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Abstract 

In this work, we present a novel method to model the dynamics of a continuous structure based on measurements taken 

at discrete points. The method is conceived to provide new instruments to address the problem of flexible dynamics 

modeling in a spacecraft, where an effective mathematical representation of the non-rigid behavior of the is of critical 

importance in the design of an effective and reliable attitude estimation and control system. Both the measurements 

and the model that describes the structure can be affected by uncertainty. The purpose of the developed method is to 

estimate the position and the velocity of any point of the physical domain relying on a limited number of measurements 

while filtering out the noise. To this aim, the well-assessed Kalman filter is used in synergy with the recently developed 

Theory of Functional Connections (TFC). This is a mathematical framework to perform functional interpolation with 

applications in many fields being currently discovered and investigated. Initially, an algorithm for the solution of the 

corresponding static problem was developed based on the TFC; the results of the tests were promising and the approach 

presented in this work constitutes an effort to extend the idea to the dynamic case. In the proposed method, the 

continuous structure is approximated by the TFC constrained expression, while the system state variables are defined 

as the coefficients used to represent the free function in a basis of orthogonal polynomials. This leads to a system that, 

despite being continuous and thus formed of an infinite number of material points, is modeled using a finite number 

of state variables allowing for the use of Kalman filter to deal with the uncertainties intrinsic in both the modeling and 

measurements. This is accomplished by exploiting the original structure model Differential Equation(s) to obtain a 

process model for the filter and using the constrained expression itself as the measurement model. Then the Kalman 

filter algorithm is applied and the a posteriori estimates of the state variables (that is the free function coefficients) can 

be used to build the TFC expression that approximates the instantaneous shape of the structure, thus enabling the 

evaluation of the displacement at any point of the domain. The power of the proposed method is twofold. First, an 

estimate of the displacements of all the points is obtained based on a limited number of noisy measurements. Second, 

the relation between discrete measurements and continuous displacement field always accounts for the real physics of 

the problem. In this paper, the theoretical developments of the proposed approach are shown along with the results of 

numerical simulations showing the effectiveness of the method in estimating the actual dynamics of a Euler-Bernoulli 

beam. The technique yielded good results both for the free response and in the case of a forcing input to the system. 

 

Keywords: Theory of Functional Connections, Flexible Dynamics, Kalman Filter, Structure Dynamics, Dynamic 

Modeling 

 

Nomenclature 

L = beam length 

𝜌 = beam material mass density 

𝐴𝑠 = beam cross-section area 

E = beam material Young modulus 

I = beam cross-section area moment of   

inertia 

x = position of a beam element along the   

undeformed beam axis 

y = displacement of the beam element 

relative to the undeformed condition 

p = load distribution acting on the beam 

𝜉𝑖 = free function expansion coefficients 

 (𝑖 = 1,2, … , 𝑛𝑏) 
𝑛𝑐 = number of constraints 

𝑛𝑏 = number of basis functions used to  

expand the free function 

𝑛𝑠 = number of measurement points along  

the beam 

𝑞̅ = generalized coordinates vector 

T = number of samples to train the Kalman  

Filter covariance matrices 
(∙)𝑥 = differentiation with respect to the 𝑥  

variable 

(∙)̇ = differentiation with respect to time 

 

 

Acronyms/Abbreviations 

TFC : Theory of Functional Connections 

ODE : Ordinary Differential Equation 

PDE : Ordinary Differential Equation 

KF : Kalman Filter 
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EKF : Extended Kalman Filter 

UKF : Unscented Kalman Filter 

1. Introduction 

The modeling and control of flexible structures is a 

very current topic in aerospace engineering research. 

This happens because, even though the rigid body 

assumption remains a very convenient option to model 

the dynamics of some space vehicles and to make some 

pre-design evaluations, the highly flexible behavior 

shown by many modern spacecrafts requires more 

accurate models that are capable to effectively portray 

this type of dynamics. One of the factors behind the 

strongly flexible behavior that many space vehicles tend 

to exhibit can be traced back to the great effort that 

aerospace engineers spend trying to reduce both the 

weights and the size of the spacecrafts by using 

lightweight and less rigid structural solutions as well as 

folding mechanisms to reduce the stowed size of large 

appendages. Moreover, some elements of critical 

importance for the success of a space mission are 

naturally prone to exhibit flexible behavior because of 

their shapes: very common and important examples are 

solar arrays and antennas [1] which, from a structural 

modeling point of view, can be represented as thin plates 

and beams. On top of this, spacecrafts committed to some 

particular missions (e.g., very long-range astronomical 

observation) are often subject to attitude control 

requirements that may be very stringent in terms of both 

accuracy and responsiveness. 

In general, the problem of the dynamics of flexible 

structure has been investigated extensively throughout 

the history of engineering, and not only in the specific 

field of space flight. 

A very general classification of the methods to model 

the dynamics of continuous elastic bodies that were 

developed through the years involves two main groups: 

the infinite-dimensional models and the finite-

dimensional models. In this review, we start focusing on 

the first class of methods and then we are going to move 

to the second one, which is of greater interest for the 

developments presented in this work. Introducing the 

first group, we can very concisely say that the infinite-

dimensional models result from the direct application of 

the continuum mechanics physics and are characterized, 

in their mathematical description, by the presence of 

Partial Differential Equations (PDEs); very simple 

examples are the classic Euler-Bernoulli beam theory and 

the Kirchhoff-Love theory for the thin plate, but more 

advanced theory can be used as well [2]. When describing 

the complete dynamics of a spacecraft, where usually 

parts that can be treated as rigid bodies interact with 

flexible elements, this leads to hybrid systems of PDEs 

and Ordinary Differential Equations (ODEs) [3]. This 

type of models, despite being rigorous, introduce non-

negligible complexity in both control and estimation of 

the state of these systems. Several methods were 

developed in the years [4] and to this day this is still an 

active research field, opening to the adoption of machine 

learning techniques [5] [6]. 

The idea of approximating the space-continuous 

system using a finite number of spatial coordinates gave 

birth to the finite-dimensional methods. The techniques 

belonging to this group share the feature of producing 

simpler representations of the system dynamics in the 

form of generally coupled ODEs, which can be 

conveniently treated using the theory of dynamical 

systems. In this way, using the finite-dimensional 

approach, the system control and estimation tasks can be 

carried out exploiting the well-assessed and widely 

developed theory that exists for this kind of systems. 

Despite these aspects that are common to all the methods 

belonging to this class, the way the result is achieved 

widely differs among the techniques with significant 

impacts on complexity, efficiency and versatility. Here 

we just want to provide a summary of the most important 

sub-families of available methods. The first group is 

represented by the so-called lumped parameter 

representations. In this kind of method, a flexible-rigid 

system of any complexity is subdivided into a number of 

elements that are assumed to be perfectly rigid bodies; 

then, these bodies are constrained to each other by 

mathematical relations that aim to reproduce the 

mechanical characteristics of the constitutive material. 

An approach that allows to obtain a more accurate 

approximation at the cost of a generally higher 

complexity is the Finite Element Method [7], [8], [9], 

[10]. In this case, the whole structure is still subdivided 

into a number of smaller elements, but at this time they 

are not assumed to be perfectly rigid and their flexible 

behavior is described using the results from the classic 

structural theories (like the beam theory for 1-

dimensional structure or plate theory for 2-dimensional 

structures). 

Finally, a different approach is the assumed (or synthetic) 

modes representation where, following a procedure 

similar to the analytical modal analysis, the structure 

dynamical response is decomposed in terms of a 

weighted sum of space-continuous functions in which the 

weights are assumed to be time-dependent) [11]. One of 

the main drawbacks of this approach resides in the choice 

of the synthetic modes that must satisfy the geometric 

constraints and possibly they should ensure good 

convergence properties; the achievement of both these 

characteristics at once can be nontrivial in some cases 

and may require a nonnegligible pre-design effort. 

A problem that is central in this work is the 

development of a model for the dynamics of flexible 

structures and its use to perform state estimation. In fact, 

it is well known that the task of estimating the actual state 

of a system based on a number of noisy measurements 
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can represent a challenge in many situations. Several 

methods to produce reasonably accurate estimates, trying 

to eliminate the error component introduced during the 

measurement process have been developed based on 

statistical approaches. In particular, a very effective and 

deservedly popular technique used to reach this goal is 

the Kalman filter [12] [13], which constitutes a very 

powerful and, thanks to its many variants like EKF and 

UKF [14] [15], versatile instrument to perform statistical 

error filtering on a collection of noisy measurements. 

A very important element of the Kalman filter is the 

dynamical model of the system whose states are to be 

estimated. The classic development of the Kalman filter 

is based on finite-dimensional models with a finite 

number of states, while structural elements, being 

continuous systems, have an infinite number of states 

(e.g., position and velocity of all the points in a beam); 

an infinite-dimensional extension of the classic linear 

Kalman filter was proposed in the 1970s [16] and only 

recently some interesting advancements were obtained 

for linear time-varying [17] and nonlinear systems [18]; 

anyway, the techniques can be quite complex to 

implement requiring more advanced concepts like an 

effective definition (and estimation for real-world 

applications) of space-continuous noise distributions. 

Another issue with dealing with a fully continuous model 

description consists in the limited availability of 

measurements: in some cases, it is possible to have a very 

dense observation sampling of the target structure, but 

this is not always the case depending on the choice of the 

sensors and on space, weight and possible budget 

limitations. In general, the availability of a limited 

number of measurements should be taken into account. 

All the factors mentioned above suggest using a finite-

dimensional Kalman filter where possible. In this regard, 

some of the above-mentioned finite-dimensional models 

could be used in for the prediction part of the filter, but 

what we want to present in this paper is a novel approach 

that aims to overcome the drawbacks highlighted for the 

other techniques. For this purpose, the recently 

developed mathematical framework called the Theory of 

Functional Connections (TFC from now on) is used to 

approximate the deformed shape of the structure subject 

to a set of constraints and external loads. The proposed 

approach exploits the versatility of the TFC to provide a 

highly flexible and general solution to the problem of 

modeling the dynamics of flexible structures. Moreover, 

the models obtainable following this technique are 

capable of yielding finite-dimensional approximations of 

the behavior of continuous structures without introducing 

an actual discretization of the system. This aspect, 

together with the moderate number of state variables 

usually required, makes this approach accurate and 

computationally efficient at once. 

This paper is organized as follows: in section 2 the 

key concepts of the Theory of Functional Connections 

are briefly presented along with a short review of the 

linear Kalman filter. Section 3 describes the theoretical 

development of the flexible structure dynamic model and 

its implementation in the Kalman filter framework for 

improving the state estimation. In section 4 the numerical 

simulation setup is described and the results of the tests 

are discussed, while in section 5 the main conclusions are 

reported and further developments are proposed. 

 

2. Preliminaries 

In this section, we want to provide a synthetic review 

of the two main mathematical tools that will be used in 

the rest of this paper to develop the proposed 

methodology: the Theory of the Functional Connections 

and the Kalman Filter. 

 

2.1. Theory of Functional Connections 

The Theory of Functional Connections (TFC) [19] is 

a recently developed mathematical framework 

performing linear functional interpolation. The theory, 

which has been introduced in [20] for univariate and 

extended to multivariate in [21], generalizes interpolation 

by deriving analytical functionals representing all 

possible functions subject to a set of linear constraints. 

TFC has been developed for n-dimensional rectangular 

domains subject to the absolute, derivative, integral, 

component, infinite, and any linear combination of these 

constraints [22], [23]. The functional expression 

representing the whole family of functions satisfying a 

given set of 𝑛𝑐  constraints is called constrained 

expression and can be formally written in one of these  

two forms: 

𝑦(𝑥, 𝑔(𝑥)) = 𝑔(𝑥) +∑𝜂𝑖(𝑥, 𝑔(𝑥)) 𝑠𝑖(𝑥)

𝑛𝑐

𝑖=1

 (1) 

𝑦(𝑥, 𝑔(𝑥)) = 𝑔(𝑥) +∑𝜌𝑖(𝑥, 𝑔(𝑥)) Φ𝑖(𝑥, 𝑠(𝑥))

𝑛𝑐

𝑖=1

 (2) 

 

In the first formulation, 𝑠𝑖(𝑥) is a set of 𝑛𝑐 linearly 

independent support functions, while 𝜂𝑖(𝑥, 𝑔(𝑥))  are 

coefficient functionals that, in the particular case of 

univariate interpolation, reduce to simple constants. 

In the second formulation, Φ𝑖(𝑥, 𝑠(𝑥)) are switching 

functions, i.e. special functions that can be obtained as 

linear combinations of the support function, each one 

with the property of being equal to 1 at the corresponding 

constraint and zero at all the other constraint nodes. 

𝜌𝑖(𝑥, 𝑔(𝑥))  are the projection functionals and are 

obtained by rewriting the constraint equations in terms of 

the 𝑔(𝑥)  function (i.e., they represent the constraints 

written in terms of 𝑔(𝑥)). 
In both the expressions, 𝑔(𝑥)  is called the free 

function and, as the name suggests, can be freely chosen 
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as long as it is defined at all the constraint points. In spite 

of this being the only condition required to 𝑔(𝑥) to be 

part of the constrained expression, we will see that in 

some applications (and for some representations of 𝑔(𝑥)) 
additional requirements could be necessary. 

The mathematical meaning of the constrained 

expression shown above (regardless of the chosen 

representation) is a functional projecting the whole space 

of functions to just the subspace fully satisfying the 

constraints. This way, constrained optimization 

problems, such as differential equations, can be 

transformed into unconstrained problems, and 

consequently, be solved using simpler, faster, and more 

robust and accurate methods. 

 

2.2. Kalman Filter Review 

In this subsection a short review of the Kalman filter 

fundamentals is presented. The great popularity of the 

Kalman filter is attributed to it being a highly effective 

and computationally efficient way to improve the state 

estimation of a system in the presence of nonnegligible 

measurement noise. The filter can be exploited in diverse 

ways and several extensions and variants have developed 

over the years since the filter was first introduced in 1960 

by Rudolf E. Kálmán [12]. In this research, we focus on 

the original linear development proposed by Kálmán. 

Before showing the main formulas of the Kalman 

filter, we want to specify that in this section for 

illustrative reasons we are going to refer to a linear 

dynamic system subject to 𝑛𝑖 inputs and whose state is 

fully characterized by 𝑛𝑠  state variables. Moreover, we 

consider a measurement system providing 𝑛𝑚  outputs 

which are linear combinations of the system state 

variables. 

Let us consider the discrete-time linear dynamic 

system subject to noise: 

 

𝑥̅𝑘+1 = 𝐴̂𝑘𝑥̅𝑘 + 𝐵̂𝑘𝑢̅𝑘 + 𝑤̅𝑘+1 (3) 
 

where 𝑤̅𝑘+1 is the process noise term that is used to 

model the uncertainty in the mathematical representation 

of the dynamics, 𝐴̂𝑘  and 𝐵̂𝑘  are the matrices 

characterizing the discrete-time dynamics of the system. 

In the framework of the Kalman filter, the process noise 

is assumed to have a zero-mean normal distribution 

characterized by a 𝑛𝑠 × 𝑛𝑠 covariance matrix denoted by 

𝑄  and is also assumed to not be time-correlated (i.e., 

[𝑤̅1, ⋯ , 𝑤̅𝑘] are stochastically independent). 

For the output of the system, the measurement 

equation is: 

 

𝑦̅𝑘+1 = 𝐻𝑥̅𝑘+1 + 𝑣̅𝑘+1 (4) 
 

Here, 𝐻  is the 𝑛𝑚 × 𝑛𝑠  matrix representing the 

linear operator mapping from the state space to the 

observable space and 𝑣̅𝑘+1  is the measurement noise 

term with the same assumptions as the process noise, but 

with a 𝑛𝑚 × 𝑛𝑚   covariance matrix denoted by 𝑅. 

The 𝑛𝑠 × 𝑛𝑠  covariance matrix characterizing the 

uncertainty on the estimate of the state of the system is 

denoted by 𝑃. 

The Kalman filter update equation is the following: 

 

𝑥̅𝑘+1
+ = 𝑥̅𝑘+1

− + 𝐾𝑘+1𝑦̅𝑘+1 (5) 
 

where the  −  and  +  superscripts denote the a priori 

and the a posteriori estimates, respectively, and 𝐾𝑘+1 is 

the Kalman gain. The 𝑄 and 𝑅 covariance matrices can 

be considered as constants in many practical cases, and 

so we will do in the developments of this paper. For the 

convenience of the reader, the key formulas for the linear 

Kalman filter are summarized in Table 1. 

 
Table 1 - A summary of the Kalman filter main formulas. 

PREDICTION 

Predicted state estimate 𝑥̅𝑘+1
− = 𝐴̂𝑘𝑥̅𝑖

+ + 𝐵̂𝑘𝑢̅𝑘 

Predicted state estimate 

covariance 
𝑃𝑘+1
− = 𝐴̂𝑘𝑃𝑘

+𝐴̂𝑘
𝑇 + 𝑄 

CORRECTION 

Innovation residual 𝑧𝑘̅+1 = 𝑦̅𝑘+1 − 𝐻𝑥̅𝑘+1
−  

Innovation covariance 𝑆𝑘+1 = 𝐻𝑃𝑘+1
− 𝐻𝑇 + 𝑅 

Kalman gain 𝐾 = 𝑃𝑘+1
− 𝐻𝑇𝑆𝑘+1

−1  

A posteriori state 

estimate 

𝑥̅𝑘+1
+ = 𝑥̅𝑘+1

− + 𝐾𝑧𝑘̅+1 

A posteriori state 

estimate covariance 

𝑃𝑘+1
+ = (𝐼 − 𝐾𝐻)𝑃𝑘+1

−  

 

3. System Modeling and Filter Design 

In this section, the approach taken to model structural 

dynamics using the tools provided by TFC and the 

Kalman filter is presented in two subsections. The first 

subsection shows the derivation of a TFC-based 

structural dynamics model. In the second subsection, the 

resulting finite-dimensional model is integrated into a 

classical Kalman filter implementation so to exploit the 

simplicity and effectiveness of this mathematical tool in 

dealing with the estimation of the state of a dynamical 

system: once the estimates are produced for the TFC-

based finite-dimensional representation, the deformed 

shape of the true continuous structure can be easily 

reconstructed exploiting the TFC constrained expression.  

While we strive to keep the discussion as general as 

possible, a specific type of structure has been chosen to 

allow numerical verification to be performed. For clarity, 

a simple example is used in the following derivations. 

This allows us to focus on important aspects of the 

theoretical development without adding complexity that 

might interfere with the true purpose of the derivation. 
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Nevertheless, this does not affect the generality of the 

ideas presented in this paper, making the approach 

suitable to be extended to more complex systems at the 

cost of a longer derivation. The structural problem that 

will be addressed in the subsequent sections is the 

problem of modeling and estimation of the dynamics of 

a Euler-Bernoulli cantilever beam (Figure 1), whose 

fundamental equation is reported here: 

 

𝜌𝐴𝑠
𝜕2

𝜕𝑡2
𝑦(𝑥, 𝑔(𝑥, 𝑡)) + 

𝜕2

𝜕𝑥2
(𝐸𝐼

𝜕2

𝜕𝑥2
𝑦(𝑥, 𝑔(𝑥, 𝑡))) = 𝑞(𝑥, 𝑡)(6) 

 

With 𝐸  being the Young modulus, 𝜌  the beam 

material density, 𝐴𝑠  the cross-sectional area and 𝐼  the 

cross-section area moment of inertia. 

 

3.1. TFC-based Dynamic Model 

In the following, we are going to derive the dynamic 

model describing the behavior of the vibrating beam 

using the tools provided by the TFC: this will allow to 

obtain a finite-dimensional and linear representation of 

the original infinite-dimensional system, thus enabling 

the use of a classic linear Kalman filter to solve the 

problem of state estimation in the presence of 

measurement errors. 

The first step in the process consists in the derivation 

of the constrained expression for the problem under 

consideration. In this specific case, we are going to 

simply consider the traditional problem of a cantilever 

beam, which mathematically translates into a boundary 

values problem. Nevertheless, it is worth to recall that the 

TFC allows to consider a wide variety of conditions, 

including any linear constraint and even some nonlinear 

constraints [19]. Moreover, the fact that these conditions 

can be imposed at any point of the domain, and not only 

at the boundaries, makes the TFC a very powerful tool, 

capable of overcoming some of the limitations of the 

classic differential equation theories.  

In order to derive the constrained expression 

according to the formulation in equation (1), we need as 

many linearly independent support functions as the 

number of the constraints. These functions can be freely 

chosen, the only limitation being the above-mentioned 

linear independence at the constraint points. 

In our case, the constraints to be imposed represent 

the simple boundary conditions of a cantilever beam of 

length L: 

 

{
 
 
 

 
 
 
𝑦(0, 𝑔(0)) = 0   

𝑑

𝑑𝑥
𝑦(0, 𝑔(0)) = 0

𝑑2

𝑑𝑥2
𝑦(𝐿, 𝑔(𝐿)) = 0

𝑑3

𝑑𝑥3
𝑦(𝐿, 𝑔(𝐿)) = 0

                𝑥 ∈ [0, 𝐿] 

 

A good set of support functions that satisfies the 

linear independence requirement for this problem is the 

following: 

 
𝑠1(𝑥) = 1          𝑠2(𝑥) = 𝑥          𝑠3(𝑥) = 𝑥

2          𝑠4(𝑥) = 𝑥
3 

 

The resulting constrained expression has the form: 

 

𝑦(𝑥, 𝑔(𝑥)) =  𝑔(𝑥) − 𝑔(0) − 𝑔𝑥(0)𝑥 +

(
𝐿

2
𝑔𝑥𝑥𝑥(𝐿) −

1

2
𝑔𝑥𝑥(𝐿)) 𝑥

2 −
1

6
𝑔𝑥𝑥𝑥(𝐿)𝑥

3 (7)
 

 

The free function 𝑔(𝑥) can be expressed in a basis of 

orthogonal functions: 

 

 

 

Figure 1 – Beam geometry and coordinate system 
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𝑔(𝑥) =  ∑𝜉𝑗ℎ𝑗(𝑧(𝑥)) 

𝑛𝑏

𝑗=1

(8) 

 

where 𝑛𝑏  denotes the number of function bases 

ℎ𝑗(𝑥) to be used and 𝑧(𝑥) is a function mapping from the 

physical domain (in the case of the beam 𝑥 ∈ [0, 𝐿]) to 

the domain of the orthogonal functions, which is 

generally different. In this work, we are going to expand 

𝑔(𝑥) in term of Chebyshev polynomials, whose domain 

is 𝑧 ∈ [−1,1]. Thus, the map 𝑧(𝑥) is: 

 

𝑧(𝑥) =
2𝑥

𝐿
− 1 (9) 

 

Considering the full expansion of 𝑔(𝑥) (i.e., for 𝑛𝑏 =
∞) substituted into (9), letting the 𝜉𝑗  coefficients vary 

will give the entire function space projected onto the 

considered set of conditions. Using a finite subset of 

orthogonal functions is an approximation, but it still 

provides good results even when 𝑛𝑏 is relatively small. 

The TFC-based finite dimensional dynamical model 

of the structure can be obtained by considering 𝜉𝑗 

coefficients as functions of time and substituting (8) into 

(7) and the resulting expression into the Euler-Bernoulli 

beam equation (6) . Finally, the TFC-based finite 

dimensional dynamical model of the structure can be 

obtained by imposing the differential expression at some 

sampling points along the beam (the best choice consists 

in those locations where the measurements are available). 

If we consider a beam with a constant cross-section 

and made of homogeneous material, such that both 𝐸 and 

𝐼 are independent of the 𝑥 position along the beam axis, 

we can take advantage of some simplifications obtaining 

the following set of linear ODEs in matrix form: 

 

𝑀𝜉̅̈(𝑡) + 𝐾𝜉̅(𝑡) = 𝑞̅(𝑡) (10) 

 

In the above expression, 𝑞̅(𝑡)  is a 𝑛𝑐 × 1  vector 

obtained discretizing the continuous load distribution 

𝑞(𝑥, 𝑡) in equation(6). 𝑀 and 𝐾 are 𝑛𝑐 × 𝑛𝑏  in the form: 

𝑀 = 𝜌𝐴𝑠

[
 
 
 
 (𝑓(̅𝑥1) + 𝑎̅)

𝑇

(𝑓(̅𝑥2) + 𝑎̅)
𝑇

⋮

(𝑓̅(𝑥𝑛𝑐) + 𝑎̅)
𝑇
]
 
 
 
 

 

 

𝐾 = 𝐸𝐼

[
 
 
 
 𝛽

4ℎ̅𝑇
′′′′
(𝑧(𝑥1))

𝛽4ℎ̅𝑇
′′′′
(𝑧(𝑥2))

⋮

𝛽4ℎ̅𝑇
′′′′
(𝑧(𝑥𝑛𝑐))]

 
 
 
 

 

 

The 𝑓(̅𝑥) and 𝑎̅  terms above were introduced for 

compactness and are defined as follows: 

 

𝑎̅ = −ℎ̅(𝑧(0)) 
 

𝑓(̅𝑥) =  ℎ̅(𝑧(𝑥)) − 𝛽ℎ̅′(𝑧(0))𝑥 + (
𝐿

2
𝛽3ℎ̅′′′(𝑧(𝐿)) + 

−
1

2
𝛽2ℎ̅′′(𝑧(𝐿))) 𝑥2 −

1

6
𝛽3ℎ̅′′′(𝑧(𝐿))𝑥3 

 
Finally, 𝛽  denotes the derivative of the function 

mapping from the physical domain of the structure to the 

domain of the function bases. Since for the developments 

shown in this work the free function is expanded in terms 

of Chebyshev polynomials, the map (9)  is linear and 

consequently the 𝛽 term is constant: 

 

𝛽 =  
𝑑𝑧

𝑑𝑥
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

 

At this point, the following final observations are 

important: 

• The number of function bases 𝑛𝑏  used to 

represent the free function and the number of 

points 𝑛𝑐  at which the dynamic equation is 

applied can be freely chosen, but this is subject 

to some restrictions. In fact, in the context of the 

applications considered in this paper, 𝑛𝑐 
depends on the availability of measurements 

along the physical beam: in general, due to 

weight, budget and technological limitations, 

the number of locations at which the beam 

displacement is measured can be limited. On the 

other side, the number of function bases that can 

be used is virtually unbounded and can be 

chosen at discretion of the user. Nevertheless, in 

order for the system to work efficiently, 𝑛𝑏 

cannot be too big because of 2 reasons. The first 

one is that larger numbers of function bases 

increase the computational complexity with 

very modest improvements in the modeling 

accuracy; the second one is that a good 

initialization of the method requires 𝑛𝑐  to be 

greater or equal to 𝑛𝑏. 

 

• As anticipated in section 2.1, preparing for the 

developments shown in the next subsection, 

another requirement is needed for the set of 

function bases used to represent the free 

function: they must ensure the linear 

independence under the differential operators in 

equation(6), i.e., the resulting 𝑀 matrix must be 

full rank. In this case, the requirement translates 

into omitting the function bases ℎ𝑗(𝑧(𝑥)) up to 

𝑗 = 3, leading to the following expression for 

the free function: 
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𝑔(𝑥) =  ∑𝜉𝑗ℎ𝑗(𝑧(𝑥)) 

𝑛𝑏

𝑗=4

 

Based on this consideration, the formulations for 

ℎ̅(𝑧(𝑥)), 𝑓(̅𝑥), 𝑎̅, 𝑀, 𝐾 can be obtained accordingly. 

 

3.2. TFC-based Kalman Filter 

In this subsection, the developments obtained up to 

now are applied to the problem of estimating the state of 

the system using a limited number of noisy 

measurements; the goal is reached by means of Kalman 

filter: we have just derived a linear finite-dimensional 

model for the dynamics of the structure that can be used 

for the process equation of the filter. Similarly for the 

measurement model, we will see that the constrained 

expression formulated before can provide a good answer 

to our needs. 

As stated above, the TFC-based dynamic equation, 

represents an excellent process model to be used in the 

filter. The only thing that we need to do is to put equation 
(10) into a form that is more suitable for our purposes. 

To this aim, we can individuate an appropriate set of state 

variables transforming the equation from a set of second 

order ODEs to a set of first order ODEs; this can be 

achieved by simply considering the following augmented 

state vector: 

 

Ξ̅ =  [
𝜉

𝜉̅̇

̅
] 

 

Using this state variables, the state space matrix 

representation of the dynamical system will be: 

 

𝑀̃ Ξ̇̅ + 𝐾 Ξ̅ =  𝑄̅ (11) 

 

where we introduced the augmented matrices 𝑀̃, 𝐾: 

 

𝑀̃ = [

𝐼𝑛𝑏 | 0𝑛𝑏×𝑛𝑏
−− − − + − − −−
0𝑛𝑐×𝑛𝑏 | 𝑀𝑛𝑐×𝑛𝑏

] 

 

𝐾 = [

0𝑛𝑏×𝑛𝑏 | − 𝐼𝑛𝑏
− − − − + − −− −
𝐾𝑛𝑐×𝑛𝑏 | 0𝑛𝑐×𝑛𝑏

] 

 

and the augmented input vector 𝑄̅: 

 

𝑄̅ = [
0𝑛𝑏×1
−− −
𝑞̅(𝑡)

] 

 

Choosing a linearly independent set of function bases, 
(10)  (11)  can be rewritten in the classic state space 

matrix form: 

 

Ξ̇̅ = 𝐴 Ξ̅ +  𝐵 𝑄̅ (12) 

 

where 𝐴, 𝐵 are defined as follows: 

 

𝐴 = −(𝑀̃𝑇𝑀̃)
−1
𝑀̃𝑇𝐾  𝐵 =  (𝑀̃𝑇𝑀̃)

−1
𝑀̃𝑇 

 

Starting from this representation an equivalent 

discrete-time form of the system can be computed: 

 

Ξ̅𝑘+1 = 𝐴̂ Ξ̅𝑘 + 𝐵̂ 𝑄̅𝑘 (13) 
 

The next step consists in finding an appropriate 

measurement model that puts the actual stats of the 

system, that have no physical meaning in themselves, in 

relation to some measurable quantities that can be 

retrieved from sensors. The simplest choice for these 

measurements consists in the transversal displacements 

and displacement velocities of the beam at some points 

along the axis. Substituting the free function expansion 

in equation (8)  into the constrained expression in 

equation (7), one gets an expression in terms of the free 

function coefficients that provides a map from the system 

states (i.e., the free function coefficients) to the physical 

displacements and displacement velocities of the beam. 

Exploiting this fact and writing the relation for all the 𝑛𝑠 
sample points, one can get the following measurement 

model to be used in the Kalman filter:  

 

[
𝑦̅

𝑦̇̅
] =  𝐻 Ξ̅ (14) 

 

where 𝑦̅, 𝑦̇̅ are the vectors with the 𝑛𝑐  displacement 

and displacement velocity measurements. 

The measurement model in equation (14)  can be 

used to initialize the state estimate based on the first 

available measurement: this is accomplished by 

considering the sensor output at time 𝑡0 and inverting the 

above equation. It is worth noting that the initial guess 

obtainable in this way brings the full and unattenuated 

measurement noise content with it. 

Exploiting the fact that 𝐻  is full rank (thus 𝐻 𝑇𝐻  is 

invertible), the initial estimate for the state is obtained as 

follows: 

 

Ξ̅0 = (𝐻 𝑇𝐻 )
−1
𝐻 𝑇 [

𝑦̅0
𝑦̇̅0
] (15) 

 

The last aspect of the problem we need to face, and 

usually one of the most challenging in the context of 

Kalman filtering, is the choice of the 𝑃0 , 𝑄  and 𝑅 

matrices, where 𝑃0 is the initial value of the state estimate 

error covariance matrix 𝑃. In particular, the most difficult 
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to determine is the process noise covariance matrix and 

for this reason we will leave it as the last one. 

Indeed, the choice of the 𝑅  matrix is quite 

straightforward and most of the difficulties are related to 

the evaluation of the uncertainty in the measurements 

provided by the selected sensors. Obtaining this piece of 

information may require the modeling of the acquisition 

process and involve the geometry of the sensing system; 

moreover, depending on the case, this could lead to state-

dependent or time-dependent 𝑅 matrix, or both. In these 

cases, optimality and stability of the filter are not 

automatically guaranteed and the latter must be assessed 

for each operating condition by testing. However, the 

work presented in this paper is not aimed to investigate 

these aspects of the problem and a simple noise model 

with constant 𝑅 was chosen for the implementation. 

The initialization of the state error covariance matrix 

𝑃 is done by observing that the initial state estimate is 

obtained by using the measurements at time 𝑡0, thus the 

covariance associated to this first guess can be computed 

directly from the sensor covariance matrix 𝑅. 

 

𝑅 = [

𝜎𝑌 | 0𝑛𝑐×𝑛𝑐
− −− + − − −
0𝑛𝑐×𝑛𝑐 | 𝜎𝑌̇

] (16) 

 

𝑃0 = (𝐻 
𝑇𝐻̃ )

−1
𝐻 𝑇  𝑅 𝐻 (𝐻 𝑇𝐻 )

−1
(17) 

 

In the 𝑅  formulation we are assuming that the 

displacement errors are uncorrelated to displacement 

velocity errors. In numerical tests we will further assume 

that displacement errors are uncorrelated to each other 

and the same for displacement velocity errors. This will 

make both 𝜎𝑌 and 𝜎𝑌̇ matrices diagonal. 

As anticipated, the most challenging task is to 

compute the process noise covariance matrix 𝑃. This is 

of critical importance in the design of a Kalman filter 

since it accounts for all the uncertainties in the modeling 

of the system dynamics. These include both errors in the 

model parameters compared to their true values and 

unpredictable external disturbances or unmodeled 

dynamics; examples of this could be the small 

acceleration due to drag perturbations that may affect a 

vehicle otherwise moving with constant velocity. In this 

particular case, we can take advantage of a technique, 

developed by Abbeel et al. in [24], that allows to train the 

𝑄 matrix comparing the predictions obtainable through 

the process model with reference values representing the 

true dynamics of the structure. The authors propose 

several techniques among which the most 

straightforward and convenient for this application is the 

approach that aims at maximizing the joint likelihood of 

the predictions according to this formula: 

 

𝑄𝑗𝑜𝑖𝑛𝑡 = argmax
𝑄
 [−𝑇 log|2𝜋𝑄| − 

∑(𝑥𝑘 − 𝑓(𝑥𝑘−1, 𝑢𝑘))
𝑇

𝑇

𝑘=1

𝑄−1𝑥𝑘 − 𝑓(𝑥𝑘−1, 𝑢𝑘)] (18)
 

  
The problem has an explicit solution: 

 
𝑄𝑗𝑜𝑖𝑛𝑡 =  

1

𝑇
∑(𝑥𝑘 − 𝑓(𝑥𝑘−1, 𝑢𝑘))(𝑥𝑘 − 𝑓(𝑥𝑘−1, 𝑢𝑘))

𝑇
𝑇

𝑘=1

(19)
 

 

This approach provides results in numerical 

simulations which are better than the ones obtainable by 

manually tuning the matrix and with a considerable time 

saving, as shown in [24]. The main issue is the need for 

a suitable set of reference values to be used to train the 

matrix. The problem is automatically solved when an 

analytical solution is available, but this is very unlikely 

in most cases. A very common approach is to use 

experimental data measured with high accuracy in very 

controlled environment; naturally, this kind of 

measurements are not generally obtainable with the same 

degree of accuracy in typical operating conditions, but it 

is not necessary, and moreover if that was possible the 

Kalman filter would be useless. In other words, the 𝑄 

matrix training phase is needed to characterize the level 

of uncertainty of the results provided by the adopted 

theoretical model relative to the true dynamics. 

In this work, we are going to replace the experimental 

data with a very accurate numerical propagation of the 

beam dynamics: this is consistent with the fact that the in 

the tests shown in the next section, the true behavior of 

the beam is simulated by numerical integration of the 

dynamic equation (6). As the results obtained in section 

4 prove, this kind of approach provides a 𝑄 matrix that is 

capable to effectively represent the process noise even 

when the training is run considering the free response of 

the structure and the filter is then applied to the system 

subject to some forcing action. 
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4. Numerical Simulation and Results 

In the following, the method presented above is tested 

based on numerical simulations and the results are 

shown. The section is divided into 2 subsections: in the 

first one the simulation setup adopted for the different 

tests is thoroughly described, while in the second one the 

results are presented and commented. 

 

4.1. Simulation Setup 

In Figure 2 a diagram representing the simulation 

workflow is reported. The true displacements and 

displacement velocities of the beam are computed and 

used as the ground truth needed to assess the filter 

performance; then the available measurements are 

simulated starting from the simulated dynamics and some 

error is added based on the chosen noise model. The 

application of the Kalman filter is the next step, carried 

out using the noisy measurements obtained so far: the 

output is the estimated state vector Ξ̂ that, as explained in 

the model description, does not correspond to any 

physical measurement; thus, one further step is required 

to transform the filter output to displacement and 

displacement velocity estimates that can be compared to 

the ground truth to evaluate the filtering performance: 

this can be conveniently done by using the constrained 

expression itself, as represented in equation (7) .The 

actual dynamics of the structure are simulated by direct 

numerical integration of the equation (6)  using highly 

accurate methods and tolerances. In particular, the solver 

developed for this problem is based on the technique 

presented by Jacquot and Dewey in [25]. The integration 

is quite time-consuming using high precision settings, but 

this is not a problem for the simulation, since the ground 

truth can be computed offline and does not affect the 

filter performance evaluation.  

 

In the test campaign, the sensors are assumed to 

directly measure the displacements and velocities at 

some locations along the beam axis (see Figure 1 for 

reference) and the noise model is very simple and 

characterized by the following parameters: 

 

{
 
 

 
 
𝜇𝑦𝑒𝑟𝑟 = 0 𝑚            

𝜇𝑦̇𝑒𝑟𝑟 = 0 𝑚/𝑠        

𝜎𝑦𝑒𝑟𝑟
2 = 0.01 𝑚       

𝜎𝑦̇𝑒𝑟𝑟
2 = 0.005 𝑚/𝑠

 

 

where 𝜇  denotes the mean of the error distribution 

and 𝜎2 its variance. 

 

4.1.1. Performance Metrics 

The accuracy performance of the filter is evaluated by 

considering the following metrics: 

 

• Mean error time history computed along the 

whole beam span: this represents the time 

evolution of the average of the estimation errors 

at the available measurement points along the 

beam. 

𝜇𝜖(𝑘Δ𝑡) =
1

𝑛𝑐
∑(𝑦̂𝑖(𝑘Δ𝑡) − 𝑦̅𝑖(𝑘Δ𝑡))

𝑛𝑠

𝑖=1

(20) 

 

Here 𝑦̂𝑖(𝑡)  denotes the estimate at time 𝑡 
and position 𝑥𝑖, while 𝑦̅𝑖(𝑡) is the true value at 

time 𝑡  and position 𝑥𝑖 . The statistics are 

Figure 2- Numerical simulation setup 
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computed for both the displacement and the 

displacement velocity. 

 

• Time history of the error standard deviation 

computed along the whole beam span: the 

approach is totally analogous to the one 

followed for the mean and it uses the following 

definition for the sample standard deviation: 

 

𝜇𝜖(𝑘Δ𝑡) = √
1

𝑛𝑐 − 1
∑(𝜖𝑖(𝑘Δ𝑡) − 𝜇𝜖(𝑘Δ𝑡))

2

𝑛𝑠

𝑖=1

(21) 

where 𝜖𝑖(𝑘Δ𝑡) is the estimation error at the 

station 𝑥𝑖  
𝜖𝑖(𝑘Δ𝑡) =  𝑦̂𝑖(𝑘Δ𝑡) − 𝑦̅𝑖(𝑘Δ𝑡) (22) 

 

• Free tip displacement time history: the free tip 

of a cantilever beam is often the part subject to 

the widest excursion, thus the time evolution of 

its displacement is recorded and compared to 

the ground truth to have a significant insight on 

the actual performance of the Kalman filter. 

Finally, the plots relative to this metric include 

the corresponding noisy measurements time 

history for a better performance assessment. 

 

4.1.2. Physical Model Parameters 

The simulated structure is a simple cantilever beam 

and the mechanical and geometrical parameters 

describing its dynamics do not change through the 

different tests. What follows is a summary of this 

information: 

 

{
𝐸 = 70.00 𝐺𝑃𝑎    
𝜌 = 2700 𝑘𝑔 𝑚3⁄   {

𝐿 = 1.000 𝑚                
𝐴𝑠 = 𝜋 × 10

−4 𝑚2       

𝐼 = 7.854 × 10−9 𝑚4

 

 

 

 

4.1.3. Q Matrix Training 

The technique used to obtain the process noise 

covariance matrix 𝑄 is the one described in subsection 

3.2 and, in greater detail in [24]. In the numerical 

simulation framework, the set of high-accuracy 

experimental measurements used to compute the 𝑄 

matrix by comparison with the predictions provided by 

the filter process model are represented by the simulated 

ground truth (i.e., the structure dynamics obtained by 

numerical integration of equation (6)). In order to assess 

the capability of this method to ensure the convergence 

of the filter in a variety of different conditions without 

requiring a specific training for each of them, the 𝑄 

matrix will be computed only once using as a reference 

the simple free response of the structure under an initial 

condition that will not be used in any of the actual tests. 

Considering that the first natural frequency of the system 

is 14.247 𝐻𝑧 (it can be computed by solving the TFC-

based model associated eigenvalue problem in a faster 

and easier way than going through the classic approach 

for the PDE), a training time interval of 1 second is 

considered sufficient to gather enough information to 

compute an effective covariance matrix. The training 

conditions are reported in Table 2: 

 
Table 2 – Conditions for training the Kalman filter 

covariance matrices. 

TRAINING CASE 

Forcing none (free response) 

Training time 

interval 

1 𝑠 

Initial condition 

for training 

Static deformed shape 

under a tip load of 𝑃 =
100 𝑁 

 

4.2. Results 

Results of the simulations carried out using the 

models and parameters presented in the above subsection 

are now shown. Firstly, the results obtained considering 

the free dynamics of the system are shown, then a forcing 

action is included in the simulation and the performance 

of the TFC-based Kalman filter is assessed. 

 

4.2.1. Simulation with free response 

The first test whose results we are going to present is 

the free response of the beam subject to the initial 

conditions reported in Table 3. 

 
Table 3 - Initial condition for the free response of the beam. 

INITIAL CONDITION 

 

Description 

Static deformed shape 

under a tip load of 𝑃 =
50 𝑁 

Formula 
𝑦(𝑥, 0) =

𝑃𝑥2

6𝐸𝐼
(3𝐿 − 𝑥) 

𝑦̇(𝑥, 0) = 0    

 

This and all the other simulations were run for 10 𝑠, 
which, based on the natural frequency of the dynamics, 

is a sufficiently long time interval. Despite this, if 

significant changes do not occur from a certain time on 

(e.g., when the error statistics have reached a steady-

state), the stationary part will be omitted in the plots to 

allow a better focus on the most meaningful time interval. 

The propagation time step used to simulate the true 

dynamics of the structure is 0.001 𝑠, since it can be small 

as desired and should guarantee a high numerical 

accuracy to the simulation. Finally, for the free response 
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test, the process equation discretization time step is set to 

0.01 𝑠. 
The fast filter convergence is clearly noticeable in 

Figure 3 and Figure 4. A short increase in both the mean 

error and its variance occurs during the very first time 

instants and then these statistics quickly reduce to small 

values. Similar results can be appreciated looking at the 

free tip actual/estimated displacement plots in Figure 5 

and Figure 6; moreover, it can be noted that the accuracy 

of the estimation is limited by the filter time step that is 

significantly larger than the one used to simulate the true 

dynamics (in this case it is 1 order of magnitude larger): 

this also explains the steady-state fluctuations in the 

estimation error, being the filter accuracy in average 

better when the actual displacement is distant from 

maxima/minima. 

 
 

 
 

 
 

 
4.2.2. Simulation with forced response 

In the previous paragraph, the effect of the size of the 

time step on the accuracy of the state estimate was 

highlighted. In the following, we are going to show that 

impact of the time step used to run the filter is even more 

significant when dealing with some inputs to the system 

dynamics. To this end, a cosine forcing input at the free 

tip was simulated with the following characteristics: 

 

𝐹(𝑥, 𝑡) =  {
𝐹0 cos(2𝜋𝑓𝑡)            𝑥 = 𝐿
0                                  𝑥 ≠ 𝐿

 

 

 

The amplitude of the forcing is 𝐹0 = 15 𝑁, while the 

frequency was chosen 𝑓 = 5 𝐻𝑧 to be far away from the 

resonance condition of the structure and at the same time 

not in the higher frequency region since that would 

require a high sampling frequency to correctly track the 

dynamics of the beam. 

 

 

Figure 3 - Average displacement estimation error time 

evolution. Test case: beam free response (𝛥𝑡 = 0.01𝑠 ). 3σ 

limits are reported as well. 

Figure 4 - Average displacement velocity estimation error 

time evolution. Test case: beam free response (𝛥𝑡 = 0.01𝑠). 3σ 

limits are reported as well. 

Figure 5 - Beam free tip displacement estimation. Test case: 

beam free response (𝛥𝑡 = 0.01𝑠). Detail of the first simulated 

time instants. 

Figure 6 - Beam free tip displacement estimation. Test 

case: beam free response (𝛥𝑡 = 0.01𝑠 ). Detail of the last 

simulated time instants. 
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The adoption of this last precaution still does not allow 

to effectively use the same process equation 

discretization time step 𝛥𝑡 = 0.01 𝑠  used in previous 

simulation and obtain good results. Reducing instead to 

𝛥𝑡 = 0.005 𝑠, the performance shown in Figure 7 and 

Figure 8 is achieved. 

 

Looking at Figure 9, one can notice that the initial settling 

of the estimate is more difficult with a much larger error 

and a longer time required to match the actual state of the 

system compared to what happens in Figure 5. Finally, 

Figure 10 shows that the filter accuracy at the steady state 

is reduced due to its inability to track the true 

displacement with high accuracy: this is related to the 

presence of some higher frequency oscillations that 

cannot be adequately sampled using the chosen time step. 

 

 

 
 

 

 

 
 

 

 

 
 

 
 

 

 

 

A proof of the effectiveness of the model is found by 

reducing the time step to 𝛥𝑡 = 0.001 𝑠 . The results 

obtained with this time discretization are reported in 

Figure 11, Figure 12, Figure 13 and Figure 14. In 

particular, in Figure 13 and Figure 14 the better 

convergence obtained by the filter can be observed. 

 

 

 

 

 

Figure 7 - Average displacement estimation error time 

evolution. Test case: beam cosine forced response ( 𝛥𝑡 =
0.005𝑠). 3σ limits are reported as well. 

Figure 8 - Average displacement velocity estimation error 

time evolution. Test case: beam cosine forced response (𝛥𝑡 =
0.005𝑠). 3σ limits are reported as well. 

Figure 9 - Beam free tip displacement estimation. Test 

case: beam cosine forced response (𝛥𝑡 = 0.005𝑠). Detail of the 

first simulated time instants. 

Figure 10 - Beam free tip displacement estimation. Test 

case: beam cosine forced response (𝛥𝑡 = 0.005𝑠). Detail of 

the last simulated time instants. 
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In this section, the results of the tests carried out to 

assess the effectiveness of the developed method were 

shown. The Kalman filter based on the TFC model was 

tested for the structure under different conditions. In 

particular, the method has proved to provide good 

estimates of the true state of the system both when the 

structure is freely vibrating because of an initial 

deformed condition and when it is responding to an 

external input, like a force applied to the free tip. As 

expected, the frequency at which the filter is run has an 

impact on the performance. In particular, this aspect 

becomes critical when the filter is applied to track the 

response of the system to a periodic forcing action 

because of the possibility of the input to excite higher 

frequency modes of the structure. In the special case of 

a tip load input that follows a low-frequency cosine time 

law, a time step that is significantly smaller than to the 

one adopted in the case of the free-response proved to 

be necessary to get a similar performance. 

5. Conclusions 

In this work the development of a novel technique for 

modeling the dynamics of a distributed flexible system 

using a finite number of state variables was shown. The 

proposed method exploits the TFC framework to 

mathematically represent the structure under 

consideration and all the constraints acting on it.  

Then, a Kalman filter implementation was developed 

based on that model. The special case of the Euler-

Bernoulli beam dynamics was chosen to provide an 

application example that is simple enough to not hide the 

key concepts of the proposed methodology. Since the 

PDE governing the dynamics of the system is linear, the 

resulting TFC-based model is linear as well. This leads 

to the implementation of a linear Kalman filter for the 

estimate of the state of the system.  

Finally, the effectiveness of the developed method 

was tested by means of numerical simulations. 

Figure 11 - Average displacement estimation error time 

evolution. Test case: beam cosine forced response ( 𝛥𝑡 =
0.001𝑠). 3σ limits are reported as well. 

Figure 12 - Average displacement estimation error time 

evolution. Test case: beam cosine forced response ( 𝛥𝑡 =
0.001𝑠). 3σ limits are reported as well. 

Figure 13 - Beam free tip displacement estimation. Test 

case: beam cosine forced response (Δt = 0.001s). Detail of the 

first simulated time instants. 

Figure 14 - Beam free tip displacement estimation. Test 

case: beam cosine forced response (Δt=0.001s). Detail of the 

last simulated time instants. 
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The advantage of the proposed approach is twofold. 

On one side the dimensionality of the problem is reduced 

from infinite to a finite number of time-dependent state 

variables that, using methods like the orthogonal 

polynomials expansion exploited in this paper, can be 

kept reasonably small. The consequence of this is that the 

resulting dynamical model can be used to predict, 

estimate and control the state of the system in a way that 

is reliable and simpler than when dealing with infinite-

dimensional representations. On the other hand, the TFC-

based approach allows for a simpler modeling procedure 

by removing the need for the designer to choose the 

approximating functions based on previous knowledge or 

on tedious and time-demanding analyses: once the basics 

of the method are clear, the entire procedure can be 

automatized while still leaving the user with a certain 

degree of freedom in balancing complexity and accuracy 

of the resulting model. The choice of applying this novel 

approach to a simple structure aimed at preventing a 

higher complexity from hiding the key features of the 

proposed method. Anyway, the applicability of this 

approach is not specially limited by the complexity of the 

mechanical model. There are no simplification 

requirements in the derivation of the dynamic equations 

and structures based on more complex models can still be 

treated following the logic and the principles presented 

above. The only difference will be in the amount of work 

required and in the complexity of the resulting 

mathematical representation. In this way, nonlinear 

structural dynamics can be modeled using the TFC as 

well. Then, the resulting TFC-based nonlinear model can 

be used with an EKF or an UKF to estimate the dynamics 

of such systems. Finally, another extension of the method 

presented in this paper that is worthy of further 

investigations is the application to structures that cannot 

be considered as one-dimensional. 
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