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RESEARCH ARTICLE

Improved Fine-Scale Tropical Forest Cover 
Mapping for Southeast Asia Using Planet-NICFI 
and Sentinel-1 Imagery
Feng  Yang1, Xin  Jiang1, Alan D.  Ziegler2, Lyndon D.  Estes3, Jin  Wu4,5, 
Anping  Chen6, Philippe  Ciais7, Jie  Wu1, and Zhenzhong  Zeng 1*

1School of Environmental Science and Engineering, Southern University of Science and Technology, 
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Hong Kong, China. 5State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, 
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UMR 1572 CEA-CNRS-UVSQ, Gif-sur-Yvette, France.

*Address correspondence to: zengzz@sustech.edu.cn

The accuracy of existing forest cover products typically suffers from “rounding” errors arising from 
classifications that estimate the fractional cover of forest in each pixel, which often exclude the presence 
of large, isolated trees and small or narrow forest clearings, and is primarily attributable to the moderate 
resolution of the imagery used to make maps. However, the degree to which such high-resolution imagery 
can mitigate this problem, and thereby improve large-area forest cover maps, is largely unexplored. Here, 
we developed an approach to map tropical forest cover at a fine scale using Planet and Sentinel-1 synthetic 
aperture radar (SAR) imagery in the Google Earth Engine platform and used it to map all of Southeastern 
Asia’s forest cover. The machine learning approach, based on the Random Forests models and trained 
and validated using a total of 37,345 labels collected from Planet imagery across the entire region, had an 
accuracy of 0.937 and an F1 score of 0.942, while a version based only on Planet imagery had an accuracy 
of 0.908 and F1 of 0.923. We compared the accuracy of our resulting maps with 5 existing forest cover 
products derived from medium-resolution optical-only or combined optical-SAR approaches at 3,000 
randomly selected locations. We found that our approach overall achieved higher accuracy and helped 
minimize the rounding errors commonly found along small or narrow forest clearings and deforestation 
frontiers where isolated trees are common. However, the forest area estimates varied depending on 
topographic location and showed smaller differences in highlands (areas >300 m above sea level) but 
obvious differences in complex lowland landscapes. Overall, the proposed method shows promise for 
monitoring forest changes, particularly those caused by deforestation frontiers. Our study also represents 
one of the most extensive applications of Planet imagery to date, resulting in an open, high-resolution 
map of forest cover for the entire Southeastern Asia region.

Introduction

Accurate assessment of tree cover is crucial for managing and 
conserving tropical forests, which play a vital role in protecting 
watersheds and mitigating climate change, in addition to being 
the world’s most important reservoirs of biodiversity and the 
key source of livelihoods in many areas of the world [1–7]. A 
variety of natural and anthropogenic phenomena contribute 
to high annual rates of tropical forest loss, including logging, 
conversion to other land uses (agriculture, mining, reservoirs, 
etc.), mass wasting, storm damage, wildfires, disease, and extreme 
droughts [8–12]. Forests also regenerate naturally or through 

various types of forest rehabilitation and management activi-
ties. Since the early 21st century, the expansion of agriculture 
has caused dramatic forest cover losses in the Southeast Asia 
(SEA) [9,13]. However, recent studies diverge substantially in 
their estimates of how much tropical forest for SEA remains 
[14–16]. For example, the estimates of forest cover in 10 SEA 
countries range from 2.085 to 3.494 million ha [9,16–22]. The 
differences in these estimates arise from the different mapping 
approaches used in the assessments, as well as the spatial scale 
of assessment.

Studies mapping the extent of tropical forests typically rely 
on a single type of remote sensing data, relying entirely on either 

Citation: Yang F, Jiang X, Ziegler AD, 
Estes LD, Wu J, Chen A, Ciais P, Wu J, 
Zeng Z. Improved Fine-Scale Tropical 
Forest Cover Mapping for Southeast 
Asia Using Planet-NICFI and 
Sentinel-1 Imagery. J. Remote Sens. 
2023;3:Article 0064. https://doi.
org/10.34133/remotesensing.0064

Submitted 30 January 2023  
Accepted 24 July 2023  
Published 10 August 2023

Copyright © 2023 Feng Yang 
et al.  Exclusive licensee Aerospace 
Information Research Institute, 
Chinese Academy of Sciences. 
Distributed under a Creative 
Commons Attribution License 4.0 
(CC BY 4.0).

https://doi.org/10.34133/remotesensing.0064
mailto:zengzz@sustech.edu.cn
https://doi.org/10.34133/remotesensing.0064
https://doi.org/10.34133/remotesensing.0064
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Yang et al. 2023 | https://doi.org/10.34133/remotesensing.0064 2

optical imagery [9,23,24], synthetic aperture radar (SAR) 
[16,25,26], or lidar [27]. Efforts based on optical sensors have 
primarily resulted in medium- to coarse-resolution forest cover 
datasets [28], such as the ≥1-km resolution products of the 
Advanced Very High-Resolution Radiometer (AVHRR; [29,30]), 
a variety of ≥100-m resolution products developed from the 
Moderate Resolution Imaging Spectroradiometer (MODIS), 
Visible Infrared Imaging Radiometer Suite (VIIRS), or PROBA-V 
([31,32]), and ≥25-m resolution products based on Sentinel-2, 
Landsat, and/or SPOT [9,24]. Only recently have 3 comprehen-
sive forest maps been produced either using higher-resolution 
(10 m) optical imagery or based on a mix of optical and SAR 
sensors [20,33,34].

While these recent products demonstrate that advances in 
remote sensing technology have greatly improved the ability 
to map the extent and dynamics of forest cover changes, sub-
stantial uncertainty remains due to several factors. One source 
of uncertainty is the criteria used to define a forest, which can 
lead to large differences in forest area estimates [14,15,35,36]. 
Another major source relates to errors in classifying land cover 
types at the level of individual pixels [15,35,37–41]. Moderate- 
to coarse-resolution tropical forest cover maps have large uncer-
tainties within heterogeneous landscapes [14,15,29,42], while 
products made using finer-resolution sensors can still contain 
image contamination errors caused by clouds and smog, which 
also lead to classification error [43–46]. Although the classifi-
cation errors are bidirectional, with forest classified as non- 
forest and vice versa, the aggregate error can be substantial in 
fragmented and complex landscapes, as referred to as “round-
ing” error, which poses a major challenge for monitoring 
changes in forest area and boundaries arising from a variety of 
contemporary activities that cause small-scale forest loss, such 
as selected/illegal logging, swidden/fallow farming, and the 
gradual encroachment of permanent fields into adjacent forests 
[11,47,48]. These particular activities tend to produce geomet-
rically irregular patches of land cover that are often smaller 
than the pixel resolution (e.g., 25 to 30 m) of the most readily 
available remote sensing products [11,14,29,37].

The uncertainties in forest cover estimates are therefore fun-
damentally a problem of remote sensing, as they are largely 
attributable to the characteristics of sensors, particularly their 
spatial and temporal resolution. The sensor’s spatial resolution 
is mainly responsible for rounding errors, as it controls how 
well small-scale forest features can be detected, while temporal 
resolution (interval) determines whether a sufficient number 
of clear images are available to generate consistent, contempo-
raneous coverage over large areas, which is difficult in cloudy 
regions [49]. These 2 dimensions were traditionally in tension 
with one another, as gains in one typically require sacrifice in 
the other. However, this trade-off is increasingly being circum-
vented by using a larger number of satellites, which enable 
higher revisitation rates from lower orbits. The most prominent 
example is the fleet of >200 satellites operated by Plane, which 
captures daily <5-m resolution optical imagery [50]. Although 
commercial, Norway’s International Climate & Forests Initiative 
(NICFI) has made Planet’s 4.77-m and semiannual analysis-ready 
mosaics covering the world’s tropics publicly available at no cost 
(https://www.planet.com/nicfi/). The spatial resolution of these 
products offers the promise of reducing rounding errors, while 
the daily frequency helps to increase the number of clear obser-
vations within a defined period, thereby minimizing the uncer-
tainty caused by atmospheric contamination [51]. However, 

the degree to which such high spatiotemporal resolution optical 
data can reduce map error has not been fully explored, given 
that a thorough assessment requires investigation over large 
spatial extents and across a broad diversity of forest conditions, 
which has only now become possible with the release of the 
NICFI data.

To answer this question, we developed a machine-learning 
approach for mapping forest cover within the Google Earth 
Engine (GEE) platform [52], which combines Planet NICFI 
imagery along with C-band SAR imagery captured by Sentinel-1 
C-band at near-high resolution (10 m) [53], and used it to map 
all of SEA’s forests at ~5-m resolution. Our goal was to develop 
a dataset that enables a thorough investigation of the extent to 
which increased image resolution can reduce the rounding 
error problem, and create in the future a new product for mon-
itoring tropical forest dynamics in a region experiencing rapid 
forest change. Combining these 2 different image sources 
allowed us to first investigate whether high-resolution optical 
data are sufficient on its own to reduce forest cover classifica-
tion errors, or whether SAR, with its relative insensitivity to 
atmospheric conditions and greater sensitivity to vegetational 
structural aspects such as height [16], provides additional 
information needed to most effectively minimize error. The 
answer to this latter question is not certain, and therefore of 
broad interest, as other dual-sensor land cover mapping studies 
(e.g., for crop types) have shown that SAR often does little to 
improve classification accuracy relative to multi-spectral opti-
cal data (e.g., [54,55]). To examine the degree to which our new, 
high-resolution maps improved on previous products, we com-
pared the accuracy of our maps with several forest cover maps 
drawn from existing products. We further evaluated how forest 
cover estimates derived from our maps compare to those devel-
oped from other products, assessing differences at the level of 
individual countries, and between different topographic regions 
(highland versus lowland), to more fully examine how round-
ing errors propagate into inventory uncertainties. We also esti-
mated how fractional cover varies with the decreasing resolution, 
to more fully understand the connection between resolution and 
rounding errors.

Our study provides new insight into how well the growing 
availability of high spatiotemporal resolution remote sensing 
can resolve a major source of error in land cover mapping, 
within the context of one of the most extensive applications 
of the newly available Planet data that have been under-
taken to date. Our approach builds on recent efforts by the 
Earth observation community to combine SAR and optical 
imagery to improve forest cover detection and classification 
(e.g., [15,20,28,48]).

Methods

Study area
SEA contains about 15% of the world’s tropical forests and is 
an important hotspot for global biodiversity and carbon stor-
age [4]. Spanning a land area of 4.5 million km2, this region is 
composed of 11 countries (Fig. 1): Brunei, Cambodia, Lao PDR, 
Myanmar, Philippines, Thailand, Timor Leste, Vietnam, 
Singapore, Malaysia, and Indonesia. Of them, Cambodia, Lao 
PDR, Myanmar, Thailand, and Vietnam belong to the Greater 
Mekong Subregion (https://greatermekong.org/), while the other 
countries are largely maritime with wetter climates. This region 
extends over the longitude–latitude domain of 92.19° to 141.02°E 
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and −11.00° to 28.55°N. Based on the Global Mountain Biodiversity 
Assessment (GMBA), about 1.7 million km2 (38%) of this area’s 
land surface are mountains (black points in Fig. 1; [56]).

Agricultural expansion is currently a key driver of forest loss 
in SEA, where dramatic acceleration in forest loss was found 
in highlands (areas above 300-m elevation) over the last decade 
[11,57,58]. A recent study suggested that 7 of the SEA countries 
made the list of the world’s top 15 in forest carbon loss during 
the 21st century, including Cambodia, Indonesia, Lao PDR, 
Malaysia, Myanmar, Thailand, and Vietnam [57]. In Indonesia 
and Malaysia, high forest loss was largely driven by the expan-
sion of commodity agriculture, including oil palm [11]. In other 
countries, forest loss was associated with both commodity and 
small-scale agriculture expansion [59]. The extent of forest loss 
and its complex drivers make SEA an ideal region for our anal-
ysis, which focuses on the uncertainties in forest loss mapping 
in complex terrain [57,60].

Satellite data
Planet’s satellite imagery
We used Planet optical imagery (https://www.planet.com/nicfi/) 
to label samples, train the classification algorithm, and map the 

classification results. Planet operates the SkySat and PlanetScope 
Earth-imaging constellations, which contain 200 satellites. SkySat 
is a constellation of 21 high-resolution Earth-imaging satellites 
that have been launched gradually since 2013 ([50]; https://
www.planet.com/products/). The SkySat constellation has a 
sub-daily revisit time, collecting images over the same target 
area up to 6 to 7 times, with a maximum of 12 times per day. 
Individual satellites have a 4- to 5-day revisit time on average, 
and they are capable of capturing up to 400 km2 day−1. 
PlanetScope is a constellation of approximately 130 satellites 
that can image the entire Earth's surface each day (collection 
capacity of 200 million km2/day). The constellations have a spa-
tial resolution of 0.72 to 0.8 m for SkySat and 3.7 m for 
PlanetScope. Each satellite provides blue, green, red, and near- 
infrared (NIR) images.

Planet provides a basic scene product, an ortho scene prod-
uct, and an ortho tile product, based on satellite product pro-
cessing levels [50]. Importantly, Planet has reprocessed the 
SkySat and PlanetScope imageries through NICFI (https://www.
planet.com/nicfi/) at the Ortho Tile product level, which selects 
the best imagery to represent every part of the coverage area 
during leaf-on periods from June to November based on cloud 

Fig. 1. Geographical location of the study area (black points represent highland regions with elevations above 300 m).
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cover and acutance (image sharpness). Non-commercial users 
can freely access the 4.77-m semiannual analysis-ready mosaics 
of the world’s tropics for the years 2015 to 2022 [52]. As the 
resolution varies with latitude, 4.77 m is the maximum pixel 
dimension, occurring at the equator. Moreover, the NICFI base 
maps incorporate advanced atmospheric correction and cloud 
masking algorithms, enhancing the quality of the imagery.

Sentinel-1 SAR imagery
Based on prior work demonstrating the applicability of SAR 
products for land-cover mapping [15,16,20], we chose the 10-m 
resolution dual-polarization Ground Range Detected (GRD) 
scene (VV + VH) aboard Sentinel-1 to map tropical forests 
from 1 June 2019 to 30 November 2019 in the GEE platform. 
We selected the SAR data to address potential overestimation 
resulting from confusion with herbaceous vegetation, as well 
as potential underestimation due to optical satellite observa-
tions omitting deciduous or semi-deciduous characteristics 
[16]. Briefly, the Sentinel-1 satellites acquire C-band SAR 
imagery independent of time of day or weather [53]. Sentinel-1 
A and B were launched in April 2014 and April 2016, respectively. 

Their repeat cycle is 12 days for a single satellite or 6 days for 
a dual-satellite constellation. Sentinel-1 SAR data products 
provide single polarization (VV or HH) for Wave mode, and 
dual (VV + VH or HH + HV) or single (HH or VV) polariza-
tion for SM, IW, and EW modes. The GEE platform contains 
all of the GRD scene data from October 2014 to the present 
[52]. Each scene has one of 3 resolutions (10, 25, or 40 m), 4 
band combinations (VV, HH, VV + VH, and HH + HV), and 
3 instrument modes (SM, IW, and EW). These data were 
pre-processed with the Sentinel-1 Toolbox for thermal noise 
removal, radiometric calibration, and terrain correction.

Mapping approach

To undertake our assessment, and to improve fine-scale map-
ping of forest cover, we developed a machine-learning approach 
that applied the Random Forests (RF) model [61] to Planet and 
Sentinel-1 imagery within the GEE platform. The workflow 
involved collecting satellite imagery and existing land cover 
products, constructing labeled samples, developing an RF clas-
sifier, and implementing the machine learning algorithms into 

Fig. 2. Workflow for mapping Planet/Sentinel-1 LC and area as well as spatial comparisons among existing high-resolution forest cover products.
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which labeled samples were separated into training, testing, 
and product comparison datasets (Fig. 2). We defined trees as 
all vegetation over 5 m in height, labeled as forest pixels. To 
investigate the performance of the method, we compared the 
Planet/Sentinel-1 forest cover with existing forest cover prod-
ucts of various resolutions (i.e., Globeland30, GLC-FSW30, 
GFW LC, PALSAR FNF, and ESA LC) as well as selected FAO 
Forest Resource Assessments (see below).

Construction of labeled samples
A total of 37,345 samples (at ≤4.77-m resolution) were labeled 
forests and non-forests by visual interpretation of Planet imagery 
in 2019, including the following: 20,607 training samples (Fig. 3A; 
11,479 forest samples and 9,128 non-forest samples), 13,738 
testing samples (Fig. 3B; 7,591 forest samples and 6,147 non-forest 
samples), and 3,000 product comparison samples (Fig. 3C; 
1,982 forest samples and 1,018 non-forest samples). We mapped 
samples without orchards and plantations.

During the labeling stage, 23,046 random points within the 
entire study area were first generated. The points were then man-
ually identified in QGIS as forests and non-forests using online 
Planet base maps in the Planet’s Explorer and the tree height of 
[62]. Another 14,499 samples were manually labeled in ran-
domly selected Planet scenes of each 2 × 2° grid cell (Fig. 3D), 
based on locally downloaded Planet imagery at the polygon level, 
which was collected to ensure precise identification of land use 
types in some locations related to complex underlying surface 
environments, such as the deforestation frontiers and boundary 
changes related to a variety of contemporary activities.

Finally, 3,000 samples were randomly extracted from the 
labeled 23,046 samples to compare the mapped Planet/Sentinel-1 
forest cover with existing forest cover products (Fig. 3C). The 
remaining samples were combined with the 14,499 samples (a 
total of 34,345 samples) to train and test the RF model.

Developing an RF classifier
Machine learning algorithms have already demonstrated their 
effectiveness in creating land-cover and land-use change (LCLUC) 

maps [9,63,64]. RF-based ≥machine learning algorithms in par-
ticular have been widely applied to mapping LCLUC [23,65] 
because of their relatively simple and accurate ensemble [61,66]. 
By applying a “wisdom of crowds” approach, the RF algorithm 
aggregates numerous, independently trained decision trees to 
learn from a diverse set of data, leading to stable and general-
izable prediction results. Each tree in the RF makes a class pre-
diction, and the class with the most votes becomes the model’s 
prediction [61].

The first step in developing the RF-based machine learning 
algorithms involved preparing 7 inputs (Table 1) for mapping 
Planet/Sentinel-1 forest cover products, including the reflec-
tance values from the Planet red, green, blue, and NIR bands, 
the normalized difference vegetation index (NDVI) calculated 
from the red and NIR bands, Sentinel-1 VV and VH values, 
and binary raster (forest/non-forest labels). After loading the 
second biannual Planet red, green, blue, and NIR bands (i.e., 
the time window is June to November) and the Sentinel-1 VV/
VH bands from 1 June 2019 to 30 November 2019 in the Earth 
Engine Data Catalog, we leveraged the GEE mosaic function 
to produce spatially continuous SAR imagery and resampled it 
using bilinear interpolation to match the spatial resolution of 
Planet imagery. The NDVI band was calculated as follows [67]:

where red and NIR represent Planet red and NIR bands, respec-
tively. The training (Fig. 3A) and testing (Fig. 3B) samples in 
the previous section were matched with the input imagery 
based on the same geolocations to obtain a set of predictors 
that were randomly segmented into training and testing data-
sets. Then, the RF model parameters were set to 100 trees with 
others remaining at their default values. Next, the RF models 
were trained and tested repeatedly until the accuracy stabilized 
(see the next section). The trained model was then used to 

(1)NDVI =
NIR − red

NIR + red

Fig.  3.  Spatial distributions of labeled samples using visual interpretation and 
randomly selected Planet scenes of each 2 × 2° grid cell. (A) Training samples, 
(B) testing samples, (C) product comparison samples, and (D) randomly selected 
scenes within each 2 × 2° grid cell. The number of samples is aggregated into 100 km2.

Table 1. Inputs for mapping Planet/Sentinel-1 forest cover product.

Satellite band 
type

Spatial reso-
lution/m

Temporal 
resolution

Function

Planet red 
band

4.77 Biannual 
(December 
to May and 

June to 
November)

Identify the 
2-dimension-
al structure 

of vegetation 
and particu-
larly foliage 

cover

Planet green 
band

Planet blue 
band

Planet NIR 
band

Planet NDVI 
band

Sentinel-1 VV 
band

10 6-day/12-day 
repeat cycle

Relate to 
structure 

and biomass 
information of 

forests

Sentinel-1 VH 
band

https://doi.org/10.34133/remotesensing.0064
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create predictions within 2 × 2° grid cells, which were used 
to reduce the amount of data per serving, followed by several 
post-processing steps (mosaic, mask, project, etc.), resulting in 
final classification maps for the SEA region that constitute the 
Planet/Sentinel-1 forest cover product for 2019.

To evaluate the degree to which Sentinel-1 added extra 
information that helped the classifier distinguish between forest 
and non-forest, we trained 2 versions of the model: one using 
only the Planet variables, and the other including both Planet 
and Sentinel-1 variables.

Accuracy assessment of the classification map
The performance of the RF classifiers was assessed using the 
9,738 testing samples (Fig. 3B). The assessment was based on 
the F1 score [68], overall accuracy, producer accuracy, and user 
accuracy, which was based on the confusion matrix [69]. Here, 
we had not adopted confidence intervals for accuracy measures 
because of the supplemented polygon samples [49,70,71]. Add-
itionally, the model training and testing were repeatedly per-
formed to minimize the impacts of unevenly distributed trained 
and tested samples on the RF model.

Comparison with existing forest cover products
Finally, we compared our Planet/Sentinel-1 forest cover map 
with other forest cover products through the sample- and area-
based assessments, as well as through spatial comparison at the 
cell level to investigate how well the rounding error was resolved 
within different geographies, such as within different countries 
or for montane areas [15,16]. The other forest cover products 
included the following (Table 2): (a) Globeland30 [17], (b) the 
global 30-m land-cover classifications with a fine classification 
system (GLC-FCS30; [21,22]), (c) Global Forest Watch (GFW)-LC 

[9], (d) European Space Agency land cover (ESA-LC; [20]), 
and (e) PALSAR forest/non-forest map (FNF; [16]). We also 
used country forest statistics data from the Forest Resources 
Assessment (FRA) of the Food and Agriculture Organization 
(FAO) to assess our classification map at the country scale [18]. 
To create forest cover maps from the 3 land cover datasets (1, 
2, and 4), we converted all forest-related and non-forest classes 
into 2 separate classes to produce binary maps. It can be chal-
lenging to select images with the same time reference to reduce 
errors in our mapping process. However, we have made efforts 
to choose images that are as closely aligned as possible with the 
time of our mapping, to minimize any discrepancies.

In the sample-based evaluation stage, we compared the per-
formance of our maps with that of existing forest cover prod-
ucts using the 3,000 product comparison samples (Fig. 3C) at 
±95% confidence intervals [70].

To compare the variability in forest inventory estimates aris-
ing from each product, we calculated from each set of maps the 
total forest cover for each country in the SEA region, as well 
the total forested area in lowland and highland regions.

We also examined the degree of rounding error by aggre-
gating our maps to the coarser resolution of existing forest 
cover products, then estimating forest cover areas to those cal-
culated from the coarser products. Note that we had not used 
confidence intervals for area estimates, as these were estimated 
for different scales (the continent, countries, and highland/
lowland areas). For simplicity, but consistent with past analyses, 
we defined highlands as areas with elevations above 300 m 
[11,56,72]. This topographic division primarily distinguishes 
mountainous areas from flatter terrain, but we recognized that 
not all lands above 300 m above sea level are mountains per se, 
and some mountainous areas occur at lower elevations.

Table 2. Descriptions of existing forest cover products used for comparison.

Forest cover product Forest definition Sensor Spatial resolution (m) Year Source

Globeland30 Tree cover ⩾ 15%, tree 
height ⩾ 5 m

Landsat TM/ETM+/OLI 30 2020 http://www.globalland-
cover.com/

GLC-FCS30 Tree cover ⩾ 15%, tree 
height ⩾ 5 m

Landsat TM/ETM+/OLI 30 2020 https://zenodo.org/
record/4280923#.

Yj40FdAzaUk

GFW Tree cover ⩾ 15%, tree 
height ⩾ 5 m

Landsat TM/ETM+ 30 2019 www.globalforestwatch.
org

ESA LC Tree cover ⩾ 15%, tree 
height ⩾ 3 m

Sentinel-1 SAR and 
Sentinel-2 MSI

10 2020 https://viewer.
esa-worldcover.org/

worldcover/

PALSAR FNF Tree cover ⩾ 10%, tree 
height ⩾ 5 m

PALSAR 25 2017 https://developers.
google.com/earth-en-
gine/datasets/catalog

FAO FRA Tree cover ⩾ 10%, tree 
height ⩾ 5 m

NA Country scale 2019 https://www.fao.org/
forest-resources-as-
sessment/fra-2020/

country-reports/

Planet/Sentinel-1 LC Tree height ≥ 5 m SkySat + PlanetScope 
and Sentinel-1

4.77 m 2019 This study
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Results

Classification results
Based on the test samples (Fig. 3B), the overall accuracy, F1 
score, producer’s accuracy, and user’s accuracy of our Planet/
Sentinel-1-based forest map for 2019 were 0.937, 0.942, 0.953, 
and 0.931, respectively (Table 3). These scores are slightly higher 
than those for the Planet-only forest cover map for 2019, which 
were 0.908, 0.923, 0.942, and 0.905, respectively. The improve-
ment associated with the incorporation of Planet and Sentinel-1 
compared with using only the Planet optical imagery (Table 3) 
mainly results from the additional information on the structure 
and forest biomass provided by SAR imagery [16,25,73]. This 
confirmation was supported by comparing forest cover maps 
generated using imagery from both Planet and Planet/Sentinel-1 
(Fig. S1), as well as by considering the importance calculated 
from the individual band input analysis, which revealed high 
importance values for VV and VH bands (Fig. S2). The pro-
ducer’s and user’s accuracies for non-forest classifications also 
showed similar levels of improvement in the Planet/Sentinel-1 
version compared to the Planet-only variant (Table 3).

As seen in Fig. 4, large areas of montane forests occur in 
Indonesia, Malaysia, and the highlands of mainland SEA, while 
only a small fraction of the lowlands were forested. The total 
forest area determined with the Planet/Sentinel-1 approach was 
approximately 3,236,276 km2 (68.6%), with Indonesia having 
the largest forest area (1,571,977 km2) and Brunei the smallest 
(5,383 km2) (Fig. 4). We excluded Singapore from this analysis 
as the forested area is just ~160 km2. Forests in montane SEA 
total 1,445,479 km2, indicating that ~85% of the mountain area 
(1.7 million km2) is forested. In addition, the mountain share 
of the region’s total forested area (44.7%) exceeded the 38% 
estimated by Körner et al. [56] in a recent global mountain 
inventory.

We further assessed our classification results by comparing 
our Planet/Sentinel-1 map and ESA forest maps to Planet 
imagery (Figs. 5 to 7) at 6 locations that represent the variety 
of landscape complexities found in both the highlands and the 
lowlands (red points in Fig. 4). We found good visual agree-
ment between our classification results and the original Planet 
imagery, distinguishing clearly between forested and non- 
forested areas that were associated with residential areas, roads, 

Fig. 4. Classification maps of forests (green) and non-forests (gray) using Planet and Sentinel-1 imageries in 2019. Red points represent the 6 selected areas of enlarged Planet 
imagery as well as Planet/Sentinel-1 and ESA forest maps (Figs. 5 to 7).
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highland deforestation, and other small-scale features. In com-
parison, the ESA LC classification was less consistent with the 
Planet imagery collected from a similar period, likely due to 
the coarser satellite imagery used in the ESA LC. Noticeable in 
the ESA LC map was the inability to capture small forest frag-
ments and the greater irregularity of many forest edge bound-
aries (Figs. 5 to 7). The discrepancy between the 6 maps 
supports our underlying premise that high-resolution satellite 

imagery is crucial for mapping land cover accurately in com-
plex and often fragmented environments. The forest area for 
the 6 map scenes ranges between 4.5 and 123.1 km2 by Planet/
Sentinel-1 LC (5-m resolution) versus 4.6 and 128.0 km2 by 
ESA LC (10-m resolution) (Table 4), with a relative difference 
between the 2 LC products (ESA − Planet/Sentinel-1) ranging 
from −4.4% (Map scene 5) to +36.8% (Map scene 4). In gen-
eral, the ESA product tended to overestimate forested areas 
relative to our maps. The comparison shows the ability of the 
high-resolution satellite approach to classifying small, isolated 
forest patches and large individual trees as well as small or 
narrow areas of non-forest.

Accuracy comparison of forest cover products
We also compared the performances of our new forest cover 
map with existing mainstream forest cover products at ≥25-m 
resolutions generated using optical-only, SAR-only, or both 
sensors. Specifically, a comparison of our Planet/Sentinel-1 
forest map with 5 existing forest products (i.e., Globeland30, 
GLC-FCS30, GFW LC, PALSAR FNF, and ESA LC) at 3,000 
randomly selected samples (Fig. 3C; ±95% confidence intervals) 
showed that the Planet/Sentinel-1 LC approach performed the 
best with an overall accuracy of 0.896 ± 0.011 (Table 5). The 
optical-only or SAR-only forest products with coarser resolution 
(≥25 m) exhibited lower accuracy than our mixed approach. 
The 10-m ESA LC map had higher producer’s (0.915 ± 0.011) 
and overall (0.804 ± 0.014) accuracies than the other methods 
but with a lower user’s accuracy of 0.811 ± 0.016. We observed 
that GLC-FSW30 and PALSAR exhibited lower user's accura-
cies, which can be attributed to the stringent filters applied 
to the training data for GLC-FSW30 and the limitation in iden-
tifying low-height bushes for PALSAR. Thus, the combina-
tion of SAR and optical Planet imagery can achieve higher 
accuracy in mapping forest cover than existing forest cover 
products with medium resolutions. However, one must under-
stand that it is not completely fair to assess the accuracy of the 
other forest cover maps against a benchmark derived from 
labels developed specifically for this study.

Resolution of rounding errors
We investigated how well-rounding errors were resolved by our 
Planet-Sentinel 1 forest cover map by comparing total forest 
area estimates and differences in pixel-based estimates of frac-
tional forest cover relative to other products. Again, rounding 
errors occur when one or more land-cover types constituting 
the minor share of a pixel are classed as the type covering the 
larger share.

Comparison of forested area estimates
We found large differences in national-scale forest cover esti-
mates derived from the various products (Table 6). Notably, 
the FAO estimates are the lowest, likely because assessments 
are derived from reports by officially nominated national 
correspondents, and supplemented with remote sensing-based 
analysis [18]. The estimates for the other 6 products ranged from 
2.616 million (PALSAR FNF) to 3.493 million km2 (ESA LC). 
The country-specific forest cover estimates calculated from ESA 
LC were higher than our Planet/Sentinel-1 LC estimates for 9 
of 11 SE Asian countries, ranging from 2% lower in Cambodia 
to 28% higher in Thailand (Table 6). Conversely, the PALSAR 
FNF forest cover estimates were lower in 9 of 11 countries than 
those determined using our approach, varying from −52% 

 Planet imagery for dot 1  Planet imagery in dot 2

 Planet/Sentinel-1 LC for dot 1 Planet/Sentinel-1 LC for dot 2

 ESA LC for dot 1 ESA LC for dot 2

A B

C D

E F

Fig. 5 Enlarged Planet imagery as well as Planet/Sentinel-1 and ESA forest maps for 
2 selected focus locations for assessment of built-up fields in the lowlands. (A and 
B) Planet imageries, (C and D) Planet/Sentinel-1 forest map (this study), and (E and 
F) ESA forest maps for focus points 1 and 2 in Fig. 4.

Table 3. Evaluation of Planet/Sentinel-1 forest maps.

Satellite 
sources

Land 
cover 
type

Overall 
accu-
racy

Pro-
ducer's 
accu-
racy

User's 
accu-
racy

F1 
score

Planet/
Sentinel-1

Forests 0.937 0.953 0.931 0.942

Non-
forests

0.918 0.943

Planet 
only

Forests 0.908 0.942 0.905 0.923

Non-
forests

0.860 0.913
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(Philippines) to +8% (Myanmar). The closest estimates to ours 
were those based on Globeland30. The range in differences was 
−14% for Vietnam and +17% for Myanmar. The total forest area 
estimated by these 2 products was 3.236 and 3.188 million km2 
for Planet/Sentinel-1 LC and Globaland30, respectively. In gen-
eral, estimates from the lower-resolution products tended to be 
lower than ours, except for ESA LC, which yields the highest 
forest cover amount (3.493 million km2) despite having a reso-
lution of only 10 m, likely because of the lower tree height defi-
nition. This departure suggests that, although fine- resolution 
forest products can detect more patches than those developed 
from coarser-resolution imagery [14,39,48], other aspects of the 
classification approaches to influence the outcome, such as 
choices made during the model development process.

Forest cover estimates derived from the different products 
for lowland and highland areas in SEA showed similar patterns 
to the country-level comparisons (Table 7). The ESA LC-based 
estimates were 8% higher than those of Planet/Sentinel-1 LC 
for both lowlands and highlands, while Globeland30 again 
produced values similar to those of Planet/Sentinel-1 LC, with 
an estimate that was 3% higher for lowlands and 5% lower for 
highlands. The other products had cover estimates that ranged 
between 2 and 29% lower for lowlands and highlands relative 
to Planet/Sentinel-1 LC. For all products, the classification 
differences, relative to our product, were highest for the low-
lands, which is a result that is contrary to our premise that 
resolution differences among products would manifest the 
most in montane areas [11,14,57]. For example, the lowland 
forest cover estimate from the Globaland30 product was 90 
million km2 lower than from Planet/Sentinel-1, while the 
highland estimate was 42 million km2 higher. Furthermore, 
the more than 257 million km2 difference in the forest cover 
estimate from ESA LC relative to ours is primarily related to 

forest differences in the lowland area (+140 million km2), 
rather than the highlands (+117 million km2). This result 
reflects a higher degree of fine-scale complexity in lowland 
landscapes, such as solitary trees, rock outcrops, and linear 
road and stream features, that cannot be easily resolved with 
coarse-scale sensors.

Comparison of pixel-scale fractional cover estimates
We aggregated the pixels in our product from the original 
4.77-m spatial resolution to match the resolutions (10, 25, and 
30 m) of the 5 corresponding forest cover products, converting 
the classifications into fractional cover estimates within those 
cells having forest cover in the other product. Figure 8A shows 
the spatial distribution of forest cover fractions aggregated into 
the Globeland30 map, while the fractional cover maps based 
on the other products are shown in Figs. S3 to S6. Although 
there were differences in forest cover locations between the 
different products, we found that pixels with lower forest cover 
fractions are consistently located along known deforestation 
frontiers (Fig. 8A). Forest fractions in the Greater Mekong 
Subregion also tended to be smaller than those in maritime 
SEA, with values typically less than 0.6. The geometrically 
irregular forms along deforestation frontiers, therefore, tend to 
cause large uncertainties in existing forest cover products, 
even though the resolution of the satellite imagery used to 
make them is relatively high (25 to 30 m). The map aggregated 
to ESA LC forest pixels had larger fractional cover values than 

 Planet imagery for dot 5  Planet imagery in dot 6

 Planet/Sentinel-1 LC for dot 5 Planet/Sentinel-1 LC for dot 6

 ESA LC for dot 5 ESA LC for dot 6

A B

C D

E F

Fig. 7.  (A to F) Same as Fig. 5, but for assessment of forest extent in the highlands 
with elevations above 300 m.

 Planet imagery for dot 3  Planet imagery in dot 4

 Planet/Sentinel-1 LC for dot 3  Planet/Sentinel-1 LC for dot 4

 ESA LC for dot 3  ESA LC for dot 4

A B

DC

E F

Fig. 6.  (A to F) Same as Fig. 5, but for assessment of dominant croplands in the 
lowlands.
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those created to match other forest cover products at the same 
locations (Fig. 8), given the lower omission error in that prod-
uct, which further verifies that higher-resolution imagery 
improves forest cover estimates.

We further calculated the proportions of forest cover frac-
tion maps, as depicted in Fig. 8 and Figs. S3 to S6, within spe-
cific intervals: 0 to 0.1, 0.1 to 0.25, 0.25 to 0.4, 0.4 to 0.6, 0.6 to 
0.8, and 0.8 to 1. We chose the intervals of 0 to 0.1 and 0.1 to 
0.25, which are commonly used thresholds for defining forests 
by FAO [18] and Hansen et al. [74]. The proportion results are 
shown in Fig. 9 and Table S1. Our findings revealed that the 
forest cover maps within the intervals of 0 to 0.8 all exhibited 
non-negligible proportions ranging from 0.011 to 0.036 (Fig. 
9 and Table S1). Meanwhile, the forest cover maps within the 
intervals of 0 to 0.1 and 0.1 to 0.25 showed proportion ranges 
of 0.011 to 0.016 and 0.014 to 0.022, respectively. This indicates 
that using coarser satellite imagery may result in an underes-
timation of forest cover areas. For instance, in the case of 
Globeland30 forest cover fraction maps, the underestimated 
areas within the intervals of 0 to 0.1 and 0.1 to 0.25 were 
47,831 km2 and 63,457 km2, respectively.

Discussion

High-resolution mapping of forest cover
The mixed method for mapping forest cover that we developed 
provides the most detailed and accurate forest cover product 
developed to date for SEA, improving on classification accuracy 
results because high-resolution Planet imagery helps reduce 
the magnitude of rounding errors when classifying forest cover 

([35,37,41]; Fig.8A and Figs. S1 to S4). Improvements were 
most evident in complex lowland areas and along deforestation 
frontiers, where numerous isolated trees and small or narrow 
forest clearings are more numerous, which are features that the 
Planet/S1 approach identified more precisely than the higher- 
resolution (10-m) ESA LC product (Figs. 5 to 8).

Rounding errors occur at any scale of classification of a 
remote sensing product [14,15,37,75–77]. Some early studies 
addressed the impacts of “boundary effect” and “within-class 
variability” on rounding errors based on multisource data, such 
as on-field data, airborne data, or a scene simulation [35,37,41]. 
Recently, several researchers drew attention to this issue along 
deforestation frontiers, locations with small-scale cultivated 
fields, areas with selective logging, and forest extent in dryland 
biomes [27,39,47,75]. These studies all verify that the inability 
to map very small patches and irregular boundaries accurately 
potentially adds uncertainty to initiatives to track forest loss 
and gain at coarse-to-medium resolutions.

The manifestation of rounding errors was evident in the 
forest cover products we derived from existing land cover maps, 
which had substantially different (typically smaller) estimates 
of the forested area than those based on our map. A substantial 
portion of these differences can be explained by the failure of 
coarser resolution products to accurately map large solitary 
trees and small or narrow forest clearings, which are inherently 
part of total tree cover, but not necessarily “forest.” The excep-
tion to this pattern of differences was seen in the ESA-LC prod-
uct, which generally produced larger forested area estimates 
than our product. In this case, the difference was mainly due 
to the product misclassifying non-forest as forest, particularly 
smaller patches; thus, rounding errors were more linked to non- 
forest cover.

These findings related to rounding errors are in line with 
earlier work demonstrating how classification error associated 

Table 5. Accuracy comparison of different forest cover prod-
ucts at ±95% confidence intervals (based on 3,000 random 
samples).

Sensor
Forest 

product
User’s 

accuracy

Pro-
ducer’s 

accuracy

Overall 
accuracy

Optical Globe-
land30

0.816 ± 
0.017

0.837 ± 
0.013

0.768 ± 
0.015

GLC-
FSW30

0.891 ± 
0.015

0.751 ± 
0.013

0.774 ± 
0.014

GFW LC 0.858 ± 
0.016

0.808 ± 
0.012

0.781 ± 
0.014

SAR PALSAR 0.858 ± 
0.017

0.719 ± 
0.013

0.735 ± 
0.015

Optical/
SAR

ESA LC 0.811 ± 
0.016

0.915 ± 
0.011

0.804 ± 
0.014

Planet/
Sentinel-1 

LC (this 
study)

0.911 ± 
0.011

0.931 ± 
0.011

0.896 ± 
0.011

Table 4. Area comparisons of the mapping new forest cover and 
ESA LC at 6 locations.

Map 
scene

Eleva-
tion/m

Area/
km2

Total 
forest 
area/
km2

Area difference 
(%)

Planet/
Senti-

nel-1 LC
ESA LC

1 182 5.8 4.5 4.6 0.1 
(3.6)

2 68 136.1 123.1 128.0 4.9 
(4.0)

3 127 11.5 5.4 5.9 0.5 
(9.7)

4 36 19.1 9.0 12.4 3.4 
(36.8)

5 1,050 53.7 47.4 45.3 −2.1 
(−4.4)

6 845 20.0 19.3 19.9 0.6 
(3.0)

Note: Area difference indicates ESA LC minus Planet/Sentinel-1 LC, and 
the values in parenthesis express the area difference as a percentage 
relative to the area of our forest product.
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with pure pixels tends to increase due to within-class variability 
[35,37,41]. The use of very high-resolution imagery tends to 
improve the classification of the smallest phenomenon. What 
was less expected from our results was that the improvements 
caused by minimizing rounding errors appeared to have a 
larger impact, as measured by differences in forested area esti-
mates, in the lowlands than in the highlands. Previous work 
suggested that moderate-resolution land cover products have 
more error in the highlands than in the lowlands [11]; therefore, 
we expected larger forested area differences there (Table 7). 
However, the lowlands have already experienced extensive 
deforestation and contain a broad mix of land uses [78], par-
ticularly agriculture, creating a complex terrain that includes 
many small isolated trees and forest patches that presumably 
sum to a substantial area. In contrast, highland forests are still 
more intact and the major driver of forest loss has been rela-
tively small agricultural clearings on hill slopes [11]; thus, 
beyond small clearings, the number of isolated forest tree 
patches that share the total area in the highlands is likely 
smaller than in the lowlands, resulting in smaller discrepan-
cies in area estimates in the highlands.

Our modeling approach allowed us to investigate the degree 
to which high-resolution optical imagery from the recently 
available Planet constellation improves large-area forest cover 
mapping, individually and in combination with complemen-
tary remote sensing products, in this case, SAR. We found here 

that using Planet imagery on its own produced accurate (90.8%) 
forest cover maps (Table 3). In addition to improving the ability 
to detect isolated trees and forest patches, it greatly improves 
the delineation of narrow linear features inside forests that 
would normally be classified as trees due to rounding error in 
moderate-resolution products: e.g., roads and riparian systems 
(e.g., Figs. 5 and 8). This capability is valuable for identifying 
both legal logging road networks for forest management as well 
as the unregulated construction of roads/trails that support 
illegal logging [79]. However, despite these high accuracies, the 
model was noticeably improved by including Sentinel-1 SAR 
imagery (93.7%), despite its lower resolution, which came from 
notable increases in the producer’s accuracy for the non-forest 
class and both the user’s accuracy for both classes. Adding SAR 
provided extra information that further improved the ability 
to discriminate between forest and non-forest cover. Given its 
sensitivity to the third dimension of vegetation structure [16], 
whereas optical sensors primarily respond to 2-dimensional 
structure (particularly foliage cover), SAR helps to separate the 
forest from shorter vegetation cover types that may be less 
distinguishable in the optical wavelengths. This is particularly 
true of non-forest, dense vegetation types during leaf-on peri-
ods (e.g., shrublands), which may resemble forests in optical 
imagery [48,80,81]. Beyond this additional information, the 
combination of the 2 sensor types avoids data loss when the 
output of one of the sensors is compromised, for example, by 

Table 6. Country-wide comparison (km2) of different forest cover estimates by the products considered.

Country name FAO FRA Globeland 30 GLC-FCS30 GFW LC PALSAR FNF ESA LC Planet/Sentinel-1 LC

Lao PDR 16,768 205,397 136,542 185,523 198,477 201,340 200,411

Timor Leste 9,225 9,299 10,086 8,965 7,953 10,059 8,801

Cambodia 82,241 94,765 81,138 86,390 70,529 89,679 91,131

Philippines 71,537 202,734 191,027 198,603 99,672 235,013 207,757

Thailand 199,090 230,362 178,905 221,755 236,721 300,066 233,851

Vietnam 145,672 171,125 117,227 172,649 153,421 231,939 199,759

Brunei 3,800 5,308 4,924 5,214 4,897 5,279 5,368

Myanmar 288,336 506,330 439,733 486,800 469,714 508,692 434,146

Malaysia 191,642 279,977 212,807 218,544 217,967 300,777 283,297

Indonesia 927,387 1,483,353 1,268,690 1,401,234 1,157,244 1,610,917 1,571,857

Total 2,085,230 3,188,652 2,641,080 2,985,678 2,616,596 3,493,761 3,236,378

Table 7. Area statistics (km2) of different forest cover products for mountains and lowlands in SEA.

Land type Globeland 30 GLC-FCS 30 GFW LC PALSAR FNF ESA LC Planet/Sentinel-1 LC

Mountains 1,488,035 1,287,271 1,419,734 1,346,113 1,562,537 1,445,579

Lowlands 1,700,616 1,353,809 1,565,945 1,270,483 1,931,224 1,790,799

Total 3,188,652 2,641,080 2,985,678 2,616,596 3,493,761 3,236,378

Mountains/total 0.4667 0.4874 0.4755 0.5145 0.4472 0.4467
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cloud contamination in the case of optical sensors, or by layover 
and foreshortening effects that impact SAR in rugged terrain 
[28,82,83].

These findings build on recent work examining the effec-
tiveness of fine-to-medium with multi-sensor mapping [15,16,48]. 
For example, Qin et al. [15], in comparing user accuracy and 
producer accuracy of forest products at 30- to 500-m resolu-
tions, showed that maps made using optical-only data had the 
highest producer accuracies, while SAR-only or mixed sen-
sors had higher user accuracies. Our results stand somewhat 

in contrast to this, as including SAR boosted producer’s accuracy 
on average more than user’s accuracy, although the user’s accu-
racy improvements resulting from SAR were more uniform 
across both classes (~2.5 to 3 percentage points).

Uncertainties and future work in forest  
cover mapping
Despite these improvements to forest cover mapping, uncer-
tainties and errors remain to be addressed. For example, the 
approach erroneously classified some gaps in intact forest 

Fig. 8. Spatial distribution of forest cover fraction maps from Globeland30 in the SEA area. (A) The mapped 4.77-m Planet/Sentinel-1 LC product was aggregated into cells of 
Globeland30 and represented as the forest fraction (percentage) of the cell. (B) Zoom-in for the selected location of (A).
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stands (Fig. 4), such as in places where rocky or pale soil was 
visible through the sparse canopy, particularly in the dry season 
when the understory was dry [75,84,85]. This issue relates to 
the degradation of classification accuracy with increasingly 
finer image resolution because of within-class variability inho-
mogeneous land covers [35,41]. Overcoming this limitation 
may be achieved through additional training on sparse canopy 
forests [48,80,86] or by applying filters to reduce the pixel noise 
[87]. In locations where forest cover and structure vary greatly, 
such as ridgelines with thin soils and sparse canopies, the clas-
sification may be improved through the incorporation of ter-
rain indices, such as slope, aspect, and elevation [88].

Another source of uncertainty is the fact that many orchards 
and plantations are often classified as forests if unique spatial 
patterns and phenology cannot be discerned [83]. Further, 
while Planet can acquire high-resolution optical imagery at 
frequent time intervals, the resulting cloud-free imagery may 
not, in some cases, represent the maximum leaf-on period, 
which is often in the rainy season. Data from the maximum 
leaf-on period are critical for mapping forest extent accurately 
[23,43–45,89]. Beyond this, while SAR imagery can reduce 
classification errors that are common in optical-only forest 
cover maps, distinguishing unvegetated land cover types, such 
as buildings, rocky ground, and partially bare land, is compli-
cated when their structural characteristics resemble forests 
[15]. Combining SAR and optical products helps resolve this 
issue. A final lingering issue is whether accuracy will be similar 
for mapping non-tropical forests with greater differences in 
seasonality.

Furthermore, it is challenging to distinguish between round-
ing errors and salt and pepper noise in the extracted forest 
cover data. Therefore, in the future, it is imperative to leverage 
deep learning algorithms for accurate forest cover extraction, 
as they have shown exceptional performance when applied to 
high-resolution optical satellite imagery. Additionally, the accu-
racy of our model may have been overestimated due to the use 
of homologous labeled samples for training and testing. 
Therefore, it is necessary to consider alternative methods for 
sample collection to train our developed model, such as auto-
matic sample generation techniques [90].

Conclusions
In this study, we developed an improved fine-scale method 
using an RF model to map high-resolution tropical forest extent 

by integrating Planet and Sentinel-1 imagery in the GEE plat-
form. We found that our classification maps achieved good 
performance for forest cover mapping in the SEA region and 
the overall accuracy and the F1 score of the Planet/Sentinel-1 
forest map were 0.937 and 0.942, respectively. These gains came 
primarily from the ability of high-resolution Planet imagery 
to delineate fine-scale landscape objects, with further improve-
ments provided by SAR’s ability to separate the forest from 
optically similar non-forest cover types. This high-resolution 
multi-sensor approach produced maps that were more accu-
rate than those derived from existing products based on 
moderate-resolution imagery. The accuracy and finer-grain 
of our approach help to resolve the rounding errors that arise 
in moderate-resolution imagery, when small features are com-
bined with a more prevalent class, as demonstrated in our 
comparison of forest cover estimates generated from our map 
with those derived from 10- to 30-m land cover maps (i.e., 
Globeland30, GLC-FSW30, GFW LC, and PALSAR FNF). By 
reducing such rounding errors, our maps generally produce 
larger estimates of lowland forest cover for the SEA region. 
However, despite the fact that our method showed a substan-
tially improved ability to map forests accurately, our method 
and current products all have closer forest area estimates in the 
highlands than in the lowlands, likely because the small-scale 
phenomena that were more effectively detected using our 
approach—small forest patches (including large solitary trees) 
and small or narrow forest clearings—are more prevalent ubiq-
uitous in highly heterogeneous lowland landscapes. We con-
clude that this improved fine-scale mapping approach has great 
potential to accurately monitor changes in forest cover dynam-
ics over large regions, especially in regions where deforestation 
frontiers produce complex, fine-scaled inter-grading of forest 
and non-forest cover types. This approach also offers the poten-
tial for large-area mapping of other cover types characterized 
by isolated or patchy tree cover, such as savannas [91].
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