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Abstract 
Grasslands in the central United States span large temperature and aridity gradients and regionally differ 

in their drivers of water availability. These differences likely determine how drought event periodicity 

and duration can influence grassland growth, and are important to consider as global warming changes 

energy and water distribution across these systems. Here, we explored frequency patterns in annual 

grassland plant growth (aboveground net primary productivity (ANPP)) and precipitation (PPT) 

relationships for over 20 years at six long-term research sites spatially distributed across the central 

grassland region. We identified the periods (>1 year) these relationships are strongest- and when they 

occur- with wavelet coherence analyses. We found disturbance events such as severe drought lowered 

ANPP and preceded strong coherence at 2-4 year periods at two sites, potentially by increasing ANPP 

sensitivity to PPT. All sites showed strong coherence at 1-2 years periods, however this coherence was 

not consistent through time for two sites, where declines in ANPP did not correspond with PPT 

variability. In addition to strong coherence at 1-2 year periods, at southern desert and central tallgrass 

grasslands there was also strong coherence at 5-10 year periods over the entire record, indicating that 

long-term PPT and ANPP dynamics are important. Pacific ocean-atmosphere drivers of regional 

precipitation were found to influence coherence at all sites, and could potentially explain the long-term 5-

10 year coherence at the sites mentioned above. Contextualizing ANPP-PPT relationships through time at 

sites with different drivers of precipitation requires understanding of site-dependent production dynamics 

and is key to forecasting grassland responses to climate change. 

Introduction             
Grasslands of the central U.S. (Fig. 1) span a wide swath of latitudes and climate, with warmer temperatures 

to the south and wetter conditions to the east promoting diverse grassland systems (Lauenroth and Burke 

1995). Annual measures of plant production and community composition at central U.S. grassland sites 

have been linked to precipitation at multiple scales, including at multi-year, annual, seasonal, sub-seasonal 

and event characteristics (e.g. Chen et al. 2017, Petrie et al 2017, Collins et al. 2020, Peters et al. 2021, 

Hudson et al. 2022). However, few studies have examined how precipitation and plant production 

relationships can vary over time scales or across the region. 

To move from site-level production dynamics to a regional context requires the integration of broad scale 

climate drivers (Peters et al. 2008) such as the El Niño Oscillation (ENSO) and Pacific Decadal Oscillation 

(PDO)- sea surface temperature anomalies in the Pacific Ocean that interact with atmospheric variability to 

influence climate over the land surface (Mantua et al. 1997, Rayner et al. 2003). These semi-periodic drivers 

can also influence the frequency of site-level precipitation, which may further interact with cycles in plant 

life cycles to produce periods of high or low coupling strength between precipitation and plant production.  

Our objectives here were to leverage long-term research at central U.S. grasslands to evaluate site and 

regional variability in the (1) coherence between annual aboveground net primary production (ANPP) and 
precipitation (PPT) across periods and time, and (2) potential climatic drivers (ENSO and PDO) of ANPP 

and PPT coherence.  
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Methods 

Study sites: The United States’ long-term ecological research (LTER) network was established in 1980 with 

a directive of core tasks, one of which was observing and testing primary production response to, for 

example, climate (Hobbie et al. 2003). Six current or former LTER grassland sites are spatially distributed 

across the central grassland region of the U.S. (Fig. 1; grassland delineations modified from Olson et al. 

(2001)), and represent the south to north cooling and west to east wetting gradients of the region. Semiarid 

to arid warm mixed grasslands are in central (Sevilleta, SEV) and southern (Jornada Basin, JRN) New 

Mexico; semiarid cool shortgrass steppe grasslands are in Colorado (Shortgrass Steppe, SGS); tallgrass 

prairie grasslands are in Kansas (Konza Prairie, KNZ); and mesic, cool grasslands are in Minnesota (Cedar 

Creek Ecosystem Science Reserve, CDR) and Michigan (Kellogg Biological Station, KBS; Fig. 1). SGS 

was an LTER site until 2014, and has been included in previous syntheses examining production - 

precipitation relationships (Petrie et al. 2017). 

 

Figure 1. Map of long-term ecological research sites located across the central grasslands of the U.S. Grassland types 

along south to north and west to east gradients experience warmer and wetter climate conditions. JRN and SEV are 

desert grasslands, SGS is short grass steppe, and KNZ is tall grass prairie. 

 

Data: At least 20 years of co-occurring PPT and ANPP site data were used in this study. PPT was summed 

across the water year (October - September; Sevilletta summed November to October). PPT sources and 

ANPP sources and methods for 5 sites are detailed in Hudson et al. (2022). For SGS, water year PPT was 

summed (Parton 2014) and ANPP was derived from annual biomass of annual and perennial grasses (both 

warm and cool season) averaged across ungrazed upland control plots (Lauenroth 2014) after identifying 

which species to extract from the LTER species list available at http://hdl.handle.net/10217/80451 (Shoop 

et al. 2022). 1991 ANPP was missing at SGS and was gap filled by averaging 1990 and 1992 values.  

ENSO and PDO were represented with the Pacific Ocean sea surface temperature-derived Nino 3.4 index 

(https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.data; Rayner et al. 2003) and PDO index 

(https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/pdo.long.data; Mantua et al. 1997). Monthly values were 

averaged across the water year to match the temporal resolution of site precipitation data. 

Analyses: We first identified and removed linear long-term trends in site ANPP and PPT, as well as climate 

teleconnections over the period of overlap with each site using the trend (Pohlert 2020) and pracma 

(Borchers 2021) package with R statistical software (v4.0.4; R Core Team 2021).  There were significant 

increases in ANPP over time for JRN (Sen’s slope = 3.08), SEV (Sen’s slope = 2.38), and KBS (Sen’s slope 

= 13.33), while there were slight but significant decreases in ANPP at SGS (Sen’s slope = -0.17). KBS was 

the only site with a positive trend in annual PPT (Sen’s slope = 7.90) which was mainly driven by winter 

and spring precipitation.  

http://hdl.handle.net/10217/80451
https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.data
https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/pdo.long.data
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Obj. 1: We conducted bivariate wavelet coherence analyses between PPT and ANPP on periods of 1yr and 

greater at each site. This analysis evaluates the local correlation between two time series across the time-

frequency domain to identify similar rhythmic components, and is useful for analyzing non-stationary 

signals of short duration (Hu et al. 2021). We used the biwavelet R package (Gouhier et al. 2021) where 

statistical significance levels were estimated with Monte Carlo methods with n = 1000 randomizations. 

Data on either end of the record indicate the “cone of influence,” where edge effects become important and 

should not be interpreted. To simplify the wavelet plots, we also averaged the wavelet coherence at each 

period step outside the cone of influence. This approach allowed us to identify coherent periods across time 

and to contextualize all sites at once.  

Obj. 2: We then determined how much influence PDO or ENSO may have on the coherence between PPT 

and ANPP by conducting partial wavelet coherence transforms (Gouhier et al. 2021, Hu et al. 2021). We 

report the percent area of significant coherence (PASC) between the resulting wavelet coherence maps (Hu 

et al. 2021; similar to methods in Zhou et al. 2022). To define PASC, we only considered where R2 values 

were larger than 0.8 and outside the cone of influence as significant.  

 Results and Discussion 

Obj. 1: Overall, the desert grassland sites JRN (Fig 2f) and SEV (Fig. 2e), tallgrass prairie site KNZ (Fig. 

2d) and the Michigan site KBS (Fig. 2b) had the strongest coherence and highest PASC for periods longer 

than 1 year (JRN= 65%, SEV= 44%, KNZ = 53%, KBS =47%; Table 1). CDR (Fig. 2a) and SGS (Fig. 2c) 

show only 20% and 33% respectively, indicating that PPT is not as strong a driver of ANPP at these two 

sites for periods longer than 1 year (Table 1).  

All sites had strong wavelet coherence between ANPP and PPT in the 1-2 year period band across their 

respective time domains (Fig. 2, Fig. 3). However, some sites experienced weaker coherence in the 1-2 year 

period for a subset of time, including 2005-2010 at CDR (Fig 2a) and 2006 to 2008 at SEV (Fig. 2e). In 

both cases, this was due to ANPP (gray lines in times series) showing little variability and negative trends 

over the time frame. Desert grassland sites (JRN and SEV) and tallgrass prairie (KNZ) had the strongest 

wavelet coherence between ANPP and PPT across periods larger than 2 years (red values in Fig. 2d, 2e, 

2f). This result supports previous studies showing the importance of multi-year PPT periods to ANPP at 

the JRN (Peters et al. 2021), and indicates that modeling production response to precipitation at these sites 

in the south central U.S. would improve if multi-year periods were included.  

Disturbance events such as severe drought may precede strong coherence between ANPP and precipitation 

at periods of 2-4 years. This result may be because drought reduced ANPP past a certain threshold such 

that ANPP was more responsive to precipitation following the disturbance (Collins et al., 2020). KNZ 

experienced a major drought in 1988-89 and the lowest ANPP on record, followed by strong 2-4 year 

coherence for another decade (Fig. 2d). Haddad et al. (2002) discuss how this drought may have contributed 

to 2-year oscillations in ANPP that lasted a decade. By 2000, the system returned to low coherence in the 

2-4 year band (Fig. 2d). At SEV (Fig. 2e), in 2011 severe drought and reductions in ANPP preceded strong 

coherence across periods including the 2-4yr band.  

All sites except for CDR had strong average wavelet coherence in the 7-yr period (Fig. 3). CDR and SEV 

had relative maximum average wavelet coherence in the 4-yr band (Fig. 3), while KNZ maximum 

coherence was at 9-yr and greater. JRN and KBS show similar patterns of maximum coherence at 2 and 

7-yrs, and SGS also had maximum coherence at 7-yrs. CDR is most strongly coherent in the 4-yr period 

from 1985-2000 (Fig. 2a), which has some overlap with the periodicity of ENSO and PDO (Fig. 2g). SGS 

shows a similar coherence at 4-yr period but for a shorter time (1985-1995) and strongest in the cone of 

influence (Fig. 2c).  
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Figure 2. PPT and ANPP time series and wavelet coherence at the 6 LTER sites. PPT is on the left axis shown with black 

lines in mm per water year and ANPP is on the right axis with gray lines in g/m2/year; the horizontal line on each time 

series plot shows the mean PPT and ANPP values over the period. The period length on the wavelet coherence plots’ y-

axis is measured in years. The color bar indicates the strength of coherence between PPT and ANPP, and ranges from 0 

(low coherence, blue) to 1 (high coherence, red). Regions of significant coherence were contoured and determined based 

on Monte Carlo methods and chi-squared test for significance with alpha threshold of 0.95. Light gray shading shows the 

region influenced by edge effects (cone of influence) and should not be interpreted for those periods. 

 

Table 1. Percent area of significant coherence (PASC) based on the wavelet coherence of ANPP and PPT (ANPP~PPT) 

and the partial wavelet coherence between ANPP and PPT after removing the effects of ENSO (ANPP~PPT-ENSO) and 

PDO (ANPP~PPT-PDO). Differences between ANPP~PPT PASC and the respective PASC after teleconnection effect 

removal are shown in red italics and parentheses. 
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Figure 3. Average wavelet coherence across periods for each site and average across all sites. Only values outside of the 

cone of influence were averaged. Brown polygons designate the periods where ENSO and PDO have the highest power 

from their individual wavelet transforms.  
 

Obj. 2: Across sites, PASC decreased after excluding the effects of PDO or ENSO. However, the magnitude 

of that effect varied greatly among sites, ranging from 5-24% for ENSO and 6-29% for PDO (Table 1). 

Excluding effects of PDO and ENSO had the largest influence on the coherence between PPT and ANPP 

for SEV, KNZ, SGS, and KBS, where PASC was reduced by 24-29%, 21-20%, 12-28%, and 17-24% 

respectively (Table 1). PDO had a slightly stronger impact than ENSO on most sites, and especially SGS 

(28% reduction from ANPP~PPT PASC of 32%, compared with a reduction of 12% removing ENSO). 

Studies at SEV (Collins et al. 2020) and SGS (Chen et al. 2017) have documented similar significant 

responses of ANPP to PDO and ENSO. Parsing out the period space (e.g. 1-2 years, 2-6, 6-13) may identify 

at what exact temporal scales these teleconnections have the most impact, how that changes regional 

patterns, and whether that makes sense dynamically (e.g. Hu et al. 2021, Zhu et al. 2022). For example, 

when only examining periods 2-13years, JRN, SEV and KNZ are the most influenced by ENSO and PDO 

(not shown). Differences in the time frame and length between sites may influence the measured impacts 

of PDO and ENSO, especially as ENSO and PDO phases can interact to influence precipitation and 

production (e.g. Chen et al. 2017). 

These perceived ENSO and PDO effects on the PPT ANPP relationship may be conflated with other 

potential explanatory variables, such as temperature (all of these sites have experienced warming in recent 

decades (Hudson et al. 2022)), or the periodicity in plant species population  and community dynamics. To 

separate these parts out, knowledge of site level dynamics of ANPP is required, and could potentially be 

included as additional variables in the partial wavelet coherence analysis. This may also allow us to further 

disentangle coherence differences within regions. JRN and SEV are located within the same region, 

however, when we truncate JRN to 1999-2018 to match SEV, there are major differences in wavelet 

coherence maps (not shown). This could be an indication of the spatially heterogeneous precipitation in the 
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region (e.g. the monsoonal system) and/or major differences in the production and community structures at 

these sites. 

While this work indicates that multi-year precipitation periods are related to production response at most 

central US grasslands, sub-annual breakdowns of coherence would be interesting to explore in future 

studies. Wavelet analyses require data on the same time step. Only the desert grasslands collect biomass 

data sub-annually, so other methods and proxies for ANPP (e.g. satellite data or eddy covariance flux tower 

data; Chen et al. 2017) would need to be applied to compare all sites. The PDO and ENSO-driven 

mechanisms of precipitation delivery can be season dependent and so a sub-annual approach may also 

facilitate parsing out the relative effects of these teleconnections on ANPP PPT coherence. 

Conclusions 
We applied wavelet coherence analysis to over 20 years of annual precipitation and plant production data 

and found that the short (1-2 year) periods typically exhibited the strongest coherence across sites, however, 

coherence was not always consistent in strength. Sites in the south central U.S. also exhibited strong 

coherence at long (5-10 year) periods. This regional variability in period coherence is likely due in part to 

the semi-periodic climatological drivers of precipitation in a region, as well as the frequency and intensity 

of disturbance events grasslands are exposed to. PDO and ENSO impacted the coherence across multiple 

sites, indicating that there may be some ability to forecast ANPP given PPT projections and climate mode 

phases, although further work is needed to establish at what periods could provide the most predictive 

power. In a changing climate, with increasingly frequent and intense disturbance events, analyses able to 

incorporate non-stationary data to identify periods of strong coherence may improve models of grassland 

production. 
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