R. Jin and B. Wang, "Malware Detection for Mobile Devices Using 

Software-Defined Networking,"2013 Second GENI Research and 

Educational Experiment Workshop, Salt Lake City, UT, USA, 2013. 
pp. 81-88, doi:10.1109/GREE.2013.24. 

[41] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, Y. Xiang,” A survey of 

android malware detection with deep neural models”, ACM 
Computing Surveys (CSUR), vol.53, no. 6, pp. 1-36, 2020. 

doi:10.1145/3417978. 

[42] S.H. Seo, A. Gupta, A. M. Sallam, E. Bertino, and K. Yim, “Detecting 
mobile malware threats to homeland security through static analysis,” 

Journal of Network and Computer Applications, vol. 38, pp. 43–53, 

2014. doi: 10.1016/j.jnca.2013.05.008 

[43] B. Sanz et.al.,”MAMA: manifest analysis for malware detection in 

Android”Cybernetics and Systems,vol.44, no.6,pp. 469-488, 2013. 

doi:10. 1080/01969722.2013.803889 
[44] A. Shabtai, Y. Fledel, and Y. Elovici, “Automated static code analysis 

for classifying android applications using machine learning,” in IEEE, 

pp. 329–333, 2010. doi:10.1109/CIS.2010.77. 
[45] S. Yerima, Alzaylaee, M. & Sezer, S. Machine learning-based 

dynamic analysis of Android apps with improved code coverage. 

EURASIP J. on Info. Security,vol 2019, no.1, pp.1-24, 2019. 
doi:10.1186/s13635-019-0087-1 

[46] G. Suarez-Tangil, G., J.E. Tapiador, P. Peris-Lopez, A. Ribagorda,” 

Evolution, detection and analysis of malware for smart devices”, IEEE 
Communications Surveys & Tutorials,vol. 16, no. 2, pp. 961-987, 

2013. doi:10.1109/SURV.2013. 101613.00077 

[47] Y. Park, D. Reeves, V. Mulukutla, and B. Sundaravel, “Fast malware 
classification by automated behavioral graph matching”, pp. 1–

4.2010. doi:10.1145/1852666.1852716 

[48] J. Rhee, R. Riley, D. Xu, and X. Jiang, “Kernel malware analysis with 
un-tampered and temporal views of dynamic kernel memory”, pp. 

178–197, 2010. doi:10.1007/978-3-642-15512-3_10 

[49] A. Arora, S. Garg, S.K. Peddoju,” Malware detection using network 
traffic analysis in android based mobile devices”, In: 2014 Eighth 

International Conference on Next Generation Mobile Apps, Services 

and Technologies, pp. 66–71 ,2014. doi:10.1109/NGMAST.2014.57 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3323396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

[50] S. Zhao, X. Li, G. Xu, L. Zhang, and Z. Feng, “Attack tree based 

android malware detection with hybrid analysis,” In: IEEE 13th 

International Conference on Trust, Security and Privacy in Computing 
and Communications, pp. 380–387. doi:10.1109/TrustCom.2014.49 

[51] L. Taheri, Abdul, and Lashkari, Arash Habibi, “Extensible android 

malware detection and family classification using network-flows and 
API-Calls”, In: 2019 International Carnahan Conference on Security 

Technology (ICCST), pp. 1–8, 2019. 

doi:10.1109/CCST.2019.8888430 
[52] W. Enck and P. Gilbert, “gon chun,” B., Cox, LP, Jung, J., McDaniel, 

P., Sheth, “Taintdroid: An information-flow tracking system for 

realtime privacy monitoring on smartphones, ACM Transactions on 
Computer Systems (TOCS), vol. 32, no. 2, pp. 393–407, 2010. 

doi:10.1145/2619091 

[53] L. Qiu, Z. Zhang, Z. Shen, and G. Sun, “AppTrace: Dynamic trace on 
android devices,” in IEEE, pp. 7145–7150, 2015. 

doi:10.1109/ICC.2015.7249466 

[54] M. Backes,S. Bugiel, O. Schranz, P. Von Styp-Rekowsky, S. 
Weisgerber, “Artist: The android runtime instrumentation and security 

toolkit”, In: 2017 IEEE European Symposium on Security and Privacy 

(EuroSP), pp. 481–495, 2017. doi:10.1109/EuroSP.2017.43 
[55] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. 

C. Rinard, “Information flow analysis of android applications in 

droidsafe”, In: NDSS, vol. 15, no. 201, pp. 110, 
doi:10.14722/ndss.2015.23089 

[56] F. Wei, S. Roy, and X. Ou, “Amandroid: A precise and general inter-
component data flow analysis framework for security vetting of 

android apps,” ACM Transactions on Privacy and Security (TOPS), 

vol. 21, no. 3, 2018. doi:10.1145/3183575 
[57] X. Wang, Y. Yang, Y. Zeng, C. Tang, J. Shi, and K. Xu, “A novel 

hybrid mobile malware detection system integrating anomaly 

detection with misuse detection”, In: Proceedings of the 6th 
International Workshop on Mobile Cloud Computing and Services, 

pp. 15–22, 2015. doi:10.1145/2802130.2802132 

[58] H. Fu et al., “Towards automatic detection of nonfunctional sensitive 
transmissions in mobile applications,” IEEE Transactions on Mobile 

Computing, vol. 20, no. 10, pp. 3066-3080, 2021. 

doi:10.1109/TMC.2020.2992253 
[59] T. Carrier, P. Victor, A. Tekeoglu, A.H. Lashkari, “Detecting 

Obfuscated Malware using Memory Feature Engineering”, In: 

Proceedings of the 8th International Conference on Information 
Systems Security and Privacy, ICISSP 2022, pp. 177-188, 2022. 

doi:10.5220/ 0010908200003120. 

[60] S. Mahdavifar, D. Alhadidi, and A. A. Ghorbani, “Effective and 
efficient hybrid android malware classification using pseudo-label 

stacked auto-encoder,” J. Netw. Syst. Manage., vol. 30, no. 1, pp. 1-

34, 2022. doi:10.1007/s10922-021-09634-4 

[61] A. Rahali, Lashkari, Arash Habibi, G. Kaur, L. Taheri, F. Gagnon, and 

F. Massicotte, “DIDroid: Android malware classification and 

characterization using deep image learning”, In 10th International 
Conference on Communication and Network Security, pp. 70–82 

,2020. doi:10.1145/3442520.3442522 

[62] D. S. Keyes, B. Li, G. Kaur, A. H. Lashkari, F. Gagnon, and F. 
Massicotte, "EntropLyzer: Android malware classification and 

characterization using entropy analysis of dynamic 

characteristics,"2021 Reconciling Data Analytics, Automation, 
Privacy, and Security: A Big Data Challenge (RDAAPS), pp. 1-12, 

2021. doi:10.1109/RDAAPS48126.2021.9452002. 

[63] H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani, "Toward 
Developing a Systematic Approach to Generate Benchmark Android 

Malware Datasets and Classification,"2018 International Carnahan 

Conference on Security Technology (ICCST), pp. 1-7, 2018. 
doi:10.1109/CCST.2018.8585560. 

[64] F. Wei, Y. Li, S. Roy, S., X. Ou, W. Zhou, “Deep ground truth analysis 

of current Android malware” In Detection of Intrusions and Malware, 
and Vulnerability Assessment: 14th International Conference, 

DIMVA 2017, Springer International Publishing, pp. 252-276, 2017. 

https:// doi.org/10.1007/978-3-319-60876-1 12 
[65] K. Allix, Bissyandé, Tegawendé F, J. Klein, and L. Traon, “AndroZoo: 

Collecting millions of android apps for the research community”, In: 

13th International Conference on Mining Software Repositories, pp. 
468–471, 2016. doi:10.1145/2901739.2903508 

[66] D. Cao et al., "DroidCollector: A high performance framework for 

high 78quality Android traffic collection", 2016 IEEE 

Trustcom/BigDataSE/ISPA, pp. 1753-1758, 2016. 
doi:10.1109/TrustCom.2016.0269. 

[67] D. ArpDaniel, et al., "Drebin: Effective and explainable detection of 

android malware in your pocket.", Ndss, vol. 14., pp. 23–26, 2014. 
doi:10.14722/ndss.2014.23247 

[68] E. C. Bayazit, E.C., O. K. Sahingoz, B. Dogan, B.” Neural network-

based Android malware detection with different ip coding methods, 
In: 2021 3rd International Congress on Human-Computer Interaction, 

Optimization and Robotic Applications (HORA), pp. 1–6, 2021. 

doi:10.1109/HORA52670.2021. 9461302 
[69] S.M. Bohte, “The evidence for neural information processing with 

precise spike-times: A survey”, Natural Computing, vol. 3, pp. 195–

206 ,2004, doi:10.1023/B: NACO.0000027755.02868.60 
[70] C. Li, K. Mills, D. Niu, R. Zhu, H. Zhang, and H. Kinawi, “Android 

malware detection based on factorization machine,” IEEE Access, vol. 

7, pp. 184008–184019, 2019. doi:10.1109/ACCESS.2019.2958927 
[71] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multimodal deep 

learning method for android malware detection using various 

features,” IEEE Transactions on Information Forensics and Security, 
vol. 14, no. 3, 2019. doi:10.1109/TIFS.2018.2866319 

[72] J.Seungho, and J. Moon. "Malware-detection method with a 

convolutional recurrent neural network using opcode sequences", 
Information Sciences, vol. 535, pp. 1-15, 2020. doi: 

10.1016/j.ins.2020.05.026 
[73] F.A. Gers, F.A., J.A. chmidhuber, F.A. Cummins “Learning to forget: 

Continual prediction with lstm”, Neural Computation, vol. 12, no. 10, 

pp 2451–2471, 2000. https://doi. org/10.1162/089976600300015015 
[74] A. N. Jahromi, S. Hashemi, A. Dehghantanha, Parizi, Reza M, and K.-

K. R. Choo, “An enhanced stacked LSTM method with no random 

initialization for malware threat hunting in safety and time-critical 
systems,” IEEE Transactions on Emerging Topics in Computational 

Intelligence, vol. 4, no. 5, 2020. doi:10.1109/TETCI.2019.2910243 

[75] G. Shen, Z. Chen, H. Wang, H. Chen, H., S.Wang, “Feature fusion-
based malicious code detection with dual attention mechanism and 

BiLSTM.”, Computers & Security, vol. 119, pp. 102761, 2022. doi: 

10.1016/j.cose.2022.102761 
[76] F. Martinelli, F. Marulli, F. Mercaldo, F. “Evaluating convolutional 

neural network for effective mobile malware detection.”, Procedia 

computer science, vol. 112, pp. 2372-2381, 2017. doi: 
10.1016/j.procs.2017.08.216 

[77] A. Fischer, C. Igel, C. “Training restricted Boltzmann machines: An 

introduction”, Pattern Recognition, vol.47, no. 1, pp 25-39,2014. doi: 
10.1016/j.patcog.2013. 05.025  

[78] Y. LeCun, Y., Bengio, G. Hinton, G, “Deep learning”, Nature, vol. 

521, no7553, pp 436-444, 2015. doi:10.1038/nature14539 

[79] V. Engelen, E. Jesper and H. H. Hoos. "A survey on semi-supervised 

learning", Machine learning, vol.109, no. 2, pp.  373-440,2020. 

doi:10.1007/s10994-019-05855-6 
[80] J. Kim, Y. Ban, E. Ko, H. Cho, J.H. Yi, “MAPAS: a practical deep 

learning-based android malware detection system”, International 

Journal of Information Security, vol. 21, no. 4, pp 725-738, 2022. 
doi:10.1007/s10207-022-00579-6 

[81] U.T. Anıl “Ağ trafiği analizi ile derin öğrenme tabanlı Android kötücül 

yazılım tespiti”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi 
Dergisi, vol.37, pp. 4, pp. 1823-1838,2022. 

doi:10.17341/gazimmfd.937374 

[82] S. Fallah, A.J. Bidgoly, “Android malware detection using network 
traffic based on sequential deep learning models.”, Software: Practice 

and Experience, vol.52, no.9, pp 1987-2004,2022. 

doi:10.1002/spe.3112. 
[83] X. Xing, X., Jin, H. Elahi, H. Jiang, G. Wang, “A malware detection 

approach using autoencoder in deep learning”, IEEE Access, vol. 10, 

pp. 25696-25706 ,2022. doi:10.1109/ACCESS.2022.3155695 
[84] E. Amer and S. El-Sappagh, “Robust deep learning early alarm 

prediction model based on the behavioural smell for android 

malware,” Computers & Security, vol. 116, p. 102670, 2022. doi: 
10.1016/j.cose.2022.102670 

[85] F. Ahmed, et al. "ShielDroid: A hybrid approach integrating machine 

and deep learning for Android malware detection."2022 International 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3323396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

Conference on Decision Aid Sciences and Applications (DASA). 

IEEE, pp. 911–916 ,2022. doi:10.1109/ DASA54658.2022.9764984 

[86] M. Gohari, S. Hashemi, and L. Abdi, “Android malware detection and 
classification based on network traffic using deep learning”, pp. 71–

77, 2021. doi:10.1109/ICWR51868.2021.9443025 

[87] I. U. Haq, T. A. Khan, and A. Akhunzada, “A dynamic robust DL-
Based model for android malware detection,” IEEE Access, vol. 9, pp. 

74510–74521, 2021. doi:10.1109/ACCESS.2021.3079370 

[88]  B. H. Tang et al., “Android malware detection based on deep learning 
techniques”, pp. 481–486, 2021. 

doi:10.1109/PRAI53619.2021.9551073 

[89]  H. Zhu, Y. Li, R., Li, J Li, J., Z. You, H Song, “Sedmdroid:  An 
enhanced stacking ensemble framework for android malware 

detection”, IEEE Transactions on Network Science and Engineering, 

vol.8, no. 2, pp. 984–994 ,2021. doi:10. 1109/TNSE.2020.2996379 
[90] R. Feng et al. "A performance-sensitive malware detection system 

using deep learning on mobile devices, "IEEE Transactions on 

Information Forensics and Security, vol. 16, pp. 1563-1578, 2021. 
doi:10.1109/TIFS.2020.3025436 

[91] J. Feng, L. Shen, Z. Chen, Y. Wang, and H. Li, “A two-layer deep 

learning method for android malware detection using network traffic,” 
IEEE Access, vol. 8, pp. 125786–125796, 2020. 

doi:10.1109/ACCESS.2020.3008081 

[92]  W. Gu, “A multimodal deep network model for android malware 
detection using permission,”, In: 2021 IEEE International Conference 

on Electronic Technology, Communication and Information 
(ICETCI), pp. 63–67, 2021. 

doi:10.1109/ICETCI53161.2021.9563414 

[93] F. Bourebaa, M. Benmohammed,” Android Malware Detection using 
Convolutional Deep Neural Networks”, In 2020 International 

Conference on Advanced Aspects of Software Engineering 

(ICAASE), pp. 1-7, 2020. doi:10. 1109/ICAASE51408.2020.9380104  
[94] F. Wenbo, Z. Linlin, W. Chenyue, H. Yingjie, Y. Yuaner and Z. Kai, 

"AMC-MDL: A novel approach of android malware classification 

using multimodel deep learning,"2020 IEEE Intl Conf on Dependable, 
Autonomic and Secure Computing, Intl Conf on Pervasive 

Intelligence and Computing, pp. 251-256, 2020. doi:10.1109/DASC-

PICom-CBDCom-CyberSciTech49142.2020.00052. 
[95] R. B. Hadiprakoso, I. K. S. Buana and Y. R. Pramadi, "Android 

malware detection using hybrid-based analysis & deep neural 

network", 3rd International Conference on Information and 
Communications Technology (ICOIACT), pp. 252-256, 2020. doi: 

10.1109/ICOIACT50329.2020.9332066. 

[96] T. Mu, H. Chen, J. Du and A. Xu, "An Android malware detection 
method using deep learning based on apı calls,"2019 IEEE 3rd 

Advanced Information Management, Communicates, Electronic and 

Automation Control Conference (IMCEC), pp. 2001-2004 ,2019. 

doi:10.1109/IMCEC46724.2019.8983860. 

[97] S. HR, "Static analysis of Android malware detection using deep 

learning”, International Conference on Intelligent Computing and 
Control Systems (ICCS), pp. 841-845, 2019. doi: 

10.1109/ICCS45141.2019.9065765. 

[98] Y. M. Chen, C. H. Hsu and K. C. Kuo Chung, "A novel preprocessing 

method for solving long sequence problem in Android malware 

[99]  detection,"2019 Twelfth International Conference on Ubi-Media 
Computing (Ubi-Media), pp. 12-17, 2019. doi:10.1109/Ubi-

Media.2019.00012 

[100] I. Bibi, A. Akhunzada, J. Malik, G. Ahmed, and M. Raza, "An 
effective android ransomware detection through multi-factor feature 

filtration and recurrent neural network,"2019 UK/ China Emerging 

Technologies (UCET), pp. 1-4, 2019. doi: 
10.1109/UCET.2019.8881884 

[101]  A. Mahindru and A. L. Sangal, "DeepDroid: Feature Selection 

approach to detect Android malware using Deep Learning,"2019 IEEE 
10th International Conference on Software Engineering and Service 

Science (ICSESS), pp. 16-19, 2019. doi: 

10.1109/ICSESS47205.2019.9040821. 
[102]  A. Naway, Y. Li, “Android malware detection using autoencoder”, 

International Journal of Computer Engineering and Applications, vol. 

12, no. 12, 2018. doi:10.48550/arXiv.1901.07315 
[103]  M. Masum and H. Shahriar, "Droid-NNet: Deep learning neural 

network for android malware detection,"2019 IEEE International 

Conference on Big Data (Big Data), pp. 5789-5793, 2019. doi: 
10.1109/BigData47090.2019.9006053. 

[104]  Y. Ding, J. Hu, W. Xu and X. Zhang, "A deep feature fusion method 

for Android malware detection,"2019 International Conference on 
Machine Learning and Cybernetics (ICMLC), pp. 1-6, 2019. doi: 

10.1109/ICMLC48188.2019.8949298. 
[105]  R. Feng et al., "MobiDroid: A performance-sensitive malware 

detection system on mobile platform,"2019 24th International 

Conference on Engineering of Complex Computer Systems 
(ICECCS), pp. 61-70, 2019. doi:10.1109/ICECCS.2019.00014 

[106]  Y. Zhang, Y. Yang, and X. Wang, “A novel android malware 

detection approach based on convolutional neural network”, In: 2nd 
International Conference on Cryptography, Security and Privacy, pp. 

144–149, 2018. doi:10.1145/3199478.3199492 

[107]  A. Alotaibi, "Identifying malicious software using deep residual long-
short term memory”, in IEEE Access, vol. 7, pp. 163128-163137, 

2019. doi:10.1109/ACCESS.2019.2951751 

[108]  E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “MalDozer: 
Automatic framework for Android malware detection using deep 

learning” Digital Investigation, vol. 24, pp. 48–59, 2018. doi: 

10.1016/j.diin.2018.01.007. 
[109]  N. Viennot, E. Garcia, J. Nieh,” Playdrone: A measurement study of 

google play”, ACM International Conference on Measurement and 

Modeling of Computer Systems, pp. 221–233, 2014. 
doi:10.1145/2591971. 2592003. 

[110]  R. Vinayakumar, K. Soman, P. Poornachandran, S. Sachin Kumar,” 

Detecting android malware using long short-term memory (lstm)”, 

Journal of Intelligent & Fuzzy Systems, vol. 34, no. 3, pp. 1277–1288, 

2018. doi:10.3233/JIFS-169424. 

 

FIRST A. AUTHOR received the B.E. degrees in 

Computer and Control Education department from 
Marmara University, Istanbul, Turkey and 

Computer Engineering from the Sakarya 

University, Sakarya, Turkey, in 2010 and 2019, 
respectively, and M.E. degrees in Computer and 

Control Education department from Marmara 

University, Istanbul, Turkey, in 2013, and the Ph.D. 
degree in Computer Engineering from the Marmara 

University in 2023. She has been working as 

Assistant Professor Fatih Sultan Mehmet Vakif University. Her research 
interests include computer networks and security, machine/deep learning, 

and python programming. 

 

SECOND B. AUTHOR received the B.Sc. 

degree from the Computer Engineering 
Department, Bogazici University, in 1993, and 

the M.S. and Ph.D. degrees from the Computer 

Engineering Department, Istanbul Technical 
University, in 1998 and 2006, respectively. He 

is currently working as Professor with the 

Computer Engineering Department, Biruni 
University/Istanbul. His research interests 

include artificial intelligence, machine/deep 

learning, data science, and UAV networking. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3323396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.%201109/TNSE.2020.2996379
https://doi.org/10.1109/TIFS.2020.3025436
https://doi.org/10.1145/2591971.%202592003


 

8 VOLUME XX, 2017 

THIRD C. AUTHOR, received the B.Sc. 
degree from the Marmara University, Faculty 

of Technical Education, Department of 

Electronics and Computer Education, Turkey 
in 1999 and the M.S. and Ph.D. degrees from 

Marmara University, in 2001 and 2006, 

respectively. She is currently working as 
Associate Professor with the Computer 

Engineering Department, Marmara/Istanbul. 

Her research interests include data mining, 
artificial intelligence, data science. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3323396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


