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Operator Counterparts of Types of Reasoning

Urszula Wybraniec-Skardowska

Abstract. Logical and philosophical literature provides different classi-
fications of reasoning. In the Polish literature on the subject, for in-
stance, there are three popular ones accepted by representatives of the
Lvov-Warsaw School: Jan Łukasiewicz, Tadeusz Czeżowski and Kazimierz
Ajdukiewicz (Ajdukiewicz in Logika pragmatyczna [Pragmatic Logic].
PWN, Warsaw (1965, 2nd ed. 1974). Translated as: Pragmatic Logic.
Reidel & PWN, Dordrecht, 1975). The author of this paper, having mod-
ified those classifications, distinguished the following types of reasoning:
(1) deductive and (2) non-deductive, and additionally two types of them
in each of the two, depending on the manner of combining their premises
with the conclusion through the relation of classical logical entailment.
Consequently, the four types of reasoning:
1.1. unilateral deductive (incl. its sub-types: deductive inference and

proof),
1.2. bilateral deductive (incl. complete induction), and
2.1. reductive (incl. the sub-types: explanation and verification),
2.2. logically nonvaluable (incl. inference by analogy, statistic inference),

correspond to four operators of derivability. They are defined formally on
the ground of Tarski’s axiomatic theory of deductive systems, by means of
the consequence operation Cn (Tarski in Monatshefte Math Phys 37:361–
404, 1930a, C R Soc Sci Lett Vars 23:22–29, 1930b). Also, certain metalog-
ical properties of these operators are given, as well as their relations with
Tarski’s consequence operations Cn+ (Cn+ = Cn) and dual consequences
Cn−1 (Słupecki in Zeszyty Naukowe Uniwersytetu Wrocławskiego Seria B
Nr 3:33–40, 1959, Słupecki et al. in Stud Log 29:76–123, 1971, Wybraniec-
Skardowska, in: Wybraniec-Skardowska, Bryll (eds) Z badań nad teorią
zdań odrzuconych [Studies in the Theory of Rejected Propositions], Series
B, Studia i Monografie, Zeszyty Naukowe Wyższej Szkoły Pedagogicznej
w Opolu, Opole, 1969), and Cn− (Wójcicki in Bull Sect Log 2(2):54–57,
1973)).
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1. Introduction

Let us begin with giving the definition of reasoning which is of interest to us.
Reasoning (i.e. inference in a broad sense) is a thought process in which—
on the basis of sentences that have already been acknowledged or assumed,
called premises of reasoning—one arrives at acknowledgment or justification
of another sentence called a conclusion of reasoning.

In logic we do not study reasoning as a process of thinking but only its
forms, schemata of its premises and conclusion.

Western philosophical literature provides a variety of types of reasoning.
Among them three major kinds of inference are distinguished, namely: de-
duction, abduction and induction (see entry “Abduction” by Douven [3] in the
Stanford Encyclopedia of Philosophy). The problem area of classification of rea-
soning has been dealt with chiefly in texts by Polish researchers. Accordingly,
three classifications accepted by representatives of the Lvov-Warsaw School:
Jan Łukasiewicz [4,5], Tadeusz Czeżowski [2] and Kazimierz Ajdukiewicz [1]
are the most popular. All of them make use of the so called “classical” notion of
logical entailment to some extent. This notion is defined here only for classical
logic CL (classical propositional logic CL* and classical predicate logic). Its
definition is as follows:

The sentences s1, s2, . . . , sn entail logically by virtue of CL, the sentence
s (in other words: from the sentences s1, s2, . . . , sn there follows logically by
virtue of CL, the sentence s) if and only if the implication in the form:
s1 → (. . . → (sn−1 → (sn → s) . . .)) or s1 ∧ (s2 ∧ . . . ∧ (sn−1 ∧ (sn → s)) . . .)
is the substitution of a logical law of CL.

The sentences s1, s2, . . . , sn from which there follows the sentence s (n ≥
1), taken jointly (or their conjunction), are called the reason; the sentence s
is then called the consequence. Transition from the reason to the consequence
determines the direction of the relation of logical entailment. We denote this
relation by �

CL
.

The classification of reasoning proposed in this work (Sect. 2) is a mod-
ification of the above-mentioned classifications of the Polish authors. It also
makes use of the classical concept of logical entailment, yet in a slightly differ-
ent way. It serves to assign appropriate operators to the distinguished types of
reasoning. The definitions of these operators will be given in Sect. 3. Their cer-
tain formal properties are formulated in Sect. 4, while some relations of these
operators with the operations of Tarski’s consequence and dual consequences
are described in Sect. 5.

2. Proposed Classification of Reasoning

The set of all reasonings is dichotomously divided into:

1. set of deductive reasonings, and
2. set of non-deductive reasonings.
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Deductive reasoning is one whose conclusion is logically entailed by its premises
(i.e. its conclusion logically follows by virtue of CL from its premises). Non-
deductive reasoning is one in which its conclusion does not logically follow from
its premises.

Premises of deductive reasoning are a reason, whereas the conclusion is
a consequence. The direction of the deductive reasoning is in agreement with
that of the relation of logical entailment.

The schema of deductive reasoning can be presented in the form of a
quasi-fraction: R

C , where above the bar, as its premises, the symbol of the
reason, R, is placed, while under the bar, as its conclusion—the symbol of
consequence, C.

In classical approach to reasoning deductive reasoning is reliable, i.e. it
always leads from true premises to true conclusions. Non-deductive reasoning
is unreliable: it can lead from true premises to a false conclusion.

Depending on the manner of connecting premises with the conclusion
due to the relation of logical entailment within both types of reasoning, we
can distinguish their two sub-types in each category: i.e., in the type of deduc-
tive reasoning:
1.1. unilateral deductive (incl. deductive inference and proof), and
1.2. bilateral deductive (incl. complete induction, proof of equivalence);
and in the type of non-deductive reasoning:
2.1. reductive (incl. verification, explanation), and
2.2. logically nonvaluable (incl. inference by analogy, statistic inference).

Unilateral deductive reasoning (1.1) is one in which from premises there
logically follows the conclusion, but not conversely—from the conclusion there
do not logically follow premises.

Bilateral deductive reasoning (1.2) is reasoning in which not only from
premises there logically follows the conclusion, but also from the conclusion
there logically follow premises.

Reductive reasoning (2.1) is reasoning in which from premises the conclu-
sion does not follow logically, but from the conclusion (and enthymeme (i.e. an
argument in which one premise is not explicitly stated)) there logically follow
premises. The direction of the reductive reasoning is not in agreement with
that of the relation of logical entailment.

Logically nonvaluable reasoning (2.2) is one in which neither from the
premises there logically follows the conclusion nor from the conclusion there
logically follow premises.

The distinguished four classes of reasoning, pairwise disjoint (see Fig. 1)
will correspond to four operators of derivability, respectively.

However, before we define them (Sect. 3), let us draw attention to the
best-known sub-types of the four distinguished types of reasoning.

The proposed fuller classification of reasoning can be illustrated by means
of Fig. 2.
The type of deductive reasoning (unilaterally deductive 1.1) with the schema:
R
C is usually set against the type of reductive reasoning 2.1 with the schema: C

R .
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Figure 1. The main four types of reasoning
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Figure 2. The best known sub-types of the main types of
reasoning

(Premises in the last ones are Consequence C, while the conclusion—Reason
R).

Due to the manner of selecting (searching) for the reason of a consequence
or for the consequence of a reason in both types of reasoning mentioned above,
we distinguish two sub-types in each category. Thus, the type of deductive
reasoning is divided into sub-types: deductive inference and proof, whereas the
type of reductive reasoning into sub-types: verification and explanation. The
distinguished types of reasoning can be presented in the form of schemata, in
which the arrows ↓, ↑ denote the direction of fitting the consequence to the
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reason, or conversely—the reason to the consequence:

ded. inference proof verification explanation
↓ R

C ↑ R
C ↑ C

R ↓ C
R

Thus, deductive inference is a deductive reasoning in which we fit a consequence
not known to be true to a reason acknowledged to be true, while proof is the
deductive reasoning in which we search a reason acknowledged to be true to
a consequence that is not known to be true. On the other hand, verification
stands for the reductive reasoning in which we fit consequences known to be
true to a reason not known to be so (often a hypothesis), whereas explanation
is the reductive reasoning in which we fit reasons not acknowledged to be true
to the consequence known to be true. The explanation includes, in particular,
incomplete induction and abduction (i.e. explanatory reasoning in generating
hypotheses or explanatory reasoning in justifying hypotheses).

3. Definitions of Operators Corresponding to Main Types of
Reasoning

Reasoning can be defined as an operation on sentences (propositions): a propo-
sition is justified or acknowledged through making reference to other proposi-
tions. Therefore, certain operators (operations) defined on sets of propositions
with values in sets of propositions will correspond to types of reasoning.

3.1. Entailment Relations and Tarski’s Consequence Operation
The considerations in this section intend to take into account a classical ap-
proach to reasoning. On the ground of classical logic CL the relation of logical
entailment �

CL
is equivalent to the classical consequence relation �

CL
(inferential

entailment, deducibility), i.e. a relation defined as follows:
The sentence s is a consequence of (is deducible from) the sentences

s1, s2, . . . , sn (symbolically: {s1, s2, . . . , sn} �
CL

s) iff there exists a proof of the
sentence s on the basis of the set {s1, s2, ...sn} and logic CL.

The relation �
CL

is equivalent to the Tarski’s operation of the classical
consequence Cn = Cn+, i.e. for any set of propositions X and any proposition
x we have:

X �
CL

x iff x ∈ Cn+X.

Thus, it is evident that

X �
CL

x iff x ∈ Cn+X.

Therefore, certain operators (operations) that can be defined by means of the
consequence operator Cn will correspond to the types of reasoning described in
Sect. 2. The properties of these operators will be thus established on the basis of
the properties entitled to the classical consequence operation Cn (Cn = Cn+).
The last properties, on the other hand, are established on the ground of Tarski’s
axiomatic theory of deductive systems based on the classical propositional
logic CL* (see Tarski [14–16], Wybraniec-Skardowska [19]). Let us recall these
properties now.
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3.2. Basic Properties of the Consequence Operation Cn

Let S be the set of all propositions of an arbitrary, but fixed language L and
the consequence operation Cn be a function:

Cn : P (S) → P (S),

which to any set of propositions X of the family P (S) of all subsets of the set
S assigns the set CnX ⊆ S of all propositions deducible from the propositions
of the set X (i.e. the consequences of the propositions of the set X).

We assume that the variables X,Y,Z, . . . run over the elements of the
family P (S) and the variables x, y, z, . . . run over the propositions of the set S.

The consequence operation Cn satisfies the following axioms of Tarski’s
general theory of deductive systems (cf. Tarski [14]):

A1. card(S) ≤ ℵ0 −− denumerability of the set S,
A2. X ⊆ CnX −− the consequence Cn is reflexive,
A3. CnCnX = CnX −− the consequence Cn is idempontent,
A4. X ⊆ Y ⇒ CnX ⊆ CnY −− the consequence Cn is monotonic,
A5. CnX ⊆ ⋃{CnY : Y ∈ Fin(X)} −− the consequence Cn is finitistic,

where Fin(X) denotes the family of all finite subsets of the set X.

3.3. Basic Properties of the Classical Consequence Cn+

If the classical consequence operation Cn (Cn = Cn+) is based on the classical
propositional logic CL* with primitive notions corresponding to the symbols:

→,¬,∧,∨
representing the propositional connectives, respectively: implication, negation,
conjunction, disjunction, then their metalogical counterparts for the language
L are, respectively:

c, n, k, a

and the classical consequence Cn (Cn = Cn+) satisfies additionally the fol-
lowing specific axioms of the so-called reached theory of deductive systems
based on the logic Cn* (cf. Tarski [15], Pogorzelski and Słupecki [8]):

A6+. cxy,nx, kxy, axy ∈ S,
A7+. cxy ∈ Cn+X ⇔ y ∈ Cn+(X ∪ {x}),
A8+. Cn+{x,nx} = S,
A9+. Cn+{x} ∩ Cn+{nx} = Cn+∅,
A10+. Cn+{kxy} = Cn+{x, y},
A11+. Cn+(X ∪ {axy}) = Cn+(X ∪ {x}) ∩ Cn+(X ∪ {y}).

On the basis of the condition A10+ we can easily state that deducibility from
a finite set of propositions of the set S is the same as deducibility from the
conjunction of these propositions.

Conjunction of the finite number of propositions x1, x2, . . . , xm (m ≥ 1)
can be defined inductively as follows:

Dk. 1. k(x1) = x1,
2. k(x1, x2, . . . , xn, xn+1) = k(k(x1, x2, . . . , xn), xn+1), for any n ≥ 1.
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A generalization of A10+ is the valid formula

Tk. Cn+{k(x1, x2, . . . , xn)} = Cn+{x1, x2, . . . , xn}, for any n ≥ 1.

Proof of Tk is inductive. Tk follows from Dk, A10+ and A7+ ←, A7+ →.
Further in this work, we will also use the notion of set KX of all conjunc-

tions built from different sentences of the set X. It is defined by the following
formula:

DK. x ∈ KX ⇔ ∃x1, x2, . . . , xn ∈ X(x = k(x1, x2, . . . , xn)).

From DK it directly follows that
K1. K{x} = {x}.
K2. k(x1, x2, . . . , xn) ∈ K{x1, x2, . . . , xn},
K3. X ⊆ KX,
K4. X ⊆ Y ⇒ KX ⊆ KY.

Let us note that most often a deduction from a finite set of propositions can
be reduced to a deduction from a single proposition—a conjunction of the
propositions of the finite set (see Tk).

Using the consequence Cn+, we can define an operation Cn+1:

DCn+1. Cn+1X = {y : ∃x ∈ X(y ∈ Cn+{x})},

which is also a consequence operation (see Wybraniec-Skardowska [18]) called
the unit consequence operation induced by the consequence operation Cn+, and
on the basis of A5, Tk, DK, A4 we can indeed easily state (cf. [11,18]) that
the following theorem holds:

T1. X �= ∅ ⇒ Cn+X = Cn+1KX and Cn+∅ = Cn+1{cxx}.

We will also make use the following generalized theorem Tk:
Tka. If v1, v2, . . . , vm ∈ KX then Cn+{v1, v2, . . . , vm} = Cn+{x1, x2, . . . , xn}

(n ≥ m > 0),where {x1, x2, . . . , xn} is the set of all propositions of
X which are elements of the conjunctions v1, v2, . . . , vm.

The proof of Tka is inductive and based on DK, Tk, A7+, given below MT1(a)
and the fact that the S-substitution of the following law of CL*:

p1 → (p2 → (. . . → (pn−1 → (pn → p)) . . .) ↔ p1 ∧ (p2 ∧ . . . ∧ (pn−1 ∧ (pn → p)) . . .)

belongs to Cn+∅.
S-substitution of law α of language CL* is the “translation” of α in the

formula of language L, obtained by replacing in α all symbols of language CL*
with the corresponding symbols of language L.

Let us remind about of the important metatheorem on adequacy of ax-
ioms A6+–A11+ for the classical consequence Cn+ with respect to the classical
propositional logic CL*:
MT1. Let LCl be the set of all S-substitutions of the laws of CL∗.Then
(a) The expression ‘LCl ⊆ Cn+∅’ follows from the axioms A1−A5, A6+

−A11+,
(b) If the expression ‘α ∈ Cn+∅’ follows from the axioms A1−A5, A6+

−A11+, then α ∈ LCl .
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3.4. Operators Corresponding to Main Types of Reasoning
As we have already mentioned, certain operators (operations) defined on sets
of propositions (premises) and with the values in sets of propositions (con-
clusions) correspond to the four main types of reasoning discussed in Sect. 2.
Thus, they are the operators Oab (a, b ∈ {+,−}):

Oab : P (S) → P (S)

defined, respectively, by means of the consequence operation Cn+.
Similarly, as it was in the case of deducibility, we assume that derivabil-

ity from a finite set of propositions (premises) of the set S is the same as
derivability from the conjunction of these propositions (premises).

The counterpart of unilateral deductive reasoning is the unilateral deduc-
tive operator O+− defined in the following way:

D+−. y ∈ O+−(X) ⇔ ∃x ∈ KX(y ∈ Cn+{x} ∧ x /∈ Cn+{y}).
The proposition y is a conclusion unilaterally deductive derivable from the set
of propositions (premises) X iff y is a consequence of some conjunction of
propositions (premises) of the set X but this conjunction is not a consequence
of the conclusion y.

The counterpart of bilateral deductive reasoning is the bilateral deductive
operator O++ defined as follows:

D++. y ∈ O++(X) ⇔ ∃x ∈ KX(y ∈ Cn+{x} ∧ x ∈ Cn+{y}).
The proposition y is a conclusion bilaterally deductive derivable from the set
of propositions (premises) X iff y is a consequence of some conjunction of
propositions (premises) of the set X and this conjunction is a consequence of
the conclusion y.

The counterpart of reductive reasoning is the reductive operator O−+

defined as follows:

D−+. y ∈ O−+(X) ⇔ ∃x ∈ KX(y /∈ Cn+{x} ∧ x ∈ Cn+{y}).
The proposition y is a conclusion reductive derivable from the set of proposi-
tions (premises) X iff y is not a consequence of any conjunction of propositions
(premises) of the set X but this conjunction is a consequence of the conclusion
y.

The counterpart of logically nonvaluable reasoning is the operator O−−

defined in the following way:

D−−. y ∈ O−−(X) ⇔ ∃x ∈ KX(y /∈ Cn+{x} ∧ x /∈ Cn+{y}).
The proposition y is a conclusion logically nonvaluable derivable from the set
of propositions (premises) X iff neither y is a consequence of a conjunction of
propositions (premises) of the set X nor this conjunction is a consequence of
the conclusion y.
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4. Properties of the Derivability Operators Corresponding to
Types of Reasoning

In this section, theorems and metatheorems establishing the properties of the
operators defined in Sect. 3.4 are formulated. More difficult proofs of some of
these theorems will be given in the Appendix.

From the definitions of operators Oab (a, b ∈ {+,−}) we easily get the
following corollaries:

O1. Oab(∅) = ∅, for a, b ∈ {+,−}.
We cannot derive any conclusion from the empty set.

O2. y ∈ Oab(X) ⇔ ∃x ∈ KX(y ∈ Oab({x})), for a, b ∈ {+,−}.
A proposition is a conclusion of any derivability operator Oab (a, b ∈ {+,−})
iff it is the conclusion of only one proposition which is a conjunction of some
premises of that operator.

O3. Oab({k(x1, x2, . . . , xn)}) ⊂ Oab({x1, x2, . . . , xn}),
for n > 1 and a, b ∈ {+,−}.

Derivability from conjunction of propositions is derivability from the set of all
conjuncts of the conjunction.

O4. Oab(X) ⊂ ⋃{Oab(Y ) : Y ∈ Fin(X)}, for a, b ∈ {+,−}
−derivability operators are finitistic.

Corollary O4 follows from the corollaries O2 and O3.
From the definitions of operators Oab (a, b ∈ {+,−}) and the fact K3

we immediately state that

O5. X ⊆ Y ⇒ Oab(X) ⊆ Oab(Y ), for a, b ∈ {+,−}
−derivability operators are monotonic.

Let us establish now for what derivability operators properties reflexivity and
idempotency hold. Proofs of the properties below are given in the Appendix.

O+−1. Card(X) �= 1 ⇒ X ⊆ O+−(X).

So, the unilateral deductive operator is reflexive for every set of premises which
is not a singleton.

O++1. X ⊆ O++(X) − the bilateral deductive operator is reflexive.

The reductive and logically nonvaluable operators are neither reflexive
nor irreflexive. In particular, for the reductive operator O−+ we have only the
following corollary:

O−+1. a. X = {x} ⇒ ¬(X ⊆ O−+(X)),
b. If y ∈ X and Z = {z : z = k(x1, x2, . . . , xn) ∈ KX ∧ ∃i

= 1, 2, . . . , n(xi = y)}, then ¬(Z ⊆ O−+(Z)) and ¬(X ⊆ O−+(Z)).
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The similar corollary, corollary O−−1, is valid for the logically nonvaluable
operator O−−.

O+−2. O+−(O+−(X)) ⊆ O+−(X)
−the unilateral deductive operator is idempotent.

O++2. O++(O++(X)) ⊆ O++(X)
−the bilateral deductive operator is idempotent.

O−+2. O−+(O−+(X)) ⊆ O−+(X)
−the reductive operator is idempotent.

On the basis of the corollaries given in this section we can formulate the
following metatheorems:
MT2. If the operation O+− of unilateral deductive derivability is defined

on any set of propositions different from a singleton, then it is
a finitistic consequence operator in Tarski’s sense.

MT3. The operator O++ of bilateral deductive derivability is a finitistic
consequence operator in Tarski’s sense.

MT4. The operators O+− of reductive derivability and O−− of logically
nonvaluable derivability are not consequences operators in Tarski’s sense.

MT2 follows from corollaries O+−1 (A2), O+−2 (A3), O5 (A4) and O4
(A5).

MT3 follows from corollaries O++1 (A2), O++2 (A3), O5 (A4) and
O4 (A5).

MT4 follows from the fact that operators O+− and O−− are not reflexive
(see corollaries O+−1 and O−−1).

5. Relationships Between Derivability Operations and Classical
and Dual Consequences

In Sect. 1 we defined the unit consequence Cn+1 by means of Tarski’s conse-
quence Cn (Cn = Cn+):

DCn+1. Cn+1X = {y : ∃x ∈ X(y ∈ Cn+{x})},

and we formulated the theorem

T1′. X �= ∅ ⇒ Cn+1KX = Cn+X.

Thus, the deduction from a finite set of propositions is the deduction from
only one proposition which is a conjunction of propositions of the finite set.

The consequence Cn+1 is normal (Cn+1∅ = ∅) and unit because it satis-
fies the condition:

C1. y ∈ Cn+1X ⇔ ∃x ∈ X(y ∈ Cn+1{x})}.

Using the consequence Cn, Słupecki [9] defined the operation Cn−1 and
proved that it is also a consequence operation—the so-called rejection conse-
quence (see [12,18,20,21]). The definition of the operation Cn−1 is the follow-
ing:

DCn−1. Cn−1X = {y : ∃x ∈ X(x ∈ Cn{y})}.
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The consequence Cn−1 is normal (Cn−1∅ = ∅) and unit because it satisfies
the condition:

C1′. y ∈ Cn−1X ⇔ ∃x ∈ X(y ∈ Cn−1{x})}.

The unit rejection consequence Cn−1 is dual to the unit consequence Cn+1

(see [13,22]).
In a similar way as by means of the unit consequence Cn+1 we can define

the finitistic consequence Cn+ (see T1’), with the help of the unit rejection
consequence Cn−1 we can define a dual, with respect to Cn, finitistic conse-
quence Cn−. The theorem analogous to T1’ is the theorem:

T2. X �= ∅ ⇒ Cn−1AX = Cn−X,

where AX is the set of all disjunctions formed of different sentences of the set
X, defined by DA in a analogous way as the set KX (see DK, Dk and K1-K4)
and Cn− is the operation defined by Wójcicki [17] in the following way:

DCn−. Cn−X = {y : ∃Y ∈ Fin(X){
⋂

{Cn+{x} : x ∈ Y } ⊆ Cn+{y}}.

Proof. In the proof T2, we use the following lemma Ta for finite disjunction
(similar to the lemma Tk for finite conjunction) following from Da, the axiom
A+11 (for X = ∅) and the axiom A7+ ←, A7+ →:

Ta. Cn+{a(x1, x2, . . . , xn)} = Cn+{x1} ∩ Cn+{x2} ∩ . . . ∩ Cn+{xn}, for n ≥ 1.

Let X �= ∅. Then

y ∈ Cn−1AX ⇔ ∃x ∈ AX(x ∈ Cn+{y})
⇔ ∃x1, x2, . . . , xn ∈ X(a(x1, x2, . . . , xn) ∈ Cn+{y})
⇔ ∃x1, x2, . . . , xn ∈ X(Cn+{a(x1, x2, . . . , xn)} ⊆ Cn+{y})
⇔ ∃Y ∈ Fin(X){

⋂
{Cn{x} : x ∈ Y } ⊆ Cn+{y}} ⇔ y ∈ Cn−X.

�

Wójcicki’s operation Cn− is a finitistic consequence in the usual sense
(it satisfies Tarski’s axioms A1-A5).

In accordance with T2, we can state that the rejection of a proposition
on the basis of a finite set of propositions is rejection of this proposition on
the basis of only one proposition which is the disjunction of propositions of
the finite set.

Since the unit consequences are normal, T1’, T2 hold and we have: X ⊆
KX, X ⊆ AX, it is easy to notice that the above-given unit consequences are
weaker than the finitistic consequences which are defined by them. Thus,

M5. Cn+1 ≤ Cn+ and Cn−1 ≤ Cn−.

By means of the definitions of the operators given in Sect. 2 it is also easy
to justify that for the operators corresponding to reasonings we have:

M6a. O+− ≤ Cn+ − the (almost) consequence, the unilateral deductive
operator is weaker than the consequence Cn+.
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Thus, if a proposition is unilaterally deductive derivable from a set of propo-
sitions (premises), then it is deducible from this set (is a consequence of this
set) of propositions (premises).

M6b. O++ ≤ Cn+ and O++ ≤ Cn− − the consequence, the bilateral deductive
operator is weaker than the consequence Cn+ and it is weaker than
the dual consequence Cn−.

Thus, if a proposition is bilaterally deductive derivable from a set of proposi-
tions (premises), then it is deducible from this set (it is a consequence of this
set) of propositions and, simultaneously, it is a dual consequence of that set of
propositions (premises).

M6c. O−+ ≤ Cn− − the reductive operator is weaker than
the dual consequence Cn−.

Thus, if a proposition is reductive derivable from a set of propositions (premises),
then it is a dual consequence of the set of propositions (premises).

Proofs of these metatheorems are given in the Appendix, in which we
also give proofs of two further theorems that show the intuitive meaning of
the consequences Cn+, Cn−1, Cn− and operators weaker than them.

The names rejection consequence given to Cn−1 and dual consequence
given to Cn− are related to the following two theorems provable by means of
Tarski’s axioms A1-A5, definitions DCn−1, DCn− and theorem T2:

T3. ∀X(X ⊆ Y ⇒ Cn+X ⊆ Y ) ⇒ ∀X(X ⊆ S \ Y ⇒ Cn−1X ⊆ S \ Y ).
T4. ∀X(X ⊆ Y ⇒ Cn+X ⊆ Y ) ⇒ ∀X �= ∅(X ⊆ S \ Y ⇒ Cn−X ⊆ S \ Y ).

If Cn+ (Cn = Cn+) is the usual consequence, a reliable consequence
which yields true (or accepted as true) conclusions for true (or accepted as true,
respectively) premises, then taking Y to be the set of true (or accepted as true)
propositions, S\Y is the set of false (or nonaccepted as true) propositions, and
by T3 and T4, the expressions rejected on the basis of false propositions (or not
accepted as true) are also false (or not accepted as true, respectively). Thus, if
we denote a reliable consequence, or in other terms—a consequence with respect
to acceptance by Cn+ and assume that Cn = Cn+, then this consequence and
the corresponding unit consequence Cn+1 yield true expressions (or accepted
as true) when applied to true ones (or accepted as true), whereas the rejection
consequence Cn−1 and the dual consequence Cn− with respect to Cn+ always
yields false (or nonaccepted as true) expressions when applied to false (or
nonaccepted as true) premises.

Since the operator Cn+ of classical consequence is reliable, its weaker
operators of unilateral and bilateral deductive derivability O+− and O++ (see
M6a,b) are also reliable (they lead from true premises to true conclusions).
From T4, M6b and M6c it also follows that the bilateral deductive operator
O++ and the reductive operator O−+, as weaker than the dual consequence
operator Cn−, have the property that from false (or nonaccepted as true)
premises lead to false (or not accepted as true) conclusions.
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Final Remarks
• Derivability operators offer a handy tool serving to establish some general

properties of types of reasoning corresponding to them.
• While settling these properties, we accepted the assumption that the

operator consequence Cn (Cn = Cn+) satisfies Tarski’s axioms A1-A5
and axioms A6+, A7+, A10+, A11+ characterizing only the functors c,
k and a, corresponding to connectives of the classical propositional logic
CL*: implication, conjunction and disjunctions, respectively, (we did not
make use of axioms for the functor of negation n). Thus, these properties
do not include some specific properties that are available to certain known
sub-types of reasoning, e.g. indirect proof.

• All the above-mentioned axioms are satisfied by the consequence oper-
ators based on some nonclassical logics assuming classical propositional
calculus CL* and on intuitionistic or minimal propositional calculi (for
example, see [6,7,19]).

• Hence all the properties and relations established for the operator Cn+

in Sects. 4 and 5 are valid for mentioned nonclassical operators of conse-
quences characterized only by axioms for functors c, k and a.

• The properties are transferable thus not only onto the reasonings corre-
sponding to them, which are run on the basis of the classical logic CL,
but also onto reasonings based on the mentioned nonclassical logics.
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Appendix
We give proofs here of corollaries and theorems formulated in Sects. 4 and 5
using the (assumptive) method of natural deduction put forward in the book
of Słupecki and Borkowski [10]. When referring to the axioms A3 and A4 we
use the abbreviation AT.

O+−1. Card(X) �= 1 ⇒ X ⊆ O+−(X).

Proof.
1. Card(X) �= 1 {assum.}
2. X = ∅ ∨ Card(X) > 1 {1}
3. X = ∅ ⇒ X ⊆ O+−(X) {O1}
1.1. Card(X) > 1 ∧ y ∈ X {additional assumption}
1.2. x1 ∈ X ∧ x1 �= y {1.1}
1.3. {x1, y} ⊆ X ∧ k(x1, y) ∈ KX {DK}
1.4. y ∈ Cn{x1, y} = Cn{k(x1, y)} {A2,A10+,A7+, 1.2,MT1(b)}

∧k(x1, y) /∈ Cn{y}
1.5. ∃x ∈ KX(y ∈ Cn+{x} ∧ x /∈ Cn{y}) {1.3, 1.4}
1.6. y ∈ O+−(X) {D+−, 1.5}
4. Card(X) > 1 ⇒ X ⊆ O+−(X) {1.1 → 1.6}

X ⊆ O+−(X) {2, 3, 4}
�

O++1. X ⊆ O++(X)

Proof.
1.1. y ∈ X {additional assum.}
1.2. y = k(y) ∧ K{y} ⊆ X {Dk1,DK, 1.1}
1.3. k(y) ∈ KX ∧ y ∈ Cn{k(y)} ∧ k(y) ∈ Cn{y} {1.2,K3,A1}
1.4. ∃x ∈ KX(y ∈ Cn+{x} ∧ x ∈ Cn+{y}) {1.3}
1.5. y ∈ O++(X) {D++, 1.4}
1. ∀y(y ∈ X ⇒ y ∈ O++(X)) {1.1 → 1.5}

X ⊆ O++(X) {1}
�

O−+1.a. X = {x} ⇒ ¬(X ⊆ O−+(X)),
b. If y ∈ X and Z = {z : z = k(x1, x2, . . . , xn) ∈ KX ∧ ∃i

= 1, 2, . . . , n(xi = y)}, then ¬(Z ⊆ O−+(Z)) and ¬(X ⊆ O−+(Z)).

Proof.

a.
1. X = {x} {assum.}
2. K{x} = X ∧ ¬∃x ∈ KX(x /∈ Cn{x} ∧ x ∈ Cn{x}) {1,K1}
3. ∃y ∈ X(y /∈ O−+(X)) {1, 2,D−+}

¬(X ⊆ O−+(X)) {3}
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b.

1. y ∈ X {assum.}
2. Z = {z : z = k(x1, x2, ..., xn) ∈ KX ∧ ∃i = 1, 2, ..., n(xi = y)} {assum.}
3. y ∈ Z {2, 1,Dk,K2}
4. ¬∃x ∈ KZ(y /∈ Cn{x} ∧ x ∈ Cn{y}) {2,DK,Tk,Tka}
5. ∃y ∈ Z(y /∈ O−+(Z)) ∧ ∃y ∈ X(y /∈ O−+(Z)) {3, 4, 1,D−+}

¬(Z ⊆ O−+(Z)) and ¬(X ⊆ O−+(Z)) {5}

�

O+−2. O+−(O+−(X)) ⊆ O+−(X)

Proof.

1. y ∈ O+−(O+−(X)) {assum.}
2. x1 ∈ KO+−(X) ∧ y ∈ Cn+{x1} ∧ x1 /∈ Cn+{y} {1,D+−}
3. x1 = k(z1, z2, . . . , zn) ∧ zi ∈ O+−(X) for all i = 1, 2, . . . , n {2,DK}
4. vi ∈ KX ∧ zi ∈ Cn+{vi} for alli = 1, 2, . . . , n {3,D+−}
5. {z1, z2, ..., zn} ⊆ Cn+{v1, v2, ..., vn} = Cn+{x′

1, x
′
2, ..., x

′
m}, {4,AT,Tka}

where every x′
j ∈ X forj = 1, 2, . . . ,m and m ≥ n

6. Cn+{k(z1, z2, . . . , zn)} ⊆ Cn+{k(x′
1, x

′
2, . . . , x

′
m)} {5,AT,Tk}

7. Cn+{x1} ⊆ Cn+{v′} ∧ v′ = k(x′
1, x

′
2, . . . , x

′
m) ∈ KX {3,DK, 5}

1.1. v′ ∈ Cn+{y} {add.assum.}
1.2. Cn+{v′} ⊆ Cn+{y} {1.1,AT}
1.3. zi ∈ Cn+{v′} for all i = 1, 2, . . . , n {5,Tk, 7}
1.4. zi ∈ Cn+{y} for all i = 1, 2, . . . , n {1.3, 1.2}
1.5. Cn+{z1, z2, . . . , zn} ⊆ Cn+{y} {1.4,AT}
1.6. k(z1, z2, . . . , zn) ∈ Cn+{y} {1.5,Tk,A2}
1.7. x1 ∈ Cn+{y} {1.6, 3}
1.8. contradiction {1.7, 2}
8. v′ /∈ Cn+{y} {1.1 → 1.8}
9. y ∈ Cn+{v′} ∧ v′ ∈ KX {2, 7}
10. y ∈ O+−(X) {D+−, 9, 8}

O+−(O+−(X)) ⊆ O+−(X) {1 → 10}

�

O++2. O++(O++(X)) ⊆ O++(X)

Proof.

1. y ∈ O++(O++(X)) {assum.}
2. x1 ∈ KO++(X) ∧ y ∈ Cn+{x1} ∧ x1 ∈ Cn+{y} {1,DO++}
3. x1 = k(z1, z2, . . . , zn) ∧ zi ∈ O++(X) for all i = 1, 2, . . . , n {2,DK}
4. vi ∈ KX ∧ zi ∈ Cn+{vi} ∧ vi ∈ Cn+{zi} for all i = 1, 2, . . . , n {3,D+−}
5. {z1, z2, ..., zn} ⊆ Cn+{v1, v2, ..., vn} = Cn+{x′

1, x
′
2, ..., x

′
m}, {4,AT,Tka}

where every x′
j ∈ X for j = 1, 2, . . . ,m and m ≥ n
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6. Cn+{k(z1, z2, . . . , zn)} ⊆ Cn+{k(x′
1, x

′
2, . . . , x

′
m)} {5,AT,Tk}

7. Cn+{x1} ⊆ Cn+{v′} ∧ v′ = k(x′
1, x

′
2, . . . , x

′
m) ∈ KX {6, 3,DK, 5}

8. y ∈ Cn+{v′} {2, 7}
9. {v1, v2, . . . , vn} ⊆ Cn+{z1, z2, . . . , zn} {4,AT}
10. Cn+{v1, v2, . . . , vn} ⊆ Cn+{k(z1, z2, . . . , zn)} {9,AT,Tk}
11. Cn+{x′

1, x
′
2, . . . , x

′
m} ⊆ Cn+{x1}, x′

j ∈ X for all {10, 5, 3}
j = 1, 2, . . . ,m and m ≥ n

12. Cn+{v′} ⊆ Cn+{x1} {11,Tk, 7}
13. v′ ∈ Cn+{y} {12,A2, 2,AT}
14. y ∈ O++(X) {D++, 7, 8, 13}

O++(O++(X)) ⊆ O++(X) {1 → 14}
�

O−+2. O−+(O−+(X)) ⊆ O−+(X)

Proof.
1. y ∈ O−+(O−+(X)) {assum.}
2. x1 ∈ KO−+(X) ∧ y /∈ Cn+{x1} ∧ x1 ∈ Cn+{y} {1,DO−+}
3. x1 = k(z1, z2, . . . , zn) ∧ zi ∈ O−+(X) for all i = 1, 2, . . . , n {2,DK}
4. vi ∈ KX ∧ zi /∈ Cn+{vi} ∧ vi ∈ Cn+{zi} for all i = 1, 2, . . . , n {3,D−+}
1.1. x1 ∈ Cn+{vj} ∧ j ∈ {1, 2, . . . , n} {add.assum.}
1.2. k(z1, z2, . . . , zn) ∈ Cn+{vj} {1.1, 3}
1.3. Cn+{z1, z2, . . . , zn} ⊆ Cn+{vj} {1.2,AT,Tk}
1.4. zj ∈ Cn+{vj} ∧ j ∈ {1, 2, . . . , n} {1.3,A2, 1.1}
1.5. contradiction {1.4, 4}
5. x1 /∈ Cn+{vj} ∧ j ∈ {1, 2, . . . , n} ∧ vj ∈ KX {1.1 → 1.5, 4}
6. vj ∈ Cn+{z1, z2, . . . , zn} {4,AT, 5}
7. vj ∈ Cn+{x1} {6,Tk, 3}
8. y ∈ Cn+{vj} ⇒ Cn+{y} ⊆ Cn+{vj} ⇒ x1 ∈ Cn+{vj} {AT, 2}
9. y /∈ Cn+{vj} ∧ vj ∈ Cn+{y} ∧ vj ∈ KX {8, 5, 7, 2,AT}
10. y ∈ O−+(X) {9,D−+}

O−+(O−+(X)) ⊆ O−+(X) {1 → 10}
�

T3. ∀X(X ⊆ Y ⇒ Cn+X ⊆ Y ) ⇒ ∀X(X ⊆ S \ Y ⇒ Cn−1X ⊆ S \ Y )

Proof.
1. ∀X(X ⊆ Y ⇒ Cn+X ⊆ Y ) {assum.}
2. X1 ⊆ S \ Y ∧ y1 ∈ Cn−1X1 ∧ y1 ∈ Y {indirect assumption}
3. x1 ∈ X1 ∧ x1 ∈ Cn+{y1} {2,DCn−1}
4. x1 /∈ Y ∧ {y1} ⊆ Y {3, 2}
5. Cn+{y1} ⊆ Y {4, 1}
6. x1 ∈ Y {3, 5}

Contradiction {6, 4}
�
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Lemma. ∀X(X ⊆ Y ⇒ Cn+X ⊆ Y ) ⇒ ∀X(X ⊆ S \ Y ⇒ Cn−1AX ⊆ S \ Y )

Proof.

1. ∀X(X ⊆ Y ⇒ Cn+X ⊆ Y ) {assum.}
1.1. X ⊆ S \ Y {additional assumption}
1.2. AX ⊆ S \ Y {1.1,DA (compare DK)}
1.3. AX ⊆ S \ Y ⇒ Cn−1AX ⊆ S \ Y {T3, 1}
1.4. Cn−1AX ⊆ S \ Y {1.3, 1.2}
2. X ⊆ S \ Y ⇒ Cn−1AX ⊆ S \ Y {1.1 → 1.4}

∀X(X ⊆ S \ Y ⇒ Cn−1AX ⊆ S \ Y ) {2}
�

T4. ∀X(X ⊆ Y ⇒ Cn+X ⊆ Y ) ⇒ ∀X �= ∅(X ⊆ S \ Y ⇒ Cn−X ⊆ S \ Y )

Proof. T4 follows from the above given Lemma and T2. �
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