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Abstract: In this study, we propose quantifying the Amu River riverbank erosion with the modelled
river discharge in Kaldar District, Balkh Province of Afghanistan from 2004 to 2020. We propose
a framework synergizing multi-source information for modelling the erosion area based on three
components: (1) river discharge, (2) river width, and (3) erosion area. The total river discharge for the
watershed shared by Afghanistan and Tajikistan was modelled using hydrological parameters from
the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) data
through multivariate linear regression with ground station data. The river width was determined
manually using the Normalized Difference Water Index (NDWI) derived from Landsat data. The
riverbank erosion area was derived from the digital shoreline analysis using the NDWI. The digital
shoreline analysis showed that, between 2008 and 2020, the average riverbank erosion area in Kaldar
District is about 5.4 km2 per year, and, overall, 86.3 km2 during 2004–2020 due to flood events. The
significantly higher land loss events occurred at 10 km2 bank erosion during the years 2008–2009
and 2015–2016, and 19 km2 peak erosion occurred during 2011–2012. A linear relation between the
erosion area with respect to the discharge intensity and the specific stream power was observed with
an R2 of 0.84 and RMSE of 1.761 for both.

Keywords: riverbank erosion; river discharge; NDWI; Landsat; ERA5

1. Introduction

Riverbank erosion and shoreline changes are the most significant geomorphological
environments and natural disasters in several parts of the world [1,2]. Subsequently, several
studies have investigated landform dynamics, riverbank erosion, and floods and their
impact on society [3–7]. Riverbank erosion is also significant from the perspective of socio-
economic aspects due to the loss of agricultural land adjacent to the river channel [3,8–11].
Such phenomena are even more significant for transboundary nations such as Afghanistan
and Turkmenistan, whose national boundaries, to some extent, are determined by the Amu
River [12,13]. Numerous factors have been known to affect the riverbank erosion over time,
including the flow conditions, precipitation, soil composition, soil moisture, temperature
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conditions, and snowmelt dynamics for glacial rivers [14–17]. Flooding and riverbank
erosion are often also caused by a combination of sharp slopes upstream with associated
heavy rainfall and snow-glacier melt [18–21]. Moreover, denudation of unstable parts of
the mountains and lack of vegetation further contribute to the issues related to flooding
and riverbank erosion [22–24].

The Amu River elevation between Badakhshan and Kham Ab has more than a 5000 m
difference as every year, due to flash floods, about 250 million m3 of sediments are trans-
ported through riverbank erosion of large areas of Afghanistan [25,26]. Flash flooding and
riverbank erosion are concurrent events where mostly the flood and riverbank erosion
co-occur or a flood is sequentially followed by riverbank erosion [18,27]. In Afghanistan,
flash floods most frequently occur in March and follow until May because of heavy rainfall.
During June–July, flooding mainly occurs due to the snowpack and glaciers melting in the
Pyanj–Amu River Basin. The Pyanj–Amu River Basin runs for 2400 km in length and has
an area of 90,716.7 km2, with a large number of tributaries in central Asia, but it dries up in
the Tura lowlands in Turkmenistan and Uzbekistan [10,28].

The continuous availability of the ERA5 Reanalysis data enables monitoring of hy-
drological parameters over large watersheds, such as the Khanabad watershed [29,30]. In
the absence of well-distributed ground stations, ERA5 Reanalysis data have been widely
utilized for hydrological modeling [31]. Considering transboundary watersheds, the ERA5
Reanalysis data have been proven to be highly significant for hydrological modeling [29,32].
The purpose of this study is to quantify the riverbank erosion in Kaldar District, Balkh
Province of Afghanistan. For the investigation, we utilized a combination of ground station
data available from the Afghanistan side and ERA5 Reanalysis data [33]. A multivariate
regression model is developed using the investigated hydrological parameters from the
ERA5 Reanalysis data to estimate the overall river discharge for the entire watershed
shared by northern Afghanistan and Turkmenistan. The modeled discharge is analyzed
with respect to the manually determined river width using the Landsat-7/8 multispectral
datasets, and further flow parameters are determined, which are linked to the riverbank
erosion estimated using shoreline analysis. The investigation was carried out from 2004
to 2020.

2. Materials and Methods
2.1. Study Area

The investigated area is a shared basin between two counties, with the southeast
part located in Afghanistan and the northern part in Tajikistan, and covers significant
elevation changes ranging between 230 and 7500 m a.s.l, as shown in Figure 1. The
Amu River originates from the high snow-covered altitudes of the Pamir Hindu Kush
Himalayas. The Amu River flows along the border between Afghanistan and Tajikistan,
Uzbekistan, across Turkmenistan, and returns to Uzbekistan, where it discharges into the
Aral Sea [12]. From its entry into Badakhshan Province to its confluence with the Aral
Sea, the channel length of the Amu River is about 2500 km. Out of the total river length,
1200 km of the river is located between Afghanistan across the border with Tajikistan,
Uzbekistan, and Turkmenistan [34]. The drainage area of the Amu River basin is about
219,112.27 km2,, of which only 90,716.7 km2 is located in Afghanistan (Figure 2), with
the remainder in Tajikistan. Afghanistan occupies the higher altitudes in the upper Amu
River basin, extending from the Pamir Hindu Kush regions of Badakhshan Province and
continuing in the lower altitudes of the Kham Ab District of Jawzjan Province, as shown in
Figure 2. The upper Amu River basin comprises an intricate network of nine prominent
streams, as shown in Figure 2, with Pyanj and Vaksh River streams as the significant
contributors [35].
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Figure 1. Khanabad watershed covering regions of Afghanistan and Tajikistan with categorized 
elevation determined from SRTM 1 arc sec Digital Elevation Model (DEM). The Amu River in blue 
originates from very high elevation areas and flows west towards the Aral Sea. 

 
Figure 2. Investigation area for Amu River shifting and riverbank erosion in Kaldar District of Balkh 
Province, Afghanistan, shown under the red box. The different streams contributing to the Amu 
River are shown in blue, with ground stations for river discharge data. 

Afghanistan is an arid country that receives relatively little rainfall; thus, the 
snowmelt from mountains in the north plays a crucial role in providing water resources. 
Precipitation usually occurs in the winter as snowfall, while rainfall events are typically 
observed in spring and summer with an overall dominance of snowfall over rain towards 
contribution to the water resources. Snowmelt occurs as temperature rises in the spring 
and the summer (Figure 3a). At the same time, in the spring, rapid snow melting 
contributes to flooding and subsequent riverbank erosion along the Amu River on the 

Figure 1. Khanabad watershed covering regions of Afghanistan and Tajikistan with categorized
elevation determined from SRTM 1 arc sec Digital Elevation Model (DEM). The Amu River in blue
originates from very high elevation areas and flows west towards the Aral Sea.
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Figure 2. Investigation area for Amu River shifting and riverbank erosion in Kaldar District of Balkh
Province, Afghanistan, shown under the red box. The different streams contributing to the Amu
River are shown in blue, with ground stations for river discharge data.

Afghanistan is an arid country that receives relatively little rainfall; thus, the snowmelt
from mountains in the north plays a crucial role in providing water resources. Precipitation
usually occurs in the winter as snowfall, while rainfall events are typically observed in
spring and summer with an overall dominance of snowfall over rain towards contribution
to the water resources. Snowmelt occurs as temperature rises in the spring and the summer
(Figure 3a). At the same time, in the spring, rapid snow melting contributes to flooding and
subsequent riverbank erosion along the Amu River on the Afghanistan side. The riverbank
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erosion is more prominent on the Afghanistan side due to the topography and the lack of
adequate measures for mitigation [12].
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Figure 3. (a) Annual precipitation–snowmelt–temperature cycle in the Amu River basin; (b) annual
snowmelt and discharge cycle.

Generally, flooding occurs due to excessive heavy rainfall or snowmelt from the higher
elevated area of Pamir Hindu Kush mountains. The consequence of heavy rainfall is flash
flood, which causes destruction of the property and agricultural lands due to the channel
shifting of riverbank erosion downstream. The prominently vulnerable provinces to floods
in Afghanistan are Badakshan, Takhar, Kunduz, Balkh, and Jowzjan Provinces [28], as
shown in Figure 2. The study area includes the snow-covered and glacierized sub-basins
within the Pamir and Hindu Kush mountains of Afghanistan and Turkmenistan. The
headwaters are primarily monitored at Pyanj River and at other streams in the headwaters
of the Vakhsh River (Figure 2). The Pyanj and Vakhsh Rivers receive water from snowmelt
from most of the snow cover area in the watershed [36,37]. A maximum river discharge is
typically observed in the spring and summer, contributed from the snowmelt, and, in fall,
the river discharge reduces and comprises contributions from the glacier melts. The river
discharge is usually at the lowest during winter, as shown in Figure 3b.

2.2. Test Datasets

European Center for Medium-Range Weather Forecasts (ECMWF) produces reanalysis
products in the form of gridded data, typically at 9 sq. km spatial resolution. The data
result from numerical weather prediction models with observations from various satellites
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and ground stations [29]. Mahto and Mishra investigated the potential of ERA5 data for
hydrological applications in India and observed the performance of ERA5 to be relatively
better than other reanalysis datasets [32]. Tarek, Brissette, and Arsenault [29] demonstrated
that, as compared to ERA-Interim, the ERA5 Reanalysis products are systematically more
accurate. It is evident that ERA5 Reanalysis data have been efficiently used for hydrological
studies [29,31,34,38]. In the present study, to account for the unavailability of ground station
observations from the Tajikistan side of the Khanabad watershed, ERA5 Reanalysis data
were used for hydrological modeling. For this, several hydrological parameters discussed
in the next section were used for February to July from 2004 to 2020. The later months
were excluded from this study on account of the lesser influence of the river dynamics
on the riverbank erosion. Remotely sensed data have been widely used for the mapping
of riverbank erosion and morphological dynamics of rivers [39–42]. The multispectral
data from the Landsat mission have provided significant means for understanding the
morphology of the rivers [43,44]. For extracting the morphology of the Amu River during
the 16 years, Landsat images (TM/ETM/OLI TRI) from 2004 to 2020 were considered for
the analysis.

2.3. Methods

The riverbank erosion is generally governed by flow parameters such as the dis-
charge intensity (DI) and the specific stream power (SSP), which are a function of the river
discharge (Q) and the river width [45]. For a large watershed, as in the present study,
determining effective discharge requires a large number of ground stations, which are usu-
ally scarce. Subsequently, the applicability of other datasets, such as the ERA5 Reanalysis
datasets, is significant in such scenarios. We analyzed the agreement between the mean
river discharge (Q) from the available ground stations from the General Directorate of
Water Resources, National Water Affairs Regulation Authority (GMSGA), Afghanistan, and
the various hydrological parameters determined from ERA5 Reanalysis data, as shown in
Table 1. In Table 1, the correlation coefficient was determined for the parameters for the
period of 2008–2018 from February to June as the river discharge data were available from
2008–2018. The months from July to January were excluded on account of the fact that the
discharge in these months is relatively much lower and is mostly dominated by glacier
melt, particularly in later months. A generalized flowchart for the adopted methodology is
shown in Figure 4, where the two blocks represent the two phases of the investigation.

Table 1. Correlation between the mean river discharge and the ERA5 Reanalysis hydrological
parameters for a period of 2008–2018 for months February to June.

S. No ERA 5 Reanalysis
Variable Names Units Description Correlation

Coefficient

1 rsn kg m−3 Snow density 0.99

2 sd m of water equivalent Snow Water
Equivalent 0.99

3 sde m Snow depth 0.99

4 sf m of water equivalent Snowfall 0.69

5 smlt m of water equivalent Snowmelt 0.92

6 ssro m Sub-surface runoff 0.90

7 sro m Surface runoff 0.83

8 ro m Runoff 0.84

9 tp m Total precipitation 0.81
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Figure 4. Generalized workflow describing the proposed methodology for investigating the riverbank
erosion and its correspondence with the stream flow parameters.

We estimated the river discharge from a multivariate regression model shown in
Equation (1), where the independent variables are determined from the hydrological
parameters (SWE, SMLT, RO, TP) available from the ERA5 Reanalysis data. For this
purpose, we utilize the mean discharge from the ground stations as the dependent variable
shown in Figure 1b.

Q = β +
4

∑
i=1

αiXi (1)

where i = 1,2,3 and 4 corresponds to the sequence of the parameters snowmelt (SMLT),
Snow Water Equivalent (SWE), Runoff (RO), and Total Precipitation (TP), respectively, and
X denotes these parameters. In Equation (1), α represents the coefficients for the aforemen-
tioned parameters, and β is a constant. The multivariate linear least squares regression
yielded values α1 = −86.105, α2 = 0.172, α3 = 188.724, α4 = 60.479, and β = −86.1054, with
an adjusted coefficient of determination of 0.99 and an RMSE of 15.28 m3/s for the modeled
river discharge.

The river width (w) was determined in the regions located in the Kaldar District of
Balkh Province across the Amu River between Afghanistan and Uzbekistan, which is at
an approximate distance of 36 km from the collective assimilation of the various stream
flows in the Amu River, as shown in Figure 2. The river width was manually determined
from the Normalized Difference Water Index (NDWI) derived from the Landsat-7 and
Landsat-8 multispectral datasets [34,46]. The Landsat images were pan-sharpened using
the Ehlers fusion method [47] to improve river width measurement quality to 15 m spatial
resolution before generating the NDWI images. The Ehlers fusion is employed to ensure
higher details in the multispectral images while preserving the spectral attributes during
the fusion process [48,49]. A mean of five adjacent manual observations of approximately
100–200 m apart from the NDWI image was used for the river width. In the case of
Landsat 7, the scan line corrector was utilized for gap filling [50].

Additionally, the Landsat images were also used to determine the riverbank erosion
area (Ae) based on the digital shoreline analysis [12]. River lines (edges) were digitized to
collect shoreline layers from individual images annually. Digital shoreline analysis system
(DSAS) was used for baseline measurement and calculation of the statistical change rate
from the time series of shorelines and the corresponding erosion area [12]. DSAS creates
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transect lines perpendicular to the reference line, i.e., baseline, at a user-specified distance
interval [51]. The stream power or the total stream power (Ω) represents the loss of potential
energy of the river against the riverbed and the riverbank, as defined in Equation (2).

Ω = γQs (2)

where γ is the specific weight of water (equivalent to the product of density of water
1000 kg/m3 and the gravity 9.8 m/s−2), and s is the riverbed slope.

The specific stream power (ω) is defined as the total stream power per unit width, i.e.,
(Ω/w). The discharge intensity (here, Iq = Q/w) and ω are determined using the estimated
river discharge (Qp) from Equation (1) and the approximated river width [45]. For the
determination of the specific stream power, the bed slope (s = 2.7) was calculated as the ratio
of rise and run approximated using the data provided by Akbary [52] as the measurements
of the riverbed elevation were not available.

3. Results and Discussion
3.1. Snowmelt or Precipitation Dominance on Amu River Discharge

The annual precipitation cycle in the Amu River basin was discussed earlier in Sec-
tion 2.1, where the precipitation is high during January–March and after that declines.
Based on the ERA5 Reanalysis data, we investigated the dominance of the snowmelt over
precipitation or vice versa for runoff contribution. Figure 5 shows the scatterplots between
these parameters for February to June from 2004 to 2020. The snowmelt is represented in
the meters equivalent of water corresponding to the total accumulated amount of water that
has melted from snow in the gridded snow-covered area. The total precipitation comprises
the large-scale sum of precipitation and convective precipitation including rain and snow
falling to Earth’s surface.
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scatter from 2004 to 2020 for February, March, April, May, and June.

From Figure 5, it is observed that the monthly precipitation shows a rather inconsistent
distribution as compared to the snowmelt. From February to April, the precipitation is
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observed to dominate the contribution to the runoff. In contrast, snowmelt dominates the
contribution to the runoff for May and June, with a steady increase leading to a correspond-
ing increase in the runoff. The runoff in February and May is relatively more prominent
than in the other months. However, from June onwards, the runoff decreases significantly.

The proportional distribution of the snowmelt, the total precipitation, and the runoff
for a block period of five years are shown in Figure 6, showing similar trends as in Figure 5,
where the runoff is much lower in winter and increases in summer, possibly attributed to the
rise in temperatures leading to increased snowmelt. For showing the comparison between
the proportional distribution of the snowmelt and total precipitation, these parameters
are normalized and weighted with respect to their sum. The runoff in Figure 6 is also
normalized. The contribution of snowmelt to the runoff is also expected to be higher than
precipitation. It is observed that the proportions of snowmelt are consistently higher than
precipitation for the block period of years, as indicated in Figure 6.
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A gap between the snowmelt and precipitation proportions is observed between
2010 and 2015 during March (Figure 6). Badakshan, Takhar, and Baghlan Provinces have
been observed to be highly vulnerable to flooding events, particularly between the years
2012–2015, according to the data disseminated by the United Nations Office for the Coor-
dination of Humanitarian Affairs [53,54]. According to Climate World Bank [55], in the
years following 2009, an unprecedented increase in the mean rainfall was observed in these
provinces and also in Tajikistan, leading to the reduced gaps between the snowmelt and
the total precipitation as observed for March in Figure 6. This gap could possibly be due to
extreme torrential rainfall events, which resulted in several flooding events during these
years. Further, according to the International Disaster Database, a major riverine flood
occurred in Badakshan District in Afghanistan on 4 February 2013 due to continuous heavy
rainfall [56]. The higher contribution of snowmelt to the runoff as compared to rainfall
was also observed in several other studies, particularly in the Italian Alps [57]. For the
central Spanish Pyrenees, López-Moreno and [58] also demonstrated that the snowmelt
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contributes more to the discharge than rainfall in spring. In another study by Fassnacht and
Records [59], snowmelt was regarded as a more significant parameter than precipitation
and rainfall frequencies to explain the flood frequencies in mountainous regions.

3.2. Linkage between the Flow Parameters and the Amu River Riverbank Erosion

Although numerous factors affect riverbank erosion, including the soil characteristics
and the hydrological flow parameters, periodical information retrieval of the soil strength
is not possible; thus, most studies rely on the assessment of hydrological flow parameters
of the river for the analysis of corresponding riverbank erosion. In the present study, we
utilized the hydrological parameters from the ERA5 Reanalysis data to predict the river
discharge for 2004–2020. It was observed that the predicted discharge follows a power
law relation with the manually determined river width using the NDWI derived from
the Landsat mission data, as shown in Figure 7a. The correlation is carried out based on
a robust non-linear model to account for the uncertainties arising in the river width on
account of various factors, such as the angle of attack of the river to the bank at sharp
curves or bends and other influencing factors, including anthropogenic activities. Some of
the points below the 95% confidence bounds in Figure 7a could be attributed to the drought
periods that occurred during 2006–2008, as indicated by UNOCHA [60]. A similar strategy
was followed to link the annual riverbank eroded area (m2) determined from the shoreline
analysis and the flow parameters, including the discharge intensity, stream power, and the
specific stream power.
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Overall, it was observed that the robust linear fit based on the least-squares method
yielded a very good correlation between the eroded area and the flow parameters—DI, SP,
and SSP. The statistical parameters of the comparison between the erosion area (Ae) and
the flow parameters are shown in Table 2. It is worth mentioning that the points outside the
95% confidence bounds in each of Figure 7b–d correspond to peak events of the riverbank
erosion during the years 2009, 2012, and 2015, which experienced several disasters due to
flash floods and riverine floods that are possibly not estimated accurately in the present
study. This error is possibly due to the fact that we utilized the data from the available
ground stations located only on the Afghanistan side of the study area to predict the river
discharge from the ERA5 Reanalysis data. However, extreme rainfall events during these
periods were observed in the Takhar and Baghlan regions, where the river enters the flood
plains, corroborating the peak events of riverbank erosion.

Table 2. Statistical comparison of the flow parameters with respect to the erosion area.

Comparison
Correlation
Coefficient

(R)

Coefficient of
Determination

(R2)

Coefficient of
Determination

(Adj R2)

Root Mean
Square Error

(RMSE)

w vs. Qp 0.8385 0.7031 0.6819 335.4

Ae vs. Iq 0.9241 0.8539 0.8435 1.761

Ae vs. Ω 0.9241 0.8539 0.8435 44.6

Ae vs. ω 0.9241 0.8539 0.8435 1.761

3.3. Periodical Land Loss Due to Amu River Riverbank Erosion

Afghanistan is one of the highly vulnerable countries to natural disasters such as
floods, which often also cause erosion of precious land, property, and infrastructure. Land
loss due to riverbank erosion has been a significant issue in Afghanistan, hindering its
overall economic growth, as reported by [34,61]. Evidently, these erosion events often cause
the shifting of rivers and river width to increase and are mostly governed by factors such
as river discharge.

In the present study, the predicted mean river discharge shows a non-linear increasing
trend where an early decrease occurred in the periods of 2006–2008, which were significant
drought periods in Afghanistan. However, the river width is observed to show a consistent
linearly increasing trend (Figure 8a), which is understandable as any soil lost during erosion
is not replenished in the downstream areas. It is worth mentioning that the river width
measurements were made in the regions where the Amu River enters the flood plains. In
such regions, sediment deposition is expected to be lower, considering the higher velocity
of the river flow [61]. Moreover, from experience and community feedback in Kaldar
District, the sediment deposition is known to be negligible in this area.
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side of the study area.

The annual mean erosion area determined from the digital shoreline analysis is shown
in Figure 8b, where peak periods are observed in 2009, 2012, and 2015, primarily attributed
to the occurrence of flash floods and riverine floods. According to the OCHA [60], high
levels of land erosion were observed due to the Amu River riverbanks in Kaldar District of
Balkh Province. As a consequence of the riverbank erosion, 145 families lost their homes,
gardens, agricultural land, and livelihoods. Further, it was observed that the river shifts
due to erosion prevail mostly on the Afghanistan side, as observed in Figure 9. From
the digital shoreline analysis, the land loss from the riverbank erosion was observed to
be 86.3 km2 overall between 2004 and 2020, with an annual mean of 5.39 km2. The peak
erosion during this period was observed in 2012, with other significantly large erosion
events in 2008, 2010, and 2015.
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4. Conclusions

For developing countries like Afghanistan, resilience against disasters such as floods
and riverbank erosion is of utmost significance. Afghanistan has experienced periodical
events of flash floods and riverine floods that have caused a significant setback to the overall
development of infrastructure in the country. Due to the scarcity of field observations,
insights related to river monitoring are primarily constrained. Thus, other means to retrieve
significant information for planning and action against such disasters are being sought.
The present study focused on the Amu River basin for the assessment of the total land
loss towards the Afghanistan side due to riverbank erosion. It was observed that the
major factors in the Amu River basin that influence the riverbank erosion are associated
with the river discharge, which can be modeled precisely using ERA5 Reanalysis data.
The prediction models could be further improved when field information is available
from Tajikistan based on possible multi-national cooperation between their governments.
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Further improvements could be observed in the determination of the flow parameters, such
as the specific stream power where the river width measurements are determined, using
higher-resolution satellite imagery. In the present study, the expected anomalies in the river
discharge corresponding to the peak erosion periods were not observed due to constraints
in the prediction model or the river discharge. However, monitoring these anomalies upon
joint interventions leading to preparedness for flooding and mass erosion events could
be possible.
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