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A B S T R A C T   

The random distribution of pitting corrosion defects in pipelines normally leads to interacting cluster defects that 
behave noticeably different from single metal loss defects. Generally, the probabilistic approaches employ 
explicit burst pressure limit states for corroded pipelines subjected to only internal pressure. However, a sig-
nificant level of conservatism is typically associated with the probabilistic assessments of corroded pipelines 
using the closed-form explicit limit state functions, which presents considerable challenges in maintenance 
planning and risk management. Therefore, this paper proposes a pathway for developing efficient performance 
functions for the assessment of interacting pipeline corrosion clustering defects using probabilistic finite element- 
based reliability method. This seven-stage framework combines multiple uncertainty representation schemes to 
evaluate the probability of failure. The impact of the critical design variables such as the elastic and plastic 
material properties, corrosion features, and interacting cluster defect characterisations are identified to guide the 
burst pressure design, operations and maintenance optimisation. The employed surrogate-based active learning 
reliability approach yielded an efficient probability estimate at a lesser computational cost than the simulation- 
based reliability methods. The proposed framework reduces the conservatism and computational cost related 
with explicit burst pressure limit state functions for corroded pipelines and offers informed decision-making on 
risk and maintenance management.   

1. Introduction 

The geometric, material characterisation and pressure loading pa-
rameters of corroded pipelines with interacting defect features exhibit 
intrinsic uncertainties due to manufacturing and operational processes, 
random distribution of pitting metal loss defects, and defect measure-
ment mechanisms. The structural reliability estimates of corroded 
pipelines accommodating these uncertainties assist in developing cost- 
effective risk and maintenance management plans throughout the ser-
vice life of the pipeline [1]. The reliability estimates of corroded pipe-
lines with non-interacting and interacting defect features have 
historically used closed-form solutions developed from laboratory burst 
pressure experiments coupled with numerical methods using the tradi-
tional reliability methods such as the first order reliability method and 
Monte Carlo simulation (MCS) [2–6]. Valor et al. [2] examined the 
reliability of pipelines using a Monte Carlo reliability framework with 
explicit limit state function utilizing different corrosion rate 

distributions to study the performance of these rates with synthetic and 
real field data. Also, Teixeira et al. [3] assessed the reliability of 
corroded pipelines by employing explicit limit state function derived 
from burst experiments and numerical methods coupled with first order 
reliability method. Similarly, Bhardwaj et al. [4] used first order reli-
ability algorithms and MCS techniques with explicit limit state function 
to evaluate the reliability of thick, highly corroded pipes under internal 
pressure load. Furthermore, Bisaggio and Netto [5] developed the 
structural reliability of corroded pipelines using explicit Det Norske 
Veritas (DNV) limit state function to compute the probability of failure 
of corroded pipelines over the lifecycle. However, these approaches are 
usually computationally expensive and produce results with a high de-
gree of conservatism, especially for corroded pipelines with interacting 
corrosion clustering defects because of the highly non-linear behaviour. 
In a recent review of reliability analysis of part-wall metal loss pipelines 
subjected to internal pressure loads by Amaya-Gómez et al. [7], the 
conservative nature of employing explicit burst pressure limit state 
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functions for reliability calculations for corroded pipes was emphasised. 
Hoang et al. [8] also highlighted the possibility of coupling numerical 
models with MCS to perform reliability analysis but expressed concerns 
on the computational cost. Furthermore, Gong et al. [9] underscored the 
need for a more thorough reliability framework that considers pipelines 
with localised interacting corrosion cluster defects rather than just a unit 
defect. This is highly essential, as very limited research has focused on 
developing a unified approach to evaluate interacting pipeline corrosion 
cluster defects. 

Therefore, this study proposes a multi-stage probabilistic finite 
element-reliability method (PFERM), developing relevant developed 
surrogate models to estimate the probability of failure of a corroded 
pipeline with interacting corrosion clustering defects. This framework 
combines validated numerical models with probabilistic uncertainty 
quantification to identify machine learning based surrogates for 
applying active learning reliability techniques. The proposed approach 
offers the much-needed advantage of providing reliability estimates for 
corroded pipelines with interacting corrosion cluster defects or complex 
failure systems where, in some circumstances, a closed-form limit state 
function is not available. This unique pathway addresses the identified 

gap in terms of efficiency and computational cost related to burst 
pressure linked reliability assessment. 

The paper is structured as follows: Section 1.0 presents the justifi-
cation for the proposed methodology to estimate the reliability of 
corroded pipelines with interacting metal loss defect features. The de-
tails of proposed reliability approximation approach are provided in 
Section 2.0. Section 3.0 provides the quantification of the material, 
geometric, and pressure loading uncertainties and the related statistical 
analysis. The deterministic and probabilistic numerical modelling is 
described in Section 4.0. The results and outcomes from the reliability 
analysis are described in Section 5.0. The key findings, recommenda-
tions and limitations of this study are summarised in Section 6.0. 

2. Methodology for the probabilistic finite element-based 
reliability of corroded pipelines 

The seven stages of the proposed probabilistic finite element-based 
reliability method as proposed in Fig. 1, comprise the sub-elements of 
the surrogate model-based reliability analyses, leading to the selection 
of robust PFERM approach for risk and maintenance management. 

Fig. 1. Flowchart of Probabilistic Finite Element Reliability Method (PFERM) for evaluation of corroded pipelines.  
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A deterministic finite element-burst pressure model was developed 
in accordance with provisions from Ref. [10] utilizing the estimated 
mean values of the key material, geometric, and loading character-
isations given in Table 1 of Section 3.0. A fully cylindrical meshed pipe 
with the required support systems to the relevant surfaces and nodes was 
modelled to prevent rigid body motion, plain strain settings, contrac-
tion, and expansion. This makes it possible to accurately capture the 
stress distribution of the unsymmetric corrosion clustering defects as 
displayed in Fig. 2. The true stress-plastic strain properties are included 
in the material definition to identify the failure pressure in the plastic 
deformation region of the pipe. The estimated burst pressure is validated 
with equivalent experiment results from Ref. [11] as presented in Sec-
tion 4.1. The uncertainties in the material properties, the pipe and defect 
geometry characterisations, and the loading parameters are calculated 
from 25 sampling points in the burst pressure tests [11,12] under the 
Mixed Type Interaction (MTI) project, and are summarised in Table 1 of 
Section 3.0. 

The initial step of the probabilistic numerical model is to combine 
the quantified uncertainty descriptors into the validated deterministic 
numerical model to generate the design and response sampling points, 
herein referred to as the Design of Experiments (DoE). The DoE 
approach adopts sampling, regression and interpolation techniques to 
derive design and response points that define the location of the critical 
design parameters of the burst model and the true burst pressure 
response of the model. The sampling techniques employed in this study 
include the central composite design (CCD), optimal space-filling design 
(OSFD) and the custom Kriging design. 

The statistical dependency between the pipe material properties, 
internal pressure loading, pipe geometry and interacting corrosion 
cluster defect features are examined by using the Pearson, Kendall and 
Spearman correlation models as illustrated in Fig. 3. In this study, an 
input matrix of correlation coefficients between 11 variables in input 
vector X is computed. Then, the estimated matrix of the probability of 
occurrence, p-value of the null hypothesis of no correlation is tested 
against the alternative hypothesis of a nonzero correlation. If the 
computed rho is close to unity and the corresponding p-value is less than 
the significance level of 0.05, then the null hypothesis of no correlation 
is rejected, resulting in independent variables, which do not require a 
copula for the input model in the surrogate model. Otherwise, a copula 
definition will be required for the statistically dependent input vari-
ables. The sensitivities of the design variables in the DoE are determined 
using a sample-based sensitivity on the sampling points and the resulting 
predictors with significant impact on the burst pressure, which are then 
selected for the surrogate modelling stage. The surrogate model estab-
lishes a non-linear relationship between the design and response points, 
obviating the need for relatively computationally expensive numerical 
models. Regression and direct space interpolation methods such as 
Kriging, sector vector machine regression (SVR) and polynomial chaos- 
Kriging (PCK) approaches are applied to the design of experiments to 
generate the surrogate models with implicit limit states, which are used 

for reliability analyses of the corroded pipe. This is achieved by dividing 
the design of experiments by a ratio into two sets of data for training and 
validation purposes till the best combination yields a desirable level of 
performance. 

The probability of failure of the corroded pipe due to the interacting 
corrosion cluster defects is estimated iteratively using a sample-based 
active reliability scripting on the developed PCK-surrogate model 
which contains the implicit limit state function. This is compared with 
the structural reliability estimates computed with simulation-based 
reliability approaches such as the Monte Carlo simulation, importance 
sampling and subset simulation. The robust PFERM approach for risk 
and maintenance management purposes is selected based on the effi-
ciency of the reliability estimates and the cost of model simulation. 

3. Uncertainty quantification of design variables based on 
published experimental observations 

The suitable probability density distributions for the key variables 
are fitted using statistical approaches as summarised in Table 1. It is 
observed that they closely match the recommended distribution curves 
identified for reliability studies in Refs. [4,13]. The best probability 
density distribution fitting was confirmed by examining the relative 
frequency distributions from the experimental observations (Figs. 4–7), 
and also by performing Anderson-Darling goodness-of-fit tests by 
considering normal, lognormal, Weibull and Beta probability distribu-
tions to ensure that the probability value (p-value) for occurrence of 
such distribution exceeds the chosen significance level. The identified 
statistical descriptors and probability density functions for the random 
variables of the corroded pipeline system are given in Table 1. 

The longitudinal and circumferential interacting corrosion defect 
spacing is the projected absolute minimum distance between the 
corrosion cluster defects in the longitudinal and hoop direction of the 
pipe, respectively. The effective defect cluster length and width is the 
projected total coverage length and width of a group of interacting 
corrosion defects in the longitudinal and hoop direction of a pipeline, 
respectively. The effective corrosion defect depth is the arithmetic mean 
of a group of interacting corrosion defects in a corroded pipeline. The 
histograms and probability plot shown in Figs. 4–7 showcase the vari-
ability of the design variables against the relative frequency or estimated 
cumulative probability respectively, from which the best distribution fit 
is identified for the probabilistic numerical modelling stage. The dis-
tributions for the quantified uncertainties relating to the material, geo-
metric, and metal loss defect parameters are displayed in Figs. 4–7. The 
outliers in the distribution due to the selected fitting distribution curve 
were identified and considered appropriately in the DoE stage to capture 
the variability in the design variables. The material properties displayed 
in Fig. 4 show the relative frequencies based on the observed sample 
size, and therefore normal, lognormal, and Weibull distributions were 
considered. The lognormal distribution was selected as the best proba-
bility density function for the tensile yield strength and ultimate tensile 

Table 1 
Statistical representation of random variables.  

No. Input variables Units Mean Standard deviation Scale Shape or Exponent Location Selected distribution 

1 Tensile Yield Strength (SMYS) MPa 624.480 32.970 0.053 – 6.436 Lognormal 
2 Tensile Ultimate Strength (UTS) MPa 732.000 28.520 0.039 – 6.595 Lognormal 
3 Pressure Magnitude (P) MPa 25.000 0.559 – 2 – Beta 
4 Minimum defect depth (dmin) mm 3.770 2.060 4.199 1.914 – Weibull 
5 maximum defect depth (dc) mm 4.790 1.544 5.452 3.689 – Weibull 
6 Outer Diameter of pipe (D) mm 458.600 0.293 * – * Normal 
7 Pipe wall thickness (t) mm 7.980 0.071 * – * Normal 
8 Effective defect cluster width (Wc) mm 129.420 6.471 136.334 10.168 – Weibull 
9 Effective defect cluster length (Lc) mm 210.000 10.500 221.921 9.632 – Weibull 
10 longitudinal interacting corrosion spacing (SL) mm 30.000 1.500 31.508 9.757 – Weibull 
11 Circumferential interacting corrosion spacing (Sc) mm 21.080 1.054 22.340 10.330 – Weibull 

Note: *-The location and scale for a normal distribution curve is the same as the mean and standard deviation, respectively. 
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strength as it yielded the highest p-value than the normal and Weibull 
distributions. 

The normal distribution curve sufficiently described the variability 
of pipeline diameter and wall thickness parameters, exhibiting nearly 
symmetric characteristics as seen in Fig. 5. 

The Beta distribution fits the internal pressure loading variables as 
seen in the probability plot with 95 % confidence level in Fig. 6. 

The extreme value distribution type III, Weibull probability distri-
bution was the best distribution fit for the available data of metal loss 
defect features (defect depth and length) and the interacting parameters 
in the longitudinal and circumferential direction of the pipe (effective 
corrosion cluster defect length and width, and the interacting corrosion 
cluster defect length in the longitudinal and hoop direction) as illus-
trated in Fig. 7. These skewed unsymmetric distributions exhibited 
significant deviations on one tail of the distribution. 

The modelled continuous probability distribution curves showing 

the probability density function (PDF) and cumulative distribution 
function (CDF) for the described independent material, geometric and 
pressure characterisations in Table 1 are shown in Fig. 8. The PDF dis-
plays the probability description of the considered random variable, 
while the CDF provides the cumulative probability. 

Pipe wall thickness (mm) Tensile Yield strength (MPa). 
Effective corrosion cluster defect length (mm) Internal pressure 

(MPa). 

4. Numerical modelling of corroded pipeline with interacting 
cluster defects 

The process flowchart for the developed numerical modelling, as 
demonstrated in Fig. 9, comprises of a validated deterministic burst- 
pressure FEA model and a probabilistic finite element model. The key 
elements of the deterministic FEA model include model creation, 

Fig. 2. Model configuration, boundary conditions and loading of pipeline interacting corrosion cluster defects.  

Fig. 3. Flowchart of Statistical dependence tests using Kendall and Spearman correlation methods.  
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material properties, and boundary conditions, including loading, 
meshing, and convergence analysis, failure criteria, and validation. The 
main components of the probabilistic numerical model from the vali-
dated deterministic FEA model include uncertainty quantification, 
experimental design using sampling techniques, and goodness of fit 
analysis to select the best model. 

A static deterministic finite element model of corroded pipeline with 
external interacting corrosion cluster defects is produced by employing 
the same configuration (as shown in Fig. 2) from MTI [12] 

burst-pressure test sample number 22. A full-bore pipe is created due to 
the unsymmetrical nature of the defects in the cylindrical pipe by 
specifying the estimated pipe diameter and wall thickness mean - values 
from Table 1. To completely appreciate the stress distribution and de-
formations in the pipeline segment, this study utilizes a pipe length of six 
times the external diameter (6D), which meets the minimum require-
ment of 5D as per BS 7910 [10]. The accurate arc lengths of the corroded 
surface with a depth length (L) and defect depth (d) are computed using 
an arc angle (∅) from the centre of the pipe in a plane as given in 
equation (1), to capture the exact volume of the corroded zones during 
the FEA model generation. A fillet with a radius of 0.05 mm is added to 
the intersections of the metal loss defects in the model geometry to 
minimise the stress concentration areas caused by abrupt ends or cor-
ners. The metal loss-interacting features are parameterized and set to the 
estimated mean - value estimates in Table 1. The arc angle (∅) is given 
by 

∅=

(
L
2

)

(
D
2 − d

).
360◦

2π (1) 

The material properties of the pipe are created using the API 5L X80 
grade carbon steel pipeline by specifying the elastic and plastic prop-
erties from De Andrade et al. [14]. The material’s elastic properties 
comprise Young’s modulus of elasticity, Poisson ratio, and the specified 
minimum yield strength (tensile yield strength), beyond which the 
pipeline experiences plastic (permanent) deformation. The pipe mate-
rial’s plastic properties are obtained by specifying the true stress-true 
strain property, including the ultimate tensile strength, which is the 

Fig. 4. Frequency distributions and lognormal probability fitting curves for the pipe material properties.  

Fig. 5. Frequency distributions and lognormal probability fitting curves for pipe geometry.  

Fig. 6. Probability plot of pressure loadings.  
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maximum stress the pipe material can withstand in plastic deformation 
before it breaks. The model employs a 3-dimensional tetrahedral 
SOLID187 element (with 10 nodes exhibiting three degrees of freedom 
at each node) capable of fully displaying the irregular plasticity 
behaviour of the steel pipeline [15]. The pipe material properties are 
parameterized and set to the mean - value estimates from Table 1. 

The faces of the two ends of the pipe (faces A and B) are restrained in 
the longitudinal direction of the pipe (Uz = 0) to prevent expansion and 
contraction in the longitudinal direction, as illustrated in Fig. 10. The 
two nodes at the extreme pipe end of the corroded pipe are fixed to 
prevent rigid body translation of the model in the three orthogonal di-
rections of the pipe (thus, at nodes C, Ux=Uy=Uz=0). A mean - value 
internal pressure of 25 MPa is applied to the internal surface (Face D) of 
the pipe in a ramp function of 1 MPa per second to reveal the distinctive 
linear elastic section and non-linear plastic behaviour of the corroded 
pipeline. 

The mesh density densities for the corroded region and the pipe body 
are set by specifying the element size along the length, width, and depth 

of each metal loss defect and across the pipe body, respectively, as 
shown in Fig. 11. For this study, the optimum element size is determined 
after convergence analysis as 1 mm along the defect length and width, as 
0.5 mm along the defect depths, and as 50 mm across the pipe body, 
similar to studies in Refs. [16,17]. 

The failure pressure (burst pressure) is determined as the applied 
pressure at the instant when the equivalent von Mises stress through the 
pipe wall thickness of the corroded region reaches the ultimate tensile 
strength of the pipe material. The predicted failure pressure of the 
deterministic FEA model is validated with the MTI experimental bust 
pressure of test sample 22, as presented in Section 5.0. The validation of 
25 samples using deterministic numerical methods with MTI experi-
mental burst pressure is covered extensively in a recent publication by 
the authors [16]. 

The probabilistic model starts with the quantification of the un-
certainties of material properties, geometric features of the pipe and 
corrosion defects, internal pressure loading, and interacting character-
isations, as presented in Table 1. This is achieved by computing the 

Fig. 7. Frequency distributions and Weibull probability fitting curves for corrosion defect features and interacting defect parameters.  
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statistical mean, standard deviation and the best-fit probability density 
function from the sampling data for the considered feature, as described 
in detail in Section 3.0. The quantified uncertainties are incorporated 
into the validated deterministic FEA model by sampling techniques to 
produce the design of experiments. The central composite design, the 
optimal space-filling design, and the Kriging design were the sampling 
methods used in the present investigation. The produced design of ex-
periments generates the specified number of cases required. In this 
study, 100-number scenarios of different combinations of design vari-
ables are specified to derive a 100-number numerical burst pressure 
model response. The distribution fitting with the associated uncertainty 
can be estimated, but it is ignored in the reliability analysis stage, as 
determined by the sensitivity analysis in Section 5.3. The quality of the 
probabilistic FEA model is determined by the goodness of fit (coefficient 
of determination, root mean square error, and absolute maximum 
relative error) of the sampling method, sensitivity analysis, and trends of 
the predicted burst pressure, as presented in Section 5.0. 

5. Application of the probabilistic finite element-based 
reliability method 

The outcomes of the proposed PFERM approach are presented in this 
section. The key findings of the validated deterministic numerical 
modelling, surrogate model development, and reliability evaluation of 

the robust PFERM in terms of efficiency and computational cost are 
presented. The uncertainty quantification of the design variables is 
described in Section 3.0. 

5.1. Validated deterministic numerical method 

The predicted failure pressure from the developed deterministic 
numerical model of corroded pipelines with interacting metal loss 
clustering defects (explained in Section 2.0) is validated with the results 
from the MTI experiment [11] as highlighted in Table 2. The numerical 
model deviates from the test results by approximately 1 %, showing that 
the finite element burst model is acceptable. A validation of the 25 MTI 
samples using numerical method is given in a recent publication by the 
authors [16]. 

The probabilistic modelling aspect is initiated by adding the proba-
bilistic descriptors of critical design variables from Table 1 to the 
parameterized and validated mean - value deterministic model and 
running the design of experiments to derive the sampling design and 
response points. 

5.2. Validation of design of experiments from the probabilistic numerical 
model 

The probabilistic numerical model of the corroded pipeline 

Fig. 8. Typical probability density distribution of uniform, Weibull and Beta characterisation.  
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employed the central composite design (CCD), optimal space-filling 
design (OSFD) and the custom Kriging design sampling techniques to 
generate the design variable points and the failure stress response points 
in the DoE. The Kriging sampling design provided the best design space 
coverage and response surface fit by yielding a better coefficient of 
determination and error estimates in terms of Root mean square error 

and relative maximum absolute error than that of the CCD and OSFD, as 
displayed in Fig. 12. The custom Kriging approach has a comparative 
benefit over the fractional factorial design using CCD and OSFD in that it 
allows for the specification of the number of sampling points and offers a 
better response fit. The OSFD produces a response surface fit by uniform 
space distribution of the design points from fewer sampling points. 

Fig. 9. Schematic of numerical modelling process.  

Fig. 10. Boundary conditions and internal pressure loading.  
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However, this usually results in poor response prediction quality. The 
central composite design focuses on the parameter settings in the design 
region parameters to capture trends in the system but fails to capture the 
extreme ends of the design space [18]. 

The failure pressure of a corroded pipe depends on the pipe material 
properties (ultimate tensile strength), the pipe geometry (in terms of the 
pipe wall thickness and diameter) and the defect geometry based on the 
DNV [6] formulations in Equations (2) and (3). 

Pf =UTS×
(

2t
D − t

)

×

(

1 −

(
dg

c
t

))

(

1 −

(
dg

c
t

)

× 1
Mg

c

) (2)  

where UTS is the ultimate tensile strength, t is the pipeline wall thick-
ness, D is the outer diameter, dg

c is the effective corrosion cluster depth, 
and Mg

c is the bulging factor. The Folias factor, M is defined in Equation 

(3). 

Mg
c =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 0.31
(

LC
̅̅̅̅̅
Dt2

√

)2
√

(3) 

Therefore, the failure stress of corroded pipe subjected to internal 
pressure, can be related to the failure pressure, as given in Equation (4). 

σf =UTS ×

(

1 −

(
dg

c
t

))

(

1 −

(
dg

c
t

)

× 1
Mg

c

) (4) 

The sampling matrix comprising the design and response points is 
used for the sensitivity analyses to validate the influence of the design 
parameters on the true model response, as depicted in Section 5.3. 
Additionally, the trends in the design and response points in the DoE are 
described in this section to validate the probabilistic finite element 
model. The trend of the critical design variables of the corroded pipeline, 
such as the material properties, pipe and defect features, and interacting 
defect characteristics, is evaluated from the numerical model to high-
light the behaviour of the corroded pipeline in relation to the predicted 
burst pressure. 

It is observed in Fig. 13 that the predicted burst pressure from the 
probabilistic FEA model depends more heavily on the ultimate tensile 
strength (UTS) of the pipe material than the yield strength (SMYS) 

Fig. 11. Meshing of metal loss defects.  

Table 2 
Validation of deterministic model.  

Test 
Sample 

Predicted failure pressure 
from numerical model 
(MPa) 

Experimental failure 
Pressure (MPa) [11] 

Deviation 
(%) 

22 20.500 20.300 0.985  

Fig. 12. Performance of the design of experiments sampling techniques.  
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property. The burst pressure of the corroded pipe increases noticeably 
with a rise in the UTS. For example, an increase in the pipe material UTS 
from 647.68 MPa to 826.09 MPa gives rise to a pipeline burst pressure of 
22.17 MPa from 19.86 MPa, as shown in Fig. 13. The pipeline burst 
pressure marginally increases with an increase in SMYS, moving from 
20.31 MPa to 20.60 MPa with a change of 529.37 MPa–734.69 MPa in 
the pipe’s SMYS. From Fig. 13, it is worth noting that the mean - value 
estimates of the pipe’s UTS and SMYS (732 MPa and 624.48 MPa, 
respectively) will lead to the predicted pipeline failure pressure of the 
validated deterministic FEA model, which is 20.5 MPa. The variability of 
the pipeline wall thickness and the effective corrosion cluster defect 
depth (dc) with respect to the predicted pipeline burst pressure is 
demonstrated in Fig. 14. 

It is observed that the pipeline burst pressure increases significantly 
with an increase in the pipe wall thickness, while the burst capacity of 
the pipeline decreases with increasing effective metal loss cluster defect 
depth. This supports the DNV formulation in Equation (2). For example, 
in Fig. 14, the pipeline burst capacity increases from 19.80 MPa to 22.05 
MPa, with a corresponding rise in pipe wall thickness from 7.76 mm to 
8.20 mm. Notably, from Fig. 14, the mean - value estimates of the pipe’s 
wall thickness and the effective corrosion cluster defect depth (thus 7.98 
mm and 4.76 mm, respectively) lead to the predicted pipeline burst 
pressure of the validated deterministic numerical model, which is 20.5 
MPa (from Table 2). 

The trendline of the effective corrosion defect length and width with 
respect to the pipeline burst pressure capacity is presented in Fig. 15. It is 
generally noted that a decrease in the effective corrosion defect length 
and width leads to an increase in pipeline burst pressure capacity. 
However, a change in the effective corrosion defect length gives rise to a 
greater impact on the burst pressure than that of the width since it is 
perpendicular to the hoop direction of the corroded pipeline. For 
example, a noticeable decline in the pipeline burst pressure from 20.68 
MPa to 19.94 MPa is observed when the effective corrosion defect length 
changes from 125.11 mm to 264.56 mm, while that of the width reduces 
linearly from 20.81 MPa to 20.29 MPa when the effective corrosion 
defect length changes from 83.91 mm to 158.59 mm (as shown in 
Fig. 15). Similarly, the mean - value estimates coincide with the burst 
pressure capacity of the validated deterministic FEA model. 

Fig. 16 shows the marginal impact of the extreme value distributions 
of longitudinal and circumferential interacting corrosion defect spacing 

features on the pipeline burst pressure. Generally, the pipeline burst 
pressure capacity decreases marginally with increasing longitudinal and 
circumferential interacting corrosion defect spacing. Furthermore, it is 
observed that the interacting corrosion defect spacing in the hoop di-
rection affects the pipeline burst pressure capacity more than the lon-
gitudinal interacting corrosion defect spacing. Notably, as the width and 
length of the interacting corrosion defects increase, thereby increasing 
the defect coverage area, the pipeline burst pressure capacity reduces 
sharply. 

Fig. 17 shows how the pipeline external diameter affects the pipeline 
burst pressure capacity. It is found that at a constant wall thickness, the 
burst pipeline pressure decreases marginally with a corresponding in-
crease in pipeline diameter. Significantly, the mean - value estimates of 
the pipeline external diameter of 458.6 mm coincide with the burst 
pressure capacity of the validated deterministic FEA model. 

5.3. Correlation, sensitivity studies and surrogate modelling 

The statistical dependency test of the input parameters is undertaken 
to determine the best approach for sensitivity analyses and surrogate 
modelling. It is observed from Table 3 that, none of the significant 
estimated correlation coefficients have the corresponding probability of 
occurrence below the significance level of 0.05. Hence, this pipeline 
system is treated as statistically independent. 

Sensitivity analyses based on the design of experiments matrix are 
performed to determine the impact of the predictors on the true model 
response and select the influential design variables for the surrogate 
modelling stage. The sensitivities based on the Cotter index of key var-
iables such as the material properties and defect characteristics to the 
true burst pressure response are demonstrated in Fig. 18. The Cotter 
sensitivity approach allows the ranking of the input variables (irre-
spective of the dependency between them) to determine the importance 
of the variables in terms of the model response [15]. It is worth noting 
that the failure mode heavily depends on the ultimate tensile strength 
(UTS) of the pipe material than the yield strength (SMYS), highlighting 
that the corroded pipeline fails by plastic deformation. Also, the model 
response depends more on the maximum corrosion cluster defect depth 
(dc), the pipeline external diameter (D) and the wall thickness (t) than 
the minimum corrosion cluster defect depth (dmin). The effective cluster 
defect length (Lc) in the longitudinal direction of the interacting defect 

Fig. 13. Trendline of the material properties (UTS and SMYS) to pipeline burst pressure capacity.  
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colonies contributes most to the pipeline failure response. The influence 
from the effective corrosion cluster defect length (Lc) and longitudinal 
interacting corrosion defect spacing (SL) are greater than the influence 
from the effective corrosion cluster defect width (Wc) and circumfer-
ential corrosion cluster defect spacing (Sc), although the interacting 
parameters in the hoop direction cannot be ignored unlike propositions 
by Silva et al. [19]. For this study, the tensile yield strength, the internal 
pressure (P), minimum corrosion cluster defect depth and the effective 
corrosion cluster defect width are overlooked in generating the meta-
models based on a Cotter index limit of 0.025. 

The surrogate model was developed by applying regression and 
machine learning methods such as the Kriging, sector vector machine 
regression (SVR) and polynomial chaos-Kriging (PCK) to establish a non- 
linear relationship between the screened design and response points. 
The predicted model by PCK yielded the least leave-one-out error from 

the true model response of 0.40× 10− 3, better than the errors of 2.22 ×

10− 3 and 6.94 × 10− 3 produced by polynomial Kriging and SVR, 
respectively as shown in Table 4. This could be because the PCK employs 
orthogonal polynomials which tend to capture the global behaviour in 
addition to the local interpolation of the design space, unlike Kriging 
and SVR that employ interpolation and sequential minimal optimisation 
processes, respectively. 

The metamodels with implicit limit states are developed using 
regression and machine learning methods such as the polynomial chaos- 
Kriging approach as it tends to capture the global behaviour in addition 
to the local interpolation of the design points better than polynomial 
Kriging and sector vector machine regression. 

The spatial response surface fit generated by the polynomial chaos- 
Kriging provides the relationship between the spatial variability in the 
key design variables and the predicted model response as illustrated in 

Fig. 14. Trendline of the pipe wall thickness and effective corrosion cluster defect depth to the pipeline burst pressure.  

Fig. 15. Trendline of the effective corrosion cluster defect length and width to the pipeline burst pressure capacity.  
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Fig. 19. It offers the opportunity to determine the model burst pressure 
failure response point within the spatial sampling space given any two 
design variables [20]. 

The generated cumulative distribution function (CDF) of the 
response variable from the design parameters, as demonstrated in 
Fig. 20 is essential to check that the probability of the failure stress at the 
corroded region of the pipe remains below a specified criterion. For 
example, the probability of attaining a failure stress of about 745 MPa 
and 752 MPa is 30 % and 90 % respectively. 

5.4. Implicit limit state function-based reliability analysis 

A surrogate-based active learning reliability approach was used to 
determine the probability of failure (Pf) of the corroded pipe, and the 
results are shown in Table 5 alongside the simulation-based reliability 

approaches. 
The active learning reliability estimates were achieved by adding 

limit state function evaluations from the experimental design in the 
PCK-surrogate model until a convergence criterion for the Pf is reached. 
Based on the active learning reliability plot in Fig. 21, the estimated Pf is 
approximately 1.9789 ×10− 7 when 122 model evaluations from the 
design sampling points in the PCK metamodel are added. The simulation 
terminated at the 122nd sample point when the minimal distance to the 
other experimental design points is beyond 10− 2 of the minimum dis-
tance between the design points at the first iteration. 

The performance of the employed surrogate model-based reliability 
method is compared with the simulation-based methods by considering 
the probability of failure estimation within a reliable confidence interval 
and the computational cost considering the number of model evalua-
tions. From Table 5, Figs. 21 and 22, it is worth noting that the 

Fig. 16. Trendline of the longitudinal and circumferential interacting corrosion defect spacing to pipeline burst pressure.  

Fig. 17. Trendline of the pipe external diameter to pipeline burst pressure.  
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probability of failure estimates by all the considered reliability methods 
is in the region of 10− 7. However, the active learning reliability method 
provides a reliable and narrow confidence interval for the probability of 
failure between 1.5473 ×10− 7 to 2.4105 ×10− 7 while a simulation 
method such as the importance sampling simulation yields a wider 
confidence interval between 9.5996 ×10− 8 to 2.9600 × 10− 7. Addi-
tionally, the active learning reliability provides lower computational 
cost than the simulation-based methods by converging with 122 number 
of samples, N unlike the simulation-based reliability approach such as 
Monte Carlo simulation, importance sampling simulation and subset 

simulation that converged after 107 model evaluations, 107 model 
evaluations and 73000 model evaluations, respectively. 

6. Conclusions 

The probabilistic assessment of corroded pipelines using explicit 
limit state functions generally leads to conservative reliability estimates 
that significantly affect risk management and maintenance planning. 
Also, in many instances explicit representation of limit states is not 
possible. This study proposes an implicit limit state function approach to 
estimate the probability of failure of the corroded pipeline with inter-
acting defect features by combining design of experiments generated 
from the probabilistic numerical model, surrogate models from design of 
experiments using machine learning techniques and reliability simula-
tion on the surrogate models. 

The following inferences were established from the probabilistic 
finite element-based reliability method (PFERM) for the assessment of 
the interacting corrosion cluster defects in the pipeline. To begin, the 
uncertainty in the material properties (tensile yield strength and tensile 

Table 3 
Typical correlation results using Kendall Tau’s ranking method.  

Estimated correlation coefficient, rho 

Variable SMYS UTS P dmin dc D t Wc Lc SL SC 

SMYS 1.0000 0.0481 0.0012 − 0.0392 0.0024 − 0.0032 0.0202 − 0.0339 0.0315 0.0267 0.0436 
UTS 0.0481 1.0000 − 0.0238 0.0238 0.0089 − 0.0057 0.0016 0.0040 − 0.0533 − 0.0436 − 0.0291 
P 0.0012 − 0.0238 1.0000 − 0.0683 − 0.1018 − 0.0978 − 0.0154 0.0121 − 0.0380 − 0.0622 − 0.0065 
dmin − 0.0392 0.0238 − 0.0683 1.0000 0.0739 0.0781 0.0315 0.0097 0.0097 − 0.0525 − 0.0097 
dc 0.0024 0.0089 − 0.1018 0.0739 1.0000 0.0852 0.0529 − 0.0036 − 0.0271 − 0.0505 0.0352 
D − 0.0032 − 0.0057 − 0.0978 0.0781 0.0852 1.0000 0.0505 0.0053 0.0028 − 0.0392 0.0246 
t 0.0202 0.0016 − 0.0154 0.0315 0.0529 0.0505 1.0000 − 0.0287 0.0028 − 0.0012 0.0206 
Wc − 0.0339 0.0040 0.0121 0.0097 − 0.0036 0.0053 − 0.0287 1.0000 0.0085 0.0198 − 0.0909 
Lc 0.0315 − 0.0533 − 0.0380 0.0097 − 0.0271 0.0028 0.0028 0.0085 1.0000 0.0820 0.0537 
SL 0.0267 − 0.0436 − 0.0622 − 0.0525 − 0.0505 − 0.0392 − 0.0012 0.0198 0.0820 1.0000 − 0.0198 
SC 0.0436 − 0.0291 − 0.0065 − 0.0097 0.0352 0.0246 0.0206 − 0.0909 0.0537 − 0.0198 1.0000 

Probability of occurrence, p-value 
Variable SMYS UTS P dmin dc D t Wc Lc SL SC 

SMYS 1.0000 0.4803 0.9881 0.5654 0.9739 0.9644 0.7681 0.6189 0.6444 0.6964 0.5220 
UTS 0.4803 1.0000 0.7275 0.7275 0.8981 0.9359 0.9834 0.9549 0.4335 0.5220 0.6702 
P 0.9881 0.7275 1.0000 0.3156 0.1341 0.1503 0.8233 0.8605 0.5776 0.3606 0.9264 
dmin 0.5654 0.7275 0.3156 1.0000 0.1850 0.2640 0.6444 0.8887 0.8887 0.4405 0.8887 
dc 0.9739 0.8981 0.1341 0.1850 1.0000 0.1800 0.4370 0.9596 0.6920 0.4584 0.6064 
D 0.9644 0.9359 0.1503 0.2640 0.1800 1.0000 0.4584 0.9407 0.9691 0.5654 0.7186 
t 0.7681 0.9834 0.8233 0.6444 0.4370 0.4584 1.0000 0.6745 0.9691 0.9881 0.7636 
Wc 0.6189 0.9549 0.8605 0.8887 0.9596 0.9407 0.6745 1.0000 0.9028 0.7727 0.1812 
Lc 0.6444 0.4335 0.5776 0.8887 0.6920 0.9691 0.9691 0.9028 1.0000 0.2278 0.4300 
SL 0.6964 0.5220 0.3606 0.4405 0.4584 0.5654 0.9881 0.7727 0.2278 1.0000 0.7727 
SC 0.5220 0.6702 0.9264 0.8887 0.6064 0.7186 0.7636 0.1812 0.4300 0.7727 1.0000  

Fig. 18. Sensitivity of design variables using Cotter sensitivity method.  

Table 4 
Performance of surrogate modelling approaches.  

Metamodel Method Kriging Polynomial Chaos- 
Kriging 

Sector Vector Machine 
Regression 

Leave-out-error (×
10− 3) 

2.22 0.40 6.94  
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Fig. 19. Spatial variation of key material and geometric characterisations and the pipeline burst pressure.  

Fig. 20. Cumulative distribution function of the pipeline failure stress.  
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ultimate strength), geometric characterisations (pipe diameter, wall 
thickness, interacting defect features) and internal pressure loading are 
quantified. The best distribution fits were examined by the Anderson- 
Darling test and probability plots, and it was observed that the 
normal, Weibull, and the Beta probability density distributions provided 
the best fit for the pipeline geometry (external diameter and wall 
thickness), metal loss features (maximum and minimum corrosion 
cluster defect depth, effective corrosion cluster defect length and width, 
and longitudinal and circumferential interacting corrosion defect 
spacing), and the internal pressure loading respectively. This affirms 
similar probability distribution models identified by Refs. [3,21,22] for 
the reliability assessment of corroded pipelines. 

Additionally, the design of experiments employed interpolation and 
regression approaches such as Kriging design, central composite design 
and optimal space-filling design to generate the design and response 
points over the sampling space. The Kriging design provided the best 
design space coverage and response surface fit by producing better 
goodness of fit estimates than the other approaches. A further exami-
nation of the design of experiments to determine the relative degree of 
influence of the design variables on the true burst pressure response was 
conducted using a sample-based sensitivity. The results, for example, as 
shown in Fig. 18 highlighted the plastic failure of the corroded pipe by 
the noticeable influence from the ultimate tensile strength and insig-
nificant contribution from the tensile yield strength. Also, the burst 
pressure heavily depends on the maximum corrosion cluster defect 

depth, pipeline external diameter, wall thickness, effective corrosion 
cluster defect length, and the longitudinal and circumferential inter-
acting corrosion defect spacing. However, the relative influence from 
the minimum corrosion cluster defect depth, the effective corrosion 
cluster defect width, the internal pressure, and tensile yield strength 
were insignificant and not considered in the surrogate modelling stage 
based on a Cotter index limit of 0.025. 

To reduce the computational cost of numerical modelling, a poly-
nomial chaos-Kriging that utilizes interpolation and regression methods 
to capture the global and local design space was employed to generate 
the design and response surface. It was observed that polynomial chaos- 
Kriging produced the best fit by yielding a leave out error of 0.40, less 
than the leave out errors of 2.22 and 6.94 produced by the polynomial 
Kriging and Sector Vector Regression method, respectively. A surrogate- 
based active learning reliability without a closed form solution limit 
states was employed to determine the probability of failure of the 
corroded pipeline with interacting features. The likelihood of failure 
estimates by all reliability methodologies taken into consideration were 
found to be about 10− 7. However, the active learning reliability, on the 
other hand, approaches a reliable and narrow confidence interval for the 
probability of failure between 1.5473 ×10− 7 to 2.4105 ×10− 7 while the 
other approaches result in a wider interval. Additionally, the active 
learning reliability approach has a lower computational cost than 
simulation-based methods. The consideration of corrosion growth rate 
together with related uncertainties is beyond the scope of the present 
work and will be investigated in the next stage of this research. 

Table 5 
Summary of reliability estimates of corroded pipeline.   

No. 
Reliability 
descriptors 

Reliability Approach 

Active 
Learning 
Reliability 

Monte 
Carlo 
Simulation 

Importance 
Sampling 

Subset 
Simulation 

1 Probability 
of failure 
(Pf) 

1.9789 ×
10− 7 

1.0000 ×
10− 7 

1.0000 ×
10− 7 

1.6700 ×
10− 8 

2 Reliability 
Index (β) 

5.0710 5.1993 5.1993 5.5226 

3 Coefficient 
of Variation 
(CoV) 

0.1113 1.0000 1.0000 0.1592 

4 Model 
Evaluations 

122.0000 10000000 10000030 73000 

5 Confidence 
Interval for 
Pf (PfCI) 

[1.5473 ×
10− 7 

2.4105 ×
10− 7] 

[-9.5996 ×
10− 8 

2.9600 ×
10− 7] 

[-9.5996 ×
10− 8 2.9600 
× 10− 7] 

1.1490 ×
10− 8 

2.1910 ×
10− 8  

Fig. 21. Surrogate-based active learning reliability plot.  

Fig. 22. Importance sampling reliability plot.  
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