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Machine Learning in Minecraft
Proof of Concept for Object Detection Oriented Autonomous Bots in Minecraft

John Merkin

Introduction

Machine learning provides innumerable opportunities for 
automation and data analysis. One primary objective for 
machine learning is object detection; object detection 
seeks to identify the location of objects in an image as well 
as determine the most probable class of each object. An 
Interesting challenge is to implement various machine 
learning models into the context of video games and other 
virtual environments. 

Minecraft, an open-world sandbox game, gives players the 
freedom to collect resources and alter the environment as 
they choose. In Minecraft’s survival mode, objectives and 
resources must be collected according to a built-in 
hierarchy. For example, to collect stone, a player must first 
collect wood to craft a pic-axe. As such, this project seeks 
to automate the initial objective of finding and collecting 
wood in a Minecraft virtual environment through 
implementation of a machine learning model. 

Neural Network Architecture

This project utilizes the Ultralytics Yolov8-medium pipeline 
architecture, a convolutional neural network (CNN) 
framework pretrained on Microsoft’s COCO dataset. 
Yolov8 is designed to predict the location and 
classification of objects in images with bounding boxes.

The Yolov8 backbone consists of several interwoven 
convolutional and pooling layers. Between layers Yolov8 
utilizes mosaic augmentation, segmenting images into 
parts and attaching them to other image segments. 
Mosaic augmentation further diversifies the dataset to 
better generalize and stops near the end of training to 
improve performance (Solowetz).

Although pre-trained models are not guaranteed to 
improve accuracy over initially untrained models, pre-
training typically yields improved results over less 
iterations for smaller datasets. Pre-trained models have 
also been shown to have improved robustness and 
generalization to new data (Hendrycks et al). 

Data and Methodology

Training data was collected via sampling image frames 
from videos of Minecraft gameplay recorded with OBS. 
Images were resized into a 512x288 pixel resolution. 510 
unique images were sampled and manually labeled with 
bounding boxes representing 6 classes of Minecraft trees. 
Images were then stretched into a 640x640 resolution and 
exported using Roboflow; 351 images were used for 
training, 105 for validation, and 54 for testing.

Conclusion

As shown above, the model excels at generating bounding 
boxes and gives mostly accurate classifications. The model 
occasionally struggles with classification of acacia trees
outside of their original biome, as seen in the image 
above. Further training the model with mosaic 
augmentation or expanding the dataset would likely 
improve cross-biome classification and robustness for 
objects with similar textures like oak and acacia trees.

Using Mineflayer, implementation of neural networks 
offers much flexibility. Hard-coded behavior, such as the 
collecting, moving, building, and other behaviors of the 
bot can be altered to a programmer’s desire. A new 
dataset on the exterior of caves could be created and 
used to train a new network to identity caves; a dataset 
on ores such as coal, iron, and diamonds can be used to 
train a bot for mining. A state-machine could be used to 
switch between neural networks and behaviors to carry 
out more complex tasks with desirable autonomy.
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Application

Using JSPyBridge to access JavaScript functionality within 
a Python script, the program uses the npm package 
Mineflayer to access API for creating a Minecraft bot. A 
local server hosting a Minecraft world provided a virtual 
environment in which the bot can interact. Using a 
Mineflayer plugin, the bot’s first-person view is displayed 
in an external window with resolution 1296x853.

A screenshot is taken from that window using the 
Selenium library with resolution 1280x720. The open-cv 
library is used to downscale the image into a 512x288 
image and then stretch it into a 640x640 image. The 
trained neural network returns the 640x640 image with 
added bounding boxes and confidence values for each 
predicted class instance. For each bounding box of a given 
class, the center of each box 𝑥𝑐 , 𝑦𝑐 is determined and 
used to generate horizontal (𝜃) and vertical (𝜑) reference 
angles as follows:

𝑥𝑟 =
320 − 𝑥𝑐
320

, 𝑦𝑟 =
320 − 𝑦𝑐

320
,

𝜃 = 𝑥𝑟 ∗ −22.0302 𝑥𝑟
2 + 74.5912 ∗

𝜋

180
,

𝜑 = 35𝑦𝑟 ∗
𝜋

180
.

The 2nd degree polynomial term in 𝜃 was approximated 
using Lagrange Interpolation to account for first-person 
image distortion and is specific to the size of the external 
viewing window. The bot then rotates by 𝜃 and 𝜑 and logs 
the coordinates of the object. After locating each object in 
the frame, a pathfinding algorithm brings the bot to the 
object; it then faces the tree and collects wood. This 
process repeats for each desired object in the frame.

Training Metrics and Results

Running on an Intel i5 12600KF CPU, the network took 1 hour 
and 16 minutes to train over 15 epochs with stochastic 
gradient descent, reaching an overall average precision of 
88.5% at a recall threshold of 50%. Specific precision 
measures for each class are shown below.
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