
Title Optimal algorithms for ranked enumeration of answers to full conjunctive queries

Authors(s) Tziavelis, Nikolaos, Ajwani, Deepak, Gatterbauer, Wolfgang, et al,

Publication date 2020-05-01

Publication information Tziavelis, Nikolaos, Deepak Ajwani, Wolfgang Gatterbauer, and et al. “Optimal Algorithms for

Ranked Enumeration of Answers to Full Conjunctive Queries” 13, no. 9 (May 1, 2020).

Publisher ACM

Item record/more

information

http://hdl.handle.net/10197/25061

Publisher's statement © ACM, 2020. This is the author's version of the work. It is posted here by permission of ACM for

your personal use. Not for redistribution. The definitive version was published in Proceedings of

the VLDB Endowment, {13, I9, (2020)} http://doi.acm.org/10.14778/3397230.3397250

Publisher's version (DOI) 10.14778/3397230.3397250

Downloaded 2023-12-02T04:02:18Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=Optimal+algorithms+for+ranked+enumera...&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F25061

Optimal Algorithms for Ranked Enumeration of
Answers to Full ConjunctiveQueries

NIKOLAOS TZIAVELIS, Northeastern University, USA
DEEPAK AJWANI, University College Dublin, Ireland
WOLFGANG GATTERBAUER, Northeastern University, USA
MIREK RIEDEWALD, Northeastern University, USA
XIAOFENG YANG, Northeastern University, USA

We study ranked enumeration of join-query results according to very general orders defined by selective
dioids. Our main contribution is a framework for ranked enumeration over a class of dynamic programming
problems that generalizes seemingly different problems that had been studied in isolation. To this end, we
extend classic algorithms that find the k-shortest paths in a weighted graph. For full conjunctive queries,
including cyclic ones, our approach is optimal in terms of the time to return the top result and the delay
between results. These optimality properties are derived for the widely used notion of data complexity, which
treats query size as a constant. By performing a careful cost analysis, we are able to uncover a previously
unknown trade-off between two incomparable enumeration approaches: one has lower complexity when the
number of returned results is small, the other when the number is very large. We theoretically and empirically
demonstrate the superiority of our techniques over batch algorithms, which produce the full result and then
sort it. Our technique is not only faster for returning the first few results, but on some inputs beats the batch
algorithm even when all results are produced.

ACM Reference Format:

Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang. 2020. Optimal
Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. 1, 1 (September 2020), 50 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Joins are an essential building block of queries in relational and graph databases, and recent work
on worst-case optimal joins for cyclic queries renewed interest in their efficient evaluation [82]. Part
of the excitement stems from the fact that conjunctive query (CQ) evaluation is equivalent to other
key problems such as constraint satisfaction [70] and hypergraph homomorphism [46]. Similar
to [82], we consider full conjunctive queries, yet we are interested in ranked enumeration, recently
identified as an important open problem [24]: return output tuples in the order determined by a
given ranking function. Here success is measured not only in the time for total result computation,
but the main challenge lies in returning the top-ranked result(s) as quickly as possible.

We share this motivation with top-k query evaluation [64], which defines the importance of an
output tuple based on the weights of its participating input tuples. However, many top-k approaches,
including the famous Threshold Algorithm [43], were developed for a middleware-centric cost
model that charges an algorithm only for accesses to external data sources, but does not take
Authors’ addresses: Nikolaos Tziavelis, ntziavelis@ccs.neu.edu, Northeastern University, Boston, Massachusetts, USA; Deepak Ajwani,
deepak.ajwani@ucd.ie, University College Dublin, Dublin, Ireland; Wolfgang Gatterbauer, w.gatterbauer@northeastern.edu, Northeastern
University, Boston, Massachusetts, USA; Mirek Riedewald, m.riedewald@northeastern.edu, Northeastern University, Boston, Massachusetts,
USA; Xiaofeng Yang, alice.xiaofeng.yang@gmail.com, Northeastern University, Boston, Massachusetts, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
© 2020 Association for Computing Machinery.
XXXX-XXXX/2020/9-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: September 2020.

ar
X

iv
:1

91
1.

05
58

2v
3

 [
cs

.D
B

]
 1

1
Se

p
20

20

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

into account the cost associated with potentially huge intermediate results. We want optimality
guarantees in the standard RAM-model of computation for (1) the time until the first result is
returned and (2) the delay between results.

Example 1 (4-cycle qery). Letw be a function that returns the real-valued weight of a tuple

and consider 4-cycle query QC4 over R1(A1,A2), R2(A2,A3), R3(A3,A4), and R4(A4,A1) with at most

n tuples each:

SELECT R1.A1, R2.A2, R3.A3, R4.A4, R1.W + R2.W + R3.W + R4.W as Weight
FROM R1, R2, R3, R4
WHERE R1.A2=R2.A2 AND R2.A3=R3.A3 AND

R3.A4=R4.A4 AND R4.A1=R1.A1
ORDER BY Weight ASC
LIMIT k

One can compute the full output with a worst-case optimal join algorithm such as NPRR [82] or

Generic-Join [83] and then sort it. Since the fractional edge cover number ρ∗ of QC4 is 2, it takes

O(n2) just to produce the full output [9].
On the other hand, the Boolean version of this query (“Is there any 4-cycle?”) can be answered

in O(n1.5) [78]. Our approach returns the top-ranked 4-cycle in O(n1.5) as well. This is remarkable,

given that determining the existence of a 4-cycle appears easier than finding the top-ranked 4-cycle

(we can use the latter to answer the former). After the top-ranked 4-cycle is found, our approach

continues to return the remaining results in ranked order with “minimal” delay.

We develop a theory of optimal ranked enumeration over full CQs. It reveals deeper relationships
between recent work that only partially addresses the problem we are considering: Putting aside
the focus on twig patterns [31] and subgraph isomorphism [101], graph-pattern ranking techniques
can in principle be applied to conjunctive queries. An unpublished paper [38] that was developed
concurrently with our work offers a recursive solution for ranked enumeration. All this prior work
raises the question of how the approaches are related and whether they can be improved: Can time
complexity of the top-k algorithm by Chang et al. [31] be improved for large k and is it possible to
extend it to give optimality guarantees for cyclic queries? For [69, 101], how can the worst-case
delay be reduced? Is it possible to reduce the complexity of [38] for returning the first few results
and can one close the asymptotic gap between the time complexity for returning the top-ranked
result and the complexity of the corresponding Boolean query for simple cycles?

It is non-trivial to answer the above questions, because those approaches blend various elements
into monolithic solutions, sometimes reinventing the wheel in the process.

Key contributions. We identify and formally model the underlying structure of the ranked enu-
meration problem for conjunctive queries and then solve it in a principled way:

(1) For CQs that are paths, we identify and formalize the deeper common foundations of problems

that had been studied in isolation: k-shortest path, top-k graph-pattern retrieval, and ranked enu-
meration over joins. While interesting in its own right, uncovering those relationships enables us
to propose the first algorithms with optimal time complexity for ranked enumeration of the results
of both cyclic and acyclic full CQs. In particular, the top-ranked output tuple of an acyclic join
query is returned in time linear in input size. For cyclic queries this complexity increases with the
submodular width (subw) of the query [78], which is currently the best known for Boolean queries.
Delay between consecutive output tuples is logarithmic in k .

(2) To achieve optimality, we make several technical contributions. First, for path CQs we propose
a new algorithm Take2with lower delay given linear-time pre-processing than all previous work but
Eppstein’s algorithm [42], whose practical performance is unknown. Take2 matches the latter and

, Vol. 1, No. 1, Article . Publication date: September 2020.

Optimal Algorithms for Ranked Enumeration 3

has the added benefit that it can be generalized to arbitrary acyclic queries.1 Second, to generalize
k-shortest path algorithms to arbitrary acyclic CQs, we introduce ranked enumeration over Tree-

based Dynamic Programming (T-DP), a variant of Non-Serial Dynamic Programming (NSDP) [21].
Third, we propose Union of T-DP problems (UT-DP), a framework for optimally incorporating in our

approach all existing decompositions of a cyclic CQ into a union of trees. Thereby, any decomposition
of a full CQ that achieves optimality for the Boolean version of the query will result in an optimal
algorithm for ranked enumeration over full CQs in our framework.

(3) Ranked enumeration over path CQs forms the backbone of our approach, therefore we analyze
all techniques for this problem in terms of both data and query complexity. This is complemented
by the first empirical study that directly compares landmark results on ranked enumeration from
diverse domains such as k-shortest paths, graph-pattern search, and CQs. Our analysis reveals
several interesting insights: (i) In terms of time complexity the best Lawler-type [74] approaches
are asymptotically optimal for general inputs and dominate the Recursive Enumeration Algorithm

(REA) [38, 66]. (ii) Since REA smartly reuses comparisons, there exist inputs for which it produces
the full ordered output with lower time complexity than Lawler; it is even faster than sorting! Our
experiments verify this behavior and suggest that Lawler-type approaches should be preferred for
small k , but REA for large k . Thus we are the first to not only propose different approaches, but
also reveal that neither dominates all others, both in terms of asymptotic complexity and measured
running time. (iii) Even though our new Take2 algorithm needs asymptotically the same pre-
processing and has lower delay than Lazy [31], its overall time-to-the-k’th result is the same and we
do not find it winning in our experiments.
This is the extended version of a paper appearing in VLDB’20 [97]. Further information is

available on the project web page at https://northeastern-datalab.github.io/anyk/.

2 FORMAL SETUP
We use Nj

i to denote the set of natural numbers {i, . . . , j}.

2.1 ConjunctiveQueries (CQs)
Our approach can be applied to any join query, including those with theta-join conditions and
projections, but we provide optimality results only for full conjunctive queries (CQs) with equi-
joins [82] and hence focus on them. A full CQ is a first-order formula Q(x) = (д1 ∧ · · · ∧ дℓ),
written Q(x) :−д1(x1), . . . ,дℓ(xℓ) in Datalog notation, where each atom дi represents a relation
Ri (xi)with different atoms possibly referring to the same physical relation, and x =

⋃
i xi is a set of

m attributes. An answer or query result or output tuple is an assignment of the variables x to values
from the domain of the database such that the formula is satisfied. The size of the query |Q | is the
size of the formula. We use n to refer to the maximal cardinality of any input relation referenced in
Q . Occurrence of the same variable in different atoms encodes an equi-join condition. A CQ can
be represented by a hypergraph with the variables as the nodes and the atoms as the hyperedges;
acyclicity of the query is defined in terms of the acyclicity of the associated hypergraph [50]. In
particular, we say that a query is acyclic when its hypergraph is alpha-acyclic[26]. This property
can be verified efficiently in O(|Q |) by the well-known GYO reduction [84, 105] which constructs
a join tree. A Boolean CQ just asks for the satisfiability of the formula. We use QB to denote the
Boolean version of Q . A query with self-joins has at least one relation appearing in more than one
atom and a self-join-free query has no self-joins. To avoid notational clutter and without loss of
generality, we assume that there are no selection conditions on individual relations (like R(x , 1) or

1This generalization is unknown for Eppstein and it would be challenging due to the complex nature of that algorithm.

, Vol. 1, No. 1, Article . Publication date: September 2020.

https://northeastern-datalab.github.io/anyk/

4 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

R(x ,x)): Tables can be copied, and selection conditions can always be applied directly to the tables
in a preprocessing step that takes O(n).

Example 2 (ℓ-path and ℓ-cycle qeries). Let Ri (A,B), i ∈ Nℓ
1 , be tables containing directed

graph edges from A to B. A length-ℓ path and a length-ℓ cycle can respectively be expressed as:

QP ℓ(x) :−R1(x1,x2),R2(x2,x3), . . . ,Rℓ(xℓ,xℓ+1) (ℓ-path)

QCℓ(x) :−R1(x1,x2),R2(x2,x3), . . . ,Rℓ(xℓ,x1) (ℓ-cycle).

We often represent an output tuple as a vector of those input tuples that joined to produce it,
e.g., (r1, r2, r3, r4) ∈ R1 × R2 × R3 × R4 for 4-path query QP4. We refer to this vector as the witness of
a result.

2.2 Ranked Enumeration Problem
We want to order the results of a full CQ based on the weights of their corresponding witnesses.
For maximal generality, we define the order of query results based on algebraic structures called
selective dioids [49], which are semirings with an ordering property.

Amonoid is a 3-tuple (W , ⊕, 0̄)whereW is a set and ⊕ : W ×W →W is a closed binary operation
such that:
(1) (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) (associativity),
(2) 0̄ ∈W satisfies x ⊕ 0̄ = 0̄ ⊕ x = x ,∀x ∈W (neutral element).

If additionally it holds that
(3) x ⊕ y = y ⊕ x ,∀x ,y ∈W (commutativity),

then the monoid is called a commutative monoid.
A semiring is a 5-tuple (W , ⊕, ⊗, 0̄, 1̄), where
(1) (W , ⊕, 0̄) is a commutative monoid,
(2) (W , ⊗, 1̄) is a monoid,
(3) ∀x ,y, z ∈W : (x ⊕ y) ⊗ z = (x ⊗ z) ⊕ (y ⊗ z) (distributivity of ⊗ over ⊕),
(4) ∀a ∈W : a ⊗ 0̄ = 0̄ ⊗ a = 0̄ (0̄ is absorbing for ⊗).

Definition 3 (Selective dioid). A selective dioid is a semiring for which ⊕ is selective, i.e., it
always returns one of the operands: ∀x ,y ∈W : (x ⊕ y = x) ∨ (x ⊕ y = y).

Note that ⊕ being selective induces a total order onW by setting x ≤ y iff x ⊕ y = x . We define
result weight as an aggregate of input-tuple weights using the binary operator ⊗ repeatedly:

Definition 4 (Result Weights). Letw be a weight function that maps each input tuple to some

value inW and letQ(x) :−R1(x1), . . . ,Rℓ(xℓ) be a full CQ. The weight of a result tuple r is the weight
of its witness (r1, . . . , rℓ), ri ∈ Ri , i ∈ Nℓ

1 , defined as
⊗ℓ

i=1w(ri).

Recall Example 1 where we rank output tuples by the sum of the weights of the corresponding
input tuples, i.e., the weight of (r1, . . . , rℓ) is

∑ℓ
i=1w(ri). We achieve this by using the selective

dioid (R∞,min,+,∞, 0) with R∞ = R ∪ {∞} that is also called the tropical semiring. Notice the
correspondence of ⊗ to + and ⊕ to min. In general, we use the term ranking function to refer to
a function that maps the query results to a domain equipped with a total order ≤. In this paper,
the ranking function is captured by a selective dioid: we use the ⊗ operator to aggregate the input
weights into a result weight and then we use the ⊕ operator on the result weights to compare (or
rank) them.

The central problem in this paper is the following:

, Vol. 1, No. 1, Article . Publication date: September 2020.

Optimal Algorithms for Ranked Enumeration 5

Definition 5 (Ranked enumeration). Given a query Q over an input database D, selective dioid
(W , ⊕, ⊗, 0̄, 1̄), and weight functionw as defined above, a ranked enumeration algorithm returns the

output of Q on D according to the total order induced by ⊕.

We refer to algorithms for ranked enumeration over the results of a CQ as any-k algorithms. This
conforms to our previous work [101] and reflects the fact that the number of returned results need
not be set apriori. Thus, any-k algorithms can be seen as a fusion of top-k and anytime algorithms
[107] that gradually improve their result over time.

Generality. Our approach supports any selective dioid, including less obvious cases such as
lexicographic ordering where two output tuples are first compared on their R1 component, and if
equal then on their R2 component, and so on. For this to be well-defined, there must be a total
order on the tuples within each relation. Without loss of generality, assume this total order is
represented by the natural numbers, such that input tuple r has weightw ′(r) ∈ N. For the selective
dioid, we setW = Nℓ , i.e., each tuple weight is an ℓ-dimensional vector of integers. Input tuple
r j ∈ R j has weight w(r j) = (0, . . . , 0,w ′(r j), 0, . . . , 0) with zeros except for position j that stores
the “local” weight value in R j . Operator ⊗ is standard element-wise vector addition, therefore the
weight of a result tuple with witness (r1, . . . , rℓ) is (w ′(r1), . . . ,w ′(rℓ)). To order two such vectors,
the selective dioid addition ⊕ returns the operand that comes first according to the lexicographic
order e.g., for ℓ = 2, (a,b) ⊕ (c,d) = (a,b) if w ′(a) < w ′(c), or w ′(a) = w ′(c) and w ′(b) < w ′(d),
and (c,d) otherwise. The 0̄ and 1̄ elements of the dioid are ℓ-dimensional vectors (∞, . . . ,∞) and
(0, . . . , 0), respectively.
We will present our approach for the tropical semiring (R∞,min,+,∞, 0). Generalization to

other selective dioids follows immediately from the fact that the only algebraic properties that are
used in our derivations and proofs are those that imply the algebraic structure of a selective dioid
Definition 3.
Notice that addition over real numbers has an inverse, hence (R∞,+, 0) is a group, not just a

monoid. This simplifies the algorithms to a certain extend. Our main result (Theorem 15) still holds
even without the inverse with some minor subtleties that we explain in Section 6.2.

2.3 Complexity Measures
For complexity results we use the standard RAM-model of computation that charges O(1) per
data-element access. Reading or storing a vector of i elements therefore costs O(i). In line with
previous work [20, 51, 82], we also assume the existence of a data structure that can be built in
linear time to support tuple lookups in constant time. In practice, this is virtually guaranteed by
hashing, though formally speaking, only in an expected, amortized sense.
We measure success with respect to three measures: (i) the pre-processing time or time-to-first

denoted by TTF, (ii) the delay between the k − 1’th and k’th results for any value of k denoted
by Delay(k) and (iii) the space requirement until the k’th result denoted by MEM(k). We will also
look at TT(k) which is the overall time to get the k’th result and the special case of the time-to-last

(TTL = TT(|out|)), where out denotes the output of the query. Notice that TTF = TT(1).
In line with most previous work on worst-case optimal join algorithms and decompositions of

cyclic queries, we measure asymptotic cost in terms of data complexity [99], i.e., treat query size
|Q | as a constant. The exception is the in-depth analysis of ranked enumeration algorithms for path
CQs (Section 4.3), where including query complexity reveals interesting differences.

2.4 Determining Optimality
Consider full CQQ over input relations with at most n tuples. It takes Ω(n) just to look at each input
tuple and Ω(k) to output k result tuples. Since we also require the output to be sorted and sorting k

, Vol. 1, No. 1, Article . Publication date: September 2020.

6 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

items has complexity Ω(k logk), we consider a ranked enumeration algorithm to be optimal if it
satisfies TTF = O(n) and Delay(k) = O(logk). 2 For acyclic CQs, this optimality target is realistic,
because the well-known Yannakakis algorithm [103] computes the full (unsorted) output in time
O(n + |out|).
For cyclic CQs, Ngo et al. [82] argue that the join result cannot be computed in O(n + |out|)

and propose the notion of worst-case optimal (WCO) join algorithms, whose computation time is
O(n + |outWC |). Here, |outWC | is the maximum output size of query Q over any possible database
instance, which is determined by the AGM bound [9]. WCO join algorithms are thus not sensitive
to the actual output size of the query on a given database instance. Abo Khamis et al. [5] argue
for a stronger, output-sensitive notion of optimality based on the width ω of a decomposition of
a cyclic CQ Q into a set Q of acyclic CQs covering Q .3 The input relations of the acyclic CQs in
Q are derived from the original input and have cardinality O(nω) for ω ≥ 1 ideally as small as
possible. Let A be such a decomposition-based algorithm and let T (A) denote its time complexity
for creating decomposition Q. By applying the Yannakakis algorithm to the acyclic queries in Q,
cyclic query Q can be evaluated in time O(T (A) + |out|) and its Boolean version QB in O(T (A)).
The current frontier are decompositions based on the submodular width ω = subw(Q) [78], which
is considered a yardstick of optimality for full and Boolean CQs [5].
We adopt this notion of optimality and, arguing similar to the acyclic case, we say that ranked

enumeration over a full CQ is optimal if TTF = O(T (A)) and Delay(k) = O(logk). Intuitively, this
ensures that ranked enumeration adds “almost no overhead” compared to unranked enumeration,
because outputting k results would take at least Ω(k).

3 PATH QUERY AND ITS CONNECTION TO DYNAMIC PROGRAMMING (DP)
We formulate optimal ranked enumeration for path queries as a Dynamic Programming (DP)
problem, then generalize to trees and cyclic queries. Following common terminology, we use DP
to denote what would more precisely be called deterministic serial DP with a finite fixed number
of decisions [22, 34, 35]. These problems have a unique minimum of the cost function and DP
constructs a single solution that realizes it. Formally, a DP problem has a set of states S , which
contain local information for decision-making [22]. We focus on what we will refer to asmulti-stage

DP. Here each state belongs to exactly one of ℓ > 0 stages, where Si denotes the set of states in
stage i , i ∈ Nℓ

0 . The start stage has a single state S0 = {s0} and there is a terminal state sℓ+1 which
we also denote by t for convenience. At each state s of stage i , we have to make a decision that
leads to a state s ′ ∈ Si+1. We use E ⊆ ⋃ℓ

i=0(Si × Si+1) for the set of possible decisions.
DP is equivalent to a shortest-path problem on a corresponding weighted graph, in our case a

(ℓ+2)-partite directed acyclic graph (DAG) [22, 35], where states correspond to nodes and decisions
define the corresponding edges. Each decision (s, s ′) is associated with a cost w(s, s ′), which defines
the weight of the corresponding edge in the shortest-path problem.4 By convention, an edge exists
iff its weight is less than ∞.

We now generalize the path definition from Example 2 and show that ranked enumeration over
this query can be modeled as an instance of DP. Consider

Q ′
P ℓ(x, y) :−R1(y1, x2),R2(x2, y2, x3), . . . ,Rℓ(xℓ, yℓ, xℓ+1),

allowing multiple attributes in the equi-join conditions and additional attribute sets yi that do not
participate in joins. This query can be mapped to a DP instance as follows: (1) atom Ri corresponds

2To be precise, sorting may add less than k logk overhead if one can replace generic comparison-based sorting with an algorithm that
exploits structural relationships between weights of input and output tuples. However, this is not possible for all inputs and k values.

3The union of their output equals the output of Q .
4We use cost and weight interchangeably. Cost is more common in optimization problems, weight in shortest-path problems. We

sometimes use “lightest path” in order to emphasize that all paths have the same number of nodes, but differ in their weights.

, Vol. 1, No. 1, Article . Publication date: September 2020.

Optimal Algorithms for Ranked Enumeration 7

s0 “2”

“3”

“1”

“20”

“30"

“10"

“200"

“300”

“100"

t = s4

S1 S2 S3S0 S4

3

2

1

10 100

0

0

0
20

30

200300

20

30
10

200

300

10
0

Fig. 1. DP instance for Example 6.

to stage Si and each tuple in Ri maps to a unique state in Si , (2) there is an edge between s ∈ Si and
s ′ ∈ Si+1 iff the corresponding input tuples join and the edge’s weight is the weight of the tuple
corresponding to s ′, (3) there is an edge from s0 to each state in S1 whose weight is the weight of
the corresponding R1-tuple, and (4) each state in Sℓ has an edge to t of weight 0. Clearly, there is a
1:1 correspondence between paths from s0 to t and output tuples ofQ ′

P ℓ , and path “length” (weight)
equals output-tuple weight. Hence the k-th heaviest output tuple corresponds to the k-shortest
path in the DP instance.

Example 6 (Cartesian product). We use the problem of finding the minimum-weight output of

Cartesian productR1×R2×R3 as the running example. LetR1 = {“1”, “2”, “3”}, R2 = {“10”, “20”, “30”}
and R3 = {“100”, “200”, “300”} and set tuple weight equal to tuple label, e.g., tuple “20” in R2 has

weightw(“20”) = 20. Fig. 1 depicts how this problem translates into our framework.

A solution to the DP problem is a sequence of ℓ states Π = ⟨s1 . . . sℓ⟩ that is admissible, i.e.
(si , si+1) ∈ E, ∀i ∈ Nℓ

0 . The objective function is the total cost of a solution,

w(Π) =
ℓ∑
i=0

w(si , si+1), (1)

and DP finds the minimal-cost solution Π1. The index denotes the rank, i.e., Πk is the k-th best
solution.

Principle of optimality. [15, 16] The core property of DP is that a solution can be efficiently
derived from solutions to subproblems. In the shortest-path view of DP, the subproblem at any
state s ∈ Si is the problem of finding the shortest path from s to t . With Π1(s) and π1(s) denoting
the shortest path from s and its weight respectively, DP is recursively defined for all states s ∈
Si , i ∈ Nℓ+1

0 by
π1(s) = 0 for terminal s ∈ Sℓ+1

π1(s) = min
(s,s ′)∈E

{w(s, s ′) + π1(s ′)}, for s ∈ Si , i ∈ Nℓ
0 .

(2)

The optimal DP solution is π1(s0), i.e., the weight of the lightest path from s0 to t . For convenience
we define the set of optimal paths reachable from s according to Eq. (2) as Choices1(s) = {s ◦
Π1(s ′) | (s, s ′) ∈ E}. Here ◦ denotes concatenation, i.e., si ◦ ⟨si+1 . . . sℓ⟩ = ⟨si si+1 . . . sℓ⟩.

Example 7 (continued). Consider state “2” in Fig. 2. It has three outgoing edges and π1(“2”) is
computed as the minimum over these three choices. The winner is path “2” ◦ Π1(“10”) of weight 112.
Similarly, Π1(“10”) is found as “10” ◦ Π1(“100”), and so on.

Equation (2) can be computed for all states in time O(|S |+ |E |) bottom-up, i.e., in decreasing stage
order from ℓ + 1 to 0. Consider stage Si : To compute Choices1(s) for state s ∈ Si , the algorithm

, Vol. 1, No. 1, Article . Publication date: September 2020.

8 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

𝑠! ∘ Π"("1"):	111
𝑠! ∘ Π"("2"):	112
𝑠! ∘ Π"("3"):	113

"2" ∘ Π"("10"):	112
"2" ∘ Π"("20"):	122
"2" ∘ Π"("30"):	132

"3" ∘ Π"("10"):	113
"3" ∘ Π"("20"):	123
"3" ∘ Π"("30"):	133

"20" ∘ Π"("100"):	120
"20" ∘ Π"("200"):	220
"20" ∘ Π"("300"):	320

"30" ∘ Π"("100"):	130
"30" ∘ Π"("200"):	230
"30" ∘ Π"("300"):	330

"1" ∘ Π"("10"):	111
"1" ∘ Π"("20"):	121
"1" ∘ Π"("30"):	131

"10" ∘ Π"("100"):	110
"10" ∘ Π"("200"):	210
"10" ∘ Π"("300"):	310

s0 "2"

"3"

"10"

"20"

"30"

"1"

Fig. 2. Excerpt from Fig. 1, showing Choices1(s) for some states s . Term s ◦ Π1(s ′) : w denotes a choice,

which is a path from s , and its weightw = w(s, s ′) + π1(s ′).

retrieves all edges (s, s ′) ∈ E from s to any state s ′ ∈ Si+1, looks up π1(s ′), and keeps track of the
minimal total weightw(s, s ′) + π1(s ′) on-the-fly. (If no such edge is found, then the weight is set to
∞.) When computing π1(s), the algorithm also adds pointers to keep track of optimal solutions. E.g.,
in Fig. 2 entry “2”◦Π1(“30”) at state “2” would point to the minimum-weight choice “30”◦Π1(“100”)
at state “30”. This way the corresponding paths can be reconstructed by tracing the pointers back
“top-down” from π1(s0) [22]. Notice that DP needs only the pointer from the top choice at each state,
but adding the others is “free” complexity-wise, which we later use for ranked enumeration.
Whenever the bottom-up phase determines π1(s) = ∞ during the evaluation of Eq. (2), then

that state s and all its adjacent edges can be removed without affecting the space of solutions.
We use Si ⊆ Si and E ⊆ E to denote the remaining sets of states and decisions, respectively. This
DP algorithm corresponds to variable elimination [36] on the tropical semiring [47, 88] and is
reminiscent of the semi-join reductions by Yannakakis [103], which corresponds to DP with variable
elimination on the Boolean semiring [2].

Encoding equi-joins efficiently. For an equi-join, the shortest-path problem has O(ℓn) states
and O(ℓn2) edges, therefore the DP algorithm has quadratic time complexity in the number of tuples.
We reduce this to O(ℓn) by an equi-join specific graph transformation illustrated in Fig. 3. Consider
the join between R1 and R2, representing stages S1 and S2, respectively. For each join-attribute
value, the corresponding states in R1 and R2 form a fully connected bipartite graph. For each state,
all incoming edges have the same weight, as edge weight is determined by tuple weight. Hence we
can represent the subgraph equivalently with a single node “in-between” the matching states in
S1 and S2, assigning zero weight to the edges adjacent to states in S1 and the corresponding tuple
weight to those adjacent to a state in S2. The transformed representation has only O(ℓn) edges. At
its core, our encoding relies on the conditional independence of the non-joining attributes given
the join attribute value, a property also exploited in factorized databases [85]. Here we provide a
different perspective on it as a graph transformation that preserves all paths.

4 ANY-K ALGORITHMS FOR DP
We defined a class of DP problems that can be described in terms of a multi-stage DAG, where every
solution is equivalent to a path from s0 to t in graph (S = ⋃ℓ+1

i=0 Si ,E). Hence we use terminology
from DP (solution, state, decision) and graphs (path, node, edge) interchangeably.

, Vol. 1, No. 1, Article . Publication date: September 2020.

Optimal Algorithms for Ranked Enumeration 9

(a,1)

(c,1)

(b,1)

(1,e)

(2,g)

(1,f)

"1"
we0

0

0

wf

Original Equi-Join Graph Transformed Equi-Join Graph

R1 R2

(d,2) (2,h)

"2"

wh

wg

0

(a,1)

(c,1)

(b,1)

(1,e)

(2,g)

(1,f)

R1 R2

(d,2) (2,h)

we

we

we

wf

wf

wf

wh

wg

Fig. 3. Equi-join from O(n2) representation to O(n).

In addition to the minimum-cost path, ranked enumeration must retrieve all paths in cost order.
Let Πk (s) be the k th-shortest path from s to t and πk (s) its cost. The asymptotically best k-shortest-
paths algorithm was proposed by Eppstein [42], yet it is not the best choice for our use case. In the
words of its author, it is “rather complicated”, thus it is unclear how to extend it from path to tree

queries. Since our DP problems are only concerned with multi-stage DAGs (Eppstein targets more
general graphs), we propose a simpler and easier-to-extend algorithm, Take2, that guarantees the
same complexity as Eppstein.5

Below we explore algorithms that fall into two categories. The first appeared in various optimiza-
tion contexts as methods that partition the solution space and trace their roots to Lawler [74] and
Murty [79], including recent work on subgraph isomorphism [31]. We call this family anyK-part;
it includes Take2. The second finds the k-shortest paths in a graph via recursive equations [40, 66].
We refer to the application of this idea to our framework as anyK-rec.

4.1 Repeated Partitioning DP (ANYK-PART)
4.1.1 The Lawler Procedure and DP. Lawler [74] proposed a procedure for ranked enumeration by
repeatedly partitioning the solution space, which can be applied to any optimization problem over a
fixed set of variables, not only DP. In our problem, there is one variable per stage and it can take
any state in that stage as a value. Lawler only assumes the existence of a method best that returns
the optimal variable assignment over any space S ′1 × · · · × S ′

ℓ
, where ∀i : S ′i ⊆ Si .

The top-ranked solution ⟨s∗1 . . . s∗ℓ⟩ is obtained by executing best on the unconstrained space
S1×· · ·×Sℓ . To find the second-best solution, Lawler creates ℓ disjoint subspaces such that subspace i
has the first i − 1 variables fixed to the top-ranked solution’s prefix ⟨s∗1 . . . s∗i−1⟩ and the i-th variable
restricted to Si − {s∗i }. Then it applies best to each of these subspaces to find the top solution in
each. The second-best overall solution is the best of these ℓ subspace solutions. The procedure
continues analogously by generating the corresponding subspaces for the second-best solution,
adding them to a priority queue of candidates.
Chang et al. [31] showed that the k th-ranked solution ⟨s1 . . . sℓ⟩ is the output of best on some

subspace
P = {s1} ×· · ·× {sr−1} × (Sr −Ur) × Sr+1 ×· · ·× Sℓ, (3)

with Ur being a set of states excluded from Sr . The new candidates to be added to the candidate
set for the (k + 1)st result are the results obtained by executing best on the following ℓ − r + 1
subspaces:

5Implementations of “Eppstein’s algorithm” exist, but they seem to implement a simpler variant with weaker asymptotic guarantees
that was also introduced in [42].

, Vol. 1, No. 1, Article . Publication date: September 2020.

10 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

Pr = {s1} ×· · ·× {sr−1} × (Sr −Ur −{sr }) × Sr+1 ×· · ·× Sℓ
Pr+1= {s1} ×· · ·× {sr−1} × {sr } × (Sr+1−{sr+1}) ×· · ·× Sℓ

...
Pℓ = {s1} ×· · ·× {sr−1} ×· · ·× {sℓ−1} × (Sℓ−{sℓ}).

Efficient computation. Instead of calling best from scratch on each subspace, we propose to
exploit the structure of DP. Consider any subspace P as defined in Eq. (3). Since prefix ⟨s1 . . . sr−1⟩
is fixed, we need to find the best suffix starting from state sr−1. In the next stage Sr , only states that
are not in exclusion setUr can be selected, i.e., the set of choices at sr−1 is restricted byUr . Formally,

best(P) = ⟨s1 . . . sr−1s⟩ ◦ Π1(s), where (4)
s = arg min

s ′∈Sr−Ur
{w(sr−1, s

′) + π1(s ′)|

sr−1 ◦ Π1(s ′) ∈ Choices1(sr−1)}, (5)

therefore Eq. (5) can be solved using only information that was already computed by the standard DP

algorithm. Note that all elements in a choice set other than the minimum-weight element are often
referred to as deviations from the optimal path.

Example 8 (continued). After returning Π1(s0) = ⟨“1” “10” “100”⟩, Lawler would solve three new
optimization problems to find the second-best result. The first subspace is the set of paths that start at

s0, but cannot use state “1”. The second has prefix ⟨“1”⟩ and cannot use state “10”. The third has prefix
⟨“1” “10”⟩ and cannot use state “100”. The best solution to the first subproblem is ⟨“2” “10” “100”⟩,
corresponding to deviation s0 ◦ π1(“2”) of weight 112. For the second subproblem, the best result is

found similarly as the second-best option “1” ◦ π1(“20”) = ⟨“1” “20” “100”⟩. For the third subproblem,

the best subspace solution ⟨“1” “10” “200”⟩ is obtained analogously at state “10”.

4.1.2 The ANYK-PART family of algorithms. We propose a generic template for anyK-part al-
gorithms and show how all existing approaches and our novel Take2 algorithm are obtained as
specializations based on how the Lawler-created subspace candidates are managed. All anyK-part
algorithms first execute standard DP, which produces for each state s the shortest path Π1(s),
its weight π1(s), and set of choices Choices1(s). The main feature of anyK-part is a set Cand
of candidates: it manages the best solution(s) found in each of the subspaces explored so far. To
produce the next result, the anyK-part algorithm (Algorithm 1) (1) removes the lightest candidate
from the candidate set Cand, (2) expands it into a complete solution, and (3) adds all new candidates
found in the corresponding subspaces to Cand. We implement Cand using a priority queue with
combined logarithmic time for removing the top element and inserting a batch of new candidates.

Example 9 (continued). The standard DP algorithm identifies ⟨“1” “10” “100”⟩ as the shortest
path and generates the choice sets as shown in Fig. 2. Hence Cand initially contains only candidate
(⟨s0⟩, “1”, 0, 1 + 110 = 111) (Line 6), which is popped in the first iteration of the repeat-loop (Line 7),

leaving Cand empty for now. The for-loop (Line 11) is executed for stages 1 to ℓ = 3. For stage 1, we
have tail = s0 and last = “1”. For the successor function (Line 15), there are different choices as we

discuss in more detail in Section 4.1.3. For now, assume Succ(x ,y) returns the next-best choice at state
x after the previous choice y. Hence the successor of “1” at state s0 is “2”. As a result, newCandidate
is set to (⟨s0⟩, “2”, 0, 2 + 110)—it is the winner for the first subspace—and added to Cand. Then the

solution is expanded (Line 19) to (⟨s0 “1”⟩, “10”, 1, 10 + 100), because “10” is the best choice from
“1”. The next iteration of the outer for-loop (Line 11) adds candidate (⟨s0 “1”⟩, “20”, 1, 20 + 100) to
Cand and updates the solution to (⟨s0 “1” “10”⟩, “100”, 11, 100). The third and final iteration adds

, Vol. 1, No. 1, Article . Publication date: September 2020.

Optimal Algorithms for Ranked Enumeration 11

Algorithm 1: anyK-part

1 Input: DP problem with stages S1, . . . , Sℓ
2 Output: solutions in increasing order of weight
3 Execute standard DP algorithm to produce for each state s: Π1(s), π1(s), and Choices1(s)
4 //Initialize candidate set with top-1 result ⟨s∗1 . . . s

∗
ℓ
⟩

5 //A candidate consists of 4 fields: prefix ⟨s1 . . . sr−1⟩, lastState sr , prefixWeightw(⟨s1 . . . sr−1⟩), and
choiceWeightw(sr−1, sr) + π1(sr).

6 Cand.add([⟨s∗0⟩, s
∗
1 , 0,w(s∗0 , s

∗
1) + π1(s∗1)])

7 repeat

8 //Pop the candidate with the lowest sum of prefixWeight and choiceWeight. Let that be
[⟨s1 . . . sr−1⟩, sr ,w(⟨s1 . . . sr−1⟩),w(sr−1, sr) + π1(sr)]

9 solution = Cand.popMin()
10 //Complete the partial solution with the optimal suffix and generate new candidates in all subspaces.
11 for stages from r to ℓ do
12 //Expand the prefix to the next stage. The tail of a prefix is its last element. Succ(x ,y) returns an

appropriate subset of Choices1(x).
13 tail = solution.prefix.tail
14 last = solution.lastState
15 for s ∈ Succ(tail, last) do

16 newCandidate = (solution.prefix, s , solution.prefixWeight,w(tail, s) + π1(s))
17 Cand.add(newCandidate)
18 //Update solution by appending the last state to the prefix.
19 solution.prefix.append(last)
20 solution.prefixWeight.add(w(tail, last))
21 s ′ = arg mins ′′{w(last, s ′′) + π1(s ′′) | last ◦ Π1(s ′′) ∈ Choices1(last)}
22 solution.lastState = s ′

23 solution.choiceWeight =w(last, s ′) + π1(s ′)
24 output solution
25 until query is interrupted or Cand is empty

candidate (⟨s0 “1” “10”⟩, “200”, 11, 200) and updates the solution to (⟨s0 “1” “10” “100”⟩, t , 111, 0),
which is returned as the top-1 result.

At this time, Cand contains entries (⟨s0⟩, “2”, 0, 112), (⟨s0 “1”⟩, “20”, 1, 120), and

(⟨s0 “1” “10”⟩, “200”, 11, 200). Note that each is the shortest path in the corresponding sub-

space as defined by the Lawler procedure. Among the three, (⟨s0⟩, “2”, 0, 112) is popped next, because
it has the lowest sum of prefix-weight (0) and choice-weight (112). The first new candidate created for

it is (⟨s0⟩, “3”, 0, 113), followed by (⟨s0 “2”⟩, “20”, 2, 120), and (⟨s0 “2” “10”⟩, “200”, 12, 200). At the
same time, the solution is expanded to (⟨s0 “2” “10” “100”⟩, t , 112, 0).

4.1.3 Instantiations of ANYK-PART. The main design decision in Algorithm 1 is how to manage
the choices at each state and how to implement successor-finding (Line 15) over these choices.

Strict approaches. A natural implementation of the successor function returns precisely the
next-best choice.

Eager Sort (Eager): Since a state might be reached repeatedly through different prefixes, it may
pay off to pre-sort all choice sets by weight and add pointers from each choice to the next one
in sort order. Then Succ(x ,y) returns the next-best choice at x in constant time by following the
next-pointer from y.

Lazy Sort (Lazy): For lower pre-processing cost, we can leverage the approach Chang et al. [31]
proposed in the context of graph-pattern search. Instead of sorting a choice set, it constructs a
binary heap in linear time. Since all but one of the successor requests in a single repeat-loop

, Vol. 1, No. 1, Article . Publication date: September 2020.

12 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

“2”

“30”

“20”

“10”
s0

𝜋)(𝑠,)
𝜋.(𝑠,)
𝜋/(𝑠,)
𝜋0(𝑠,)
𝜋1(𝑠,)
𝜋2(𝑠,)
𝜋3(𝑠,)
𝜋4(𝑠,)
𝜋5(𝑠,)
𝜋),(𝑠,)
𝜋)) 𝑠,
…

𝜋)("2")
𝜋.("2")
𝜋/("2")
𝜋0("2")
…

𝜋)("10")
𝜋.("10")

…

𝜋)("30")
…

𝜋)("20")
…

(a) Pointers between solutions from and to “2”.

next on	choices1("2")
"2" ∘ Π!("10"):	110
"2" ∘ Π!("20"):	120
"2" ∘ Π!("30"):	130
"2" ∘ Π"("10"):	210

“2”

“30”

“20”

“10”

next on	choices2("2")
"2" ∘ Π!("20"):	120
		"2" ∘ Π!("30"):	130
"2" ∘ Π"("10"):	210
"2" ∘ Π"("20"):	220

next on	choices3("2")
"2" ∘ Π!("30"):	130
		"2" ∘ Π"("10"):	210
"2" ∘ Π"("20"):	220
"2" ∘ Π"("30"):	230

next on	choices4("2")
"2" ∘ Π"("10"):	210
		"2" ∘ Π"("20"):	220
"2" ∘ Π"("30"):	230
"2" ∘ Π#("10"):	310

(b) Recursive enumeration at state “2”.
Fig. 4. Example 10: Recursive enumeration

execution are looking for the second-best choice6, the algorithm already pops the top two choices
off the heap and moves them into a sorted list. For all other choices, the first access popping them
from the heap will append them to the sorted list that was initialized with the top-2 choices. As the
algorithm progresses, the heap of choices gradually empties out, filling the sorted list and thereby
converging to Eager.

Relaxed approaches. Instead of finding the single true successor of a choice, what if the algorithm
could return a set of potential successors? Correctness is guaranteed, as long as the true successor
is contained in this set or is already in Cand. (Adding potential successors early to Cand does not
affect correctness, because they have higher weight and would not be popped from Cand until it is
“their turn.”) This relaxation may enable faster successor finding, but inserts candidates earlier into
Cand.
All choices (All): This approach is based on a construction that Yang et al. [101] proposed for

any-k queries in the context of graph-pattern search. Instead of trying to find the true successor of
a choice, all but the top choice are returned by Succ. While this avoids any kind of pre-processing
overhead, it inserts O(n) potential successors into Cand.
Take2: We propose a new approach that has better asymptotic complexity than any of the

above. Intuitively, we want to keep pre-processing at a minimum (like All), but also return a few
successors fast (like Eager). To this end, we organize each choice set as a binary heap. In this
tree structure, the root node is the minimum-weight choice and the weight of a child is always
greater than its parent. Function Succ(x ,y) (Line 15) returns the two children of y in the tree.
Unlike Lazy, we never perform a pop operation and the heap stays intact for the entire operation
of the algorithm; it only serves as a partial order on the choice set, pointing to two successors
every time it is accessed. Also note that the true successor does not necessarily have to be a child
of node y. Overall, returning two successors is asymptotically the same as returning one and heap
construction time is linear [34], hence this approach asymptotically dominates the others.

4.2 Recursive Enumeration DP (ANYK-REC)
anyK-rec relies on a generalized principle of optimality [77]: if the k-th path from start node s0
goes through s ∈ S1 and takes the js -lightest path Πjs (s) from there, then the next lightest path
from s0 that goes through s will take the (js + 1)-lightest path Πjs+1(s) from there. We will refer to
the prototypical algorithm in this space as Recursive [66]. Recall that lightest path Π1(s0) from
start node s0 is found as the minimum-weight path in Choices1(s0). Assume it goes through s ∈ S1.
Through which node does the 2nd-lightest path Π2(s0) go? It has to be either the 2nd-lightest path

6During each execution of the repeat-loop, only the first iteration of Line 11 looks for a lower choice.

, Vol. 1, No. 1, Article . Publication date: September 2020.

Optimal Algorithms for Ranked Enumeration 13

Algorithm 2: Recursive

1 Input: DP problem with stages S1, . . . , Sℓ
2 Output: solutions in increasing order of weight
3 Execute standard DP algorithm to produce for each state s: Π1(s), π1(s), and Choices1(s)
4 //Initialization phase
5 for stages i from ℓ − 1 to 0 do

6 for states s ∈ Si do
7 Choices1(s) = {s ◦ Π1(s ′) | (s, s ′) ∈ E}
8 Π1(s) = Choices1(s).peek()
9 //Enumeration phase
10 k = 1
11 repeat

12 Πk (s0) = Choicesk (s0).popMin()
13 Output Πk (s0)
14 next(Πk (s0))
15 k = k + 1
16 until User stop process ∨ Choicesk (s0) is empty

17

18 //Returns the next best solution starting from s
19 Function next(Πjs (s)):
20 //Base case: Last stage
21 if s ∈ Sℓ then
22 return null
23 //If Πjs+1(s) has been computed by some previous call, it has been stored at state s
24 if Πjs+1(s) has not been computed then

25 //Πjs (s) is at the top of the priority queue, pop it so that we can construct Choicesjs+1(s)
26 Choicesjs (s).popMin()
27 //Assume Πjs (s) = s ◦ Πjs′ (s ′).
28 //Compute Πjs′+1(s ′) recursively.
29 Πjs′+1(s ′) = next(Πjs (s ′))
30 if Πjs′+1(s ′) , null then
31 Choicesjs (s).insert(s ◦ Πjs′+1(s ′))
32 Choicesjs+1(s) = Choicesjs
33 //To get Πjs+1(s), peek instead of popping. The pop will happen in the following call for

next(Πjs+1(s)).
34 Πjs+1(s) = Choicesjs+1(s).peek()
35 return Πjs+1(s)

through s , of weightw(s0, s)+ π2(s), or the lightest path through any of the other nodes adjacent to
s0. In general, the k-th lightest path Πk (s0) is determined as the lightest path in some later version
Choicesk (s0) = {s0 ◦ Πjs (s) | (s0, s) ∈ E} of the set of choices, for appropriate values of js . Let
Πk (s0) = s0 ◦ Πjs′ (s ′). Then the (k + 1)st solution Πk+1(s0) is found as the minimum over the same
set of choices, except that s0 ◦ Πjs′+1 (s ′) replaces s0 ◦ Πjs′ (s ′). To find Πjs′+1 (s ′), the same procedure
is applied recursively at s ′ top-down. Intuitively, an iterator-style next call at start node s0 triggers
a chain of ℓ such next calls along the path that was found in the previous iteration.

Example 10 (continued). Consider node “2” in Fig. 1. Since it has adjacent states “10”, “20”, and

“30” in the next stage, the lightest path Π1(“2”) is selected from Choices1(“2”) = {“2”◦Π1(“10”), “2”◦
Π1(“20”), “2” ◦ Π1(“30”)} as shown in Fig. 2. The first next call on state “2” returns “2” ◦ Π1(“10”),
updating the set of choices for Π2(“2”) to {“2” ◦ Π2(“10”), “2” ◦ Π1(“20”), “2” ◦ Π1(“30”)} as shown in

the left box in Fig. 4b. The subsequent next call on state “2” then returns “2” ◦ Π1(“20”) for Π2(“2”),

, Vol. 1, No. 1, Article . Publication date: September 2020.

14 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

Algorithm TTF Delay(k) TTL for |out | = Ω(ℓn) TTL for |out | = Θ(nℓ) MEM(k)
Recursive O(ℓn) O(ℓ logn) O(|out |ℓ logn) O(nℓ (logn + ℓ)) O(ℓn + kℓ)
Take2 O(ℓn) O(logk + ℓ) O(|out |(log |out | + ℓ)) O(nℓ · ℓ logn) O(ℓn + kℓ)
Lazy O(ℓn) O(logk + ℓ + logn) O(|out |(log |out | + ℓ)) O(nℓ · ℓ logn) O(ℓn + kℓ)
All O(ℓn) O(logk + ℓn) O(|out |(log |out | + ℓ)) O(nℓ · ℓ logn) O(ℓn +min{kn, |out | }ℓ)
Eager O(ℓn logn) O(logk + ℓ) O(|out |(log |out | + ℓ)) O(nℓ · ℓ logn) O(ℓn + kℓ)
Batch O(ℓn + |out |(log |out | + ℓ)) O(ℓ) O(|out |(log |out | + ℓ)) O(nℓ · ℓ logn) O(ℓn + |out |ℓ)
Fig. 5. Complexity of ranked-enumeration algorithms for equi-joins. Best performing any-k algorithms

with linear TTF O(ℓn) in each column are colored in green).

causing “2” ◦ Π1(“20”) in Choices2(“2”) to be replaced by “2” ◦ Π2(“20”) for Choices3(“2”); and so
on.

As the lower-ranked paths starting at various nodes in the graph are computed, each node keeps
track of them for producing the results as shown in Fig. 4a. For example, the pointer from Π1(“2”)
to Π1(“10”) at node “10” was created by the first next call on “2”, which found “2” ◦ Π1(“10”) as the
lightest path in the choice set. Algorithm 2 contains the detailed pseudocode.

4.3 Any-k DP Algorithm Complexity
In contrast to the discussion in Section 2.4, which focused on data complexity and treated query
size as a constant, we now include query size in the analysis to uncover more subtle performance
tradeoffs between the different any-k approaches. Since each input relation has at most n tuples,
the DP problem has O(ℓn) nodes, each with at most n outgoing edges. Based on our equi-join
construction (Fig. 3), it is easy to see that the total number of edges is |E | = O(ℓn). For simplicity
we make the following assumptions: (1) the maximum arity of a relation is bounded by a constant
[60] , thus |Q | = ℓ , and (2) the operations ⊕ and ⊗ of the selective dioid over which the ranking
function is defined take γ = O(1) time to execute. It is straightforward to extend our analysis to
scenarios where those assumptions do not hold. Note that (2) holds for many practical problems,
e.g., tropical semiring (R∞,min,+,∞, 0), but not for lexicographic ordering where weights are
ℓ-dimensional vectors and hence γ = O(ℓ). With Batch, we refer to an algorithm that sorts the full
output produced by the Yannakakis algorithm [103].

4.3.1 Time to First. All any-k algorithms first execute DP to find the top result and create all choice
sets in time O(ℓn). Eager requires O(ℓn logn) for sorting of choice sets. Heap construction for
Lazy and Take2 takes time linear in input size.

4.3.2 Delay and TTL. Each algorithm requires O(ℓ) to assemble an output tuple. In addition, the
following costs are incurred:

anyK-part. For all anyK-part algorithms, popMin and bulk-insertion of all new candidates
during result expansion take O(log |Cand|). For efficient candidate generation (Line 15 in Algo-
rithm 1) the new candidates do not copy the solution prefix, but simply create a pointer to it.
Therefore, a new candidate is created in O(1).

Eager finds each successor in constant time. Since |Cand| ≤ kℓ, its total delay is O(log(kℓ)+ ℓ) =
O(logk + ℓ). For Lazy, in the first iteration of the main for-loop (Algorithm 1, Line 11), finding the
successor (Line 15) requires at most one pop on a heap storing O(n) choices. All later iterations
find the successor in constant time. Hence total delay is O(logk + ℓ + logn). The All algorithm
might insert up to ℓn new candidates to Cand for each result produced. Hence access to Cand after
producing k results takes a total of O(log(kℓn)). All together, delay is O(logk + log ℓ+ logn+ ℓn) =
O(logk + ℓn). Finally, Take2 finds up to two successor candidates of a choice in constant time.
Delay therefore is O(logk + ℓ). It is easy to see that all these algorithms have worst-case TTL of
O(nℓ · ℓ logn), the same as Batch (refer to [101] for All).

, Vol. 1, No. 1, Article . Publication date: September 2020.

Optimal Algorithms for Ranked Enumeration 15

anyK-rec. In Recursive each next call on s0 triggers O(ℓ) next calls in later stages—at most
one per stage. The call deletes the top choice at the state and replaces it with the next-heavier path
through the same child node in the next stage (see Fig. 4b). With a priority queue, these operations
together take time O(logn) per state accessed, for a total delay of O(ℓ logn) between consecutive
results. In total, it takes O(ℓn + kℓ logn) to produce the top k results. The resulting TTL bound
of O(ℓn + |out| · ℓ logn) can be loose because it does not take into account that in later iterations
many next calls will stop early because the corresponding suffixes Πi had already been computed
by an earlier call:

Theorem 11. There exist DP problems where Recursive has strictly lower TTL complexity than

Batch.

Proof. Regardless of the implementation of Batch, before it terminates it has to (i) process
the input in Ω(nℓ), (ii) enumerate all results in Ω(|output| · ℓ) and (iii) use a standard comparison-
based sort algorithm to batch-rank the entire output in (|out| log |out|). In total, it needs Ω(nℓ +
|out|(log |out| + ℓ)).
For Recursive, when computing the full result, for each suffix πi (s) of any state s , it holds that

the suffix is exactly once inserted into and removed from the priority queue managing Choices at s .
Hence the total number of priority queue operations, each costing O(logn), equals the number of
suffixes. Let Π∗(i) denote the number of suffixes in stage i , i.e., the total number of paths starting
from any node in Si . Then the total cost for all priority-queue operations is O(logn

∑ℓ
i=1 Π∗(i)). If∑ℓ

i=1 Π∗(i) = O(Π∗(1)), then this cost is O(|output| · logn). (To see this, note that the set of paths
starting at nodes in stage 1 is the set of all possible paths, i.e., the full output.) Together with
pre-processing time and time to assemble each output tuple, total TTL complexity of Recursive
then adds up to O(ℓn + |output|(logn + ℓ)). To complete the proof, we show instances where the
condition

∑ℓ
i=1 Π∗(i) = O(Π∗(1)) holds and in which the running time of Batch is strictly worse.

Consider the instances with worst-case output Θ(nℓ) such as a Cartesian product. Recall that
the size of the output is the same as the number of suffixes in the first stage, thus Π∗(1) = Θ(nℓ).
Now consider the ratio between Π∗(i) and Π∗(i + 1) for some stage i ∈ Nℓ−1

1 . That ratio can’t be
more than n which occurs when i and i + 1 are fully connected. It follows that in order to get that
many suffixes in the first stage, every stage i has to increase the number of suffixes of stage i + 1
by a factor of Θ(n). Therefore, Π∗(1) asymptotically dominates the sum

∑ℓ
i=1 Π∗(i), similarly to a

geometric series. Also note that the running time of Batch in these instances is Ω(nℓ · ℓ logn),
which is higher than O(nℓ(logn + ℓ)) of Recursive.

□

The lower TTL of Recursive is at first surprising, given that Batch is optimized for bulk-
computing and bulk-sorting the entire output. Intuitively, Recursive wins because it exploits the
multi-stage structure of the graph—which enables the re-use of shared path suffixes—while Batch
uses a general-purpose comparison-based sort algorithm. We leave as future work a more precise
characterization of graph properties that ensure better TTL for Recursive over Batch.

4.3.3 TT(k). For all algorithms, TT(k) = O(TTF + k · Delay(k)). Thus for Take2, TT(k) = O(ℓn +
k(logk + ℓ)), while for Lazy, TT(k) = O(ℓn+k(logk + ℓ+ logn)). However, a more careful analysis
for the anyK-part variants, gives us the following result:

Proposition 12. Lazy achieves TT(k) = O(ℓn + k(logk + ℓ)), the same as Take2.

Proof. We will show for all values of k that ℓn +k(logk + ℓ) = Ω(ℓn +k(logk + ℓ + logn)), thus
the seemingly lower TT(k) complexity of Take2 is lower bounded by the seemingly higher TT(k)

, Vol. 1, No. 1, Article . Publication date: September 2020.

16 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

“100”

“300”

“200”

“10”

“30”

“20”x1

“1”

“3”

“2”x2s0 t

Next:
𝑠0 ∙ 𝜋1("100"): 111
𝑠0 ∙ 𝜋𝟐("100"): 112
𝑠0 ∙ 𝜋1("200"): 211
𝑠0 ∙ 𝜋1("300"): 311

Next:
𝑥1 ∙ 𝜋1("10"): 11
𝑥1 ∙ 𝜋𝟐("10"): 12
𝑥1 ∙ 𝜋1("20"): 21
𝑥1 ∙ 𝜋1("30"): 31

Next:
𝑥2 ∙ 𝜋1("1"): 1
𝑥2 ∙ 𝜋1("2"): 2
𝑥2 ∙ 𝜋1("3"): 3

Fig. 6. A worst-case example for Recursive and k = n. Notice the sharing of data structures between tuples

due to our special equi-join encoding (Fig. 3). Each returned query result entails a sequence of ℓ priority

queue operations.

complexity Lazy. Since ℓ ≥ 1 and logn is dominated by logk for k ≥ n, it suffices to show that
n + k logk = Ω(n + k logn) for k < n.

For any 1 ≤ k ≤ n, it holds that n/k ≥ log(n/k) and logk ≥ 0 and therefore
n

k
≥ logn − logk ≥ logn − 2 logk

⇒n ≥ k logn − 2k logk

⇒(1
0.5

− 1)n ≥ k logn − 1
0.5

k logk

⇒ 1
0.5

(n + k logk) ≥ n + k logn

This means that there exists an a > 0 (a = 0.5 here) for which n + k logk ≥ a(n + k logn) for all
values of n, which completes the proof. □

For Recursive, our analysis shows that when the number of the k returned results is not “too
large”, the best anyK-part approaches are asymptotically faster. For instance, when k = O(n),
Take2 achieves O(n logn + n · ℓ) compared to O(n · ℓ logn) of Recursive. One might be inclined
to think that this gap is an just an artifact of our analysis and it can potentially be closed with
arguments similar to the proof of Theorem 11. However this is not the case, as we now show
that the aforementioned bound is tight, i.e., there exists an instance for which Recursive needs
Θ(n · ℓ logn) time to return k = n results.

Proposition 13. Recursive is strictly slower than the best implementation of anyK-part for TT(n)
in the worst case.

Proof. To achieve worst-case behavior for Recursive, we need to (i) create large priority queues
and (ii) minimize the sharing of common suffixes between different results. Figure 6 depicts the
simplest such example, corresponding to a Cartesian product between ℓ = 3 relations. As before,
tuple weight is equal to tuple value. Notice that each of the first k = n results uses a different tuple
from Rℓ . It is straightforward to set the weights appropriately in order to achieve the same for
arbitrary values of n, ℓ. To retrieve the k’th result, a next call at s0 will trigger a chain of ℓ − 1 other
recursive next calls, each one computing Πk for a different stage. Every next call (except maybe

, Vol. 1, No. 1, Article . Publication date: September 2020.

Optimal Algorithms for Ranked Enumeration 17

𝑆"

𝑆#

𝑆$

𝑆%

𝑆&

𝑆'

𝑆(

𝑆)

𝑆*

𝑆+
Fig. 7. Tree-Based DP (T-DP) problem structure. Rounded rectangles are stages, small circles are states.

the last one) involves a pop and a push from a priority queue of size Θ(n), hence Θ(n · ℓ logn) in
total. At the same time, the worst-case bound for Take2 is O(n logn + n · ℓ). □

4.3.4 Memory. All algorithms need O(ℓn)memory for storing the input. The memory consumption
of anyK-part approaches depends on the size of Cand. All grows Cand by O(ℓn) elements in each
iteration, but creates at most |out| candidates in total. The others create only O(ℓ) new candidates
per iteration, thus MEM(k) = O(ℓn + kℓ). For Recursive, size of a choice set Choicesk (s) is
bounded by the out-degree of s , hence cannot exceed n. However, we need to store the suffixes Πi (s)
produced by the algorithm, whose number is O(ℓ) per iteration, thus MEM(k) = ℓn + kℓ. Batch
first materializes the output and then sorts it in-place, therefore has MEM(k) = O(ℓn + |out|ℓ),
regardless of k .

4.3.5 Summary. Figure 5 summarizes the analysis for TTF, for Delay(k), for TTL where the output
is sufficiently big (so that result-enumeration time dominates pre-processing time), for TTL on
worst-case outputs where we can see the advantage of Recursive, and for memory MEM(k). All
any-k algorithms except Eager have optimal TTF = O(ℓn). In contrast, Batch has to sort the full
output in O(|out| log |out|). Eager and Take2 have the lowest delay O(logk + ℓ). Only our new
algorithm Take2 achieves optimal Delay(k) after linear TTF (Section 2.4).
While Recursive has higher delay than Take2, Lazy, and Eager, it has the lowest TTL for a

worst-case-size output. This seemingly paradoxical result stems from the fact that as Recursive
outputs results, it builds up state (ranking of suffixes) that speeds up computation for later results.
Hence even though its delay complexity is tight for small k , our amortized accounting showed that
it ultimately must achieve lower delay for large k .
All any-k algorithms but All require minimal space, depending only on input size and the

number of iterations k times query size ℓ. All has higher memory demand because it overloads the
candidate set early, while Batch materializes the complete output.

5 EXTENSION TO GENERAL CQS
We extend our ranked enumeration framework from serial to Tree-Based DP (T-DP), and then to a
Union of T-DPs (UT-DP). This enables optimal ranked enumeration of arbitrary conjunctive queries.

5.1 Tree-Based DP (T-DP)
We first consider problems where the stages are organized in a rooted tree with S0 = {s0} as the
root stage. In these problems, there is a distinct set of decisions Epc for each parent-child pair
p − c . Figure 7 depicts an example with 10 stages. We assume that all leaf stages contain only one
(terminal) state7, thus every root-to-leaf path represents an instance of serial DP as discussed in

7Artificial stages can be introduced to meet this assumption.

, Vol. 1, No. 1, Article . Publication date: September 2020.

18 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

Sections 3 and 4. We now extend our approach to Tree-based DP problems (T-DP) and adapt all
any-k algorithms accordingly.
We serialize the stages by assigning a tree order that places every parent before its children,

e.g., by a topological sorting of the tree. To simplify the notation we force the t leaf nodes to be
numbered last, i.e., Si = {si } for i ∈ {ℓ + 1, . . . , ℓ + t}. We define C(Si) to be the set of indices of
child stages and pr (Si) to be the index of the parent stage of Si . In our example, C(S4) = {5, 6} and
pr (S4) = 1. By ⌈Sv ⌉ we denote the stages of the subtree rooted at Sv , while VSvW := ⌈Sv ⌉ \ {v}. In
our example, VS4W := {5, 6, 8, 9}. Slightly overloading the notation, we also use C(si) := C(Si) for a
state si ∈ Si . Analogously for pr (si), ⌈si ⌉, and VsiW.

A T-DP solution Π = ⟨s1 . . . sℓ⟩ 8 is a tree with one state per stage and is admissible, i.e., ∀c ∈ Nℓ+t
1 ,

if pr (c) = p then (sp , sc) ∈ Epc . The objective function aggregates the weights of decisions across
the entire tree structure:

w(Π) =
ℓ+t∑
c=1

w(spr (sc), sc) (6)

T-DP Bottom-up. The optimal solution is then computed bottom-up by following the serial
order of the stages in reverse. A bottom-up step for a state s solves a subproblem which corresponds
to finding an optimal subtree Π(s). If C(s) = {i1, . . . , iλ}, then that subtree consists of s and a list of
other subtrees rooted at its children si1 , . . . , siλ . To solve a subproblem, we independently choose
the best decision for each child stage. The equations describing the bottom-up phase in T-DP are
recursively defined for all states and stages by

π1(s) = 0, for the t terminals with C(s) = ∅

π1(s) =
∑

c ∈C(s)
min

(s,sc)∈Epc

{
w(s, sc) + π1(sc)

}
,

for s ∈ Sp ,p ∈ Nℓ
0

(7)

T-DP top-down. Similarly to serial DP, after the bottom-up phase we get reduced sets of states
Si ⊆ Si , Epc ⊆ Epc and the top-1 solution Π1(s0) is found by a top-down phase that follows optimal
decisions.

T-DP principle of optimality. Comparing the above formulation to serial DP, we now may
have multiple terminals (i.e. leaves in the tree) that are initialized with 0 cost, but we still have only
one single root node. Comparing the objective functions of T-DP Eq. (6) with DP Eq. (1), we changed
the indexing to reflect the fact that each state has exactly one parent (but not the other way around).
Consider Fig. 7 after removing the subtree rooted at S4; then our problem degenerates to standard
serial DP and we are back at Fig. 1. Contrasting the new principle of optimality formulation in
Eq. (7) against Eq. (2), we now have that a minimum-cost solution contains other subtree solutions
that achieve themselves minimum cost for their respective subproblems.

Theorem 14 (T-DP). Equation (7) finds an optimal solution to the problem of minimizing Eq. (6).

Proof. We will show by an induction on the tree stages in reverse serial order that for all states
s ∈ S :

min
Π(s)

{ ∑
i ∈VsW

w(spr (si), si)
}
= π1(s) (8)

The base case for the (terminal) leaf states follows by definition from Equation (7). For the inductive
step, assume that the above holds for all descendant states sd ∈ Sd ,d ∈ VsW of a state s . In particular

8Notice that as in DP, we do not include the unique root state and the t terminal states in the t leaf nodes (i.e. stages with unique
states) in the solution.

, Vol. 1, No. 1, Article . Publication date: September 2020.

Optimal Algorithms for Ranked Enumeration 19

for any “child state” sc with s ∈ Spr (sc):

min
Π(sc)

{ ∑
i ∈VscW

w(spr (si), si)
}
=

∑
д∈C(sc)

min
(sc ,sд)∈Ecд

{
w(sc , sд) + π1(sд)

}
(9)

Then for any state s ∈ Sp :

π1(s) =
∑

c ∈C(s)
min

(s,sc)∈Epc

{
w(s, sc) + π1(sc)

}
=
∑

c ∈C(s)
min

(s,sc)∈Epc

{
w(s, sc) + min

Π(sc)

{∑
д∈VscW

w(spr (д), sд)
}}

= min
sc

{
min
Π(sc)

{∑
c ∈C(s)

{
w(s, sc) +

∑
д∈VscW

w((spr (д), sд)
}}}

= min
Π(s)

{ ∑
i ∈VsW

w(spr (si), si)
}

Since Equation (8) hold for any state s , it also holds for the starting state s0, thus the theorem
follows. □

To enumerate lower-ranked results for T-DP, we need to extend the path-based any-k algorithms.
Changes to anyK-part. All anyK-part algorithms are straightforward to extend to the tree

case by following the serialized order of the stages. Intuitively, the ith stage in this tree order is
treated like the ith stage in the path problem, except that the sets of choices are determined by the
actual parent-child edges in the tree. For illustration, assume a tree order as indicated by the stage
indices in Figure 7. Given a prefix ⟨s1s2s3⟩, the choices for s4 ∈ S4 are not determined by s3 (as they
would be for a path with stages S1, S2,. . .), but by s1 ∈ S1, because S1 is the parent of S4 in the tree.
In general, at stage Sc , we have to find the successors Succ(sp , sc) where p = pr (sc). Similarly, to
optimally expand a prefix ⟨s1 . . . sc−1⟩ by one stage, we append sc such that Π1(sc) is a subtree of
Π1(sp). Thus, we can run Algorithm 1 unchanged as long as we define the choice sets based on the
parent-child relationships in the tree. Hence the complexity analysis in Section 4.3 still applies as
summarized in Figure 5.

Changes to anyK-rec. Unfortunately, for anyK-rec the situation appears more challenging,
because each state processes a next call by recursively calling next on its children. The challenge is
to combine the lower-ranked solutions from the children and to rank these combinations efficiently.
First, we give a high-level overview: Consider a state s1 ∈ S1 with children S2 and S4. A solution
rooted at s1 consists of two parts: one solution rooted at the first child S2 and the other at S4. Suppose
this solution contains the 2nd-best path from S2 and the 3rd-best path from S4—[Π2,Π3] for short.
Then the next-best solution from s1 could be either [Π3,Π3] or [Π2,Π4]. Since any combination of
child solutions [Πj1 ,Πj2] is valid for the parent, the problem is essentially to rank the Cartesian
product space of subtree solutions. This produces duplicates when directly applying the recursive
algorithm [38], or requires a different approach such as anyK-part for this Cartesian product
problem to avoid duplicates. We adopt the latter approach.
In more detail, let Πj (s, c) be the j-th best solution that starts from state s but is restricted only

to a single branch c ∈ C(s). Thus, Πj (s, c) consists of state s , then a state from stage Sc and from
there, a list of pointers to other solutions (i.e., subtrees) that have their own rank. We write that
as Πj (s, c) = s ◦ [Πj1 (sc , i1), . . . ,Πjλ (sc , iλ)] for sc ∈ Sc , C(sc) = {i1, . . . , iλ} and appropriate values
j1, . . . , jλ . For example, in Figure 7, Πk (s1, 4) = s1 ◦ [Πj1 (s4, 5),Πj2 (s4, 6)] for some values j, j1, j2.
Notice that this definition matches the one in Section 4.2 for |C(sc)| = 1 and since S0 always has a
single child S1, we have that Πk (s0) = Πk (s0, 1) for all values of k .

, Vol. 1, No. 1, Article . Publication date: September 2020.

20 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

A state s ∈ Sp maintains one data structure per branch c ∈ C(s) for storing and compar-
ing solutions Πj (s, c). At the beginning of the algorithm, we initialize it as Choices1(s, c) =
{s ◦ [Π1(sc , i1), . . . ,Π1(sc , iλ)] | (s, sc) ∈ Epc }. To process a next call, we pop the best solution
from the data structure but unlike DP, we now have to replace it with more than one new can-
didates. To compute the next of Πj (s, c) = s ◦ [Πj1 (sc , i1), . . . ,Πjλ (sc , iλ)], we have to consider as
new candidates all the following solutions:

s ◦ [Πj1+1(sc , i1), . . . ,Πjλ (sc , iλ)]
...

s ◦ [Πj1 (sc , i1), . . . ,Πjλ+1(sc , iλ)]
There are two problems associated with this. First, we could have up to ℓ children, hence up to ℓ
new candidates and each one could have size (i.e., number of pointers) up to ℓ. Thus, in order to
create them we would have to pay O(ℓ2) delay. Second, it is easy to see that this process creates
duplicates.
An elegant way to address both issues is to notice that from a specific parent node (e.g. s4)

all possible solutions belong to the Cartesian Product space formed by the sub-solutions of its
children. Therefore, we need to apply a ranked enumeration algorithm that enumerates this space
of solutions with low delay and without duplicates. We apply anyK-part which does not need to
precompute all the elements from the beginning of the algorithm (we do not want to materialize
all the children solutions from the start) given that they are accessed in a sorted order. This is
equivalent to running Eager over the Cartesian product of children solutions, except that we do
not need to sort to find the successors – the sorted order is guaranteed by how Recursive pulls
lower ranked solutions in-order.
As a result, anyK-rec behaves similar to the (path) DP case for nodes with a single child, but

similar to anyK-part when encountering branches. In the extreme case of star queries (where a
root stage is directly connected to all leaves), Recursive degenerates to an anyK-part variant.

5.2 DP over a Union of Trees (UT-DP)
We define a union of T-DP problems as a set of T-DP problems where a solution to any of the
T-DP problems is a valid solution to the UT-DP problem. Thus, we are given a set of u functions
F =

{
f (i)

}
, each defined over a solution space Π(i), i ∈ Nu . The UT-DP problem is then to find the

minimum solution across all T-DP instances.
Changes to ranked enumeration. The necessary changes to any of our any-k algorithms

are now straightforward: We add one more top-level data structure Union that maintains the last
returned solution of each separate T-DP algorithm in a single priority queue. Whenever a solution
is popped from Union, it gets replaced by the next best solution of the corresponding T-DP problem.

5.3 CyclicQueries
Recent work on cyclic join queries indicates that a promising approach is to reduce the problem to
the acyclic case via a decomposition algorithm [51]. Extending the notion of tree decompositions
for graphs [89], hypertree decompositions [54] organize the relations into “bags” and arrange the
bags into a tree [90]. Each decomposition is associated with a width parameter that captures the
degree of acyclicity in the query and affects the complexity of subsequent evaluation: smaller width
implies lower time complexity. Our approach is orthogonal to the decomposition algorithm used and

it adds ranked enumeration capability virtually “for free.”

The state-of-the-art decomposition algorithms rely on the submodular width subw(Q) of a query
Q . Marx [78] describes an algorithm that runs in O(f (|Q |)n(2+δ)subw(Q)) for δ > 0 and a function

, Vol. 1, No. 1, Article . Publication date: September 2020.

Optimal Algorithms for Ranked Enumeration 21

f that depends only on query size. Panda [5] runs in O(f1(|Q |)nsubw(Q)(logn)f2(|Q |)) for query-
dependent functions f1 and f2. Since this is an active research area, we expect these algorithms to be
improved and we believe our framework is general enough to accommodate future decomposition
algorithms. Sufficient conditions for applicability of our approach and for achieving optimal delay
are, respectively, (1) the full output of Q is the union of the output produced by the trees in the
decomposition and (2) the number of trees depends only on query size |Q |. Both are satisfied by
current decompositions and it is hard to imagine how this would change in the future.
We can execute any decomposition algorithm almost as a blackbox to create a union of acyclic

queries to which we then apply our UT-DP framework. However, there are subtle challenges: For
correctness, we have to (1) properly compute the weights of tuples in the bags (i.e., tree nodes) and
(2) deal with possible output duplicates when a decomposition creates multiple trees. For (1), we
slightly modify the decomposition algorithm to track the lineage for bags at the schema level: We
only need to know from which input relation a tuple originates and if that relation’s weight values
had already been accounted for by another bag that is a descendent in the tree structure.

For (2), note that if all output tuples have distinct weights, then an output tuple’s duplicates will
be produced by our any-k algorithm one right after the other, making it trivial to eliminate them
on-the-fly. Since the number of trees depends only query size |Q |, total delay induced by duplicate
filtering is O(1) (data complexity). When different output tuples can have the same weight, we
break ties using lexicographic ordering on their witnesses , as we describe in Section 6.3.

5.3.1 Simple Cycle Decomposition. For ℓ-cycle queries QCℓ we use the standard decomposition [4,
90], which was pioneered by Alon et al. [8] in the context of graph-pattern queries. It does not
produce output duplicates and achieves O(n2−1/⌈ℓ/2⌉) for TTF. On the other hand, for a worst-case
optimal join algorithm such as NPRR [82] or Generic-Join [83], TTF is O(nℓ/2). We show in
Section 9.1.1 that those algorithms can indeed not be modified to overcome this problem.

A1

A4

A3

A2A6

A5

R6 R1

R2

R3R4

R5

(a) Query QC6

A1 A2 A3

A1 A3 A4

A1 A4 A5

A1 A5 A6

(b) Heavy decomp.

A1

A4

A3

A2

A1

A4

A6

A5

(c) All-light decomp.

Fig. 8. Simple cycle of length 6 and two decompositions.

We illustrate with 6-cycle query QC6, depicted in Fig. 8a. (Here xi in Example 2 is replaced by
Ai to better distinguish the concrete 6-cycle from the general ℓ-cycle case.) First, we horizontally
partition each relation Ri into RiH and RiL according to whether the tuples are heavy or light: RiH
receives all heavy tuples; RiL the others (light ones). A tuple t in relation Ri is heavy [8] iff value
t .Ai occurs at least n2/ℓ = n1/3 times in column Ri .Ai . Then the maximum number of distinct heavy
values in a column is at most n1−2/ℓ = n2/3. We create ℓ + 1 = 7 database partitions:

T1 = {R1H , R2, R3, R4, R5, R6}
T2 = {R1L, R2H , R3, R4, R5, R6}

...
T6 = {R1L, R2L, R3L, R4L, R5L, R6H }
T7 = {R1L, R2L, R3L, R4L, R5L, R6L}

It is easy to verify that each output tuple will be produced by exactly one partition. The first
ℓ = 6 partitions use a “heavy” tree decomposition where the cycle is “broken” at the heavy attribute.

, Vol. 1, No. 1, Article . Publication date: September 2020.

22 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

For instance, A1 is the heavy attribute for R1H ; the resulting tree is shown in Fig. 8b. Each tree
node is a bag whose content is materialized in time O(n2−2/6) = O(n5/3) by appropriately joining
the corresponding relations. Consider top bag (A1,A2,A3) derived from relations R1 and R2. Since
R1H contains at most n2/3 distinct values, we can compute the bag with a simple nested-loop join.
It goes through all pairs A1 − (A2,A3) of distinct heavy values of A1 in R1H and tuples (A2,A3) in
R2. Since there are at most n2/3 distinct heavy A1-values and n tuples in R2, there are O(n5/3) such
pairs. For each pair we can verify in O(1) if the corresponding (A1,A2) combination exists in R1H .
The other bag computations and heavy decompositions are analogous.

For T7, which only contains light partitions, we use a different “all-light” tree decomposition
shown in Fig. 8c. It materializes each bag with a join chain: For each tuple in one “endpoint” relation,
find all matches in the next relation, and so on. Consider (A1,A2,A3,A4), which is derived from
R1L , R2L , and R3L . For each tuple t1 ∈ R1L , we find all matches in R2L , then join with R3L . There are
O(n) tuples in R1L , but since all relations are light, each of them joins with at most n1/3 in the next
relation. Hence total complexity for materializing bag (A1,A2,A3,A4) is O(n · n1/3 · n1/3) = O(n5/3).
In general, the tree decomposition for an ℓ-cycle query produces a union of ℓ + 1 trees, out of

which ℓ use the heavy decomposition and 1 uses the light one. By setting the heavy-light threshold
to n2/ℓ , we can materialize all bags of all trees in time O(n2−2/ℓ). Note that the number of tuples in
a bag is O(n2−2/ℓ). Any such union of trees can be handled by our UT-DP framework.

5.4 Putting everything together
Our main result follows from the above analysis when using Take2 for the acyclic CQ base case:

Theorem 15. Given a decomposition algorithm A that takes time T (A) and space S(A), ranked
enumeration of the results of a full conjunctive query can be performed with TTF = O(T (A)),
Delay(k) = O(logk), and MEM(k) = O(S(A) + k) in data complexity.

Proof. In all cases we use the Take2 algorithm.
First, consider the case of path queries and recall that we had made two assumptions in Section 4.3

for simplicity: (1) that the arities of the relations are bounded, thus |Q | = ℓ and (2) that the operations
⊕ and ⊗ of the selective dioid takeγ = O(1). Extending the analysis of Section 4.3 to the general case
of unbounded arities and γ = f (|Q |), we get TTF = O(f (|Q |)n), Delay(k) = O(f (|Q |)(logk + |Q |)),
and MEM(k) = O(|Q |n + k |Q |). Thus, TTF = O(n), Delay(k) = O(logk), and MEM(k) = O(n + k)
in data complexity.
For tree queries, TTF and MEM(k) stay the same, however Delay(k) has an additional term

that is quadratic in ℓ in the absence of the inverse element as we discuss in Section 6.2. Still, the
data complexity remains the same as above.

For cyclic queries, first we apply the decomposition algorithmA to obtain a set of acyclic queries
Q. The number of acyclic queries we get isд(|Q |) (according to our assumptions onA in Section 5.3)
and also note that the “bags” (i.e., the derived input relations) in each acyclic query can be at most
the number of attributesm [5]. Then, we run our UT-DP framework on top of Q using Take2. The
top-level priority queue Union takes O(logд(|Q |)) to pop an element or O(1) in data complexity
and then O(logk) to pull the next result from the corresponding tree. To avoid duplicates, we
apply our construction of Section 6.3 which imposes a lexicographic order and thus, increases
the complexity of pulling results from each acyclic query by an O(|Q |) factor. Also, to filter the
duplicates we have to spend an additional O(д(|Q |)) factor in delay since the number of duplicates
cannot exceed the number of acyclic queries.

Overall, TTF is O(T (A) and Delay(k) is O(logk) in data complexity. For the space consumption,
note that the total size of the derived input relations of Q is bounded by S(A) and our framework
only adds an O(k) term in data complexity. □

, Vol. 1, No. 1, Article . Publication date: September 2020.

Optimal Algorithms for Ranked Enumeration 23

6 RANKING FUNCTION
We now look deeper into the ranking functions that our framework supports.

6.1 Attribute weights
In order to keep our formalism clean and easy to follow, we focused only on weights on tuples. It is
however straightforward to also handle weights on attributes by adding unary tables with weights
on single columns. We illustrate next.

Example 16 (Attribute weights). Consider the queryQ(x ,y) :−R(x ,y) over a database R(A,B)
with weight functionwR : r ∈ R → R+ on tuples, and two weight functionswA : a ∈ ADom(A) → R+,
andwb : b ∈ ADom(B) → R+ on attributes. The problem can then be translated into one with only

weight functions on tuples by introducing two new relations S(A) = ADom(A) and T (B) = ADom(B)
with associated weight functions wS : s ∈ S → R+, and wT : t ∈ T → R+ and translated query

Q ′(x ,y) :−R(x ,y), S(A),T (B).

6.2 On the existence of the inverse (groups vs. monoids)
When we presented and analysed the algorithms in Section 4, we assumed for simplicity the
existence of an inverse element for the ⊗ operator of the selective dioid (W , ⊕, ⊗, 0̄, 1̄). We now
discuss what happens in the absence of that inverse element. We start with some definitions.

The inverse of an operation. An Abelian group is a commutative monoid (W , ⊗, 1̄) for which
there exists an inverse for each element. More formally, for each x inW , there is an inverse element
x ′ inW such that x ⊗ x−1 = x−1 ⊗ x = 1̄. We also write y ⊘ x as short form for y ⊗ x−1 (i.e., “⊘y"
composes y with the inverse of x).

Example 17 (Groups vs. Monoids). The archetypical Abelian group is (R,+, 0), i.e. the real
numbers with addition. An example commutative monoid that is not a group (and thus has no

inverse in general) is logical conjunction: ({0, 1},∧, 1).a Here, 1 is the identity element because

x ∧ 1 = 1 ∧ x = x for x ∈ {0, 1}. However, for 0 there is no inverse 0′ such that 0 ∧ 0′ = 0′ ∧ 0 = 1.
Another operation that has no inverse is the minimum: (R,min,∞). Here∞ is the identity element

because min(x ,∞) = min(∞,x) = x for x ∈ R. However, for no x there is an inverse x ′
such that

min(x ,x ′) = ∞.

In general, the inverse element allows us to perform calculations that would be otherwise
impossible. Thus, it can be used to short-circuit long calculations by reusing prior results.

Example 18 (Benefit of inverse elements). Consider a commutative monoid (W , ⊗, 1̄) and
the composition x ⊗ y = z. Assume we are given z and y and would like to calculate x . Then this

is only possible in general, if each element has an inverse; in other words, if the monoid is actually

a group. To illustrate this issue, consider first the real numbers with addition (R,+, 0) and assume

(x ,y, z) = (1, 2, 3). Then we can calculate x = 1 from z = 3 and y = 2 as x = z + y ′ = 3 + (−2) = 1.
Next consider logical conjunction ({0, 1},∧, 1) with (x ,y, z) = (1, 0, 0). Then we cannot calculate

x = 1 from z = 0 and y = 0 (both x = 1 or x = 0 are possible). Similarly, consider minimum

(R,min,∞) with (x ,y, z) = (3, 2, 2). Then we cannot calculate x = 3 from z = 2 and y = 2 (x could

be any value in [2,∞]).

Ranked enumeration without an inverse. In the context of our algorithms, the inverse
element is not a hard requirement. However, it can help simplify and speed up certain variants of
ranked numeration. First, notice that Recursive never uses an inverse since it always constructs

aWe write 1 for true and 0 for false.

, Vol. 1, No. 1, Article . Publication date: September 2020.

24 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

solutions by appending one state to a suffix or a list of subtrees (see Lines 7 and 31 of Algorithm 2).
Therefore the cost of the solution can easily be calculated by applying ⊗.

For the anyK-part algorithms over T-DP, we have to make a minor adjustment which will incur
an additional O(ℓ2) delay term in the complexities presented in Figure 5. To illustrate this, we use
the terminology of Algorithm 1. First, notice that in the path case the inverse element is not needed.
In Line 16, a new candidate is inserted into the priority queue with weight solution.prefixWeight ⊗
w(tail, s) ⊗ π1(s). Intuitively this means that the “future cost” of the candidate (when optimally
expanded in a solution) is the weight of its prefix composed with the weight of the new decision
and with the optimal weight from there onward. Thus, we are able in O(1) to calculate the weight
it will have if we expand it without actually spending O(ℓ) to expand it. In T-DP this calculation is
not possible because the weight of the optimal extension from s (which was the π1(s) term in the
path case) involves subtrees that are not in ⌈s⌉, thus it is not available at state s .
One way to circumvent this is to use the inverse and still get an O(1) computation per new

candidate. Let prevWeight be the weight of the prefix we popped from Cand in the current iteration.
Then, the weight of the new candidate is prevWeight ⊘w(tail, last) ⊘ π1(last) ⊗w(tail, s) ⊗ π1(s).
Intuitively, this means that to compute the weight of the new candidate we “subtract” the old
decision weight and the optimal subtree weight of its target state and we “add” the new ones. If we
don’t have the inverse element, then the above computation is not possible; instead, we expand
each of the O(ℓ) new candidates before inserting them into the Cand priority queue and traverse
each one of them to compose the decision weights (as in Equation (6)). This costs O(ℓ2) in total
because we have O(ℓ) candidates and each one has O(ℓ) size.

6.3 Tie-breaking the output
We now elaborate on how to break ties between result weights consistently. This is a key element
for handling cyclic queries with existing decomposition algorithms. Recall from Section 5.3 that
we could use a decomposition (e.g. Panda [5]) that generates a set of trees whose outputs are not
necessarily disjoint. Thus the same result tuple could potentially be produced by multiple trees. It
is easy to detect and remove those duplicates if they arrive in consecutive order (the step is then
linear in number of trees, but constant in data complexity). This consecutive arrival is guaranteed
if there are no ties in the weights of output tuples. If there are ties, however, the arrival between
identical output tuples could be in the order of number of output tuples produced so far. To see
why, imagine an extreme scenario where all the output tuples have the same weight and duplicates
arrive in arbitrary order; in that case, the delay between consecutive results could be in the order
of k , i.e. in the order of the number of already seen output tuples. For instance, assume 5 output
tuples {r , s, t ,u,v} with the same weight, and assume 10 tree decompositions. Then a possible
enumeration could be (r , s, t ,u, r , r , r , r , r , r , r , r , r , s, s, . . . , t , t ,u, . . .). To prevent this, we redefine
our ranking function slightly so that it breaks ties in a consistent way and thus no two output
tuples will have the same weight. This guarantees again that only duplicates can have the same
weight and hence all the duplicates of a tuple arrive consecutively.

Intuitively, we add a second dimension to our ranking function that captures a lexicographic
order on the input tuples. Whenever two weights are equal, the tie will be broken by the value of
that extra dimension, ensuring that only identical results have the same overall weight. In the end,
the true weight can be recovered by looking only at the first dimension of the weight function.

Given two partially ordered sets A and B, the lexicographic order on the Cartesian product A× B
is defined as

(a,b) ≤ (a′,b ′) iff a < a′ or (a = a′ and b ≤ b ′)

, Vol. 1, No. 1, Article . Publication date: September 2020.

Optimal Algorithms for Ranked Enumeration 25

It is well known that this order is a total order if and only if the factors of the Cartesian product
are totally ordered.

However, what is less known is that this order is a total order even if the first factor is just a total
preorder (also called preference relation). Recall that a total preorder is reflective (a ≤ a), transitive
(if a ≤ b and b ≤ c then a ≤ c), complete (for every a,b, a ≤ b or b ≤ a), however not necessarily
antisymmetric (a ≤ b and b ≤ a does not imply a = b). To illustrate this point, consider binary
output tuples with domain {a,b, c,d, e} under the attribute weight model (Section 6.1). Assume
a total preorder on the domain values with a = b < c < d < e . Then the lexicographic order for
three particular output tuples could be (a, c) → (b,d) → (a, e). Thus the three tuples imply a total
order although the domain values of the first column do not.
We now show how to use this property to force our any-k enumeration to enumerate the

same output tuple with a delay that depends only on the query even if we use a decomposition
method (such as PANDA) that is not disjoint. The key idea is to force that each output tuple will be
enumerated consecutively even if there are ties, i.e. multiple output tuples with the same weights.
Assume that for an output tuple r , the original ranking function w(r) was defined with

operators ⊕, ⊗ and a total order ≤. Then the new ranking function is the Cartesian product
w ′(r) = (w(r), id(r)), with id(r) capturing a lexicographic order as in Section 2.2, and the following
two operators:
(1) w ′(r1) ⊗ w ′(r2) = w ′(r1) iff (w(r1) ≤ w(r2) ∧ w(r2) ≰ w(r1)) ∨ (w(r1) ≤ w(r2) ∧ w(r2) ≤

w(r1) ∧ id(r1) ⪯L id(r2)), elsew ′(r1) ⊗w ′(r2) = w ′(r2) and
(2) w ′(r1) ⊗w ′(r2) = (w(r1) ⊗w(r2), id(r1) ⊗L id(r2)).
As can be easily seen, the new ranking function is also defined over a selective dioid, and our

any-k algorithms immediately apply.

6.4 Other examples of ranking functions
Throughout the main paper we focused on the ranking function that consists of the operators min
(which is selective) and addition. These correspond to the tropical semiring (Rmin,min,+,∞, 0)with
Rmin := R ∪ {∞}, which is an instance of a selective dioid (see the definition in Section 2.2). Under
this perspective, Bellman’s famous principle of optimality discussed in Section 3 is a re-statement
of the more general distributivity of addition over minimization: min(x + z,y + z) = min(x ,y) + z.
Another example of a selective dioid that our approach works on is the Boolean semiring

({0, 1},∨,∧, 0, 1), where the disjunction is also selective. Interestingly, our algorithms can also
perform standard query evaluation by inverting the order to 1 ≤ 0. Since maintaining priority
queues (or sorting) with {0, 1} elements takes linear time, it follows that our algorithms can
enumerate answers to a 4-cycle query with TTF = O(n1.5) and TTL = O(n1.5 + |out|). These match
the best known algorithms for Boolean and full query evaluation which use the submodular width
(subw(QC4) = 1.5) For worst-case output instances, i.e., |out| = n2 we also match the AGM bound,
i.e., our algorithm, like NPRR, is worst-case optimal.
Other examples of selective dioids that we can use are (Rmax,max,+,−∞, 0) with Rmax := R ∪

{−∞} or (R≥0,max,×, 0, 1)with R≥0 := [0,∞). The former finds the heaviest tuples or equivalently,
the “longest” paths in a graph (according to the input weights). The latter can be used to simulate
bag semantics; if the weight of each input tuple reflects its multiplicity in the input relation, then
by using that ranking function we first get the output tuple with the biggest multiplicity in the
result and its output weight is that multiplicity.

7 EXPERIMENTS
Since asymptotic complexity only tells part of the story, we compare all algorithms in terms of
actual running time.

, Vol. 1, No. 1, Article . Publication date: September 2020.

26 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

Dataset Nodes Edges Max/Avg Degree Weights
Bitcoin [71, 72] 5,881 35,592 1,298 / 12.1 Provided
TwitterS [106] 8,000 87,687 6,093 / 21.9 PageRank
TwitterL [106] 80,000 2,250,298 22,072 / 56.3 PageRank

Fig. 9. Datasets used for experiments with real data.

Algorithms. All algorithms are implemented in the same Java environment and use the same
data structures for the same functionality. We compare: (1) Recursive representing the anyK-rec
approach, (2) Take2, (3) Lazy [31], (4) Eager, (5) All [101] representing the anyK-part approach,
and (6) Batch, which computes the full result using the Yannakakis algorithm [103] for acyclic
queries and NPRR [82] for cyclic queries, both followed by sorting.
Queries. We explore paths, stars, and simple cycles over binary relations. The SQL queries

are listed in Appendix B. A path is the simplest acyclic query, making it ideal for studying core
differences between the algorithms. The star represents a typical join in a data warehouse and by
treating it as a single root (the center) with many children, we can study the impact of node degree.
The simple cycles apply our decomposition method as described in Section 5.3.

Synthetic data. Our goal for experiments with synthetic data is to create input with regular
structure that allows us to identify and explain the core differences between the algorithms. For
path and star queries, we create tuples with values uniformly sampled from the domain Nn/10

1 . That
way, tuples join with 10 others in the next relation, on average. For cycles, we follow a construction
by [82] that creates a worst-case output: every relation consists of n/2 tuples of the form (0, i) and
n/2 of the form (i, 0) where i takes all the values in Nn/2

1 . Tuple weights are real numbers uniformly
drawn from [0, 10000].
Real Data. We use two real networks. In Bitcoin OTC [71, 72], edges have weights representing

the degree of trust between users. Twitter [106] edges model followership among users. Edge
weight is set to the sum of the PageRanks [27] of both endpoints. To control input size, we only
retain edges between users whose IDs are below a given threshold. Since the cycle queries are more
expensive, we run them on a smaller sample (TwitterS) than the path queries (TwitterL). Figure 9
summarizes relevant statistics. Note that the size of our relations n is equal to the number of edges.

Implementation details. All algorithms are implemented in Java and run on an Intel Xeon
E5-2643 CPU with 3.3Ghz and 128 GB RAMwith Ubuntu Linux. Each data point is the median of 200
runs. We initialize all data structures lazily when they are accessed for the first time. For example,
in Eager, we do not sort the Choices set of a node until it is visited. This can significantly reduce
TT(k) for small k , and we apply this optimization to all algorithms. Notice that our complexity
analysis in Section 4.3 assumes constant-time inserts for priority queues, which is important for
algorithms that push more elements than they pop per iteration. This bound is achieved by data
structures that are well-known to perform poorly in practice [33, 73]. To address this issue in the
experiments, we use “bulk inserts” which heapify the inserted elements [31] or standard binary
heaps when query size is small.

7.1 Experimental results
Figure 10 reports the number of output tuples returned in ranking order over time for queries of
size 4. On the larger input, Batch runs out of memory or we terminate it after 2 hours. This clearly
demonstrates the need for our approach. We then set a limit on the number of returned results and
compare our various any-k algorithms for relatively small k . We also use a fairly small synthetic
input to be able to compare TTL performances against Batch.

Results. For TTL, Recursive is fastest on paths and cycles, finishing even before Batch. This advan-

tage disappears in star queries due to the small depth of the tree. For small k , Lazy is consistently

, Vol. 1, No. 1, Article . Publication date: September 2020.

Optimal Algorithms for Ranked Enumeration 27

Recursive Take2 Lazy Eager All Batch Batch(No sort)

0 5 10 15
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

#R
es

ul
ts

1e7
8.3

7.7

7.72.5

2.1

(a) 4-Path Synthetic

(n=104
):

All ∼107
results.

4.0 4.5 5.0 5.5 6.0 6.5
Time (sec)

0

1

2

3

4

5

#R
es

ul
ts

1e5

(b) 4-Path Synthetic

(n=106
):

Top n/2 of ∼ 6 ·109
results.

0.15 0.20 0.25 0.30
Time (sec)

0.0

0.5

1.0

1.5

#R
es

ul
ts

1e4

(c) 4-Path Bitcoin

(n∼3.6·104
):

Top n/2 of ∼ 4 ·109
results.

7 8 9 10
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

#R
es

ul
ts

1e6

(d) 4-Path TwitterL

(n∼2.3·106
):

Top n/2 of ∼1015
results.

0 5 10 15 20
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

#R
es

ul
ts

1e7

(e) 4-Star Synthetic

(n=104
):

All ∼107
results.

4 5 6
Time (sec)

0

1

2

3

4

5

#R
es

ul
ts

1e5

(f) 4-Star Synthetic

(n=106
):

Top n/2 of ∼ 6 ·109
results.

0.12 0.14 0.16 0.18
Time (sec)

0.0

0.5

1.0

1.5

#R
es

ul
ts

1e4

(g) 4-Star Bitcoin

(n∼3.6·104
):

Top n/2 of ∼ 2·1010
results.

4 5 6 7 8 9
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

#R
es

ul
ts

1e6

(h) 4-Star TwitterL

(n∼2.3·106
):

Top n/2 of ∼ 6·1015
results.

0 5 10 15 20
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

#R
es

ul
ts

1e7
14.1

13.4

5.4

(i) 4-Cycle Synthetic

(n=5·103
):

All ∼1.2·107
results.

1.15 1.20 1.25 1.30 1.35 1.40
Time (sec)

0

1

2

3

4

5

#R
es

ul
ts

1e4

(j) 4-Cycle Synthetic

(n=105
):

Top n/2 of ∼5·109
results.

3.75 4.00 4.25 4.50 4.75 5.00
Time (sec)

0

1

2

3

#R
es

ul
ts

1e5

(k) 4-Cycle Bitcoin

(n∼3.6·104
):

Top 10n of ∼ 7 ·106
results.

14.5 15.0 15.5 16.0 16.5 17.0
Time (sec)

0.0

0.2

0.4

0.6

0.8

#R
es

ul
ts

1e6

(l) 4-Cycle TwitterS

(n∼8.8·104
):

Top 10n of ∼ 3 ·108
results.

Fig. 10. Experiments on queries of size 4 (Section 7.1).

the top-performer and is even faster than the asymptotically best Take2. Batch is impractical for

real-world data since it attempts to compute the full result, which is extremely large.

For path and cycle queries on the small synthetic data, Recursive is faster than Batch (Figs. 10a
and 10i) due to the large number of suffixes shared between different output tuples. It returns
the full sorted result faster (7.7 sec and 5.4 sec) than Batch (8.3 sec and 14.1 sec). Especially for
cycles, our decomposition method really pays off compared to Batch [82], as Recursive terminates
around the same time Batch starts to sort. For star queries, Recursive behaves like an anyK-part
approach because of the shallowness of the tree (Fig. 10e). When many results are returned, the
strict anyK-part variants (Eager, Lazy) have an advantage over the relaxed ones (Take2, All) as
they produce fewer candidates per iteration and maintain a smaller priority queue. Eager is slightly
better than Lazy because sorting is faster than incrementally converting a heap to a sorted list. This
situation is reversed for small k where initialization time becomes a crucial factor: Then Eager and
Recursive lose their edge, while Lazy shines (Figs. 10c, 10g, 10h, 10k and 10l). Recursive starts off
slower, but often overtakes the others for sufficiently large k (Figs. 10b and 10j). Eager is also slow
in the beginning because it has to sort each time it accesses a new choice set. Take2 showed mixed

, Vol. 1, No. 1, Article . Publication date: September 2020.

28 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

Recursive Take2 Lazy Eager All Batch Batch(No sort)

0 5 10 15
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

#R
es

ul
ts

1e7

(a) 3-Path Synthetic

(n=105
):

All ∼107
results.

3.0 3.5 4.0 4.5 5.0
Time (sec)

0

1

2

3

4

5

#R
es

ul
ts

1e5

(b) 3-Path Synthetic

(n=106
):

Top n/2 of ∼ 108
results.

0.10 0.12 0.14 0.16 0.18 0.20
Time (sec)

0.0

0.5

1.0

1.5

#R
es

ul
ts

1e4

(c) 3-Path Bitcoin

(n∼3.6·104
):

Top n/2 of ∼ 8 ·107
results.

5 6 7
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

#R
es

ul
ts

1e6

(d) 3-Path TwitterL

(n∼2.3·106
):

Top n/2 of ∼ 9·1011
results.

0.0 2.5 5.0 7.5 10.0 12.5
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

#R
es

ul
ts

1e7
7.5

7.0

3.62.0

1.6

(e) 6-Path Synthetic

(n=102
):

All ∼107
results.

4.0 4.5 5.0 5.5 6.0 6.5
Time (sec)

0

1

2

3

4

5

#R
es

ul
ts

1e5

(f) 6-Path Synthetic

(n=106
):

Top n/2 of ∼ 1011
results.

0.15 0.20 0.25 0.30
Time (sec)

0.0

0.5

1.0

1.5

#R
es

ul
ts

1e4

(g) 6-Path Bitcoin

(n∼3.6·104
):

Top n/2 of ∼ 1012
results.

10 12 14 16
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

#R
es

ul
ts

1e6

(h) 6-Path TwitterL

(n∼2.3·106
):

Top n/2 of ∼ 4·1019
results.

Fig. 11. Experiments on path queries of sizes 3 and 6.

Recursive Take2 Lazy Eager All Batch Batch(No sort)

0 5 10 15 20
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

#R
es

ul
ts

1e7

(a) 3-Star Synthetic

(n=105
):

All ∼107
results.

2.5 3.0 3.5 4.0 4.5 5.0 5.5
Time (sec)

0

1

2

3

4

5

#R
es

ul
ts

1e5

(b) 3-Star Synthetic

(n=106
):

Top n/2 of ∼ 108
results.

0.10 0.12 0.14 0.16
Time (sec)

0.0

0.5

1.0

1.5

#R
es

ul
ts

1e4

(c) 3-Star Bitcoin

(n∼3.6·104
):

Top n/2 of ∼ 108
results.

4 5 6 7 8 9
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

#R
es

ul
ts

1e6

(d) 3-Star TwitterL

(n∼2.3·106
):

Top n/2 of ∼ 4·1012
results.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

#R
es

ul
ts

1e7

(e) 6-Star Synthetic

(n=102
):

All ∼107
results.

5 6 7 8 9
Time (sec)

0

1

2

3

4

5

#R
es

ul
ts

1e5

(f) 6-Star Synthetic

(n=106
):

Top n/2 of ∼ 1011
results.

0.32 0.34 0.36 0.38 0.40 0.42 0.44
Time (sec)

0.0

0.5

1.0

1.5

#R
es

ul
ts

1e4

(g) 6-Star Bitcoin

(n∼3.6·104
):

Top n/2 of ∼ 3·1014
results.

6 7 8 9 10 11
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

#R
es

ul
ts

1e6

(h) 6-Star TwitterL.

Top n/2 of ∼ 1022
results.

Fig. 12. Experiments on star queries of sizes 3 and 6.

results, performing near the top (Fig. 10f) or near the bottom (Fig. 10l). All performs poorly overall
due to the large number of successors it inserts into its priority queue.

, Vol. 1, No. 1, Article . Publication date: September 2020.

Optimal Algorithms for Ranked Enumeration 29

Recursive Take2 Lazy Eager All Batch Batch(No sort)

0 5 10 15 20 25
Time (sec)

0.0

0.5

1.0

1.5

#R
es

ul
ts

1e7

(a) 6-Cycle Synthetic

(n=4 · 102
):

All ∼1.6·107
results.

2.4 2.6 2.8 3.0
Time (sec)

0

1

2

3

4

5

#R
es

ul
ts

1e4

(b) 6-Cycle Synthetic

(n=105
):

Top n/2 of ∼ 3·1014
results.

88 89 90 91 92
Time (sec)

0

1

2

3

#R
es

ul
ts

1e5

(c) 6-Cycle Bitcoin

(n∼3.6·104
):

Top 50n of > 109
results.

102 104 106 108 110
Time (sec)

0.0

0.2

0.4

0.6

0.8

#R
es

ul
ts

1e6

(d) 6-Cycle TwitterS

(n∼8.8·104
):

Top 50n of > 109
results.

Fig. 13. Experiments on cycle queries of size 6.

7.2 More results for different query sizes
We performed the same experiments for different query sizes: 3-Path, 6-Path, 3-Star, 6-Star, and
6-Cycle. We do not consider the cycle of length 3 (i.e., the triangle query) because our simple cycle
decomposition does not give any bound that would be better than the Batch algorithm. Our goal
with these experiments is to observe how the conclusions we made in Section 7.1 are affected when
the query size changes.

Figures 11 to 13 depicts our results. The main observation is that Recursive’s TTL benefits more
from longer queries (Figures 11e and 13a) than shorter ones (Figure 11a). This makes sense because
in a long path, there are more solutions that share the same suffixes and Recursive essentially
reuses the ranking of those common suffixes to sort the entire solution set faster. In general, the
situation that we saw in Fig. 10 is repeated. Lazy is again the winning algorithm for small k across
the board, while All generally underperforms. Eager only makes sense in cases where a large
number of results is returned if Recursive cannot reuse computation as it does in the path case,
e.g. in the extreme case of star queries (Figures 12a and 12e)

Results. Recursive’s TTL advantage over Batch is more evident in longer queries since there are

more opportunities of reusing computation. Lazy again dominates for the first results (small k) for all
query sizes.

7.3 Comparison against PostgreSQL
To validate our Batch implementation, we compare it against PostgreSQL 9.5.20. Following standard
methodology [13], we remove the system overhead as much as possible and make sure that the
input relations are cached in memory: we turn off fsync, synchronous_commit, full_page_writes,
we set bgwriter_delay to the maximum (10 sec), bgwriter_lru_maxpages to 0, checkpoint_timeout
to 1 hour and max_wal_size to a large value (1000 GB). We also give shared_buffers and work_mem
32 GB and set the isolation level to the lowest possible (READ UNCOMMITED). Like before we run
200 instances and report the median result. For each of those instances, we run PSQL 3 times and
time only the last run to ensure that the input relations are cached.
Our results for the synthetic datasets are gathered in Figure 14. Overall, we found our Batch

implementation to be 12% to 54% faster than PSQL. Although the two implementations are not
directly comparable since they are written in different languages and PostgreSQL is a full-fledged
database system, this result shows that our Batch implementation is competitive with existing
batch algorithms.

, Vol. 1, No. 1, Article . Publication date: September 2020.

30 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

3-Path

n = 105

107 Results

4-Path

n = 104

107 Results

6-Path

n = 102

107 Results

3-Star

n = 105

107 Results

4-Star

n = 104

107 Results

6-Star

n = 102

107 Results

4-Cycle

n = 5 · 103

1.25 · 107 Results

6-Cycle

n = 4 · 102

1.6 · 107 Results
Batch 9.74 8.27 7.51 8.32 7.34 7.35 14.09 23.72
PSQL 12.18 13.39 16.45 11.84 13.10 16.04 30.36 26.86

% faster 20% 38% 54% 30% 44% 54% 54% 12%

Fig. 14. Seconds to return the full result for Batch and PSQL on our synthetic data.

8 EXTENSIONS
8.1 Join queries with projections
So far, we have only considered full conjunctive queries, i.e. those that can be written in Datalog as
Q(x) :−д1(x1), . . . ,дℓ(xℓ) where x =

⋃ℓ
i=1 xi . A non-full conjunctive query (also called a join query

with projection) Q(y) :−д1(x1), . . . ,дℓ(xℓ) has y ⊂ x and asks to return only the free variables y,
while the remaining variables x \ y (also called existentially quantified variables) are projected
away. As mentioned in Section 2.1, our approach covers in principle all conjunctive queries: For
non-full queries, we can perform the enumeration as if they were full and then project the output
tuples on the free variables, discarding the duplicates. However, this approach might not always be
ideal. In this section, we investigate the different possible semantics of ranked enumeration with
projections and extend our approach to cover some of these cases more efficiently.

Two principal ways to define ranked enumeration. There are at least two reasonable se-
mantics for ranked enumeration over joins queries with projections. Consider the 2-path query
Q(x1) :−R1(x1,x2),R2(x2,x3) where we want to return only the first attribute x1. Recall that we
assume input weights have been placed on the relation tuples. What do we do if the same value v1
of x1 appears in two different results of the full query (v1,v2,v3) and (v1,v

′
2,v

′
3) with weights w

andw ′, respectively? We identify two different semantics:
(1) All-weight-projection semantics: The first option is to return v1 twice with both weightsw,w ′

in the correct sequence. The corresponding SQL query would be:
SELECT R1.A1, R1.W + R2.W as Weight
FROM R1, R2
WHERE R1.A2=R2.A2
ORDER BY Weight ASC
LIMIT k

In general, we return the results and the weights that the full conjunctive query would return
projected on the variables y.9 Thus, it is trivial to extend our approach to all-weight-projection
semantics, as it is essentially equivalent to the ranked enumeration of full CQs: We enumerate
the full CQ Q(x) as before, yet we apply a projection πy(r) to the output tuples r before
returning them. The guarantees that we get in this case are the same as in Theorem 15.

(2) Min-weight-projection semantics: The second option is to return v1 only once with the best
(minimum) of the two weights. In this case, the SQL query is:

SELECT X.A1, X.Weight
FROM

(SELECT R1.A1, MIN(R1.W + R2.W) as Weight
FROM R1, R2
WHERE R1.A2=R2.A2
GROUP BY R1.A1) X

ORDER BY X.Weight
LIMIT k

9In the case that two output results have the same weight, we still return both of them.

, Vol. 1, No. 1, Article . Publication date: September 2020.

Optimal Algorithms for Ranked Enumeration 31

If r is a result of the query Q(y) denoted by r ∈ Q(y), we return the results of the query Q(y)
ranked by weight w(r) = minr ′∈Q (y) : πy(r ′)=r {w(r ′)}. In other words, each returned tuple r
has the minimum weight over all tuples r ′ of the full query Q(x) that map to r if projected
on y. While it is still possible to apply the projection as a post-filtering step and get a correct
algorithm, there is no guarantee on the delay. If a lot of consecutive results project to the
same variables y, then we might have to wait for the next result for a time that can be as
high as O(|out|) in the worst case. We next discuss a non-trivial extension that can handle
min-weight-projection semantics with logarithmic delay in certain cases.

Min-weight-projection semantics. To efficiently handle min-weight-projection semantics, we
resort to the techniques that have been developed for unranked constant-delay enumeration. Bagan
et al. [11] show that the acylic queries which are free-connex admit constant delay enumeration after
linear-time preprocessing. Multiple characterizations of these queries exist [18]. One particularly
useful way to identify them is to check for the acyclicity of the corresponding hypergraph that
includes an additional hyperedge connecting the head variables y [25]. For further reading on
the topic, we refer the reader to the paper that introduced the concept [11] and recent surveys
and tutorials [18, 41, 93]. In the following, we proceed to modify some of the common techniques
for free-connex acyclic queries in order to accommodate efficient ranked enumeration under
min-weight-projection semantics.
Intuitively, unranked constant-delay enumeration on free-connex acyclic queries [18] works

by constructing an appropriate join tree that groups the free variables together. The tree is first
swept bottom-up with semi-joins as in the Yannakakis algorithm [103] and then pruned so that
only the free variables remain. The answers to the query can then be enumerated as if it were
full (with no projections). We present a modification of this approach for ranked enumeration
under min-weight-projection semantics with a logarithmic (instead of constant) delay. Essentially,
it involves replacing the semi-joins with our Dynamic Programming scheme.

Example 19 (Free-connex qery). Consider the free-connex acyclic query

Q(y1,y2,y3,y4) :−R1(y1,y2),R2(y2,y3),R3(x1,y1,y4),R4(x2,y3). We can check that it is in-

deed free-connex if we add an additional relation R′
that encompasses all the free variables y

(Fig. 15a) and then verify that the modified query is acyclic (e.g. by finding a join tree). Using

the algorithm of Brault-Baron [25], we can construct a join tree for Q such that a connected

subset of nodes U contain all the free variables and no existentially quantified ones (Fig. 15b). In

order to achieve that, we have to introduce two additional atoms with two new relation symbols:

R′
3 = πY1,Y4 (R3) and R′

4 = πY3 (R4). Given this join tree and a database instance (Fig. 15c), we can

construct the T-DP state space T shown in Fig. 15d. The non-artificial stages (depicted in gray)

correspond to the nodes of the join tree and are populated by states (depicted by small white circles)

that correspond to tuples from the relations. If we were to run our ranked enumeration algorithms

on T , we would enumerate the answers to the full query Q(x1,x2,y1,y2,y3,y4). Instead, we only
run the bottom-up phase that computes the values π1(s) for all states s , shown with purple color

in the figure. We proceed by removing the stages that do not belong toU and replacing them with

artifical terminal nodes, thereby getting a modified state-space T ′
shown in Fig. 15e. Observe that

ranked enumeration on T ′
will now enumerate the answers to the query Q(y1,y2,y3,y4). To get the

correct min-weight-projection semantics, we also have to modify the input weights on T ′
. Consider

state s3 ∈ S2 on T that has two branches, one towards S4 and one towards S5. For the first branch,

we have to choose among two decisions (s3, s6) and (s3, s7). The minimum is achieved with (s3, s6)
since 1 = w(s3, s6) + π1(s6) < w(s3, s7) + π1(s7) = 2. Therefore, when we remove stage S4 in T

′
and

replace it with a terminal stage S ′5 = {t5}, we set the weight of the decision (s3, t5) to be equal to that
minimum, i.e.,w(s3, t5) = min(s3,s)∈E24

{
w(s3, s) + π1(s)

}
= 1. Notice that the minimum achievable

, Vol. 1, No. 1, Article . Publication date: September 2020.

32 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

𝑦1

𝑅1

𝑅3

𝑅′

𝑦2

𝑦3

𝑅2

𝑦4
𝑥1

𝑥2

𝑅4

(a) The hypergraph of the query

and an additional atom R′
that

is used to check the free-connex

property.

𝑅1(𝑦1, 𝑦2)

𝑅2(𝑦2, 𝑦3)

𝑅4(𝑥2, 𝑦3)

𝑅3′(𝑦1, 𝑦4)

𝑅3(𝑥1, 𝑦1, 𝑦4)𝑅4′(𝑦3)

U

(b) The join tree with a connected subset

of nodes U that contain precisely the free

variables.

𝑤𝑌1

01

22

𝑌2

1

2

𝑌2 𝑤

1

2

𝑌3

1

4

𝑋1 𝑌1

0 1

0 2

𝑤

1

3

3

2

𝑅1 𝑅2

𝑅3
𝑌4

5

6

𝑋2 𝑤

1

2

𝑌3

1

1

1

2

𝑅4

(c) An example database in-

stance.

𝑆0

𝑆1

𝑆2

𝑆8

𝑆3

𝑆9𝑆7

𝑆4 𝑆5 𝑆6

1, 1 2, 2

1, 1 2, 4

𝑠0

1, 5 2, 6

1, 1 2, 1 1 0, 1, 5 0, 2, 6

𝑡7 𝑡8 𝑡9

0

1 2 0 3 2

0031

0 2

0 0

3 2

000

1 ∞

5

5
Input
Weights

Minimum
Achievable
Weights

∞

0 0 0

0 0 0 0

𝑠1 𝑠2

𝑠3 𝑠4

𝑠8

𝑠5

𝑠6 𝑠7 𝑠9 𝑠10

(d) T-DP state-space T that corresponds to the full

query Q(x1,x2,y1,y2,y3,y4) using the join tree of

Fig. 15b. For a state s , an identifier is depicted on its

top-left and π1(s) on its top-right.

𝑆0′

𝑆1′

𝑆2′

𝑆6′

𝑆3′

𝑆4′

1, 1 2, 2

1, 1 2, 4

𝑠0

1, 5 2, 6

1

𝑡6

0

0031

0 2

Input
Weights

Minimum
Achievable
Weights

0

𝑠1 𝑠2

𝑠3 𝑠4

𝑠8

𝑠5

𝑆7′ 𝑡7

3 2

𝑆5′ 𝑡5

1

(e) T-DP state-space T ′
used for the ranked enumer-

ation of Q(y1,y2,y3,y4). Notice that stages not in

U have been removed and replaced by artificial ter-

minal ones. The input weights have been modified

accordingly.

Fig. 15. Example 19: ranked enumeration under min-weight-projection semantics for the acyclic and free-

connex query Q(y1,y2,y3,y4) :−R1(y1,y2),R2(y2,y3),R3(x1,y1,y4),R4(x2,y3) on an example database.

weights per branch that we need have already been computed from the bottom-up phase on T (see

Eq. (7)).

Theorem 20 (Free-connex acyclic qeries). Ranked enumeration of the results of a free-

connex acyclic query under min-weight-projection semantics can be performed with TTF = O(n) and
Delay(k) = O(logk) in data complexity.

Proof. Let y be the set of free variables of a free-connex acyclic query Q(y). Recall that in a
join tree, each node represents one atom of the query – for a node t , let var(t) denote the set
of variables of the corresponding atom. Since the query is free-connex, we can compute a join
tree with a connected subset of nodesU that satisfy

⋃
t ∈U var(t) = y in O(|Q |) time using known

techniques [18, 25]. In order to achieve this, some additional atoms might be introduced in the
query. Set the input weights of all the tuples or T-DP states materialized from those atoms to 0.
Also set the root of the tree to be some node t ∈ U .

Next, from the join tree, construct in a bottom-up fashion the corresponding T-DP state space
graph as in Section 5.1 and denote it as T . This takes O(n) time. Every T-DP solution of T is by
construction an answer to the full query Q(x) (with no projections). Given that (1)U contains all

, Vol. 1, No. 1, Article . Publication date: September 2020.

Optimal Algorithms for Ranked Enumeration 33

the free variables y needed for answering Q(y) and (2) bottom-up consistency has already been
enforced, it suffices to perform ranked enumeration only to the subtree induced by U . To do that,
create a copy T ′ of T that only retains the stages that belong toU 10. Complete T ′ with an artificial
starting stage as the root of the tree and terminal stages as the leaves, exactly as in Section 5.1.
We argue that there is a 1 to 1 correspondence between the T-DP solutions of T ′ and the answers
to Q(y). To see this, first consider a T-DP solution Π of T ′. It must contain states that belong to
S, (recall that these are the ones that were not removed from the bottom-up pass) hence they can
reach the terminal nodes of the original T-DP state space graphT . Thus, there is a way to extend Π
to a solution to the original state-space T , which corresponds to an answer to the full query Q(x).
Thus, the values assigned to the variables y are an answer to Q(y). Conversely, consider an answer
to Q(y) which is an assignment of values to the the y variables. Since the subsetU of the join tree
contains precisely the free variables y, we can find tuples in the materialized relations of the join
tree and equivalently, states in T ′ that form a T-DP solution using those values.
To get min-weight-projection semantics, we have to make adjustments to the input weights of

T ′. In particular, we introduce some additional terminal stages to T ′ and set the weights of the
decisions that reach them according to the weights of T that have been removed from T ′. Let Sr
be a (non-artificial) stage in T and Sp = pr (Sr) its parent such that Sr < U and Sp ∈ U . Also let
S ′p be the copy of Sp in T ′. We add to T ′ a stage S ′t = {s ′t } and decisions (s ′p , s ′t) for s ′p ∈ S ′p with
π1(sp) , ∞. Notice that this does not add or remove any T-DP solutions from T ′. The weight of
the new decisions is set to be the minimum achievable weight that sp could reach in T from the Sr
branch:w(s ′p , s ′t) = min(sp,sr)∈Epr =

{
w(sp , sr) + π1(sr)

}
. This can be done in time linear in T . For a

solution Π of T and a solution Π′ of T ′, let Π′ ⊂ Π denote the fact that Π is an extension of Π′, i.e.,
they agree on the subset U . By our construction, it is easy to see that for a solution Π′ of T ′ we get
w(Π′) = minΠ:Π′⊂Πw(Π).

The total time spent so far is linear in the size of the database. After we modify the weights of
the decisions as described above, we perform a bottom-up pass on T ′ once more and finally, apply
Take2 on T ′ to get ranked enumeration with O(logk) delay. □

We proceed to strengthen the above result with lower bounds that also originate from the
works on unranked enumeration. First, we state some complexity-theoretic assumptions that are
commonly used and on which we will rely on. For more information on these conjectures, we refer
the reader to the extensive discussion by Berkholz et al. [18].

• BMM is the hypothesis that two n×n Boolean matrices cannot be multiplied over the Boolean
semiring in time O(n2).

• sparseBMM is the hypothesis that two Boolean matrices cannot be multiplied over the
Boolean semiring in time O(m), wherem is the number of the non-zero entries in the input
and the output.

• Triangle is the hypothesis that a triangle cannot be identified in a graph ofm edges within
O(m) time.

• Hypercliqe is the hypothesis that a (k + 1,k)-hyperclique cannot be identified in a k-
uniform hypergraph within O(m), wherem is the number of hyperedges and k ≥ 3. Note
that a (k + 1,k)-hyperclique is a set of k + 1 vertices such that every k-element subset is a
hyperedge and in a k-uniform hypergraph, all hyperedges contain k vertices.

Besides the efficient algorithm for free-connex acyclic queries, Bagan et al. [11] provide a com-
plementary negative result for queries without self-joins that rests on the BMM hypothesis. In
particular, if a self-join-free acyclic query is not free-connex then we cannot enumerate its answers

10By slightly abusing the notation, we say that a stage belongs toU if its corresponding node in the join tree belongs toU

, Vol. 1, No. 1, Article . Publication date: September 2020.

34 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

with constant delay after linear preprocessing. This essentially creates a dichotomy for the class
of self-join-free acyclic queries: the only ones that can be handled efficiently are those that are
free-connex. Later developments replace the original BMM assumption with sparseBMM, which
is considered more likely to be true [18] and further extend the dichotomy to all self-join-free
conjunctive queries with some additional assumptions. We restate this result below:

Theorem 21 ([11, 25]). Assuming sparseBMM, Triangle and Hyperclique, unranked enumeration

of the results of a self-join-free conjunctive query that is not acyclic free-connex cannot be done with

O(n) preprocessing and O(logn) delay.

The following is immediate, since ranked enumeration is a harder problem than unranked
enumeration and logk = O(logn) in data complexity:

Corollary 22 (Ranked enumeration of conjunctive qeries). Assuming sparseBMM, Trian-

gle and Hyperclique, ranked enumeration of the results of a self-join free conjunctive query under

min-weight-projection semantics can be performed with TTF = O(n) and Delay(k) = O(logk) delay
in data complexity if and only if the query is acyclic and free-connex.

8.2 Minimum-cost homomorphism
The connections between conjunctive query evaluation, constraint satisfaction, and the hypergraph
homomorphism problem are well-known [30, 44, 70].We now apply our framework to the minimum-
cost homomorphism problem and generalize it in the same spirit as we generalized a standard
Dynamic Programming (find the top-1 solution) to an any-k problem. In other words, we want
to perform ranked enumeration, finding the min cost homomorphism, then the 2nd lowest cost
homomorphism, etc. For that purpose we need to introduce a slight variation of the well-studied
hypertree decompositions.

Pinned hypertree decomposition. A hypergraph H(N ,E) is a pair H = (N ,E) where N is a
set of elements called nodes, and E is a set of non-empty subsets of N (i.e. E ⊆ 2N \ ∅) called edges.

Definition 23 (TD [89]). A tree decomposition of a hypergraphH(N ,E) is a pair ⟨T , χ⟩ where
T = (V , F) is a tree, and χ is a labeling function assigning to each vertex v ∈ V a set of vertices

χ (v) ⊆ N , such that the following three conditions are satisfied:

(1) (node coverage) for each node b ∈ N , there exists v ∈ V such that b ∈ χ (v);
(2) (edge coverage) for each hyperedge h ∈ E, there exists v ∈ V such that h ⊆ χ (v); and
(3) (coherence) for each node b ∈ N , the set χ−1(b) = {v ∈ V | b ∈ χ (v)} induces a connected

subtree of T .

To distinguish between vertices ofH and T , we will denote the former nodes N , and the latter
vertices V . Thus, we also call the set χ (v) for v ∈ V the nodes of v .

Definition 24 (HD [54]). A (generalized) hypertree decomposition HD of a hypergraph H is a

triple HD = ⟨T , χ , λ⟩, called a hypertree for H , where ⟨T , χ⟩ is a tree decomposition of H , and λ is a

function labeling the vertices of T by sets of hyperedges of H such that,

(4) for each vertex v of T , χ (v) ⊆ ⋃
h∈λ(v) h.

11

In other words, the additional condition is that all nodes in the χ labeling of the TD are covered
by hyperedges in the λ labeling.
A rooted hypertree decomposition ⟨T , χ , λ, r ⟩ of H is obtained by additionally choosing a

root r ∈ V , which defines a child/parent relation between every pair of adjacent vertices, and

11Notice we use continuous numbering for the conditions as they build upon each other and we will need 6 conditions in total for our
formulation.

, Vol. 1, No. 1, Article . Publication date: September 2020.

Optimal Algorithms for Ranked Enumeration 35

ancestors/descendants in the usual way: In a rooted tree, the parent of a vertex is the vertex
connected to it on the path to the root; every vertex except the root has a unique parent. A child of
a vertex v is a vertex of which v is the parent. A descendant of any vertex v is any vertex which is
either the child of v or is (recursively) the descendant of any of the children of v . We write p(v)
for the parent of node v , C(v) for the set of children, and D(v) for the set of descendents. A node
without children is called a leaf.

Define as reverse tree-order the partial ordering on the vertices V (T) with u ≤T v if and only if
the unique path from u to the the root passes through v [39]. if u <T v we say that u lies below v
in T. We call

⌈v⌉ := {u |u ≤T v}
the down-closure of y. In other words, ⌈v⌉ = D(v) ∪ {v}.

Let ⟨T , χ , r ⟩ be a rooted tree decomposition ofH . For a nodev ∈ V , we denote χ (⌈v⌉) = ⋃
u χ (u),

with u ∈ ⌈v⌉. In other words, χ (⌈v⌉) contains any node that is contained in either v or any of its
descendants. We also define the subgraph H(⌈v⌉) asH(⌈v⌉) = H[χ (⌈v⌉)].
A vertex v introduces node b if b ∈ χ (v) \⋃c χ (c), where the union is taken over all children

c ∈ C(v) of v [23]. In other words, a vertex introduces a node if that node is contained in the
vertex but none of its children. Analogously, a vertex v forgets (or “projects away”) node b if
b ∈ ⋃

c χ (c) \ χ (v). Since a node can only be present in a connected set of vertices (forming a
subtree), each node can be introduced multiple times, but only forgotten once.

DP algorithms rely on the following two key properties, which follow easily from Definition 23:
(i) first,H(⌈r⌉) = H ; (ii) second, for every v ∈ V , the only vertices ofH(⌈v⌉) that (inH) may be
incident with edges that are not in H(⌈v⌉) are vertices in χ (v).

For our particular formulation of dynamic programming (DP) over hypertree decompositions, we
need to add one more labeling function to the hypertree decomposition. We explain the intuition
first: In a HD, an edge h ∈ E can be mapped to multiple vertices in HD. However, when we add
up the weights of a homomorphism, we need to make sure that weights are counted only once.
We thus use a “pinning” function that maps each h to exactly one vertex in T in which h appears
without projection (i.e., χ (v) ⊇ h). We say that vertex v “pins” edge h.12

Definition 25 (Pinned HD). A pinned hypertree decomposition of a hypergraphH is a quadruple

⟨T , χ , λ, ρ⟩, where ⟨T , χ , λ⟩ is a HD and ρ is a function labeling the vertices of T by sets of hyperedges

ofH such that,

(5) for each h ∈ E, there exists exactly one v ∈ V , such that h ⊆ ρ(v) and χ (v) ⊇ h; and
(6) for each v ∈ V : ρ(v) ⊆ λ(v).

Min Cost Homomorphism. LetH and G be hypergraphs, possibly with loops. A homomor-
phism from H to G is a function θ : V (H) → V (G) such that for all h ∈ E(H), θ (h) ∈ E(G). Let
w : E(G) → R be a cost function. The cost of a homomorphism θ fromH to G is then

w(θ) =
⊕

h∈E(H)
w
(
θ (h)

)
The Minimum Cost Homomorphism problem (MCH) is then defined as

Definition 26 (Min Cost Homomorphism (MCH)). Given hypergraphs H and G, with edge

weightsw , decide whether a homomorphism from H to G exists, and if so, compute one of minimum

12In the literature of tree decompositions of NP-hard problems, this problem is often solved by defining a “nice” tree decomposition that
can be constructed from arbitrary tree decompositions with polynomial overhead, and subtracting weights at special vertices called “joins.”
This construction requires ⊕ to be a group instead of a simpler monoid (because we need an inverse element). Because in our work, we do
care about polynomial overhead, we prefer to use a definition that avoids requiring an inverse operation.

, Vol. 1, No. 1, Article . Publication date: September 2020.

36 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

weight.

w∗ = min
θ

{
w(θ)

}
(10)

Let ⟨T , χ , λ, ρ, r ⟩ be a rooted pinned hypertree decomposition of H . For a node v ∈ V (T), our
DP computes values val(v,θ) for every θ : χ (v) → N (G), defined as follows:

val(v,θ) = min
{
w(µ) | µ : χ (⌈v⌉) → N (G) s.t. µ |χ (v) = θ

}
.

So val(v,θ) is the minimum weight of a homomorphism µ fromH(⌈u⌉) to G that coincides with
θ . Then sinceH(⌈r⌉) = H , the minimum weight of a homomorphism fromH to G is computed by
taking the minimum value of val(r ,θ) over all µ : χ (r) → N (G).
The values val(v,θ) can then be computed recursively in any sequence consistent with the

reverse tree order ≤T as follows (Algorithm 3):
(1) If v is a leaf node, then initialize the weights with all grounded weights val(v,θ) = w(θ)

(Line 3).
(2) If v is not a leaf node, then first let S be the set of variables that appear in either v or its

children (Line 5). Then for each homomorphism µ of the nodes in S to nodes N (G), determine
the cost for the sum of: (i) cost inherited all children consistent with µ, and (ii) additional
cost incurred at that node v for all pinned edges h ∈ ρ(v) (Line 6).

val(v, µ) =
⊕
c ∈C(v)

val(c, µ |X (c)) ⊕
⊕
h∈ρ(v)

w
(
µ(h)

)
Then determine the minimum over all µ consistent with the variables in v (Line 7).

(3) Finally, determine the minimum weight of all homomorphisms consistent with the root
(Line 8).

The minimum weight homomorphism θ ∗ can then be reassembled in one pass forward from the
root to the leaves in the standard way as explained in Section 5. (To simplify the exposition, we
are following the example of Bertsekas [22]: all dynamic programming algorithms construct the
solution from the trace by which the optimum cost is found.)

Theorem 27. [Correctness of MCH-DP] If the operation ⊕ is commutative, associative, and nonde-

creasing, then Algorithm 3 finds all optimal solutions of Eq. (10).

Proof. We prove that MCH-DP finds the optimal value w∗ of w(θ). At each vertex v of the
hypertree decomposition, the computation eliminates (“forgets”) a set of nodes T from its children:
T :=

⋃
c χ (c) \ χ (v). This elimination replaces all homomorphisms µ involvingT and χ (v) with the

restricted homomorphism θ where the image contains only variables in χ (v) (Line 8). So it suffices
to show that the elimination of T does not change the minimum value.
The proof succeeds by induction. Consider a vertex v that forgets variables T and for which

none of its descendants forgets any variable. Let ρ(⌈v⌉) be the set of hyperedges h ∈ E(H) that
were pinned by any of ⌈v⌉: ρ(⌈v⌉) = {h ∈ E(H) | ∃u ∈ ⌈v⌉ : h ∈ ρ(u)}. Similarly, let ρ(D(v)) be
the set of hyperedges h ∈ E(H) that were pinned by any of the descendants of v , but not v . Further,
let θ = µ |χ (v).
Then

min
θ

{ ⊕
h∈E(H)

w
(
θ (h)

)}
=

min
µ

{
val(v, µ |χ (v)) ⊕

⊕
h∈E(H)\ρ[v]

w
(
µ(h)

)}
(11)

, Vol. 1, No. 1, Article . Publication date: September 2020.

Optimal Algorithms for Ranked Enumeration 37

Algorithm 3: DP Formulation for Minimum Cost Homomorphism Problem over Pinned Hypertree
Decomposition
Algorithm: MCH-DP
Input: Hypergraphs H and G . Cost function w : V (G) → R. Rooted pinned HD of H: ⟨T , χ, λ, ρ, r ⟩ with reverse tree

order ≤T .
Output: w ∗ = minθ

{
w (θ)

}
1 for each vertex v ∈ V (T) in order ≤T do

2 if v is a leaf node then

3 val(v, θ) = w (θ)
4 else

5 Let S = χ (v) ∪⋃
c χ (c) with c ∈ C(v)

6 Define a homomorphism µ : S → N (G) s.t. val(v, µ) =
⊕

c∈C (v) val(c, µ |X (c)) ⊕
⊕

h∈ρ (v)w
(
µ(h)

)
7 val(v, θ) = min

{
val(v, µ) | µ : S → N (G), s.t. µ |χ (v) = θ

}
8 return minθ

{
val(r, θ)

}
But the right-hand side Eq. (11) is now

min
µ

{
min
θ

{ ⊕
h∈ρ[v]

w
(
θ (h)

)}
⊕

⊕
h∈E(H)\ρ[v]

w
(
θ (h)

)}
By the commutativity, associativity, and nondecreasing monotonicity of ⊕, this expression is

equal to the left-hand side Eq. (11). By straight-forward induction, it follows that minθ val(r ,θ) is
the optimal value Eq. (10). □

9 RELATEDWORK
Top-k . Top-k queries received significant attention in the database community [6, 7, 14, 28, 32, 64,
95, 96]. Much of that work relies on the value of k given in advance in order to prune the search space.
Besides, the cost model introduced by the seminal Threshold Algorithm (TA) [43] only accounts for
the cost of fetching input tuples from external sources. Later work such as J* [80], Rank-Join [63],
LARA-J* [75], and a-FRPA [45] generalizes TA to more complex join patterns, yet also focuses
on minimizing the number of accessed input tuples. While some try to find a balance between
the cost of accessing tuples and the cost of detecting termination, previous work on top-k queries
is sub-optimal when accounting for all steps of the computation, including intermediate result size
(see Section 9.1.3). We also refer the reader to a recent tutorial [98] that explores the relationship
between top-k and the paradigms discussed in this paper.

Optimality in Join Processing. Acyclic Boolean queries can be evaluated optimally in O(n)
data complexity by the Yannakakis algorithm [103]. The AGM bound [9], a tight bound on the
worst-case output size for full conjunctive queries, motivated worst-case optimal algorithms [81,
82, 83, 100] and was extended to more general scenarios, such as the presence of functional
dependencies [53] or degree constraints [3, 5]. The upper bound for cyclic Boolean CQs was
improved over the years with decomposition methods that achieve ever smaller width-measures,
such as treewidth [89], (generalized) hypertree width (ghw) [54, 55, 56, 57, 59], fractional hypertree
width (fhw) [61], and submodular width (subw) [78]. Current understanding suggests that achieving
the improvements of subw over fhw requires decomposing a cyclic query into a union of acyclic
queries. Our method can leverage this prior work on subw [5, 78] to match the subw bound of
Boolean CQs for TTF. We also show that it is possible to achieve better complexity for TTL than
sorting the output of any of these batch computation algorithms.

Unranked enumeration of query results. Enumerating the answers to CQs with projections

in no particular order can be achieved only for some classes of CQs with constant delay, and
much effort has focused on identifying those classes [11, 19, 29, 93, 94]. If the ranking function is

, Vol. 1, No. 1, Article . Publication date: September 2020.

38 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

defined over the Boolean semiring, our technique achieves constant delay if we replace the priority
queues with simple unsorted lists. However, we consider only full CQs, eschewing the difficulties
introduced by projections and focusing instead on the challenges of ranking. A recent paper by
Berkholz and Schweikard [20] also uses a union of tree decompositions based on subw. Our focus
is on the issues arising from imposing a rank on the output tuples, which requires solutions for
pushing sorting into such enumeration algorithms.

Factorization and Aggregation. Factorized databases [13, 85, 86, 92] exploit the distributivity
of product over union to represent query results compactly and generalize the results on bounded
fhw to the non-Boolean case [87]. Our encoding as a DP graph leverages the same principles and is
at least as efficient space-wise. Finding the top-1 result is a case of aggregation that is supported
by both factorized databases, as well as the FAQ framework [1, 2] that captures a wide range of
aggregation problems over semirings. Factorized representations can also enumerate the query
results with constant delay according to lexicographic orders of the variables [12], which is a
special case of the ranking that we support (Section 2.2). For that to work, the desired lexicographic
order has to agree with the factorization order ; a different order requires a restructuring operation
that could result in a quadratic blowup even for a simple binary join (see Section 9.1.2 for the full
example). Related to this line of work are different representation schemes [67] and the exploration
of the continuum between representation size and enumeration delay [37].

Ranked enumeration. Both Chang et al. [31] and Yang et al. [101] provide any-k algorithms
for graph queries instead of the more general CQs; they describe the ideas behind Lazy and All
respectively. Kimelfeld and Sagiv [69] give an any-k algorithm for acyclic queries with polynomial
delay. Similar algorithms have appeared for the equivalent Constraint Satisfaction Problem (CSP)
[52, 58]. These algorithms fit into our family anyK-part, yet do not exploit common structure
between sub-problems hence have weaker asymptotic guarantees for delay than any of the any-k
algorithms discussed here. After we introduced the general idea of ranked enumeration over cyclic
CQs based on multiple tree decompositions [102], an unpublished paper [38] on arXiv proposed
an algorithm for it. Without realizing it, the authors reinvented the REA algorithm [66], which
corresponds to Recursive, for that specific context. We are the first to guarantee optimal time-to-first

result and optimal delay for both acyclic and cyclic queries. For instance, we return the top-ranked
result of a 4-cycle in O(n1.5), while Deep and Koutris [38] require O(n2). Furthermore, our work (1)
addresses the more general problem of ranked enumeration for DP over a union of trees, (2) unifies
several approaches that have appeared in the past, from graph-pattern search to k-shortest path,
and shows that neither dominates all others, (3) provides a theoretical and experimental evaluation
of trade-offs including algorithms that perform best for small k , and (4) is the first to prove that it is
possible to achieve a time-to-last that asymptotically improves over batch processing by exploiting
the stage-wise structure of the DP problem.
k-shortest paths. The literature is rich in algorithms for finding the k-shortest paths in general

graphs [10, 17, 40, 42, 62, 65, 66, 68, 74, 77, 76, 104]. Many of the subtleties of the variants arise
from issues caused by cyclic graphs whose structure is more general than the acyclic multi-stage
graphs in our DP problems. Hoffman and Pavley [62] introduces the concept of “deviations” as a
sufficient condition for finding the k th shortest path. Building on that idea, Dreyfus [40] proposes
an algorithm that can be seen as a modification to the procedure of Bellman and Kalaba [17].
The Recursive Enumeration Algorithm (REA) [66] uses the same set of equations as Dreyfus, but
applies them in a top-down recursive manner. Our anyK-rec builds upon REA. To the best of
our knowledge, prior work has ignored the fact that this algorithm reuses computation in a way
that can asymptotically outperform sorting in some cases. In another line of research, Lawler
[74] generalizes an earlier algorithm of Murty [79] and applies it to k-shortest paths. Aside from

, Vol. 1, No. 1, Article . Publication date: September 2020.

Optimal Algorithms for Ranked Enumeration 39

R A B

a1 b0
a2 b0
.

an b0
a0 b1
a0 b2
.

a0 bn

S B C

b0 c1
b0 c2
.

b0 cn
b1 c0
b2 c0
.

bn c0

T C D

c1 d0
c2 d0
.

cn d0
c0 d1
c0 d2
.

c0 dn

W D A

d0 a1
d0 a2
.

d0 an
d1 a0
d2 a0
.

dn a0
Fig. 16. Database I1 showing sub-optimality of NPRR for TTF.

k-shortest paths, the Lawler procedure has been widely used for a variety of problems in the
database community [48]. Along with the Hoffman-Pavley deviations, they are one of the main
ingredients of our anyK-part approach. Eppstein’s algorithm [42, 65] achieves the best known
asymptotical complexity, albeit with a complicated construction whose practical performance is

unknown. His “basic” version of the algorithm has the same complexity as Eager, while our Take2
algorithm matches the complexity of the “advanced” version for our problem setting where output
tuples are materialized explicitly.

9.1 Detailed comparison to other paradigms
9.1.1 WCO join algorithms. We now show how the NPRR algorithm [82] fails to find the top
ranked result in the same time bound as our approach. The key innovation of such worst-case
optimal join algorithms is that they achieve the same complexity as the worst-case size of the
output for every query. In the case of a 4-cycle query, NPRR produces the full join result in O(n2),
a tight worst-case optimal bound. We next demonstrate with the help of the example database I1 in
Figure 16 that it requires O(n2) for the top-1 result as well, which cannot be easily fixed, whereas
the techniques presented in this paper yield O(n1.5).
NPRR execution on I1. We follow the general treatment and formalism of [82].
(Step 1) WLOG, we use the total order of attributes B → C → A → D, which implies choosing

relationW (A,D) in the first iteration: f = {A,D}, f = {B,C}. The implied relations are: E1 =

{(B,C), (A,B), (C,D)}, and E2 = {(A,D), (A,B), (C,D)}.
(Step 2) The algorithm will compute an intermediate set of values L for attributes in f with a

recursive call on E1. In our example, L will be a set of (b, c) pairs that satisfy R(ai ,b), S(b, c),T (c,dj)
for some ai and dj . Its size is |L| = 2n.
(Step 3) For every (b, c) pair in L, there are two ways to find an (a,d) pair that forms a 4-cycle

(a,b, c,d):
• light pair: if the number of (a,d) pairs joining with (b, c) in R(a,b), S(b, c),T (c,d) is smaller
than |W (d,a)|, iterate through those (a,d) pairs. For any such pair, if it is inW (D,A) output
(a,b, c,d).

• heavy pair: if |W (d,a)| is smaller, then check for each (d,a) inW (D,A), whether (a,b) is in
R(a,b) and (c,d) is in T (c,d). Output (a,b, c,d) if both conditions are true.

All (b, c) pairs in L are light pairs in our I2 example, since the join-generated pairs are of size n,
while |W | = 2n.

Ranked enumeration withNPRR.A straightforward way to to turn this algorithm into a ranked
enumeration algorithm is to compute all output tuples (a,b, c,d) and then sort them, which incurs
O(n2 logn) for TTF. Is it possible to do better than that? We will next show that any reasonable
attempt to “retrofit” this algorithm fails to achieve O(n1.5) TTF for our example. After Step 2 above,

, Vol. 1, No. 1, Article . Publication date: September 2020.

40 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

1 4 16 64 256 1024
n (in thousands)

10 1

100

101

102

Ti
m

e
(s

ec
)

(n2logn)
(n)

Recursive(TTF)
Recursive(TTL)
Lazy(TTF)
Lazy(TTL)
NPRR(TTF)

Fig. 17. TTF of NPRR vs our algorithms

R A B

1 1
2 1
.

n 1

S B C

1 1
1 2
.

1 n
Fig. 18. Example 28: Database showing sub-optimality of factorised databases for certain lexicographic

orders.

we have 2n pairs in L, the weight of which is known. Let us revisit Step 3 and break it further into
the following parts:

(i) For every (b, c) pair in L, we know its weightwS (the subscript refers to the relation of origin).
We have already established that the number of (a,d) pairs that can be connected from any (b, c) is
1 · n = n < |W (D,A)| = 2n. Since all (b, c) in L are all light pairs, the execution plan is always to
compute (a,d) pairs that satisfy R(a,b), S(b, c),T (c,d). In this step, we can compute their weights
as wlight = wR +wS +wT . Therefore, for each (b, c) pair, we have a pool of matching pairs (a,d),
each associated with a weight.
(ii) There are 2n (b, c) pairs and each one has n matching pairs of (a,d) in its pool. To find the

result with the minimum weight, we need to go through the pool for each such (b, c) pair. For each
combination, we have to verify that it is a result by checkingW (D,A) and also compute the total
weight by addingwW . Thus, O(n2) in total.

Experimental results. To better illustrate our point, we run NPRR against our algorithms
(Recursive and Lazy) on a 4-cycle query QC4 and database I1 (Fig. 16) for various sizes n. Notice
that even though our decomposition method guarantees O(n1.5) for a 4-cycle query, it only needs
O(n) on I1, since every relation has only one heavy value. We use the same experimental setup as
in Section 7 and plot the time-to-first (TTF) and time-to-last (TTL). For NPRR we only plot the TTF,
since TTL is very similar. We also plot two lines that show the trend of a linear and a quadratic
function.

Figure 17 shows the results. We can clearly see that NPRR, as well as the TTL of our algorithms
grow quadratically with n and soon become infeasible for large n. On the contrary, despite an initial
overhead for small n, the TTF of our algorithms closely follows the linear line and is viable even
for n in the order of millions of tuples: For example, for 16k tuples, our algorithm returns the top-1
result in 300 msec, while NPRR takes over 100 secs.

9.1.2 Comparison to Factorised Databases. Factorised databases (FDBs) [13, 85, 86, 87] support
constant-delay enumeration of query results according to a desired lexicographic order on the
attributes [12]. Lexicographic orders are a special case of the ranking function considered in this
paper and our approach supports them (see Section 2.2), albeit with logarithmic delay. Here we look
closer at the differences between the two approaches for this special case of lexicographic orders

, Vol. 1, No. 1, Article . Publication date: September 2020.

Optimal Algorithms for Ranked Enumeration 41

and show that our approach can be asymptotically better in certain cases despite the logarithmic
delay. Also note that the lexicographic ordering we describe in Section 2.2 is on the relations instead
of the attributes but combined with the method in Section 6.1, we also support lexicographic orders
on the attributes.
First, we provide a very short description of the main idea behind factorised databases and

we refer the reader to the original papers for an in-depth presentation. To achieve a succinct
representation, factorised databases repeatedly apply the distributivity law in an order described
by a tree structure whose nodes are the attributes [86]. Intuitively, if X is the attribute of a node
of the tree and anc(X) are its ancestor attributes, then every value x ∈ X is represented at most
once for each combination of values of anc(X). D-representations [87] provide further succinctness
by making the dependencies of each attribute in the tree explicit. This means that some attributes
in anc(X) might not actually determine what the possible X values are. Truly dependent ancestor
attributes of a node are denoted as key(X). Each value x ∈ X is then represented at most once for
each combination of values of key(X).

These factorised representations provide unranked constant-delay enumeration out-of-the-box.
Yet for specific lexicographic orders, there are two conditions that have to be met: (i) the order-by
attributes have to be “at the top” of the tree and (ii) the tree order has to agree with the lexicographic
order. If the tree order is not in agreement (e.g., we want A before B but A is a child of B in the tree),
then the whole representation has to be restructured. The restructuring operation takes an input
representation and transforms it to an output representation consistent with the lexicographic
order in time linear (ignoring log factors) in the input and output representation sizes. However, the
output representation itself could be inefficient. We next illustrate the simplest example where an
ill-chosen lexicographic order results in a quadratic representation for a simple binary join.

Example 28 (Lexicographic orders). Consider the path-2 queryQP2(A,B,C) :−R(A,B), S(B,C).
As usual, n is the maximum number of tuples in a relation. Ideally, we would want to factorise it

using a tree that has B as the root andA,C as its children. That way, everyA andC value in the query

result would be represented independently for each B value. However, for the lexicographic order

A → C → B this factorisation is not in agreement since B comes after A and C . The only possible
tree that satisfies the condition (ii) above is a path from A to C to B. Note that the tree with A as the

root and B, C as the children is not possible because of the path condition in factorised databases:

attributes that belong to the same relation (B and C here) are in general dependent and have to lie

in the same root-to-leaf path. In that tree, key(B) = {A,C}. According to Lemma 7.20 in [87], there

exist arbitrarily large databases such that the number of B values in the representation is at least

nρ
∗(B∪key(B))

, where ρ∗ is the fractional edge cover, thus Ω(n2).
Figure 18 presents a concrete instance where this happens. For this database, the single B-value 1

will be represented once for each combination of A,C values and there are n2
of them. In contrast,

our approach begins the enumeration after only linear time preprocessing. Thus in this case, the

preprocessing step of FDBs takes O(n2) after which results can be enumerated in constant time. In

contrast, our approach has TTF in O(n) and TTL in O(n2) with logarithmic delay.

9.1.3 Comparison to top-k join algorithms. Consider the database I2 from Fig. 19 with ℓ = 3
relations and n = 10 tuples per relation. The top output tuple is marked in blue; it consists of the
lightest tuples from the first ℓ−1 relations and the heaviest tuple from Rℓ . J* [80] and Rank-Join [63]
access the tuples in the input relations by decreasing weight. Their cost model takes into account
only the number of database accesses, hence they try to minimize the depth up to which the sorted
relations have to be accessed in order to find the top-k results. In this case, both J* and Rank-Join

will consider the (n−1)ℓ−1
combinations between R and S before getting to the the top-1 tuple (r0, s0, t0).

, Vol. 1, No. 1, Article . Publication date: September 2020.

42 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

R A B w

r1 a1 b1 10
r2 a2 b1 9
· · · · · · · · · · · ·
r9 a9 b1 2
r0 a0 b0 1

S B C w

s1 b1 c1 100
s2 b1 c2 90
· · · · · · · · · · · ·
s9 b1 c9 20
s0 b0 c0 10

T C w

t0 c0 1000
t1 c1 1
· · · · · · · · ·
t8 c8 1
t9 c9 1

Fig. 19. Database I2 showing sub-optimality of J* and Rank-Join. (Section 9.1.3)

This happens because J* over-estimates their weight by using the large weight of t0 to upper-bound
them, while Rank-Join by default joins each newly encountered tuple with all the other ones seen
so far. In contrast, our approach achieves O(n · ℓ) for the top ranked result.

10 CONCLUSIONS AND FUTUREWORK
We proposed a framework for ranked enumeration over a class of dynamic programming problems
that generalizes seemingly different problems that to date had been studied in isolation. Uncovering
those relationships enabled us to propose the first algorithms with optimal time complexity for

ranked enumeration of the results of both cyclic and acyclic full CQs. In particular, our technique
returns the top result in a time that meets the currently best known bounds for Boolean queries, and
even beats the batch algorithm on some inputs when all results are produced. It will be interesting
to go beyond our worst-case analysis and study the average-case behavior [91] of our algorithms.

Acknowledgements.

We are grateful to Hung Q. Ngo for reading drafts of this paper and providing valuable feedback.
This work was supported in part by the National Institutes of Health (NIH) under award number R01
NS091421 and by the National Science Foundation (NSF) under award number CAREER IIS-1762268.
The content is solely the responsibility of the authors and does not necessarily represent the official
views of NIH or NSF.

REFERENCES
[1] M. Abo Khamis, R. R. Curtin, B. Moseley, H. Q. Ngo, X. Nguyen, D. Olteanu, and M. Schleich.

On functional aggregate queries with additive inequalities. In PODS, pages 414–431, 2019.
doi: 10.1145/3294052.3319694.

[2] M. Abo Khamis, H. Q. Ngo, and A. Rudra. Faq: questions asked frequently. In PODS, pages 13–
28, 2016. doi: 10.1145/2902251.2902280.

[3] M. Abo Khamis, H. Q. Ngo, and D. Suciu. Computing join queries with functional depen-
dencies. In PODS, pages 327–342, 2016. doi: 10.1145/2902251.2902289.

[4] M. Abo Khamis, H. Q. Ngo, and D. Suciu. What do shannon-type inequalities, submodular
width, and disjunctive datalog have to do with one another? CoRR, abs/1612.02503, 2016.
url: http://arxiv.org/abs/1612.02503.

[5] M. Abo Khamis, H. Q. Ngo, and D. Suciu. What do shannon-type inequalities, submodular
width, and disjunctive datalog have to do with one another? In PODS, pages 429–444, 2017.
doi: 10.1145/3034786.3056105.

[6] P. Agrawal and J. Widom. Confidence-aware join algorithms. In ICDE, pages 628–639, 2009.
doi: 10.1109/ICDE.2009.141.

[7] R. Akbarinia, E. Pacitti, and P. Valduriez. Best position algorithms for efficient top-k query
processing. Information Systems, 36(6):973–989, 2011. doi: 10.1016/j.is.2011.03.010.

, Vol. 1, No. 1, Article . Publication date: September 2020.

https://doi.org/10.1145/3294052.3319694
https://doi.org/10.1145/2902251.2902280
https://doi.org/10.1145/2902251.2902289
http://arxiv.org/abs/1612.02503
https://doi.org/10.1145/3034786.3056105
https://doi.org/10.1109/ICDE.2009.141
https://doi.org/10.1016/j.is.2011.03.010

Optimal Algorithms for Ranked Enumeration 43

[8] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorithmica,
17(3):209–223, 1997. doi: 10.1007/BF02523189.

[9] A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for relational joins. SIAM
Journal on Computing, 42(4):1737–1767, 2013. doi: 10.1137/110859440.

[10] J. Azevedo, M. E.O. S. Costa, J. J.E. S. Madeira, and E. Q. V. Martins. An algorithm for the
ranking of shortest paths. European Journal of Operational Research, 69(1):97–106, 1993. doi:
10.1016/0377-2217(93)90095-5.

[11] G. Bagan, A. Durand, and E. Grandjean. On acyclic conjunctive queries and constant delay
enumeration. In International Workshop on Computer Science Logic (CSL), pages 208–222,
2007. doi: 10.1007/978-3-540-74915-8_18.

[12] N. Bakibayev, T. Kočiský, D. Olteanu, and J. Závodný. Aggregation and ordering in factorised
databases. PVLDB, 6(14):1990–2001, 2013. doi: 10.14778/2556549.2556579.

[13] N. Bakibayev, D. Olteanu, and J. Závodný. Fdb: a query engine for factorised relational
databases. PVLDB, 5(11):1232–1243, 2012. doi: 10.14778/2350229.2350242.

[14] H. Bast, D. Majumdar, R. Schenkel, M. Theobald, and G. Weikum. IO-top-k : index-access
optimized top-k query processing. In VLDB, pages 475–486, 2006. url: https://dl.acm.org/
doi/10.5555/1182635.1164169.

[15] R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87–90, 1958. doi:
10.1090/qam/102435.

[16] R. Bellman. The theory of dynamic programming. Bull. Amer. Math. Soc., 60(6):503–515,
Nov. 1954. url: https://projecteuclid.org:443/euclid.bams/1183519147.

[17] R. Bellman and R. Kalaba. On kth best policies. Journal of the Society for Industrial and

Applied Mathematics, 8(4):582–588, 1960. doi: 10.1137/0108044.
[18] C. Berkholz, F. Gerhardt, and N. Schweikardt. Constant delay enumeration for conjunctive

queries: a tutorial. ACM SIGLOG News, 7(1):4–33, 2020. doi: 10.1145/3385634.3385636.
[19] C. Berkholz, J. Keppeler, and N. Schweikardt. Answering conjunctive queries under updates.

In PODS, pages 303–318, 2017. doi: 10.1145/3034786.3034789.
[20] C. Berkholz and N. Schweikardt. Constant delay enumeration with FPT-preprocessing for

conjunctive queries of bounded submodular width. In 44th International Symposium on

Mathematical Foundations of Computer Science (MFCS), volume 138 of LIPIcs, 58:1–58:15.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019. doi: 10.4230/LIPIcs.MFCS.2019.58.

[21] U. Bertele and F. Brioschi. Nonserial dynamic programming. Academic Press, 1972. url:
https://dl.acm.org/doi/book/10.5555/578817.

[22] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume I. Athena Scientific,
3rd edition, 2005. url: http://www.athenasc.com/dpbook.html.

[23] H. L. Bodlaender, P. Bonsma, and D. Lokshtanov. The fine details of fast dynamic program-
ming over tree decompositions. In Parameterized and Exact Computation, pages 41–53.
Springer, 2013. doi: 10.1007/978-3-319-03898-8_5.

[24] E. Boros, B. Kimelfeld, R. Pichler, and N. Schweikardt. Enumeration in Data Management
(Dagstuhl Seminar 19211). Dagstuhl Reports, 9(5):89–109, 2019. doi: 10.4230/DagRep.9.5.89.

[25] J. Brault-Baron.De la pertinence de l’énumération: complexité en logiques propositionnelle et du

premier ordre. PhD thesis, Université de Caen, 2013. url: https://hal.archives-ouvertes.fr/tel-
01081392.

[26] J. Brault-Baron. Hypergraph acyclicity revisited. ACM Comput. Surv., 49(3), Dec. 2016. doi:
10.1145/2983573. url: https://doi.org/10.1145/2983573.

[27] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. Computer

networks and ISDN systems, 30(1-7):107–117, 1998. doi: 10.1016/S0169-7552(98)00110-X.

, Vol. 1, No. 1, Article . Publication date: September 2020.

https://doi.org/10.1007/BF02523189
https://doi.org/10.1137/110859440
https://doi.org/10.1016/0377-2217(93)90095-5
https://doi.org/10.1007/978-3-540-74915-8_18
https://doi.org/10.14778/2556549.2556579
https://doi.org/10.14778/2350229.2350242
https://dl.acm.org/doi/10.5555/1182635.1164169
https://dl.acm.org/doi/10.5555/1182635.1164169
https://doi.org/10.1090/qam/102435
https://projecteuclid.org:443/euclid.bams/1183519147
https://doi.org/10.1137/0108044
https://doi.org/10.1145/3385634.3385636
https://doi.org/10.1145/3034786.3034789
https://doi.org/10.4230/LIPIcs.MFCS.2019.58
https://dl.acm.org/doi/book/10.5555/578817
http://www.athenasc.com/dpbook.html
https://doi.org/10.1007/978-3-319-03898-8_5
https://doi.org/10.4230/DagRep.9.5.89
https://hal.archives-ouvertes.fr/tel-01081392
https://hal.archives-ouvertes.fr/tel-01081392
https://doi.org/10.1145/2983573
https://doi.org/10.1145/2983573
https://doi.org/10.1016/S0169-7552(98)00110-X

44 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

[28] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k selection queries over relational databases:
mapping strategies and performance evaluation. TODS, 27(2):153–187, 2002. doi: 10.1145/
568518.568519.

[29] N. Carmeli and M. Kröll. On the enumeration complexity of unions of conjunctive queries.
In PODS, pages 134–148, 2019. doi: 10.1145/3294052.3319700.

[30] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in relational
data bases. In STOC, pages 77–90. ACM, 1977. doi: 10.1145/800105.803397.

[31] L. Chang, X. Lin, W. Zhang, J. X. Yu, Y. Zhang, and L. Qin. Optimal enumeration: efficient
top-k tree matching. PVLDB, 8(5):533–544, 2015. doi: 10.14778/2735479.2735486.

[32] S. Chaudhuri and L. Gravano. Evaluating top-k selection queries. In VLDB, volume 99,
pages 397–410, 1999. url: https://dl.acm.org/doi/10.5555/645925.671359.

[33] B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest paths algorithms: theory and
experimental evaluation. Mathematical programming, 73(2):129–174, 1996. doi: 10.1007/
BF02592101.

[34] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press, 3rd edition, 2009. url: https://dl.acm.org/doi/book/10.5555/1614191.

[35] S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani. Algorithms. McGraw-Hill Higher
Education, 2008. url: https://dl.acm.org/doi/book/10.5555/1177299.

[36] R. Dechter. Bucket elimination: A unifying framework for reasoning. Artif. Intell., 113(1-
2):41–85, 1999. doi: 10.1016/S0004-3702(99)00059-4.

[37] S. Deep and P. Koutris. Compressed representations of conjunctive query results. In PODS,
pages 307–322, 2018. doi: 10.1145/3196959.3196979.

[38] S. Deep and P. Koutris. Ranked enumeration of conjunctive query results. CoRR,
abs/1902.02698, 2019. url: http://arxiv.org/abs/1902.02698.

[39] R. Diestel. Graph Theory (Graduate Texts in Mathematics). Springer, 2005. doi: 10.1007/978-
3-662-53622-3.

[40] S. E. Dreyfus. An appraisal of some shortest-path algorithms. Operations research, 17(3):395–
412, 1969. doi: 10.1287/opre.17.3.395.

[41] A. Durand. Fine-Grained Complexity Analysis of Queries: From Decision to Counting and
Enumeration. In PODS, pages 331–346, 2020. doi: 10.1145/3375395.3389130.

[42] D. Eppstein. Finding the k shortest paths. SIAM J. Comput., 28(2):652–673, 1998. doi: 10.
1137/S0097539795290477.

[43] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. Journal
of Computer and System Sciences, 66(4):614–656, 2003. doi: 10.1016/S0022-0000(03)00026-6.

[44] T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP and
constraint satisfaction: A study through datalog and group theory. SIAM J. Comput., 28(1):57–
104, 1998. doi: 10.1137/S0097539794266766.

[45] J. Finger and N. Polyzotis. Robust and efficient algorithms for rank join evaluation. In
SIGMOD, pages 415–428, 2009. doi: 10.1145/1559845.1559890.

[46] E. Friedgut and J. Kahn. On the number of copies of one hypergraph in another. Israel
Journal of Mathematics, 105(1):251–256, 1998. doi: 10.1007/BF02780332.

[47] J. S. Golan. Semirings and their applications. Kluwer Academic Publishers, Dordrecht, 1999.
url: https://www.springer.com/gp/book/9780792357865.

[48] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Optimizing and parallelizing ranked enumeration.
PVLDB, 4(11), 2011. url: http://www.vldb.org/pvldb/vol4/p1028-golenberg.pdf.

[49] M. Gondran and M. Minoux. Graphs, Dioids and Semirings: New Models and Algorithms

(Operations Research/Computer Science Interfaces Series). Springer, 2008. doi: 10.1007/978-0-
387-75450-5.

, Vol. 1, No. 1, Article . Publication date: September 2020.

https://doi.org/10.1145/568518.568519
https://doi.org/10.1145/568518.568519
https://doi.org/10.1145/3294052.3319700
https://doi.org/10.1145/800105.803397
https://doi.org/10.14778/2735479.2735486
https://dl.acm.org/doi/10.5555/645925.671359
https://doi.org/10.1007/BF02592101
https://doi.org/10.1007/BF02592101
https://dl.acm.org/doi/book/10.5555/1614191
https://dl.acm.org/doi/book/10.5555/1177299
https://doi.org/10.1016/S0004-3702(99)00059-4
https://doi.org/10.1145/3196959.3196979
http://arxiv.org/abs/1902.02698
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1287/opre.17.3.395
https://doi.org/10.1145/3375395.3389130
https://doi.org/10.1137/S0097539795290477
https://doi.org/10.1137/S0097539795290477
https://doi.org/10.1016/S0022-0000(03)00026-6
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.1145/1559845.1559890
https://doi.org/10.1007/BF02780332
https://www.springer.com/gp/book/9780792357865
http://www.vldb.org/pvldb/vol4/p1028-golenberg.pdf
https://doi.org/10.1007/978-0-387-75450-5
https://doi.org/10.1007/978-0-387-75450-5

Optimal Algorithms for Ranked Enumeration 45

[50] N. Goodman, O. Shmueli, and Y. C. Tay. GYO reductions, canonical connections, tree and
cyclic schemas and tree projections. In PODS, pages 267–278, 1983. doi: 10.1145/588058.
588089.

[51] G. Gottlob, G. Greco, N. Leone, and F. Scarcello. Hypertree decompositions: questions and
answers. In PODS, pages 57–74, 2016. doi: 10.1145/2902251.2902309.

[52] G. Gottlob, G. Greco, and F. Scarcello. Tree projections and constraint optimization problems:
fixed-parameter tractability and parallel algorithms. Journal of Computer and System Sciences,
94:11–40, 2018. doi: 10.1016/j.jcss.2017.11.005. url: https://doi.org/10.1016/j.jcss.2017.11.005.

[53] G. Gottlob, S. T. Lee, G. Valiant, and P. Valiant. Size and treewidth bounds for conjunctive
queries. J. ACM, 59(3):1–35, 2012. doi: 10.1145/2220357.2220363.

[54] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable queries.
Journal of Computer and System Sciences, 64(3):579 –627, 2002. doi: https://doi.org/10.1006/
jcss.2001.1809.

[55] G. Gottlob, N. Leone, and F. Scarcello. Robbers, marshals, and guards: game theoretic and
logical characterizations of hypertree width. Journal of Computer and System Sciences,
66(4):775–808, 2003. doi: 10.1145/375551.375579.

[56] G. Gottlob, Z. Miklós, and T. Schwentick. Generalized hypertree decompositions: NP-
hardness and tractable variants. J. ACM, 56(6):30, 2009. doi: 10.1145/1568318.1568320.

[57] G. Greco and F. Scarcello. Greedy strategies and larger islands of tractability for conjunctive
queries and constraint satisfaction problems. Inf. Comput., 252:201–220, 2017. doi: 10.1016/j.
ic.2016.11.004.

[58] G. Greco and F. Scarcello. Structural tractability of constraint optimization. In International

Conference on Principles and Practice of Constraint Programming (CP), pages 340–355, 2011.
doi: 10.1007/978-3-642-23786-7_27. url: https://doi.org/10.1007/978-3-642-23786-7_27.

[59] G. Greco and F. Scarcello. The power of local consistency in conjunctive queries and
constraint satisfaction problems. SIAM Journal on Computing, 46(3):1111–1145, 2017. doi:
10.1137/16M1090272.

[60] M. Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. J. ACM, 54(1):1:1–1:24, 2007. doi: 10 . 1145 /1206035 . 1206036. url:
https://dblp.org/rec/journals/jacm/Grohe07.

[61] M. Grohe and D. Marx. Constraint solving via fractional edge covers. ACM TALG, 11(1):4,
2014. doi: 10.1145/2636918.

[62] W. Hoffman and R. Pavley. A method for the solution of the nth best path problem. J. ACM,
6(4):506–514, 1959. doi: 10.1145/320998.321004.

[63] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting top-k join queries in relational
databases. VLDB J., 13(3):207–221, 2004. doi: 10.1007/s00778-004-0128-2.

[64] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing techniques in
relational database systems. ACM Computing Surveys, 40(4):11, 2008. doi: 10.1145/1391729.
1391730.

[65] V. M. Jiménez and A. Marzal. A lazy version of eppstein’s K shortest paths algorithm. In
International Workshop on Experimental and Efficient Algorithms (WEA), pages 179–191.
Springer, 2003. doi: 10.1007/3-540-44867-5_14.

[66] V. M. Jiménez and A. Marzal. Computing the K shortest paths: a new algorithm and an
experimental comparison. In International Workshop on Algorithm Engineering (WAE),
pages 15–29. Springer, 1999. doi: 10.1007/3-540-48318-7_4.

[67] A. Kara and D. Olteanu. Covers of query results. In ICDT, 16:1–16:22, 2018. doi: 10.4230/
LIPIcs.ICDT.2018.16.

, Vol. 1, No. 1, Article . Publication date: September 2020.

https://doi.org/10.1145/588058.588089
https://doi.org/10.1145/588058.588089
https://doi.org/10.1145/2902251.2902309
https://doi.org/10.1016/j.jcss.2017.11.005
https://doi.org/10.1016/j.jcss.2017.11.005
https://doi.org/10.1145/2220357.2220363
https://doi.org/https://doi.org/10.1006/jcss.2001.1809
https://doi.org/https://doi.org/10.1006/jcss.2001.1809
https://doi.org/10.1145/375551.375579
https://doi.org/10.1145/1568318.1568320
https://doi.org/10.1016/j.ic.2016.11.004
https://doi.org/10.1016/j.ic.2016.11.004
https://doi.org/10.1007/978-3-642-23786-7_27
https://doi.org/10.1007/978-3-642-23786-7_27
https://doi.org/10.1137/16M1090272
https://doi.org/10.1145/1206035.1206036
https://dblp.org/rec/journals/jacm/Grohe07
https://doi.org/10.1145/2636918
https://doi.org/10.1145/320998.321004
https://doi.org/10.1007/s00778-004-0128-2
https://doi.org/10.1145/1391729.1391730
https://doi.org/10.1145/1391729.1391730
https://doi.org/10.1007/3-540-44867-5_14
https://doi.org/10.1007/3-540-48318-7_4
https://doi.org/10.4230/LIPIcs.ICDT.2018.16
https://doi.org/10.4230/LIPIcs.ICDT.2018.16

46 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

[68] N. Katoh, T. Ibaraki, and H. Mine. An efficient algorithm for K shortest simple paths.
Networks, 12(4):411–427, 1982. doi: 10.1002/net.3230120406.

[69] B. Kimelfeld and Y. Sagiv. Incrementally computing ordered answers of acyclic conjunctive
queries. In International Workshop on Next Generation Information Technologies and Systems

(NGITS), pages 141–152, 2006. doi: 10.1007/11780991_13.
[70] P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint satisfaction.

Journal of Computer and System Sciences, 61(2):302 –332, 2000. doi: 10.1006/jcss.2000.1713.
[71] S. Kumar, B. Hooi, D. Makhija, M. Kumar, C. Faloutsos, and V. Subrahmanian. Rev2: fraud-

ulent user prediction in rating platforms. In WSDM, pages 333–341, 2018. doi: 10.1145/
3159652.3159729.

[72] S. Kumar, F. Spezzano, V. Subrahmanian, and C. Faloutsos. Edge weight prediction in
weighted signed networks. In ICDM, pages 221–230, 2016. doi: 10.1109/ICDM.2016.0033.

[73] D. H. Larkin, S. Sen, and R. E. Tarjan. A back-to-basics empirical study of priority queues.
In 2014 Proceedings of the Sixteenth Workshop on Algorithm Engineering and Experiments

(ALENEX), pages 61–72. doi: 10.1137/1.9781611973198.7.
[74] E. L. Lawler. A procedure for computing the k best solutions to discrete optimization

problems and its application to the shortest path problem. Management science, 18(7):401–
405, 1972. doi: 10.1287/mnsc.18.7.401.

[75] N. Mamoulis, M. L. Yiu, K. H. Cheng, and D. W. Cheung. Efficient top-k aggregation of
ranked inputs. TODS, 32(3):19, 2007. doi: 10.1145/1272743.1272749.

[76] E. Q. V. Martins and M. M. B. Pascoal. A new implementation of Yen’s ranking loopless
paths algorithm. Quarterly Journal of the Belgian, French and Italian Operations Research

Societies, 1(2):121–133, 2003. doi: 10.1007/s10288-002-0010-2.
[77] E. Q. V. Martins, M. M. B. Pascoal, and J. L. E. Santos. A new improvement for a K shortest

paths algorithm. Investigação Operacional, 21(1):47–60, 2001. url: http://apdio.pt/documents/
10180/15407/IOvol21n1.pdf.

[78] D. Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive queries.
J. ACM, 60(6):42:1–42:51, 2013. doi: 10.1145/2535926.

[79] K. G. Murty. An algorithm for ranking all the assignments in order of increasing cost.
Operations Research, 16(3):682–687, 1968. doi: 10.1287/opre.16.3.682.

[80] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter. Supporting incremental join
queries on ranked inputs. In VLDB, pages 281–290, 2001. url: http://www.vldb.org/conf/
2001/P281.pdf.

[81] G. Navarro, J. L. Reutter, and J. Rojas-Ledesma. Optimal joins using compact data structures.
In ICDT, 2020. url: https://arxiv.org/abs/1908.01812.

[82] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algorithms. J. ACM,
65(3):16, 2018. doi: https://doi.org/10.1145/3180143.

[83] H. Q. Ngo, C. Ré, and A. Rudra. Skew strikes back: new developments in the theory of join
algorithms. SIGMOD Rec., 42(4):5–16, Feb. 2014. doi: 10.1145/2590989.2590991.

[84] U. o. Toronto. Computer Systems Research Group and M. Graham. On the universal relation.
Technical report, 1980.

[85] D. Olteanu and M. Schleich. Factorized databases. SIGMOD Record, 45(2), 2016. doi: 10.1145/
3003665.3003667.

[86] D. Olteanu and J. Závodnỳ. Factorised representations of query results: size bounds and
readability. In ICDT, pages 285–298, 2012. doi: 10.1145/2274576.2274607.

[87] D. Olteanu and J. Závodnỳ. Size bounds for factorised representations of query results.
TODS, 40(1):2, 2015. doi: 10.1145/2656335.

, Vol. 1, No. 1, Article . Publication date: September 2020.

https://doi.org/10.1002/net.3230120406
https://doi.org/10.1007/11780991_13
https://doi.org/10.1006/jcss.2000.1713
https://doi.org/10.1145/3159652.3159729
https://doi.org/10.1145/3159652.3159729
https://doi.org/10.1109/ICDM.2016.0033
https://doi.org/10.1137/1.9781611973198.7
https://doi.org/10.1287/mnsc.18.7.401
https://doi.org/10.1145/1272743.1272749
https://doi.org/10.1007/s10288-002-0010-2
http://apdio.pt/documents/10180/15407/IOvol21n1.pdf
http://apdio.pt/documents/10180/15407/IOvol21n1.pdf
https://doi.org/10.1145/2535926
https://doi.org/10.1287/opre.16.3.682
http://www.vldb.org/conf/2001/P281.pdf
http://www.vldb.org/conf/2001/P281.pdf
https://arxiv.org/abs/1908.01812
https://doi.org/https://doi.org/10.1145/3180143
https://doi.org/10.1145/2590989.2590991
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1145/2274576.2274607
https://doi.org/10.1145/2656335

Optimal Algorithms for Ranked Enumeration 47

[88] J.-E. Pin, J. M. Taylor, and M. Atiyah. Tropical semirings. In Idempotency. J. Gunawardena,
editor. Publications of the Newton Institute. Cambridge University Press, 1998, pages 50–69.
doi: 10.1017/CBO9780511662508.004.

[89] N. Robertson and P. Seymour. Graph minors. II. algorithmic aspects of tree-width. Journal
of Algorithms, 7(3):309 –322, 1986. doi: https://doi.org/10.1016/0196-6774(86)90023-4.

[90] F. Scarcello. From hypertree width to submodular width and data-dependent structural
decompositions. In 26th Italian Symposium on Advanced Database Systems, 2018. url: http:
//ceur-ws.org/Vol-2161/paper24.pdf.

[91] A. Schickedanz, D. Ajwani, U. Meyer, and P. Gawrychowski. Average-case behavior of
k-shortest path algorithms. In 7th International Conference on Complex Networks and Their

Applications, volume 812 of Studies in Computational Intelligence, pages 28–40. Springer,
2018. doi: 10.1007/978-3-030-05411-3_3.

[92] M. Schleich, D. Olteanu, M. A. Khamis, H. Q. Ngo, and X. Nguyen. Learning models over
relational data: A brief tutorial. In International Conference on Scalable Uncertainty Manage-

ment (SUM), volume 11940 of LNCS, pages 423–432. Springer, 2019. doi: 10.1007/978-3-030-
35514-2_32.

[93] L. Segoufin. Constant delay enumeration for conjunctive queries. SIGMOD Record, 44(1):10–
17, 2015. doi: 10.1145/2783888.2783894.

[94] L. Segoufin and A. Vigny. Constant Delay Enumeration for FO Queries over Databases with
Local Bounded Expansion. In ICDT, volume 68, 20:1–20:16, 2017. doi: 10.4230/LIPIcs.ICDT.
2017.20.

[95] M. Theobald, H. Bast, D. Majumdar, R. Schenkel, and G. Weikum. TopX: efficient and
versatile top-k query processing for semistructured data. VLDB J., 17(1):81–115, 2008. doi:
10.1007/s00778-007-0072-z.

[96] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, and D. Srivastava. Ranked join indices. In
ICDE, pages 277–288. IEEE, 2003. doi: 10.1109/ICDE.2003.1260799.

[97] N. Tziavelis, D. Ajwani, W. Gatterbauer, M. Riedewald, and X. Yang. Optimal algorithms for
ranked enumeration of answers to full conjunctive queries. Proc. VLDB Endow., 13(9):1582–
1597, 2020. doi: 10.14778/3397230.3397250.

[98] N. Tziavelis, W. Gatterbauer, and M. Riedewald. Optimal join algorithms meet top-
k:2659âĂŞ2665, 2020. doi: 10.1145/3318464.3383132.

[99] M. Y. Vardi. The complexity of relational query languages (extended abstract). In STOC,
pages 137–146, 1982. doi: 10.1145/800070.802186.

[100] T. L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In ICDT, pages 96–
106, 2014. doi: 10.5441/002/icdt.2014.13.

[101] X. Yang, D. Ajwani, W. Gatterbauer, P. K. Nicholson, M. Riedewald, and A. Sala. Any-k :
anytime top-k tree pattern retrieval in labeled graphs. In WWW, pages 489–498, 2018. doi:
10.1145/3178876.3186115.

[102] X. Yang, M. Riedewald, R. Li, and W. Gatterbauer. Any-k algorithms for exploratory analysis
with conjunctive queries. In International Workshop on Exploratory Search in Databases and

the Web (ExploreDB), pages 1–3, 2018. doi: 10.1145/3214708.3214711.
[103] M. Yannakakis. Algorithms for acyclic database schemes. In VLDB, pages 82–94, 1981. url:

https://dl.acm.org/doi/10.5555/1286831.1286840.
[104] J. Y. Yen. Finding the k shortest loopless paths in a network.Management Science, 17(11):712–

716, 1971. doi: 10.1287/mnsc.17.11.712.
[105] C. T. Yu and M. Z. Ozsoyoglu. An algorithm for tree-query membership of a distributed

query. In COMPSAC 79. Proceedings. Computer Software and The IEEE Computer Society’s

, Vol. 1, No. 1, Article . Publication date: September 2020.

https://doi.org/10.1017/CBO9780511662508.004
https://doi.org/https://doi.org/10.1016/0196-6774(86)90023-4
http://ceur-ws.org/Vol-2161/paper24.pdf
http://ceur-ws.org/Vol-2161/paper24.pdf
https://doi.org/10.1007/978-3-030-05411-3_3
https://doi.org/10.1007/978-3-030-35514-2_32
https://doi.org/10.1007/978-3-030-35514-2_32
https://doi.org/10.1145/2783888.2783894
https://doi.org/10.4230/LIPIcs.ICDT.2017.20
https://doi.org/10.4230/LIPIcs.ICDT.2017.20
https://doi.org/10.1007/s00778-007-0072-z
https://doi.org/10.1109/ICDE.2003.1260799
https://doi.org/10.14778/3397230.3397250
https://doi.org/10.1145/3318464.3383132
https://doi.org/10.1145/800070.802186
https://doi.org/10.5441/002/icdt.2014.13
https://doi.org/10.1145/3178876.3186115
https://doi.org/10.1145/3214708.3214711
https://dl.acm.org/doi/10.5555/1286831.1286840
https://doi.org/10.1287/mnsc.17.11.712

48 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

Third International Applications Conference, 1979. Pages 306–312. IEEE, 1979. doi: 10.1109/
CMPSAC.1979.762509.

[106] R. Zafarani and H. Liu. Social computing data repository at ASU, 2009. url: http : / /
socialcomputing.asu.edu. (accessed on 09/2019).

[107] S. Zilberstein. Using anytime algorithms in intelligent systems. AI Magazine, 17(3):73–83,
1996. doi: 10.1609/aimag.v17i3.1232. url: http://rbr.cs.umass.edu/shlomo/papers/Zaimag96.
html.

, Vol. 1, No. 1, Article . Publication date: September 2020.

https://doi.org/10.1109/CMPSAC.1979.762509
https://doi.org/10.1109/CMPSAC.1979.762509
http://socialcomputing.asu.edu
http://socialcomputing.asu.edu
https://doi.org/10.1609/aimag.v17i3.1232
http://rbr.cs.umass.edu/shlomo/papers/Zaimag96.html
http://rbr.cs.umass.edu/shlomo/papers/Zaimag96.html

Optimal Algorithms for Ranked Enumeration 49

A NOMENCLATURE

Symbol Definition
Q full conjunctive query Q(x) :−R1(x1), . . . ,Rℓ(xℓ)
QB Boolean version of Q : QB :−Q(x)
Q set of acyclic queries {Q}
ℓ number of atoms in Q or non-unary stages in DP
m number of variables in Q
D input database
n number tuples in largest input relation in D
w(ri) ∈W weight of input tuple ri
w(r) ∈W weight of result tuple r with witness (r1, . . . , rℓ):w(r) = w(r1) ⊗ · · · ⊗w(rℓ)
out set of output tuples for Q on D
s state in DP problem
s0, t start and terminal state of DP problem
Si set of states in stage i
S set of all states: S =

⋃
i Si

Si set of states in stage i after bottom-up phase
S set of all states after bottom-up phase: S =

⋃
i Si

E set of possible decisions: E ⊆ S × S
E set of possible decisions after bottom-up phase
Π(s) solution from state s
Π complete solution: Π = Π(s0)
Πj (s) j-th best solution from state s
πj (s) cost or weight of j-th best solution from state s
⟨s1 . . . sr ⟩ solution prefix of length r ∈ Nℓ1
⟨sr . . . t⟩ solution suffix starting at state sr

w(s, s ′) cost/weight of transitioning from state s to s ′
π (sr) cost/weight of a solution/path suffix ⟨sr sr+1sr+2 . . . sℓt⟩: π (sr) = w(sr , sr+1) ⊗w(sr+1, sr+2) ⊗

· · · ⊗w(sℓ , t)
Choicesj (s) set of suffixes starting at s from which the j-th best suffix is selected
Cand Set of prefixes containing the prefix of the next result to be returned
Succ(s, s ′) successors of s ′ at state s that are considered by the Lawler-based partitioning approaches

anyK-part
subw submodular width of a query

B ADDITIONAL INFORMATION ON THE QUERIES USED FOR THE EXPERIMENTS
For completeness, we list the SQL code for the queries we used in our experiments. Each relation
Ri , i ≥ 1 has two attributes A1 and A2 and also an additional attributeW that contains the tuple
weight. For the real datasets that correspond to networks, all relations Ri correspond to the same
relation EDGES(fromNode, toNode, edgeWeight). In other words, A1 corresponds to the source of
a directed edge, A2 corresponds to the destination andW corresponds to the edge weight.
The 4-Path query is:
SELECT R1.A1, R2.A1, R3.A1, R4.A1, R4.A2
FROM R1, R2, R3, R4
WHERE R1.A2=R2.A1 AND R2.A2=R3.A1 AND

R3.A2=R4.A1
ORDER BY R1.W + R2.W + R3.W + R4.W ASC

, Vol. 1, No. 1, Article . Publication date: September 2020.

50 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang

LIMIT k

The 4-Star query is:
SELECT R1.A1, R2.A2, R3.A2, R4.A2, R4.A2
FROM R1, R2, R3, R4
WHERE R1.A1=R2.A1 AND R1.A1=R3.A1 AND

R1.A1=R4.A4
ORDER BY R1.W + R2.W + R3.W + R4.W ASC
LIMIT k

The 4-Cycle query is:
SELECT R1.A1, R2.A1, R3.A1, R4.A1
FROM R1, R2, R3, R4
WHERE R1.A2=R2.A1 AND R2.A2=R3.A1 AND

R3.A2=R4.A1 AND R4.A2=R1.A1
ORDER BY R1.W + R2.W + R3.W + R4.W ASC
LIMIT k

The shorter or longer queries are similar and thus omitted.

, Vol. 1, No. 1, Article . Publication date: September 2020.

