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Quantum groups based on spatial partitions (∗)

Guillaume Cébron (1) and Moritz Weber (2)

ABSTRACT. — We define new compact matrix quantum groups whose intertwiner
spaces are dual to tensor categories of three-dimensional set partitions (which we
call spatial partitions). This extends substantially Banica and Speicher’s approach
of the so called easy quantum groups: It enables us to find new examples of quan-
tum subgroups of Wang’s free orthogonal quantum group O+

n which do not contain
the symmetric group Sn; we may define new kinds of products of quantum groups
coming from new products of categories of partitions; and we give a quantum group
interpretation of certain categories of partitions which do neither contain the pair
partition nor the identity partition.

RÉSUMÉ. — Nous définissons de nouveaux groupes quantiques compacts de ma-
trices dont les espaces d’entrelaceurs sont en dualité avec des catégories tensorielles
de partitions d’ensembles tri-dimensionels (que nous appelons partitions spatiales).
Cela généralise de manière conséquente l’approche de Banica et Speicher dite des
groupes quantiques « easy »: cela nous permet d’exhiber de nouveaux exemples de
sous-groupes quantiques du groupe quantique orthogonal libre O+

n de Wang qui ne
contiennent pas le groupe symétrique Sn; nous pouvons définir de nouveaux types
de produits de groupes quantiques, venant de nouveaux produits de catégories de
partitions; et nous donnons une interprétation en terme de groupe quantique de cer-
taines catégories de partitions qui ne contiennent ni la partition paire, ni la partition
identité.
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Introduction

Compact matrix quantum groups have been defined by Woronowicz in
the 1980’s [33]. In the 1990’s, Wang [29] gave a definition of a free quantum
version O+

n of the orthogonal group On ⊆ Mn(C). The idea is basically to
replace the scalar entries uij of an orthogonal matrix by noncommuting vari-
ables. One can think of the uij as operators on a Hilbert space, for instance.
The quantum group O+

n contains the group On, hence there are somehow
more orthogonal rotations in the quantum world than in the classical world.

In order to understand quantum subgroups ofO+
n , Banica and Speicher [3]

developed the theory of easy quantum groups. They are based on set parti-
tions which are decompositions of finite ordered sets into disjoint subsets. In
a Tannaka–Krein (or Schur–Weyl) sense, the intertwiner spaces of easy quan-
tum groups are dual to categories of partitions [3, 25, 34]. More precisely, to
each partition p we associate a linear map Tp. A category of partitions is a set
of partitions which is closed under taking tensor products, composition and
involution of partitions. These operations on partitions p correspond exactly
to canonical operations on the linear maps Tp turning the linear span of these
Tp into a tensor category. A quantum subgroup G ⊆ O+

n of O+
n is called an

easy quantum group [3], if its intertwiners are given by such a linear span
of maps Tp indexed by partitions p coming from a category of partitions.
Hence, easy quantum groups (operator algebraic objects) are in one-to-one
correspondence to categories of partitions (combinatorial objects).

The motivation for our article came from the following three questions.

Firstly, any category of partitions is required to contain two particular
partitions as a base case: the pair partition and the identity partition |
(in order to obtain a quantum subgroup of O+

n ).

Question A. — Can we replace these base partitions by other base par-
titions and still associate quantum groups to such categories?

From a combinatorial point of view, there is no problem in studying
categories of partitions with different base cases, but the interpretation of
such objects on the quantum group side is a priori not clear.

Secondly, given two categories of partitions C1 and C2.

Question B. — Can we form a new category of partitions out of two
given ones by some product construction which resembles product construc-
tions on the level of quantum groups?
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Thirdly, the approach to construct quantum subgroups G of O+
n via easy

quantum groups comes with the restriction that G contains the symmetric
group Sn.

Question C. — How can we extend the machinery of easy quantum
groups in order to cover quantum groups Sn ̸⊆ G ⊆ O+

n ?

We can give answers to all three questions at the same time, with our
new machinery. On the way, we define new products of general quantum
subgroups of O+

n and we find many new examples of quantum subgroups of
O+

n .

Easy quantum groups have links to Voiculescu’s free probability the-
ory [20, 28], for instance via de Finetti theorems [2, 12]. See also [4, 6, 8, 9,
14, 17, 21, 22, 25, 32] as an incomplete list for recent work on easy quan-
tum groups or particularly on O+

n . Question C has also been tackled in [23].
Moreover, see [7, 10, 15] for further extensions of the setting of easy quantum
groups.

1. Main ideas and main results

The key point of Banica and Speicher’s approach is to consider a partition
p ∈ P (k, l) of a set with k + l elements (k “upper” ones and l “lower” ones)
and to associate a linear map Tp : (Cn)⊗k → (Cn)⊗l to it, for a fixed n ∈ N.
If the number n can be written as a product n = n1 · · ·nm for ni ∈ N, we
obtain

Tp : (Cn1···nm)⊗k → (Cn1···nm)⊗l governed by p ∈ P (k, l).

Our main tool is derived from the following simple observation. If we
consider partitions in P (km, lm) and apply the assignment p 7→ Tp, we
obtain a map

Tp : (Cn1 ⊗ · · · ⊗ Cnm)⊗k → (Cn1 ⊗ · · · ⊗ Cnm)⊗l

governed by p ∈ P (km, lm).

Under the isomorphism Cn = Cn1···nm ∼= Cn1 ⊗ . . . ⊗ Cnm , this enables
us to find many more maps from (Cn)⊗k to (Cn)⊗l compared to Banica
and Speicher’s approach, since we may use partitions on more points (Sec-
tion 3.4).
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On a technical level, it is convenient to view partitions in P (km, lm) as
three-dimensional partitions (on k × m “upper” points and l × m “lower”
points) and to deal with the set P (m)(k, l) of “spatial partitions” (see Sec-
tion 2.2 for a definition). Then, spatial partition quantum groups are defined
as quantum subgroups of O+

n1···nm
whose intertwiner spaces are given by

maps indexed by spatial partitions (Section 3.5). They correspond to cate-
gories of spatial partitions: sets of spatial partitions which are closed under
tensor product, composition and involution, and which contains the base
partitions

QUANTUM GROUPS BASED ON SPATIAL PARTITIONS 3

1. Main ideas and main results

The key point of Banica and Speicher’s approach is to consider a partition p ∈
P (k, l) of a set with k + l elements (k “upper” ones and l “lower” ones) and
to associate a linear map Tp : (Cn)⊗k → (Cn)⊗l to it, for a fixed n ∈ N. If
the number n can be written as a product n = n1 · · ·nm for ni ∈ N, we obtain

Tp : (Cn1···nm)⊗k → (Cn1···nm)⊗l governed by p ∈ P (k, l).

Our main tool is derived from the following simple observation. If we con-
sider partitions in P (km, lm) and apply the assignment p �→ Tp, we obtain a map

Tp : (Cn1 ⊗ · · ·⊗ Cnm)⊗k → (Cn1 ⊗ · · ·⊗ Cnm)⊗l governed by p ∈ P (km, lm).

Under the isomorphism Cn = Cn1···nm ∼= Cn1 ⊗ . . . ⊗ Cnm , this enables us to
find many more maps from (Cn)⊗k to (Cn)⊗l compared to Banica and Speicher’s
approach, since we may use partitions on more points (Section 3.4).
On a technical level, it is convenient to view partitions in P (km, lm) as three-

dimensional partitions (on k×m “upper” points and l×m “lower” points) and to deal
with the set P (m)(k, l) of “spatial partitions” (see Section 2.2 for a definition). Then,
spatial partition quantum groups are defined as quantum subgroups of O+

n1···nm
whose

intertwiner spaces are given by maps indexed by spatial partitions (Section 3.5).
They correspond to categories of spatial partitions: sets of spatial partitions which
are closed under tensor product, composition and involution, and which contains
the base partitions

|(m) :=

✪✪◦
✪✪◦
✪✪◦
✪✪◦

✪✪◦
✪✪◦
✪✪◦
✪✪◦

∈ P (m)(1, 1) and (m) :=
✪✪◦
✪✪◦
✪✪◦
✪✪◦

✪✪◦
✪✪◦
✪✪◦
✪✪◦

∈ P (m)(0, 2)

(see Section 2.3). Note that we do not require the containment of | ∈ P (1, 1) and
∈ P (0, 2), on the contrary to the categories of partitions of Banica and Speicher.

This answers Question 1 (see also Remark 2.9).
In order to prepare an answer to Question 2 observe that given two categories

Ci ⊆ P for i = 1, 2, we may form the category C1 × C2 ⊆ P (2) by placing partitions
from C1 on the first level and partitions from C2 on the second one in our three-
dimensional picture. On the other hand, given two compact matrix quantum groups
(G, u) and (H, v) such that the matrices u and v have the same size, we can form
the glued direct product (G, u)×̃(H, v) of [TW17, Def. 6.4], and more generally, the
glued direct product (G, u)×̃p(H, v) with amalgamation over a partition p ∈ P (2)

(see Section 2.3). Note that we do not require the containment of | ∈ P (1, 1)
and ∈ P (0, 2), on the contrary to the categories of partitions of Banica
and Speicher. This answers Question A (see also Remark 2.9).

In order to prepare an answer to Question B observe that given two
categories Ci ⊆ P for i = 1, 2, we may form the category C1 × C2 ⊆ P (2) by
placing partitions from C1 on the first level and partitions from C2 on the
second one in our three-dimensional picture. On the other hand, given two
compact matrix quantum groups (G, u) and (H, v) such that the matrices u
and v have the same size, we can form the glued direct product (G, u)×̃(H, v)
of [25, Def. 6.4], and more generally, the glued direct product (G, u)×̃p(H, v)
with amalgamation over a partition p ∈ P (2) (see Definition 4.6; see also the
work in [7]). The latter one is the compact matrix quantum group given by

C∗(uijvkl)
⊆ C(G)⊗max C(H)/⟨uijvkl satisfy intertwiner relations associated to p⟩

and the matrix u×̃pv = (uijvkl). We then have the following answer to
Question B.

Theorem A (Thm. 4.4, Thm. 4.8). — Let (Gi, ui) ⊆ O+
n be easy quan-

tum groups with categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

⟨C1 × C2, p⟩ corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question C, we have the following result.
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Theorem B (Thm. 5.3). — For n1 = . . . = nm = n the maximal
category P (m) of all spatial partitions corresponds to Sn ⊆ O+

nm . We thus
have Sn ⊆ G ⊆ O+

nm for all spatial partition quantum groups; in particular
Snm ̸⊆ G ⊆ O+

nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the

restriction S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two
theorems of combinatorial type show that the step from m = 1 to m = 2 is
huge.

Theorem C (Thm. 2.18, Cor. 2.19, Thm. 2.20). — The category P (2)

(resp. P (2)
2 ) of all spatial (resp. spatial pair) partitions is generated by the

partitions |(2), (2) and

P (2) :

4 GUILLAUME CÉBRON AND MORITZ WEBER

(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

,
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

,
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.
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where TrN is the unnormalized trace on MN(C), we observe that the relations of
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1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.
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(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.
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Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).
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with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of
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).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).
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2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
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Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).
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2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.
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(1)
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We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
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, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉
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and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).
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2 are all distinct:
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2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
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categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+
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nm for all
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nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.
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2 , namely
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2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .
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Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
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Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
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categories Ci ⊆ P for i = 1, 2. Then,
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n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
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Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.
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2 , namely
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We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN
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l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
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categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
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tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.
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, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

⟩, ⟨

4 GUILLAUME CÉBRON AND MORITZ WEBER

(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜
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✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄
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✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

⟩, ⟨

4 GUILLAUME CÉBRON AND MORITZ WEBER

(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

,

4 GUILLAUME CÉBRON AND MORITZ WEBER

(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜
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�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

⟩, ⟨

4 GUILLAUME CÉBRON AND MORITZ WEBER

(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
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, ↑(2);

P
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�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
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2 are all distinct:
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, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

⟩, ⟨
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and
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�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
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2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
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✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
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✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉
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2 , namely
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We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.
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2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

⟩, P (2)
2 , C1 × C2

with Ci ∈ {NC2, ⟨ ��@@ ⟩, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of
P

(1)
2 , namely NC2 = ⟨∅⟩, ⟨ ��@@ ⟩ and P

(1)
2 = ⟨ ��AA ⟩ (see [32]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition(1) between
the levels (Section 4.4). Considering particular finite quantum spaces (B,ψ)
in the sense of Wang [31], namely B =

⊕n
l=1 MN (C) and ψ(x1⊕· · ·⊕xn) =

1
nN

∑n
l=1 TrN (xl), where TrN is the unnormalized trace on MN (C), we ob-

serve that the relations of the quantum automorphism group of (B,ψ) may
be expressed in terms of spatial partitions (see Section 5.5).

(1) Note that it is not so clear a priori how to define noncrossing three-dimensional
partitions.
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2. The combinatorics: spatial partitions and categories

Let us first introduce the combinatorics of our objects.

2.1. Partitions

Let k, l ∈ N0 = {0, 1, 2, . . .} and consider the ordered set {1, . . . , k,
k + 1, . . . , k + l}. A (set) partition is a decomposition of this set into dis-
joint subsets, the blocks. We usually speak of the points 1, . . . , k as “upper
points” while k+ 1, . . . , k+ l are “lower points”. We identify a partition with
the picture placing k points on an upper line, l points on a lower line and
connecting these points by strings according to the block pattern (where the
upper points are numbered from left to right whereas the lower points are
numbered from right to left). The set of all partitions with k upper and l
lower points is denoted by P (k, l) and we put P :=

⋃
k,l∈N0

P (k, l).

Example 2.1. — Let k = 4 and l = 3. The partitions

p = {{1, 2}, {3, 4, 5}, {6, 7}} and q = {{1, 6}, {2, 7}, {3, 4}, {5}}

in P (4, 3) are represented by the following pictures.
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2. The combinatorics: spatial partitions and categories

Let us first introduce the combinatorics of our objects.

2.1. Partitions. Let k, l ∈ N0 = {0, 1, 2, . . .} and consider the ordered set
{1, . . . , k, k+1, . . . , k+l}. A (set) partition is a decomposition of this set into disjoint
subsets, the blocks. We usually speak of the points 1, . . . , k as “upper points” while
k + 1, . . . , k + l are “lower points”. We identify a partition with the picture placing
k points on an upper line, l points on a lower line and connecting these points by
strings according to the block pattern (where the upper points are numbered from
left to right whereas the lower points are numbered from right to left). The set
of all partitions with k upper and l lower points is denoted by P (k, l) and we put
P :=

�
k,l∈N0

P (k, l).

Example 2.1. Let k = 4 and l = 3. The partitions

p = {{1, 2}, {3, 4, 5}, {6, 7}} and q = {{1, 6}, {2, 7}, {3, 4}, {5}}
in P (4, 3) are represented by the following pictures.

p =

7 6 5

1 2 3 4

q =

❇
❇
❇
❇❇✂

✂
✂
✂✂

7 6 5

1 2 3 4

We usually omit to write the numbers in the picture. If the strings of a partition
may be drawn in such a way that they do not cross, we call it a noncrossing partition,
denoting by NC ⊆ P the subset of all noncrossing partitions. Note that in Example
2.1, the partition p is in NC while q is not.

Example 2.2. Here are some examples of partitions in P .
(a) The identity partition | ∈ P (1, 1).
(b) The pair partitions ∈ P (0, 2) and ∈ P (2, 0).
(c) The singleton partitions ↑∈ P (0, 1) and ↓∈ P (1, 0).

Partitions are well-known objects in mathematics, see for instance [Sta12, NS06,
BS09, TW18].

2.2. Spatial partitions. Let us now introduce the new notion of spatial partitions.
Let m ∈ N and k, l ∈ N0. Consider the set

{1, . . . , k, k + 1, . . . , k + l} × {1, . . . ,m}.
A spatial partition (on m levels) is a decomposition of this set into disjoint subsets
(blocks). We sometimes also simply write partition, when it is clear that we speak
of spatial partitions. The set of all such spatial partitions is denoted by P (m)(k, l)
and we put P (m) :=

�
k,l∈N0

P (m)(k, l). Again, the points (1, y), . . . , (k, y) are seen as

upper points and the points (k+1, y), . . . , (k+l, y) as lower ones, for y ∈ {1, . . . ,m}.

We usually omit to write the numbers in the picture. If the strings of a
partition may be drawn in such a way that they do not cross, we call it a
noncrossing partition, denoting by NC ⊆ P the subset of all noncrossing
partitions. Note that in Example 2.1, the partition p is in NC while q is not.

Example 2.2. — Here are some examples of partitions in P .

(a) The identity partition | ∈ P (1, 1).
(b) The pair partitions ∈ P (0, 2) and ∈ P (2, 0).
(c) The singleton partitions ↑ ∈ P (0, 1) and ↓ ∈ P (1, 0).

Partitions are well-known objects in mathematics, see for instance [3, 20,
24, 26].
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2.2. Spatial partitions

Let us now introduce the new notion of spatial partitions. Let m ∈ N and
k, l ∈ N0. Consider the set

{1, . . . , k, k + 1, . . . , k + l} × {1, . . . ,m}.
A spatial partition (on m levels) is a decomposition of this set into dis-
joint subsets (blocks). We sometimes also simply write partition, when it is
clear that we speak of spatial partitions. The set of all such spatial par-
titions is denoted by P (m)(k, l) and we put P (m) :=

⋃
k,l∈N0

P (m)(k, l).
Again, the points (1, y), . . . , (k, y) are seen as upper points and the points
(k + 1, y), . . . , (k + l, y) as lower ones, for y ∈ {1, . . . ,m}. Furthermore, if
(x, y) ∈ {1, . . . , k, k + 1, . . . , k + l} × {1, . . . ,m} is a point of a partition
p ∈ P (m)(k, l), we call its second component y the level of the point. We say
that a partition p ∈ P (m) respects the levels, if whenever two points (x1, y1)
and (x2, y2) are in the same block of p, then y1 = y2.

We view a spatial partition as a three-dimensional partition having an
upper plane consisting of k×m points and a lower plane of l×m points. Thus,
the m levels are nothing but a new dimension in our pictorial representation.

Example 2.3. — Let m = 3, k = 2 and l = 4. The following partitions
are in P (3)(2, 4) and p respects the levels while q does not.
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Furthermore, if (x, y) ∈ {1, . . . , k, k+1, . . . , k+l}×{1, . . . ,m} is a point of a partition
p ∈ P (m)(k, l), we call its second component y the level of the point. We say that
a partition p ∈ P (m) respects the levels, if whenever two points (x1, y1) and (x2, y2)
are in the same block of p, then y1 = y2.
We view a spatial partition as a three-dimensional partition having an upper plane

consisting of k×m points and a lower plane of l×m points. Thus, the m levels are
nothing but a new dimension in our pictorial representation.

Example 2.3. Letm = 3, k = 2 and l = 4. The following partitions are in P (3)(2, 4)
and p respects the levels while q does not.

p =

✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦

✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦

❆
❆

❆
❆
❆
❆

❇
❇
❇
❇
❇❇

q =

✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦

✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦

❆
❆
❆

❆
❆
❆

❏
❏

❏
❏❏

We observe that there is no canonical definition of noncrossing partitions in three
dimensions.

Remark 2.4. For any m ∈ N, k, l ∈ N0, the sets

A := {1, . . . , km, km+ 1, . . . , km+ lm}
and

B := {1, . . . , k, k + 1, . . . , k + l} × {1, . . . ,m}
are in bijective correspondence by identifying a point (x−1)m+y ∈ A, 1 ≤ x ≤ k+l,
1 ≤ y ≤ m with the point (x, y) ∈ B. Thus, the sets P (m)(k, l) and P (km, lm) are
isomorphic. In particular, for m = 1, spatial partitions (on one level) are simply the
well-known partitions in the sense of Section 2.1.

Definition 2.5. If p ∈ P (k, l) is a partition, then p(m) ∈ P (m)(k, l) given by repeat-
ing p on each level 1 ≤ s ≤ m is the amplified version of p (on m levels). It respects
the levels.

Example 2.6. The amplified partitions |(4) and (4) are the following partitions.

|(4) =

✪✪◦
✪✪◦
✪✪◦
✪✪◦

✪✪◦
✪✪◦
✪✪◦
✪✪◦

(4) =
✪✪◦
✪✪◦
✪✪◦
✪✪◦

✪✪◦
✪✪◦
✪✪◦
✪✪◦

We observe that there is no canonical definition of noncrossing partitions
in three dimensions.

Remark 2.4. — For any m ∈ N, k, l ∈ N0, the sets
A := {1, . . . , km, km+ 1, . . . , km+ lm}

and
B := {1, . . . , k, k + 1, . . . , k + l} × {1, . . . ,m}

are in bijective correspondence by identifying a point (x − 1)m + y ∈ A,
1 ⩽ x ⩽ k+ l, 1 ⩽ y ⩽ m with the point (x, y) ∈ B. Thus, the sets P (m)(k, l)
and P (km, lm) are isomorphic. In particular, for m = 1, spatial partitions
(on one level) are simply the well-known partitions in the sense of Section 2.1.
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Definition 2.5. — If p ∈ P (k, l) is a partition, then p(m) ∈ P (m)(k, l)
given by repeating p on each level 1 ⩽ s ⩽ m is the amplified version of p
(on m levels). It respects the levels.

Example 2.6. — The amplified partitions |(4) and (4) are the following
partitions.
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Furthermore, if (x, y) ∈ {1, . . . , k, k+1, . . . , k+l}×{1, . . . ,m} is a point of a partition
p ∈ P (m)(k, l), we call its second component y the level of the point. We say that
a partition p ∈ P (m) respects the levels, if whenever two points (x1, y1) and (x2, y2)
are in the same block of p, then y1 = y2.
We view a spatial partition as a three-dimensional partition having an upper plane

consisting of k×m points and a lower plane of l×m points. Thus, the m levels are
nothing but a new dimension in our pictorial representation.

Example 2.3. Letm = 3, k = 2 and l = 4. The following partitions are in P (3)(2, 4)
and p respects the levels while q does not.

p =

✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦

✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦

❆
❆

❆
❆
❆
❆

❇
❇
❇
❇
❇❇

q =

✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦

✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦

❆
❆
❆

❆
❆
❆

❏
❏

❏
❏❏

We observe that there is no canonical definition of noncrossing partitions in three
dimensions.

Remark 2.4. For any m ∈ N, k, l ∈ N0, the sets

A := {1, . . . , km, km+ 1, . . . , km+ lm}
and

B := {1, . . . , k, k + 1, . . . , k + l} × {1, . . . ,m}
are in bijective correspondence by identifying a point (x−1)m+y ∈ A, 1 ≤ x ≤ k+l,
1 ≤ y ≤ m with the point (x, y) ∈ B. Thus, the sets P (m)(k, l) and P (km, lm) are
isomorphic. In particular, for m = 1, spatial partitions (on one level) are simply the
well-known partitions in the sense of Section 2.1.

Definition 2.5. If p ∈ P (k, l) is a partition, then p(m) ∈ P (m)(k, l) given by repeat-
ing p on each level 1 ≤ s ≤ m is the amplified version of p (on m levels). It respects
the levels.

Example 2.6. The amplified partitions |(4) and (4) are the following partitions.

|(4) =

✪✪◦
✪✪◦
✪✪◦
✪✪◦

✪✪◦
✪✪◦
✪✪◦
✪✪◦

(4) =
✪✪◦
✪✪◦
✪✪◦
✪✪◦

✪✪◦
✪✪◦
✪✪◦
✪✪◦

Remark 2.7. — In the spirit of [7, 25, 26], we may also add colors to
the points of our partitions. However, for later purposes, we will require
the following rule: firstly, we color each point of the first level of a spatial
partition p ∈ P (m)(k, l) either in white (◦) or in black (•); secondly, we then
copy this color pattern to all other levels. In other words, we do not color all
points arbitrarily, the colors of all points (x, y) ∈ {1, . . . , k+ l}× {1, . . . ,m}
for a fixed x coincide.
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Remark 2.7. In the spirit of [TW18, TW17, Fre19], we may also add colors to the
points of our partitions. However, for later purposes, we will require the following
rule: firstly, we color each point of the first level of a spatial partition p ∈ P (m)(k, l)
either in white (◦) or in black (•); secondly, we then copy this color pattern to all
other levels. In other words, we do not color all points arbitrarily – the colors of all
points (x, y) ∈ {1, . . . , k + l} × {1, . . . ,m} for a fixed x coincide.

p =

✪✪•
✪✪•
✪✪•
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪•
✪✪•
✪✪•

✪✪•
✪✪•
✪✪•
✪✪◦
✪✪◦
✪✪◦

❆
❆

❆
❆
❆
❆

❇
❇
❇
❇
❇❇

q =

✪✪◦
✪✪◦
✪✪◦
✪✪•
✪✪•
✪✪•
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦
✪✪◦

✪✪◦
✪✪◦
✪✪◦
✪✪•
✪✪•
✪✪•

❆
❆
❆

❆
❆
❆

❏
❏

❏
❏❏

However, we will mostly work with uncolored partitions in this article.

2.3. Categories of spatial partitions. For a fixed m ∈ N, we have the following
operations on the set P (m), the so called category operations.
— The tensor product of two spatial partitions p ∈ P (m)(k, l) and q ∈ P (m)(k�, l�)

is the spatial partition p⊗ q ∈ P (m)(k + k�, l+ l�) obtained by writing p and q
side by side.

— The composition of two spatial partitions q ∈ P (m)(k, r) and p ∈ P (m)(r, l)
is the spatial partition pq ∈ P (m)(k, l) obtained by writing p below q, joining
their strings by identifying the lower resp. upper r ×m-planes of points, and
erasing the strings which are disconnected from the upper k × m-plane and
the lower l ×m-plane.

— The involution of a spatial partition p ∈ P (m)(k, l) is given by the spatial
partition p∗ ∈ P (m)(l, k) obtained when swapping the upper with the lower
plane. In particular, the involution respects the levels.

Definition 2.8. A subset C ⊆ P (m) is a category of spatial partitions, if C is closed
under tensor product, composition and involution, and if it contains the ampli-
fied identity partition |(m) ∈ P (m)(1, 1) and the amplified pair partition (m) ∈
P (m)(0, 2).

We write C = �p1, . . . , pn�, if C is the smallest category containing p1, . . . , pn ∈
P (m). We then speak of the category generated by p1, . . . , pn. We omit to write

(m) and |(m) as generators since they are always contained in a category.

Remark 2.9. In the case m = 1, the above category operations as well as categories
of partitions were first introduced by Banica and Speicher [BS09]; see also [TW18,
VSW16] for concrete examples of these operations in that case. We now extend their
definition to the three-dimensional setting in a canonical way, but let us note another
aspect of the passage fromm = 1 to arbitrarym ∈ N. Observe that the isomorphism

However, we will mostly work with uncolored partitions in this article.

2.3. Categories of spatial partitions

For a fixed m ∈ N, we have the following operations on the set P (m), the
so called category operations.

• The tensor product of two spatial partitions p ∈ P (m)(k, l) and
q ∈ P (m)(k′, l′) is the spatial partition p⊗ q ∈ P (m)(k + k′, l + l′)
obtained by writing p and q side by side.
• The composition of two spatial partitions q ∈ P (m)(k, r) and p ∈
P (m)(r, l) is the spatial partition pq ∈ P (m)(k, l) obtained by writing
p below q, joining their strings by identifying the lower resp. upper
r × m-planes of points, and erasing the strings which are discon-
nected from the upper k ×m-plane and the lower l ×m-plane.
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• The involution of a spatial partition p ∈ P (m)(k, l) is given by the
spatial partition p∗ ∈ P (m)(l, k) obtained when swapping the upper
with the lower plane. In particular, the involution respects the levels.

Definition 2.8. — A subset C ⊆ P (m) is a category of spatial parti-
tions, if C is closed under tensor product, composition and involution, and if
it contains the amplified identity partition |(m) ∈ P (m)(1, 1) and the amplified
pair partition (m) ∈ P (m)(0, 2).

We write C = ⟨p1, . . . , pn⟩, if C is the smallest category containing
p1, . . . , pn ∈ P (m). We then speak of the category generated by p1, . . . , pn. We
omit to write (m) and |(m) as generators since they are always contained
in a category.

Remark 2.9. — In the case m = 1, the above category operations as well
as categories of partitions were first introduced by Banica and Speicher [3];
see also [26, 28] for concrete examples of these operations in that case. We
now extend their definition to the three-dimensional setting in a canonical
way, but let us note another aspect of the passage from m = 1 to arbitrary
m ∈ N. Observe that the isomorphism P (m)(k, l) ∼= P (km, lm) of Remark 2.4
respects the category operations. Hence, if we view P (m) as a subset of P ,
a category C ⊆ P (m) of spatial partitions corresponds to a set C′ ⊆ P which
is closed under the category operations (as operations in P ). However, C′

is not a category of partitions in Banica–Speicher’s sense, since it does not
contain the base partitions nor |. From this point of view, we somehow
modified Banica and Speicher’s definition of categories of partitions C ⊆ P
by simply replacing the base partitions ∈ P and | ∈ P by different ones,
namely by

(m) ∈ P (m)(0, 2) ←→ {{1,m+1}, {2,m+2}, . . . , {m, 2m}} ∈ P (0, 2m)

and
|(m) ∈ P (m)(1, 1) ←→ |⊗m ∈ P (m,m)

using the isomorphism P (m)(k, l) ∼= P (km, lm) of Remark 2.4. From the
combinatorial point of view, there is no difficulty in choosing different base
partitions for Banica and Speicher’s categories of partitions, but so far a
quantum group interpretation of such categories was missing. In this article,
we provide one for the case of (m) and |(m).

Remark 2.10. — In view of Remark 2.7, we define a category of colored
spatial partitions as in Definition 2.8 replacing (m) and |(m) by
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tation of such categories was missing. In this article, we provide one for the case of

(m) and |(m).

Remark 2.10. In view of Remark 2.7, we define a category of colored spatial

partitions as in Definition 2.8 replacing (m) and |(m) by •◦
(m)

, ◦•
(m)

, ◦
◦ (m)

and

•
• (m)

. We will leave the colored case as a side remark, for the moment.

Definition 2.11. Let C ⊆ P be a set of partitions. Using the notation of Definition
2.5, we denote by

[C](m) := {p(m) | p ∈ C} ⊆ P (m)

the amplification of C.
Lemma 2.12. If C ⊆ P is a category of partitions, then the amplification [C](m) ⊆
P (m) is a category of spatial partitions.

Proof. A direct proof is straightforward. Alternatively, one can use the fact that the
isomorphism of Remark 2.4 respects the category operations. �

Example 2.13. Here are examples of categories of spatial partitions. We will see
more exotic ones in Section 5.
(a) The set P (m) of all spatial partitions is a category of spatial partitions. It is

maximal in the sense that it contains all other categories of spatial partitions.
We have [P ](m) �= P (m) for m �= 1, since a spatial partition in the amplification
[P ](m) of P consists of m copies of a partition from P to all levels; the set P (m)

in turn is much larger containing any spatial partition.

(b) The set P
(m)
2 of all spatial pair partitions (i.e. all blocks consist of exactly

two points) is a category of spatial partitions. Again, we have [P2]
(m) �= P

(m)
2

for m �= 1.

(m),

8 GUILLAUME CÉBRON AND MORITZ WEBER

P (m)(k, l) ∼= P (km, lm) of Remark 2.4 respects the category operations. Hence, if
we view P (m) as a subset of P , a category C ⊆ P (m) of spatial partitions corresponds
to a set C � ⊆ P which is closed under the category operations (as operations in
P ). However, C � is not a category of partitions in Banica-Speicher’s sense, since it
does not contain the base partitions nor |. From this point of view, we somehow
modified Banica and Speicher’s definition of categories of partitions C ⊆ P by simply
replacing the base partitions ∈ P and | ∈ P by different ones, namely by

(m) ∈ P (m)(0, 2) ←→ {{1,m+ 1}, {2,m+ 2}, . . . , {m, 2m}} ∈ P (0, 2m)

and

|(m) ∈ P (m)(1, 1) ←→ |⊗m ∈ P (m,m)

using the isomorphism P (m)(k, l) ∼= P (km, lm) of Remark 2.4. From the combina-
torial point of view, there is no difficulty in choosing different base partitions for
Banica and Speicher’s categories of partitions, but so far a quantum group interpre-
tation of such categories was missing. In this article, we provide one for the case of

(m) and |(m).

Remark 2.10. In view of Remark 2.7, we define a category of colored spatial

partitions as in Definition 2.8 replacing (m) and |(m) by •◦
(m)

, ◦•
(m)

, ◦
◦ (m)

and

•
• (m)

. We will leave the colored case as a side remark, for the moment.

Definition 2.11. Let C ⊆ P be a set of partitions. Using the notation of Definition
2.5, we denote by

[C](m) := {p(m) | p ∈ C} ⊆ P (m)

the amplification of C.
Lemma 2.12. If C ⊆ P is a category of partitions, then the amplification [C](m) ⊆
P (m) is a category of spatial partitions.

Proof. A direct proof is straightforward. Alternatively, one can use the fact that the
isomorphism of Remark 2.4 respects the category operations. �

Example 2.13. Here are examples of categories of spatial partitions. We will see
more exotic ones in Section 5.
(a) The set P (m) of all spatial partitions is a category of spatial partitions. It is

maximal in the sense that it contains all other categories of spatial partitions.
We have [P ](m) �= P (m) for m �= 1, since a spatial partition in the amplification
[P ](m) of P consists of m copies of a partition from P to all levels; the set P (m)

in turn is much larger containing any spatial partition.

(b) The set P
(m)
2 of all spatial pair partitions (i.e. all blocks consist of exactly

two points) is a category of spatial partitions. Again, we have [P2]
(m) �= P

(m)
2

for m �= 1.

(m),
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Definition 2.11. — Let C ⊆ P be a set of partitions. Using the notation
of Definition 2.5, we denote by

[C](m) := {p(m) | p ∈ C} ⊆ P (m)

the amplification of C.

Lemma 2.12. — If C ⊆ P is a category of partitions, then the amplifi-
cation [C](m) ⊆ P (m) is a category of spatial partitions.

Proof. — A direct proof is straightforward. Alternatively, one can use
the fact that the isomorphism of Remark 2.4 respects the category
operations. □

Example 2.13. — Here are examples of categories of spatial partitions.
We will see more exotic ones in Section 5.

(a) The set P (m) of all spatial partitions is a category of spatial parti-
tions. It is maximal in the sense that it contains all other categories
of spatial partitions. We have [P ](m) ̸= P (m) for m ̸= 1, since a spa-
tial partition in the amplification [P ](m) of P consists of m copies of
a partition from P to all levels; the set P (m) in turn is much larger
containing any spatial partition.

(b) The set P (m)
2 of all spatial pair partitions (i.e. all blocks consist of

exactly two points) is a category of spatial partitions. Again, we
have [P2](m) ̸= P

(m)
2 for m ̸= 1.

(c) The amplification [NC2](m) of NC2 is the minimal category of spa-
tial partitions. It is generated by |(m) and (m). Note that [NC2](m)

is not the set of all noncrossing pair partitions in P (m). In fact,
it is not clear in the three-dimensional picture what a noncross-
ing partition is supposed to be, only the identification P (m)(k, l) ∼=
P (km, lm) allows for a notion of noncrossing partitions. However,
the set

⋃
k,l∈N0

NC(km, lm) seen as a subset of P (m) is not a cate-
gory of spatial partitions. It is closed under the category operations,
but it does not contain (m) (see Remark 2.9).

Let us mention another useful operation on the set P (m). We define the
m-rotation by the following. Let p ∈ P (m)(k, l) and consider the upper plane
of points of p consisting of k rows, each row consisting of m points. Let
q ∈ P (m)(k − 1, l + 1) be the spatial partition obtained from p by shifting
the leftmost upper row of p to the left of the lower plane without changing
the order of the points nor the strings attached to these points. We say that
q is a rotated version of p. Likewise we may rotate on the right hand side
and we may rotate lower points to the upper plane. As an example, observe
that (m) is obtained from |(m) by m-rotation. We refer to [26, §1.2] for
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examples of 1-rotation. Note that the m-rotation does not affect the level of
a point when being rotated.

Lemma 2.14. — Every category of spatial partitions is closed under m-
rotation.

Proof. — Let p ∈ P (m)(k, l). The spatial partition q := (|(m)⊗p)( (m)⊗
|((k−1)m)) arises from p bym-rotating the leftmost upper row of p to the lower
plane. Similarly for the rotations from the lower plane to the upper plane,
and for rotations on the right hand side. See also [26, Lem. 1.1] □

2.4. π-graded spatial partitions and categories

Later, we will need spatial partitions that are allowed to mix certain levels
(but not all levels). This is captured by the following definition. The idea is to
cluster into a block each set of levels that are allowed to be interchanged and
to decompose the set {1, . . . ,m} accordingly. This is encoded in a partition
π ∈ P (m), the grading partition.

Definition 2.15. — Let m ∈ N and let π ∈ P (m) be a partition of
m points. A spatial partition p ∈ P (m) is π-graded, if whenever two points
(x1, y1) and (x2, y2) are in the same block of p, then y1 and y2 are in the
same block of π. The partition π is called the grading partition. We denote
by P (m)

π the set of all π-graded (spatial) partitions in P (m).

If π consists only of singletons, the π-graded partitions are exactly those
that respect the levels. If π is the one block partition, then every partition in
P (m) is π-graded. As a nontrivial example, letm = 4 and π = {{1, 3}, {2, 4}}.
Then a partition p ∈ P (m) is π-graded if and only if no block of p contains
points from an odd level and from an even level.

Definition 2.16. — A category of spatial partitions C is π-graded, if
all partitions in C are π-graded.

Lemma 2.17. — Let m ∈ N.

(a) Let π ∈ P (m) be a grading partition. If p and q in P (m) are π-graded,
then so are p⊗ q, pq, p∗ or any m-rotation of p or q.

(b) The set P (m)
π of all π-graded partitions in P (m) is a category of

spatial partitions.
(c) If p1, . . . , pk are π-graded, so is the category ⟨p1, . . . , pk⟩ generated

by them.
Proof. — The proof of (a) is straightforward, and (b) and (c) follow im-

mediately. □
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2.5. Generators of P (m)
π , P (2) and P

(2)
2

In the case m = 1, it is not difficult to see that P is generated by , ↑
and ��AA . This allows us to define natural further categories like ⟨ ⟩ or ⟨ , ↑⟩,
see for instance [32]. We are thus interested in finding canonical generators
of the category P (m), the maximal category of spatial partitions. We refine
the statement by considering π-graded partitions, including the case P (m)

when π is the one block partition on m points.
Theorem 2.18. — Let π ∈ P (m) be a grading partition. The category

P
(m)
π of all π-graded partitions is generated by the following partitions besides

the base partitions |(m) and (m):

(i) The singleton partition ↑(m).
(ii) For i = 1, . . . ,m, the partition given by on level i and | ⊗ | on

all other levels. For m = 2 this amounts to

4 GUILLAUME CÉBRON AND MORITZ WEBER

(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

∈ P (2)(2, 2) and
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

∈ P (2)(2, 2).

(iii) For i = 1, . . . ,m, the partition given by ��AA on level i and | ⊗ | on

all other levels. For m = 2 this amounts to
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

∈ P (2)(2, 2) and
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

∈ P (2)(2, 2).
(iv) For 1 ⩽ i < j ⩽ m two points in the same block of π, the partition

given by
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Lemma 2.17. Let m ∈ N.
(a) Let π ∈ P (m) be a grading partition. If p and q in P (m) are π-graded, then

so are p⊗ q, pq, p∗ or any m-rotation of p or q.

(b) The set P
(m)
π of all π-graded partitions in P (m) is a category of spatial parti-

tions.
(c) If p1, . . . , pk are π-graded, so is the category �p1, . . . , pk� generated by them.

Proof. The proof of (a) is straightforward, and (b) and (c) follow immediately. �

2.5. Generators of P
(m)
π , P (2) and P

(2)
2 . In the case m = 1, it is not difficult to

see that P is generated by , ↑ and ✁✁❆❆ . This allows us to define natural further
categories like � � or � , ↑�, see for instance [Web13]. We are thus interested in
finding canonical generators of the category P (m), the maximal category of spatial
partitions. We refine the statement by considering π-graded partitions, including
the case P (m) when π is the one block partition on m points.

Theorem 2.18. Let π ∈ P (m) be a grading partition. The category P
(m)
π of all π-

graded partitions is generated by the following partitions besides the base partitions
|(m) and (m):
(i) The singleton partition ↑(m).

(ii) For i = 1, . . . ,m, the partition given by on level i and | ⊗ | on all other

levels. For m = 2 this amounts to ❜ ❜❜ ❜❜ ❜❜ ❜
∈ P (2)(2, 2) and ❜ ❜❜ ❜❜ ❜❜ ❜

∈ P (2)(2, 2).

(iii) For i = 1, . . . ,m, the partition given by ✁✁❆❆ on level i and | ⊗ | on all other

levels. For m = 2 this amounts to ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ ∈ P (2)(2, 2) and ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ ∈ P (2)(2, 2).
(iv) For 1 ≤ i < j ≤ m two points in the same block of π, the partition given by

❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉�

on the levels i and j and | on the others. For m = 2 and π = this

amounts to ❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉� ∈ P (2)(1, 1).

Proof. We give a proof for m = 2 and π = , the general case being a straightfor-
ward adaption.
Let C ⊆ P (2) be the category generated by (i) to (iv). Let p1 and q2 be partitions

in P (k, l). Using ❜ ❜❜ ❜❜ ❜❜ ❜
, ❜ ❜↑↑ , ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , the base partitions, and the category operations,
we may construct a partition p ∈ C respecting the levels, such that on level one, we
have p1 (since P = � , ↑, ✁✁❆❆ �). Likewise, we produce a partition q ∈ C respecting
the levels, such that on level two, we have q2. Using (iii), we may permute the
points of p ⊗ q ∈ C in order to obtain a partition r ⊗ s ∈ C respecting the levels
with r, s ∈ P (2)(k, l) such that r restricts to p1 on level one and to q2 on level two.
Composing this partition with ↑(2) and its adjoint, we infer r ∈ C.

on the levels i and j and | on the others. For m = 2

and π = this amounts to
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Lemma 2.17. Let m ∈ N.
(a) Let π ∈ P (m) be a grading partition. If p and q in P (m) are π-graded, then

so are p⊗ q, pq, p∗ or any m-rotation of p or q.

(b) The set P
(m)
π of all π-graded partitions in P (m) is a category of spatial parti-

tions.
(c) If p1, . . . , pk are π-graded, so is the category �p1, . . . , pk� generated by them.

Proof. The proof of (a) is straightforward, and (b) and (c) follow immediately. �

2.5. Generators of P
(m)
π , P (2) and P

(2)
2 . In the case m = 1, it is not difficult to

see that P is generated by , ↑ and ✁✁❆❆ . This allows us to define natural further
categories like � � or � , ↑�, see for instance [Web13]. We are thus interested in
finding canonical generators of the category P (m), the maximal category of spatial
partitions. We refine the statement by considering π-graded partitions, including
the case P (m) when π is the one block partition on m points.

Theorem 2.18. Let π ∈ P (m) be a grading partition. The category P
(m)
π of all π-

graded partitions is generated by the following partitions besides the base partitions
|(m) and (m):
(i) The singleton partition ↑(m).

(ii) For i = 1, . . . ,m, the partition given by on level i and | ⊗ | on all other

levels. For m = 2 this amounts to ❜ ❜❜ ❜❜ ❜❜ ❜
∈ P (2)(2, 2) and ❜ ❜❜ ❜❜ ❜❜ ❜

∈ P (2)(2, 2).

(iii) For i = 1, . . . ,m, the partition given by ✁✁❆❆ on level i and | ⊗ | on all other

levels. For m = 2 this amounts to ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ ∈ P (2)(2, 2) and ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ ∈ P (2)(2, 2).
(iv) For 1 ≤ i < j ≤ m two points in the same block of π, the partition given by

❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉�

on the levels i and j and | on the others. For m = 2 and π = this

amounts to ❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉� ∈ P (2)(1, 1).

Proof. We give a proof for m = 2 and π = , the general case being a straightfor-
ward adaption.

Let C ⊆ P (2) be the category generated by (i) to (iv). Let p1 and q2 be partitions

in P (k, l). Using ❜ ❜❜ ❜❜ ❜❜ ❜
, ❜ ❜↑↑ , ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , the base partitions, and the category operations,
we may construct a partition p ∈ C respecting the levels, such that on level one, we
have p1 (since P = � , ↑, ✁✁❆❆ �). Likewise, we produce a partition q ∈ C respecting
the levels, such that on level two, we have q2. Using (iii), we may permute the
points of p ⊗ q ∈ C in order to obtain a partition r ⊗ s ∈ C respecting the levels
with r, s ∈ P (2)(k, l) such that r restricts to p1 on level one and to q2 on level two.
Composing this partition with ↑(2) and its adjoint, we infer r ∈ C.

∈ P (2)(1, 1).

Proof. — We give a proof for m = 2 and π = , the general case being
a straightforward adaption.

Let C ⊆ P (2) be the category generated by (i) to (iv). Let p1 and q2

be partitions in P (k, l). Using
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

,
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❜ ❜❜
❜
:
�

g

u(g,b2)(i1,i2) =
�

h

u(b1,b2)(h,i2) (in particular independent of i1, b1)

❜ ❜❜
❜
:
�

g

u(b1,g)(i1,i2) =
�

h

u(b1,b2)(i1,h) (in particular independent of i2, b2)

❜ ❜↑↑ , ❜ ❜↑↑ ∗ :
�

g1,g2

u(i1,i2)(g1,g2) =
�

g1,g2

u(g1,g2)(j1,j2) = 1

❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ : u(b1,b2)(i1,i2)u(b3,b4)(i3,i4) = u(b3,b2)(i3,i2)u(b1,b4)(i1,i4)

❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ : u(b1,b2)(i1,i2)u(b3,b4)(i3,i4) = u(b1,b4)(i1,i4)u(b3,b2)(i3,i2)

❜ ❜❜ ❜❜ ❜❜ ❜
: δj1j3

�

g

u(g,j2)(i1,i2)u(g,j4)(i3,i4) = δi1i3
�

h

u(j1,j2)(h,i2)u(j3,j4)(h,i4)

❜ ❜❜ ❜❜ ❜❜ ❜
: δj2j4

�

g

u(j1,g)(i1,i2)u(j3,g)(i3,i4) = δi2i4
�

h

u(j1,j2)(i1,h)u(j3,j4)(i3,h)

❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉�

: δb1b2
�

g

u(g,g)(i1,i2) = δi1i2
�

h

u(b1,b2)(h,h)

❜ ❜✓✓✓✓✈✈✉
�
:
�

g

u(b1,b2)(g,g) = δb1b2

❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉�

: δi1i2
�

g

u(g,g)(j1,j2) = δj1j2
�

g

u(i1,i2)(g,g)

❆❆❆❆✄
✄
✄
✄
✉❜ ❜❜
❜
: u(i1,i2)(j1,j2) = u(i2,i1)(j2,j1)

Remark 3.13. Inspired from the above relations for ❜ ❜✓✓✓✓✈✈✉
�
, we view them more

generally for (uij)i,j=1,...,n as
�

k∈I
uik = δi∈I

for some subset I ⊆ {1, . . . , n}. For instance:
�

k even

uik = δi even.

It is easy to check that these relations pass through the comultiplication. Hence,
one can define some partial versions of quantum permutation groups.

,
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

, the base partitions, and
the category operations, we may construct a partition p ∈ C respecting the
levels, such that on level one, we have p1 (since P = ⟨ , ↑, ��AA ⟩). Likewise,
we produce a partition q ∈ C respecting the levels, such that on level two,
we have q2. Using (iii), we may permute the points of p⊗ q ∈ C in order to
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obtain a partition r ⊗ s ∈ C respecting the levels with r, s ∈ P (2)(k, l) such
that r restricts to p1 on level one and to q2 on level two. Composing this
partition with ↑(2) and its adjoint, we infer r ∈ C.

Use

10 GUILLAUME CÉBRON AND MORITZ WEBER

Lemma 2.17. Let m ∈ N.
(a) Let π ∈ P (m) be a grading partition. If p and q in P (m) are π-graded, then

so are p⊗ q, pq, p∗ or any m-rotation of p or q.

(b) The set P
(m)
π of all π-graded partitions in P (m) is a category of spatial parti-

tions.
(c) If p1, . . . , pk are π-graded, so is the category �p1, . . . , pk� generated by them.

Proof. The proof of (a) is straightforward, and (b) and (c) follow immediately. �

2.5. Generators of P
(m)
π , P (2) and P

(2)
2 . In the case m = 1, it is not difficult to

see that P is generated by , ↑ and ✁✁❆❆ . This allows us to define natural further
categories like � � or � , ↑�, see for instance [Web13]. We are thus interested in
finding canonical generators of the category P (m), the maximal category of spatial
partitions. We refine the statement by considering π-graded partitions, including
the case P (m) when π is the one block partition on m points.

Theorem 2.18. Let π ∈ P (m) be a grading partition. The category P
(m)
π of all π-

graded partitions is generated by the following partitions besides the base partitions
|(m) and (m):
(i) The singleton partition ↑(m).

(ii) For i = 1, . . . ,m, the partition given by on level i and | ⊗ | on all other

levels. For m = 2 this amounts to ❜ ❜❜ ❜❜ ❜❜ ❜
∈ P (2)(2, 2) and ❜ ❜❜ ❜❜ ❜❜ ❜

∈ P (2)(2, 2).

(iii) For i = 1, . . . ,m, the partition given by ✁✁❆❆ on level i and | ⊗ | on all other

levels. For m = 2 this amounts to ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ ∈ P (2)(2, 2) and ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ ∈ P (2)(2, 2).
(iv) For 1 ≤ i < j ≤ m two points in the same block of π, the partition given by

❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉�

on the levels i and j and | on the others. For m = 2 and π = this

amounts to ❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉� ∈ P (2)(1, 1).

Proof. We give a proof for m = 2 and π = , the general case being a straightfor-
ward adaption.
Let C ⊆ P (2) be the category generated by (i) to (iv). Let p1 and q2 be partitions

in P (k, l). Using ❜ ❜❜ ❜❜ ❜❜ ❜
, ❜ ❜↑↑ , ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , the base partitions, and the category operations,
we may construct a partition p ∈ C respecting the levels, such that on level one, we
have p1 (since P = � , ↑, ✁✁❆❆ �). Likewise, we produce a partition q ∈ C respecting
the levels, such that on level two, we have q2. Using (iii), we may permute the
points of p ⊗ q ∈ C in order to obtain a partition r ⊗ s ∈ C respecting the levels
with r, s ∈ P (2)(k, l) such that r restricts to p1 on level one and to q2 on level two.
Composing this partition with ↑(2) and its adjoint, we infer r ∈ C.

and (iii) to connect arbitrary upper points of p1 with arbitrary
upper points of q2, and likewise for connecting lower points with lower points.
As for building a string between an upper point of p1 and a lower point of
q2, assume that both are leftmost within their level (possibly using (iii)). Let
v ∈ P (2)(1, 2) be the partition consisting of a three block on level one and
↑ ⊗| on level two. Let w ∈ P (2)(2, 1) be the partition consisting of ↓ ⊗| on
level one and a three block on level two. By the preceding considerations, v
and w are in C. We conclude that the partition

r′ := (w ⊗ (|(2))⊗l−1)(
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Lemma 2.17. Let m ∈ N.
(a) Let π ∈ P (m) be a grading partition. If p and q in P (m) are π-graded, then

so are p⊗ q, pq, p∗ or any m-rotation of p or q.

(b) The set P
(m)
π of all π-graded partitions in P (m) is a category of spatial parti-

tions.
(c) If p1, . . . , pk are π-graded, so is the category �p1, . . . , pk� generated by them.

Proof. The proof of (a) is straightforward, and (b) and (c) follow immediately. �

2.5. Generators of P
(m)
π , P (2) and P

(2)
2 . In the case m = 1, it is not difficult to

see that P is generated by , ↑ and ✁✁❆❆ . This allows us to define natural further
categories like � � or � , ↑�, see for instance [Web13]. We are thus interested in
finding canonical generators of the category P (m), the maximal category of spatial
partitions. We refine the statement by considering π-graded partitions, including
the case P (m) when π is the one block partition on m points.

Theorem 2.18. Let π ∈ P (m) be a grading partition. The category P
(m)
π of all π-

graded partitions is generated by the following partitions besides the base partitions
|(m) and (m):
(i) The singleton partition ↑(m).

(ii) For i = 1, . . . ,m, the partition given by on level i and | ⊗ | on all other

levels. For m = 2 this amounts to ❜ ❜❜ ❜❜ ❜❜ ❜
∈ P (2)(2, 2) and ❜ ❜❜ ❜❜ ❜❜ ❜

∈ P (2)(2, 2).

(iii) For i = 1, . . . ,m, the partition given by ✁✁❆❆ on level i and | ⊗ | on all other

levels. For m = 2 this amounts to ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ ∈ P (2)(2, 2) and ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ ∈ P (2)(2, 2).
(iv) For 1 ≤ i < j ≤ m two points in the same block of π, the partition given by

❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉�

on the levels i and j and | on the others. For m = 2 and π = this

amounts to ❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉� ∈ P (2)(1, 1).

Proof. We give a proof for m = 2 and π = , the general case being a straightfor-
ward adaption.

Let C ⊆ P (2) be the category generated by (i) to (iv). Let p1 and q2 be partitions

in P (k, l). Using ❜ ❜❜ ❜❜ ❜❜ ❜
, ❜ ❜↑↑ , ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , the base partitions, and the category operations,
we may construct a partition p ∈ C respecting the levels, such that on level one, we
have p1 (since P = � , ↑, ✁✁❆❆ �). Likewise, we produce a partition q ∈ C respecting
the levels, such that on level two, we have q2. Using (iii), we may permute the
points of p ⊗ q ∈ C in order to obtain a partition r ⊗ s ∈ C respecting the levels
with r, s ∈ P (2)(k, l) such that r restricts to p1 on level one and to q2 on level two.
Composing this partition with ↑(2) and its adjoint, we infer r ∈ C.

⊗ r)(v ⊗ (|(2))⊗k−1)

is in C.
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Use ❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉�

and (iii) to connect arbitrary upper points of p1 with arbitrary upper
points of q2, and likewise for connecting lower points with lower points. As for
building a string between an upper point of p1 and a lower point of q2, assume
that both are leftmost within their level (possibly using (iii)). Let v ∈ P (2)(1, 2)
be the partition consisting of a three block on level one and ↑ ⊗| on level two. Let
w ∈ P (2)(2, 1) be the partition consisting of ↓ ⊗| on level one and a three block on
level two. By the preceding considerations, v and w are in C. We conclude that the

partition r� := (w ⊗ (|(2))⊗l−1)( ❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉�⊗ r)(v ⊗ (|(2))⊗k−1) is in C.

r� =

✪✪◦
✪✪◦

✪✪◦
✪✪◦
✪✪◦
✪✪◦ · · ·

✪✪◦
✪✪◦

✪✪◦
✪✪◦
✪✪�
✪✪�
✪✪�
✪✪�
✪✪�
✪✪� · · ·

✪✪�
✪✪�❆

❆
❆

✪✪◦
✪✪◦
✪✪�
✪✪�
✪✪�
✪✪�
✪✪�
✪✪� · · ·

✪✪�
✪✪�✪✪

✪✪ rr

✪✪◦
✪✪◦

✪✪◦
✪✪◦
✪✪◦
✪✪◦ · · ·

✪✪◦
✪✪◦✁

✁
✁

(w ⊗ (|(2))⊗l−1)

( ❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉�⊗ r)

(v ⊗ (|(2))⊗k−1)

r acts on all
square points

It coincides with the partition obtained when connecting the leftmost upper point
of r on level one with the leftmost lower point of r on level two (gray points in the
picture). We infer that we may connect arbitrary blocks of p1 with arbitrary blocks
of q2, such that we may construct any partition p ∈ P (2) in C. �

Corollary 2.19. For m = 2 and π = , the category P (2) is generated by the
following partitions besides the base partitions |(2) and (2):
(i) ↑(2)∈ P (2)(0, 1),

(ii) ❜ ❜❜ ❜❜ ❜❜ ❜
∈ P (2)(2, 2) and ❜ ❜❜ ❜❜ ❜❜ ❜

∈ P (2)(2, 2),

(iii) ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ ∈ P (2)(2, 2) and ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ ∈ P (2)(2, 2),

(iv) ❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉� ∈ P (2)(1, 1).

Moreover, we can replace the partition of item (iv) by

(iv’) ❜ ❜✓✓✓✓✈✈✉
�
∈ P (2)(0, 1).

Proof. By Theorem 2.18, the category P (2) is generated by (i-iv). Thus, all we have

to prove is that ❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉�

is in the category generated by (i-iii) and (iv’), which is the
case as can be seen by the following picture.

It coincides with the partition obtained when connecting the leftmost upper
point of r on level one with the leftmost lower point of r on level two (gray
points in the picture). We infer that we may connect arbitrary blocks of
p1 with arbitrary blocks of q2, such that we may construct any partition
p ∈ P (2) in C. □

Corollary 2.19. — For m = 2 and π = , the category P (2) is gen-
erated by the following partitions besides the base partitions |(2) and (2):

(i) ↑(2)∈ P (2)(0, 1),

(ii)
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

∈ P (2)(2, 2) and
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

∈ P (2)(2, 2),

(iii)
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

∈ P (2)(2, 2) and
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

∈ P (2)(2, 2),

(iv)

10 GUILLAUME CÉBRON AND MORITZ WEBER

Lemma 2.17. Let m ∈ N.
(a) Let π ∈ P (m) be a grading partition. If p and q in P (m) are π-graded, then

so are p⊗ q, pq, p∗ or any m-rotation of p or q.

(b) The set P
(m)
π of all π-graded partitions in P (m) is a category of spatial parti-

tions.
(c) If p1, . . . , pk are π-graded, so is the category �p1, . . . , pk� generated by them.

Proof. The proof of (a) is straightforward, and (b) and (c) follow immediately. �

2.5. Generators of P
(m)
π , P (2) and P

(2)
2 . In the case m = 1, it is not difficult to

see that P is generated by , ↑ and ✁✁❆❆ . This allows us to define natural further
categories like � � or � , ↑�, see for instance [Web13]. We are thus interested in
finding canonical generators of the category P (m), the maximal category of spatial
partitions. We refine the statement by considering π-graded partitions, including
the case P (m) when π is the one block partition on m points.

Theorem 2.18. Let π ∈ P (m) be a grading partition. The category P
(m)
π of all π-

graded partitions is generated by the following partitions besides the base partitions
|(m) and (m):
(i) The singleton partition ↑(m).

(ii) For i = 1, . . . ,m, the partition given by on level i and | ⊗ | on all other

levels. For m = 2 this amounts to ❜ ❜❜ ❜❜ ❜❜ ❜
∈ P (2)(2, 2) and ❜ ❜❜ ❜❜ ❜❜ ❜

∈ P (2)(2, 2).

(iii) For i = 1, . . . ,m, the partition given by ✁✁❆❆ on level i and | ⊗ | on all other

levels. For m = 2 this amounts to ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ ∈ P (2)(2, 2) and ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ ∈ P (2)(2, 2).
(iv) For 1 ≤ i < j ≤ m two points in the same block of π, the partition given by

❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉�

on the levels i and j and | on the others. For m = 2 and π = this

amounts to ❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉� ∈ P (2)(1, 1).

Proof. We give a proof for m = 2 and π = , the general case being a straightfor-
ward adaption.
Let C ⊆ P (2) be the category generated by (i) to (iv). Let p1 and q2 be partitions

in P (k, l). Using ❜ ❜❜ ❜❜ ❜❜ ❜
, ❜ ❜↑↑ , ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , the base partitions, and the category operations,
we may construct a partition p ∈ C respecting the levels, such that on level one, we
have p1 (since P = � , ↑, ✁✁❆❆ �). Likewise, we produce a partition q ∈ C respecting
the levels, such that on level two, we have q2. Using (iii), we may permute the
points of p ⊗ q ∈ C in order to obtain a partition r ⊗ s ∈ C respecting the levels
with r, s ∈ P (2)(k, l) such that r restricts to p1 on level one and to q2 on level two.
Composing this partition with ↑(2) and its adjoint, we infer r ∈ C.

∈ P (2)(1, 1).
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Moreover, we can replace the partition of item (iv) by

(iv′)
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

∈ P (2)(0, 1).

Proof. — By Theorem 2.18, the category P (2) is generated by (i)–(iv).

Thus, all we have to prove is that
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Lemma 2.17. Let m ∈ N.
(a) Let π ∈ P (m) be a grading partition. If p and q in P (m) are π-graded, then

so are p⊗ q, pq, p∗ or any m-rotation of p or q.

(b) The set P
(m)
π of all π-graded partitions in P (m) is a category of spatial parti-

tions.
(c) If p1, . . . , pk are π-graded, so is the category �p1, . . . , pk� generated by them.

Proof. The proof of (a) is straightforward, and (b) and (c) follow immediately. �

2.5. Generators of P
(m)
π , P (2) and P

(2)
2 . In the case m = 1, it is not difficult to

see that P is generated by , ↑ and ✁✁❆❆ . This allows us to define natural further
categories like � � or � , ↑�, see for instance [Web13]. We are thus interested in
finding canonical generators of the category P (m), the maximal category of spatial
partitions. We refine the statement by considering π-graded partitions, including
the case P (m) when π is the one block partition on m points.

Theorem 2.18. Let π ∈ P (m) be a grading partition. The category P
(m)
π of all π-

graded partitions is generated by the following partitions besides the base partitions
|(m) and (m):
(i) The singleton partition ↑(m).

(ii) For i = 1, . . . ,m, the partition given by on level i and | ⊗ | on all other

levels. For m = 2 this amounts to ❜ ❜❜ ❜❜ ❜❜ ❜
∈ P (2)(2, 2) and ❜ ❜❜ ❜❜ ❜❜ ❜

∈ P (2)(2, 2).

(iii) For i = 1, . . . ,m, the partition given by ✁✁❆❆ on level i and | ⊗ | on all other

levels. For m = 2 this amounts to ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ ∈ P (2)(2, 2) and ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ ∈ P (2)(2, 2).
(iv) For 1 ≤ i < j ≤ m two points in the same block of π, the partition given by

❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉�

on the levels i and j and | on the others. For m = 2 and π = this

amounts to ❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉� ∈ P (2)(1, 1).

Proof. We give a proof for m = 2 and π = , the general case being a straightfor-
ward adaption.

Let C ⊆ P (2) be the category generated by (i) to (iv). Let p1 and q2 be partitions

in P (k, l). Using ❜ ❜❜ ❜❜ ❜❜ ❜
, ❜ ❜↑↑ , ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , the base partitions, and the category operations,
we may construct a partition p ∈ C respecting the levels, such that on level one, we
have p1 (since P = � , ↑, ✁✁❆❆ �). Likewise, we produce a partition q ∈ C respecting
the levels, such that on level two, we have q2. Using (iii), we may permute the
points of p ⊗ q ∈ C in order to obtain a partition r ⊗ s ∈ C respecting the levels
with r, s ∈ P (2)(k, l) such that r restricts to p1 on level one and to q2 on level two.
Composing this partition with ↑(2) and its adjoint, we infer r ∈ C.

is in the category generated by (i)–(iii)
and (iv′), which is the case as can be seen by the following picture.
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✪✪◦
✪✪◦

✪✪◦
✪✪◦
✪✪◦
✪✪◦

✪✪◦
✪✪◦
✪✪◦
✪✪◦✪✪

✪✪✪✪◦
✪✪◦
✪✪◦
✪✪◦

✪✪◦
✪✪◦
✪✪◦
✪✪◦

✪✪◦
✪✪◦

✪✪◦
✪✪◦

✪✪◦
✪✪◦

✪✪

✪✪ =

�

For m = 1, we have P2 = � ✁✁❆❆ �, see [VSW16]. For m = 2, the situation is more
complicated.

Theorem 2.20. For m = 2 and π = , the category P
(2)
2 consisting of all spatial

pair partitions on two levels (see also Example 2.13(b)) is generated by the following
partitions besides the base partitions |(2) and (2):

(i) ❜ ❜❜ ❜❜ ❜❜ ❜
∈ P (2)(2, 2) and ❜ ❜❜ ❜❜ ❜❜ ❜

∈ P (2)(2, 2),

(ii) ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ ∈ P (2)(2, 2) and ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ ∈ P (2)(2, 2),

(iii) ❜ ❜✓✓✓✓✈✈✉
�
∈ P (2)(0, 1).

Proof. Similar to the proof of Theorem 2.18, we use ❜ ❜❜ ❜❜ ❜❜ ❜
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ and the base partitions
in order to construct arbitrary pair partitions pp∗ ∈ P2(k, k) (where p ∈ P2(0, k)) on
level one. Tensoring several such partitions and several copies of |(2), using (ii) to
permute the points and finally composing them with suitable tensor powers of (2)

and its adjoint, we obtain any arbitrary partition in P
(2)
2 respecting the levels. We

may mix the levels using the partition ❆❆❆❆✄
✄
✄
✄
✉❜ ❜❜
❜
which may be constructed from (ii) and

(iii). �

3. Spatial partition quantum groups

We will now associate quantum groups to categories of spatial partitions. We
first recall some basics about compact matrix quantum groups and Woronowicz’s
Tannaka-Krein result.

□

For m = 1, we have P2 = ⟨ ��AA ⟩, see [28]. For m = 2, the situation is more
complicated.

Theorem 2.20. — For m = 2 and π = , the category P (2)
2 consisting

of all spatial pair partitions on two levels (see also Example 2.13(b)) is gen-
erated by the following partitions besides the base partitions |(2) and (2):

(i)

4 GUILLAUME CÉBRON AND MORITZ WEBER

(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

∈ P (2)(2, 2) and

4 GUILLAUME CÉBRON AND MORITZ WEBER

(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

∈ P (2)(2, 2),

(ii)
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

∈ P (2)(2, 2) and
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
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�
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✄
✄
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❜
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�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

∈ P (2)(2, 2),

(iii)

4 GUILLAUME CÉBRON AND MORITZ WEBER

(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
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Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).
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Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

∈ P (2)(0, 1).

Proof. — Similar to the proof of Theorem 2.18, we use
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matrix quantum group given by
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and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.
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�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
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nm. We thus have Sn ⊆ G ⊆ O+
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spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-
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with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).
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(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and
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✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
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Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).
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2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

and the
base partitions in order to construct arbitrary pair partitions pp∗ ∈ P2(k, k)
(where p ∈ P2(0, k)) on level one. Tensoring several such partitions and
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several copies of |(2), using (ii) to permute the points and finally composing
them with suitable tensor powers of (2) and its adjoint, we obtain any
arbitrary partition in P (2)

2 respecting the levels. We may mix the levels using

the partition
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
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n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
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Regarding Question 3, we have the following result.
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spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.
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with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

which may be constructed from (ii) and (iii). □

3. Spatial partition quantum groups

We will now associate quantum groups to categories of spatial parti-
tions. We first recall some basics about compact matrix quantum groups
and Woronowicz’s Tannaka–Krein result.

3.1. Compact matrix quantum groups

The following definition of a compact matrix quantum group is due to
Woronowicz [33, 35]. It is a special case of his theory of compact quantum
groups. See also [19, 27] for more details.

Definition 3.1. — Let n ∈ N. A compact matrix quantum group is a
tupel (A, u) such that

• A is a unital C∗-algebra generated by n2 elements uij, 1 ⩽ i, j ⩽ n,
• the matrices u = (uij) and ū = (u∗

ij) are invertible in Mn(A),
• and the map ∆ : A→ A⊗min A given by ∆(uij) =

∑
k uik ⊗ ukj is

a ∗-homomorphism.

If G ⊆Mn(C) is a compact matrix group, then C(G) gives rise to a com-
pact matrix quantum group in the above sense. We therefore write A = C(G)
even if the C∗-algebra A from Definition 3.1 is noncommutative, and we
speak of G as the compact matrix quantum group (which is only defined via
C(G)), sometimes specifying (G, u) in order to keep track of the generating
matrix u.

Definition 3.2. — Let (G, u) with u = (uij)i,j=1,...,n and (H, v) with
v = (vij)i,j=1,...,m be two compact matrix quantum groups.

(a) We say that G is a quantum subgroup of H as a compact ma-
trix quantum group, if there is a surjective ∗-homomorphism φ :
C(H) → C(G) mapping φ(vij) = uij. In particular, we require
n = m.
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(b) We say that G is a quantum subgroup of H as a compact quantum
group, if there is a surjective ∗-homomorphism φ : C(H) → C(G)
such that ∆G(φ(vij)) =

∑m
k=1 φ(vik) ⊗ φ(vkj). In general, we may

have n ̸= m.

We simply speak of a quantum subgroup G ⊆ H if there is no confusion
with the above cases (a) and (b); in particular, since we will always apply
throughout the article (a) in the case n = m and (b) in the case n ̸= m.

Example 3.3. —

(a) Wang [29] defined the free orthogonal quantum group O+
n as the

compact matrix quantum group given by the universal C∗-algebra

C(O+
n ) := C∗

(
uij , i, j = 1, . . . , n

∣∣∣∣∣ uij = u∗
ij ,
∑

k

uikujk =
∑

k

ukiukj = δij

)
.

If we take the quotient of C(O+
n ) by the relations that all uij com-

mute, we obtain the algebra of functions C(On) over the orthogonal
group On ⊆Mn(C). Thus, we have On ⊆ O+

n as quantum subgroups
in the sense of Definition 3.2(a).

Wang also defined the free unitary quantum group U+
n via

C(U+
n ) := C∗

(
uij

∣∣∣∣∣ ∑
k

uiku
∗
jk =

∑
k

u∗
kiukj =

∑
k

u∗
ikujk =

∑
k

ukiu
∗
kj = δij

)
.

(b) Wang [31] also defined the free symmetric quantum group S+
n via

C(S+
n ) := C∗

(
uij , i, j = 1, . . . , n

∣∣∣∣∣ uij = u∗
ij = u2

ij ,
∑

k

uik =
∑

k

ukj = 1
)
.

The quotient by the commutator ideal yields C(Sn), where Sn ⊆
Mn(C) is the symmetric group, thus Sn ⊆ S+

n . It is not difficult to
check, that we have uikujk = 0 and ukiukj = 0 for i ̸= j. Hence S+

n

is a quantum subgroup of O+
n in the sense of Definition 3.2(a).

(c) We may view the symmetric group Sn as a quantum subgroup of
O+

n2 in the sense of Definition 3.2(b). Indeed, let uij , i, j = 1, . . . , n
be the generators of C(Sn). For i1, i2, j1, j2 ∈ {1, . . . , n}, we put

v′
(i1,i2)(j1,j2) := ui1j1ui2j2 ∈ C(Sn).

Labeling the generators of C(O+
n2) by v(i1,i2)(j1,j2), it is easy to

verify that we have a surjection from C(O+
n2) to C(Sn) mapping

v(i1,i2)(j1,j2) to v′
(i1,i2)(j1,j2). It respects the comultiplication map ∆

of Sn.
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3.2. Tannaka–Krein duality

Similar to Schur–Weyl duality for groups, we may reconstruct a com-
pact matrix quantum group from its intertwiner spaces. This is due to
Woronowicz’s Tannaka–Krein result [34]. Let us briefly sketch it, referring
to [16, 19, 25] for more details. We restrict to the case u = ū.

For k ∈ N0, the matrix
u⊗k ∈Mnk (C(G)) ∼= Mn(C)⊗ · · · ⊗Mn(C)⊗ C(G)

is a (tensor) representation of a compact matrix quantum group (G, u). The
set of intertwiners between u⊗k and u⊗l is the set of linear map T : (Cn)⊗k →
(Cn)⊗l such that Tu⊗k = u⊗lT . It is denoted by HomG(k, l). The collection
of spaces (HomG(k, l))k,l∈N0 forms a C∗-tensor category or rather a concrete
monoidal W ∗-category in the sense of Woronowicz. A simplifed version of
his Tannaka–Krein Theorem is the following.

Theorem 3.4 (Tannaka–Krein Theorem [34]). — Let (Hom(k, l))k,l∈N0

be an (abstract) C∗-tensor category which is generated by an element f = f̄ .
Then, there exists a compact matrix quantum group (G, u) with u = ū such
that HomG(k, l) = Hom(k, l) for all k, l ∈ N0. It is universal in the sense that
whenever (H, v) is a compact matrix quantum group such that Tv⊗k = v⊗lT
for all T ∈ Hom(k, l) and all k, l, then H is a quantum subgroup of G.

We conclude that compact matrix quantum groups are determined by
their intertwiner spaces, hence all we need to know about a compact matrix
quantum group (G, u) is (HomG(k, l))k,l∈N0 .

3.3. Linear maps associated to partitions

Banica and Speicher [3] associated linear maps to partitions p ∈ P in
order to obtain quantum groups whose intertwiner spaces are of a combina-
torial form. Let n ∈ N and p ∈ P (k, l). Let i = (i1, . . . , ik) and j = (j1, . . . , jl)
be multi indices whose components range in {1, . . . , n}. We decorate the k
upper points of p from left to right with the entries of i, and likewise for the
l lower points (from left to right) using j. If the strings of p connect only
equal indices, then δp(i, j) := 1 and δp(i, j) := 0 otherwise. See [25, Ex. 4.2]
or [28] for examples.

Let e1, . . . , en be the canonical basis of Cn. For p ∈ P (k, l), we define the
linear map Tp : (Cn)⊗k → (Cn)⊗l by setting

Tp(ei1 ⊗ · · · ⊗ eik
) :=

n∑
j1,...,jl=1

δp(i, j)ej1 ⊗ · · · ⊗ ejl
.
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The convention is to put (Cn)⊗0 = C. The maps Tp behave nicely with
respect to the category operations.

Proposition 3.5 ([3]). — We have:

(a) Tp ⊗ Tq = Tp⊗q,
(b) (Tp)∗ = Tp∗ ,
(c) TqTp = nb(q,p)Tqp, where b(q, p) is the number of disconnected strings

arising in the composition of p and q,
(d) T| = id : Cn → Cn,
(e) T =

∑
i ei ⊗ ei ∈ (Cn)⊗2.

3.4. Linear maps associated to spatial partitions

We now extend Section 3.3 to spatial partitions. Let m ∈ N and let
n1, . . . , nm ∈ N. By ker(n1, . . . , nm) we denote the unique partition π in
P (m) with the property that s and t are in the same block of π if and only
if ns = nt. Let p ∈ P (m)(k, l) be ker(n1, . . . , nm)-graded, i.e. the strings of p
connect different levels only if the “dimensions” ni of these levels coincide.
We put

[n1 × . . .× nm] := {1, . . . , n1} × {1, . . . , n2} × . . .× {1, . . . , nm}.

Let I be a multi index in [n1 × . . . × nm]k and J be a multi index in [n1 ×
. . .× nm]l. Hence I is of the form

I = (I1, . . . , Ik) =
(
(i11, . . . , i1m), . . . , (ik1 , . . . , ikm)

)
.

We define δp(I, J) as before, decorating the upper plane of p by I and the
lower plane by J , i.e. under the identification P (m)(k, l) ∼= P (km, lm), we
simply apply the former definition of δp. We may find a natural orthonormal
basis of Cn1n2...nm using the following isomorphism:

Cn1 ⊗ . . .⊗ Cnm ∼= Cn1n2...nm

ei1 ⊗ . . .⊗ eim
←→ e(i1,...,im).

We assign the following linear map Sp to p:

Sp : (Cn1n2...nm)⊗k → (Cn1n2...nm)⊗l

e(i1
1,...,i1

m) ⊗ . . .⊗ e(ik
1 ,...,ik

m) 7→
∑

j1
1 ,...,j1

m,...,

jl
1,...,jl

m

δp(I, J)e(j1
1 ,...,j1

m) ⊗ . . .⊗ e(jl
1,...,jl

m).

For m = 1 and p ∈ P (1)(k, l) = P (k, l), the constructions of Tp and Sp

coincide.
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Remark 3.6. — The definition of Sp constitutes the technical key ob-
servation of this article. It looks quite simple, but let us discuss it from a
different perspective. Observe that the map Tp : (Cn1···nm)⊗k → (Cn1···nm)⊗l

for p ∈ P (k, l) coincides with Sp(m) : (Cn1···nm)⊗k → (Cn1···nm)⊗l for p(m) ∈
P (m)(k, l). Hence, with the maps Sp for general spatial partitions p ∈ P (m),
we can go “finer” than Tp, making use of the decomposition of n1 · · ·nm into
factors. Since not all spatial partitions in P (m) come from amplifications,
the assignment p 7→ Sp is richer than the assignment p 7→ Tp.

Proposition 3.5 translates to the following.

Proposition 3.7. — We have:

(a) Sp ⊗ Sq = Sp⊗q,
(b) (Sp)∗ = Sp∗ ,
(c) SqSp = (n1 · · ·nm)b(q,p)Sqp,
(d) S|(m) = id : Cn1n2...nm → Cn1n2...nm ,
(e) S (m) =

∑
(i1,...,im) e(i1,...,im) ⊗ e(i1,...,im) ∈ (Cn1n2...nm)⊗2.

Proof. — Let p ∈ P (m)(k, l). Viewing it as a partition in P (km, lm), we
may assign the following map to it:

Tp : (Cn1 ⊗ . . .⊗ Cnm)⊗k → (Cn1 ⊗ . . .⊗ Cnm)⊗l

ei1 ⊗ . . .⊗ eikm
7→

∑
j1,...,jlm

δp(I, J)ej1 ⊗ . . .⊗ ejlm
.

Under the isomorphism
Cn1 ⊗ . . .⊗ Cnm ∼= Cn1n2...nm

ei1 ⊗ . . .⊗ eim
←→ e(i1,...,im),

it coincides with the map
Sp : (Cn1n2...nm)⊗k → (Cn1n2...nm)⊗l

e(i1
1,...,i1

m) ⊗ . . .⊗ e(ik
1 ,...,ik

m) 7→
∑

j1
1 ,...,j1

m,...,

jl
1,...,jl

m

δp(I, J)e(j1
1 ,...,j1

m) ⊗ . . .⊗ e(jl
1,...,jl

m).

Thus, the assertions (a), (b) and (c) follow directly from Proposition 3.5.
The assertions (d) and (e) follow from Remark 3.6. □

3.5. Definition of spatial partition quantum groups

The properties of Proposition 3.7 ensure that span{Sp | p ∈ C(k, l)} is
an abstract C∗-tensor category in Woronowicz’s sense. Hence we may apply
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the Tannaka–Krein Theorem to it in order to obtain a quantum group.
This motivates the following definition generalizing the one by Banica and
Speicher [3]. See also [22, 28, 32] for more on easy quantum groups and [25]
for an explicit transition from categories of partitions to quantum groups via
Tannaka–Krein.

Definition 3.8. — Let m ∈ N and let n1, . . . , nm ∈ N. A compact ma-
trix quantum group (G, u) with G ⊆ O+

n1···nm
and u ∈ Mn1···nm(C(G)) is a

spatial partition quantum group, if there is a category of ker(n1, . . . , nm)-
graded partitions C ⊆ P (m) such that for all k, l ∈ N0, the intertwiner spaces
of G are of the form

HomG(k, l) = span{Sp | p ∈ C(k, l)}.

It is convenient to use multi indices from [n1 × . . . × nm] for the matrix
u ∈ Mn1···nm

(C(G)), i.e. u = (uIJ)I,J∈[n1×...×nm]. Banica and Speicher [3]
defined easy quantum groups using the maps Tp for p ∈ P . For m = 1, their
quantum groups and our spatial partition quantum groups coincide.

Remark 3.9. — Again, let us briefly comment on an extension in the line
of Remarks 2.7 and 2.10 and [7, 25, 26].

Given a category of colored spatial partitions as in Remark 2.10, we
associate linear maps Sp to such a colored partition p exactly as in Sec-
tion 3.4. The colorization of p does not play any role for this definition.
However, for the interpretation of Sp as an intertwiner we do need the colors
of the points: if the color pattern of the upper first level of p is the word
w = (w1, . . . , wk) ∈ {◦, •}k whereas s = (s1, . . . , sl) ∈ {◦, •}l colors the lower
first level, the map Sp is supposed to be an intertwiner of the representations
uw = uw1 ⊗ · · · ⊗ uwk and us = us1 ⊗ · · · ⊗ usl , where u◦ = u and u• = ū.

By Tannaka–Krein duality, we then obtain a unitary spatial quantum
group G ⊆ U+

n1···nm
(we do not assume u = ū anymore).

3.6. C∗-algebraic relations associated to spatial partitions

The equations Spu
⊗k = u⊗lSp, for p ∈ P (m)(k, l) give rise to relations on

the uIJ . They are the following.

Definition 3.10. — Let m ∈ N, n1, . . . , nm ∈ N and let p ∈ P (m)(k, l).
We say that elements uIJ , I, J ∈ [n1 × . . .× nm] satisfy the relations R(p),
if, for all choices of multi indices I = (I1, . . . , Ik) ∈ [n1 × . . . × nm]k and
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J = (J1, . . . , Jl) ∈ [n1 × . . .× nm]l, we have∑
A1,...,Ak∈[n1×...×nm]

δp(A, J)uA1I1 . . . uAkIk

=
∑

B1,...,Bl∈[n1×...×nm]

δp(I,B)uJ1B1 . . . uJlBl
.

Lemma 3.11. — We have Spu
⊗k = u⊗lSp if and only if the relations

R(p) are satisfied.

Proof. — Using the matrix units eJI ∈Mn1···nm(C) for J, I ∈ [n1× . . .×
nm], we write

u⊗k =
∑

I1,...,Ik

J1,...,Jk

eJ1I1 ⊗ . . .⊗ eJkIk
⊗ uJ1I1 · · ·uJkIk

∈Mn1···nm
(C)⊗ . . .⊗Mn1···nm

(C)⊗ C(G).

Applying it to a vector eI1 ⊗ . . .⊗ eIk
⊗ 1, we obtain

u⊗k(eI1 ⊗ . . .⊗ eIk
⊗ 1) =

∑
A1,...,Ak

eA1 ⊗ . . .⊗ eAk
⊗ uA1I1 · · ·uAkIk

.

Thus

Spu
⊗k(eI1 ⊗ . . .⊗ eIk

⊗ 1)

=
∑

J1,...,Jk

eJ1 ⊗ . . .⊗ eJl
⊗

 ∑
A1,...,Ak

δp(A, J)uA1I1 · · ·uAkIk

 ,

u⊗kSp(eI1 ⊗ . . .⊗ eIk
⊗ 1)

=
∑

J1,...,Jk

eJ1 ⊗ . . .⊗ eJl
⊗

 ∑
B1,...,Bl

δp(I,B)uJ1B1 · · ·uJlBl

 .

Hence, Spu
⊗k = u⊗lSp if and only if the relations R(p) hold. □

Proposition 3.12. — Let G ⊆ O+
n1...nm

be a compact matrix quantum
group. If C(G) is the universal unital C∗-algebra generated by self-adjoint
elements uIJ such that u is orthogonal and the relations R(p) are satisfied
for all p ∈ C for some ker(n1, . . . , nm)-graded category C ⊆ P (m), then G is
a spatial partition quantum group.

In particular, if C = ⟨p1, . . . , pk⟩, then the relations R(p) are satisfied for
all p ∈ C if and only if the relations R(p1), . . . , R(pk) and R( (m)) are
satisfied.
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Proof. — The proof is similar to [25, Prop. 5.7] (see also the appendix of
the arXiv version of [25]): The space W := span{Sp | p ∈ C} is a W ∗-tensor
category in the sense of Woronowicz; hence we may associate a quantum
group H to it and the generators of C(H) satisfy all relations R(p), by
Lemma 3.11. We thus have a surjection from C(G) to C(H). Conversely,
C(G) is a model of W which yields a map from C(H) to C(G) by universality
of H. Hence G = H.

It is a direct algebraic computation to check that the relations R(p⊗ q),
R(pq) and R(p∗) hold, whenever R(p) and R(q) hold. Thus, the relations
R(p1), . . . , R(pk) and R( (m)) imply the relations R(p) for all p ∈ C. □

Here is a list of the relations associated to the generators of P (2) and
P

(2)
2 .

|(2) : u(i1i2)(j1j2) = u(i1i2)(j1j2);
(2), (2)∗

:
∑
g1,g2

u(i1,i2)(g1,g2)u(j1,j2)(g1,g2) =
∑
g1,g2

u(g1,g2)(i1,i2)u(g1,g2)(j1,j2)

= δi1j1δi2j2 ;

4 GUILLAUME CÉBRON AND MORITZ WEBER

(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

: u(k1,k2)(i1,i2)u(k3,k4)(i1,i3) = 0 if k1 ̸= k3,

u(i1,i2)(k1,k2)u(i1,i3)(k3,k4) = 0 if k1 ̸= k3;

4 GUILLAUME CÉBRON AND MORITZ WEBER

(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

: u(k1,k2)(i1,i2)u(k3,k4)(i3,i2) = 0 if k2 ̸= k4,

u(i1,i2)(k1,k2)u(i3,i2)(k3,k4) = 0 if k2 ̸= k4;

b bb
b

:
∑

g

u(g,b2)(i1,i2) =
∑

h

u(b1,b2)(h,i2) (in particular independent of i1, b1);

b bb
b

:
∑

g

u(b1,g)(i1,i2) =
∑

h

u(b1,b2)(i1,h) (in particular independent of i2, b2);
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❜ ❜❜
❜
:
�

g

u(g,b2)(i1,i2) =
�

h

u(b1,b2)(h,i2) (in particular independent of i1, b1)

❜ ❜❜
❜
:
�

g

u(b1,g)(i1,i2) =
�

h

u(b1,b2)(i1,h) (in particular independent of i2, b2)

❜ ❜↑↑ , ❜ ❜↑↑ ∗ :
�

g1,g2

u(i1,i2)(g1,g2) =
�

g1,g2

u(g1,g2)(j1,j2) = 1

❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ : u(b1,b2)(i1,i2)u(b3,b4)(i3,i4) = u(b3,b2)(i3,i2)u(b1,b4)(i1,i4)

❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ : u(b1,b2)(i1,i2)u(b3,b4)(i3,i4) = u(b1,b4)(i1,i4)u(b3,b2)(i3,i2)

❜ ❜❜ ❜❜ ❜❜ ❜
: δj1j3

�

g

u(g,j2)(i1,i2)u(g,j4)(i3,i4) = δi1i3
�

h

u(j1,j2)(h,i2)u(j3,j4)(h,i4)

❜ ❜❜ ❜❜ ❜❜ ❜
: δj2j4

�

g

u(j1,g)(i1,i2)u(j3,g)(i3,i4) = δi2i4
�

h

u(j1,j2)(i1,h)u(j3,j4)(i3,h)

❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉�

: δb1b2
�

g

u(g,g)(i1,i2) = δi1i2
�

h

u(b1,b2)(h,h)

❜ ❜✓✓✓✓✈✈✉
�
:
�

g

u(b1,b2)(g,g) = δb1b2

❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉�

: δi1i2
�

g

u(g,g)(j1,j2) = δj1j2
�

g

u(i1,i2)(g,g)

❆❆❆❆✄
✄
✄
✄
✉❜ ❜❜
❜
: u(i1,i2)(j1,j2) = u(i2,i1)(j2,j1)

Remark 3.13. Inspired from the above relations for ❜ ❜✓✓✓✓✈✈✉
�
, we view them more

generally for (uij)i,j=1,...,n as
�

k∈I
uik = δi∈I

for some subset I ⊆ {1, . . . , n}. For instance:
�

k even

uik = δi even.

It is easy to check that these relations pass through the comultiplication. Hence,
one can define some partial versions of quantum permutation groups.

,

QUANTUM GROUPS BASED ON SPATIAL PARTITIONS 19

❜ ❜❜
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�
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:
�
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�
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❜ ❜↑↑ , ❜ ❜↑↑ ∗ :
�

g1,g2

u(i1,i2)(g1,g2) =
�

g1,g2

u(g1,g2)(j1,j2) = 1

❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ : u(b1,b2)(i1,i2)u(b3,b4)(i3,i4) = u(b3,b2)(i3,i2)u(b1,b4)(i1,i4)
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: δj1j3

�

g

u(g,j2)(i1,i2)u(g,j4)(i3,i4) = δi1i3
�

h

u(j1,j2)(h,i2)u(j3,j4)(h,i4)

❜ ❜❜ ❜❜ ❜❜ ❜
: δj2j4

�

g

u(j1,g)(i1,i2)u(j3,g)(i3,i4) = δi2i4
�

h

u(j1,j2)(i1,h)u(j3,j4)(i3,h)

❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉�

: δb1b2
�

g

u(g,g)(i1,i2) = δi1i2
�

h

u(b1,b2)(h,h)

❜ ❜✓✓✓✓✈✈✉
�
:
�

g

u(b1,b2)(g,g) = δb1b2

❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉�

: δi1i2
�

g

u(g,g)(j1,j2) = δj1j2
�

g

u(i1,i2)(g,g)

❆❆❆❆✄
✄
✄
✄
✉❜ ❜❜
❜
: u(i1,i2)(j1,j2) = u(i2,i1)(j2,j1)

Remark 3.13. Inspired from the above relations for ❜ ❜✓✓✓✓✈✈✉
�
, we view them more

generally for (uij)i,j=1,...,n as
�

k∈I
uik = δi∈I

for some subset I ⊆ {1, . . . , n}. For instance:
�

k even

uik = δi even.

It is easy to check that these relations pass through the comultiplication. Hence,
one can define some partial versions of quantum permutation groups.

∗
:
∑
g1,g2

u(i1,i2)(g1,g2) =
∑
g1,g2

u(g1,g2)(j1,j2) = 1;

4 GUILLAUME CÉBRON AND MORITZ WEBER

(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

: u(b1,b2)(i1,i2)u(b3,b4)(i3,i4) = u(b3,b2)(i3,i2)u(b1,b4)(i1,i4);

4 GUILLAUME CÉBRON AND MORITZ WEBER

(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

: u(b1,b2)(i1,i2)u(b3,b4)(i3,i4) = u(b1,b4)(i1,i4)u(b3,b2)(i3,i2);
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4 GUILLAUME CÉBRON AND MORITZ WEBER

(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:
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✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

: δj1j3

∑
g

u(g,j2)(i1,i2)u(g,j4)(i3,i4) = δi1i3

∑
h

u(j1,j2)(h,i2)u(j3,j4)(h,i4);
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

: δj2j4

∑
g

u(j1,g)(i1,i2)u(j3,g)(i3,i4) = δi2i4

∑
h

u(j1,j2)(i1,h)u(j3,j4)(i3,h);
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Lemma 2.17. Let m ∈ N.
(a) Let π ∈ P (m) be a grading partition. If p and q in P (m) are π-graded, then

so are p⊗ q, pq, p∗ or any m-rotation of p or q.

(b) The set P
(m)
π of all π-graded partitions in P (m) is a category of spatial parti-

tions.
(c) If p1, . . . , pk are π-graded, so is the category �p1, . . . , pk� generated by them.

Proof. The proof of (a) is straightforward, and (b) and (c) follow immediately. �

2.5. Generators of P
(m)
π , P (2) and P

(2)
2 . In the case m = 1, it is not difficult to

see that P is generated by , ↑ and ✁✁❆❆ . This allows us to define natural further
categories like � � or � , ↑�, see for instance [Web13]. We are thus interested in
finding canonical generators of the category P (m), the maximal category of spatial
partitions. We refine the statement by considering π-graded partitions, including
the case P (m) when π is the one block partition on m points.

Theorem 2.18. Let π ∈ P (m) be a grading partition. The category P
(m)
π of all π-

graded partitions is generated by the following partitions besides the base partitions
|(m) and (m):
(i) The singleton partition ↑(m).

(ii) For i = 1, . . . ,m, the partition given by on level i and | ⊗ | on all other

levels. For m = 2 this amounts to ❜ ❜❜ ❜❜ ❜❜ ❜
∈ P (2)(2, 2) and ❜ ❜❜ ❜❜ ❜❜ ❜

∈ P (2)(2, 2).

(iii) For i = 1, . . . ,m, the partition given by ✁✁❆❆ on level i and | ⊗ | on all other

levels. For m = 2 this amounts to ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ ∈ P (2)(2, 2) and ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ ∈ P (2)(2, 2).
(iv) For 1 ≤ i < j ≤ m two points in the same block of π, the partition given by

❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉�

on the levels i and j and | on the others. For m = 2 and π = this

amounts to ❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉� ∈ P (2)(1, 1).

Proof. We give a proof for m = 2 and π = , the general case being a straightfor-
ward adaption.
Let C ⊆ P (2) be the category generated by (i) to (iv). Let p1 and q2 be partitions

in P (k, l). Using ❜ ❜❜ ❜❜ ❜❜ ❜
, ❜ ❜↑↑ , ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , the base partitions, and the category operations,
we may construct a partition p ∈ C respecting the levels, such that on level one, we
have p1 (since P = � , ↑, ✁✁❆❆ �). Likewise, we produce a partition q ∈ C respecting
the levels, such that on level two, we have q2. Using (iii), we may permute the
points of p ⊗ q ∈ C in order to obtain a partition r ⊗ s ∈ C respecting the levels
with r, s ∈ P (2)(k, l) such that r restricts to p1 on level one and to q2 on level two.
Composing this partition with ↑(2) and its adjoint, we infer r ∈ C.

: δb1b2

∑
g

u(g,g)(i1,i2) = δi1i2

∑
h

u(b1,b2)(h,h);
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

:
∑

g

u(b1,b2)(g,g) = δb1b2 ;
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

: δi1i2

∑
g

u(g,g)(j1,j2) = δj1j2

∑
g

u(i1,i2)(g,g);
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

: u(i1,i2)(j1,j2) = u(i2,i1)(j2,j1);

Remark 3.13. — Inspired from the above relations for
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

, we view them
more generally for (uij)i,j=1,...,n as

∑
k∈I

uik = δi∈I

for some subset I ⊆ {1, . . . , n}. For instance:

∑
k even

uik = δi even.

It is easy to check that these relations pass through the comultiplication.
Hence, one can define some partial versions of quantum permutation groups.

Remark 3.14. — In the setting of colored partitions, the relations associ-
ated to partitions read as follows. Let m ∈ N, n1, . . . , nm ∈ N and let p be a
colored partition with upper color pattern w = (w1, . . . , wk) and lower color
pattern s = (s1, . . . , sl). We say that elements uIJ , I, J ∈ [n1 × . . . × nm]
satisfy the (colored) relations R(p), if, for all choices of multi indices I =
(I1, . . . , Ik) ∈ [n1 × . . . × nm]k and J = (J1, . . . , Jl) ∈ [n1 × . . . × nm]l, we
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have ∑
A1,...,Ak∈[n1×...×nm]

δp(A, J)uw1
A1I1

. . . uwk

AkIk

=
∑

B1,...,Bl∈[n1×...×nm]

δp(I,B)us1
J1B1

. . . usl

JlBl
.

Here, we understand ux
A1I1

= uA1I1 if x = ◦ and ux
A1I1

= u∗
A1I1

if x = •.

As an example:
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Remark 3.14. In the setting of colored partitions, the relations associated to par-
titions read as follows. Let m ∈ N, n1, . . . , nm ∈ N and let p be a colored partition
with upper color pattern w = (w1, . . . , wk) and lower color pattern s = (s1, . . . , sl).
We say that elements uIJ , I, J ∈ [n1 × . . . × nm] satisfy the (colored) relations
R(p), if, for all choices of multi indices I = (I1, . . . , Ik) ∈ [n1 × . . . × nm]

k and
J = (J1, . . . , Jl) ∈ [n1 × . . .× nm]

l, we have
�

A1,...,Ak∈[n1×...×nm]

δp(A, J)u
w1
A1I1

. . . uwk
AkIk

=
�

B1,...,Bl∈[n1×...×nm]

δp(I, B)us1
J1B1

. . . usl
JlBl

.

Here, we understand ux
A1I1

= uA1I1 if x = ◦ and ux
A1I1

= u∗
A1I1

if x = •.
As an example:

❆❆❆❆✄
✄
✄
✄
✉❜ ❜�
�
: u∗

(i1,i2)(j1,j2)
= u(i2,i1)(j2,j1)

4. Products of categories

Given two categories of partitions C1 and C2 – how can we form a new one from
this data? Several possibilities will be developped in the sequel.

4.1. Kronecker product of categories. In the setting of spatial partition quan-
tum groups, we have an obvious possibility to form a new category out of two given
categories C1 ⊆ P and C2 ⊆ P : We simply put C1 on level one and C2 on level two.
More generally, we have the following setup.

Definition 4.1. Let s ∈ N. Let mi ∈ N and let πi ∈ P (mi) for i = 1, . . . , s.

(a) Let k, l ∈ N0. Let pi ∈ P
(mi)
πi (k, l) for i = 1, . . . , s. We denote by



ps
...
p1


 ∈ P

(m1+...+ms)
π1⊗...⊗πs

(k, l)

the partition given by placing p1 on the levels 1 to m1, placing p2 on the levels
m1 + 1 to m1 +m2, and so on.

(b) Let Ci ⊆ P
(mi)
πi be sets of πi-graded partitions, for i = 1, . . . , s. We denote by

C1 × . . .× Cs := {



ps
...
p1


 ∈ P

(m1+...+ms)
π1⊗...⊗πs

| pi ∈ Ci for all i = 1, . . . , s} ⊆ P
(m1+...+ms)
π1⊗...⊗πs

the Kronecker product of the sets Ci, i = 1, . . . , s.

Lemma 4.2. Let Ci ⊆ P
(mi)
πi be categories of πi-graded spatial partitions, for i =

1, . . . , s. Then C1 × . . .×Cs ⊆ P
(m1+...+ms)
π1⊗...⊗πs

is category of π1 ⊗ . . .⊗ πs-graded spatial
partitions.

Proof. The proof is straightforward. �

: u∗
(i1,i2)(j1,j2) = u(i2,i1)(j2,j1)

4. Products of categories

Given two categories of partitions C1 and C2, how can we form a new one
from this data? Several possibilities will be developped in the sequel.

4.1. Kronecker product of categories

In the setting of spatial partition quantum groups, we have an obvious
possibility to form a new category out of two given categories C1 ⊆ P and
C2 ⊆ P : We simply put C1 on level one and C2 on level two. More generally,
we have the following setup.

Definition 4.1. — Let s ∈ N. Let mi ∈ N and let πi ∈ P (mi) for
i = 1, . . . , s.

(a) Let k, l ∈ N0. Let pi ∈ P (mi)
πi (k, l) for i = 1, . . . , s. We denote by( ps

...
p1

)
∈ P (m1+...+ms)

π1⊗...⊗πs
(k, l)

the partition given by placing p1 on the levels 1 to m1, placing p2
on the levels m1 + 1 to m1 +m2, and so on.

(b) Let Ci ⊆ P
(mi)
πi be sets of πi-graded partitions, for i = 1, . . . , s. We

denote by

C1 × . . .× Cs :=
{( ps

...
p1

)
∈ P (m1+...+ms)

π1⊗...⊗πs

∣∣∣∣∣ pi ∈ Ci for all i = 1, . . . , s
}

⊆ P (m1+...+ms)
π1⊗...⊗πs

the Kronecker product of the sets Ci, i = 1, . . . , s.
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Lemma 4.2. — Let Ci ⊆ P
(mi)
πi be categories of πi-graded spatial par-

titions, for i = 1, . . . , s. Then C1 × . . . × Cs ⊆ P
(m1+...+ms)
π1⊗...⊗πs

is category of
π1 ⊗ . . .⊗ πs-graded spatial partitions.

Proof. — The proof is straightforward. □

4.2. Glued tensor products of spatial partition quantum groups

It is natural to ask for the quantum group picture of the above Kro-
necker product of categories. Recall the following product of quantum groups
from [25, Def. 6.4].

Definition 4.3. — Let (G, u) and (H, v) be two compact matrix quan-
tum groups with n × n matrix u = (uij)i,j=1,...,n and m × m matrix v =
(vkl)k,l=1,...,m. The glued direct product (G, u)×̃(H, v) of (G, u) and (H, v)
is the compact matrix quantum group given by the C∗-subalgebra

C(G×̃H) := C∗(uijvkl | i, j= 1, . . . , n and k, l=1, . . .m) ⊆ C(G)⊗maxC(H)

and the nm×nm matrix u×̃v := (uijvkl). Here, we identify C(G)⊗maxC(H)
with the universal C∗-algebra generated by elements uij ∈ C(G) and vkl ∈
C(H) such that all uij commute with all vkl. We also write G×̃H short for
(G, u)×̃(H, v).

Theorem 4.4. — Let (Gi, ui) ⊆ O+
Ni

be spatial partition quantum groups
with categories Ci ⊆ P (mi) for i = 1, 2 and Ni = ni

1 · · ·ni
mi

. The spatial
partition quantum group associated to the category C1 × C2 is G1×̃G2 ⊆
O+

N1N2
.

Proof. — It is straightforward to check that G1×̃G2 is indeed a quantum
subgroup of O+

N1N2
in the sense of Definition 3.2(a) mapping the generators

w(i1,i2)(j1,j2) of O+
N1N2

to ui1j1vi2j2 ∈ C(G1×̃G2). Moreover, let G be the
compact matrix quantum group associated to the category C1×C2. Thus its
intertwiner space is

HomG(k, l) = span{Sp | p ∈ C1 × C2}.

By definition, the intertwiner space of G1×̃G2 is

HomG1×̃G2(k, l)
=
{
T : (CN1 ⊗ CN2)⊗k → (CN1 ⊗ CN2)⊗l

∣∣ T (u1 ⊗ u2)⊗k = (u1 ⊗ u2)⊗lT
}
.

To prove the statement of the theorem, it suffices to prove that

HomG(k, l) = HomG1×̃G2(k, l) for all k, l ∈ N0.
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For doing so, let us first consider Sp ∈ HomG(k, l). Thus p = ( p2
p1 ) with

pi ∈ Ci. Reordering the elements of the tensor product (CN1 ⊗ CN2)⊗k ∼=
(CN1)⊗k ⊗ (CN2)⊗k, we observe that Sp

∼= Sp1 ⊗ Sp2 . Thus

Sp(u1 ⊗ u2)⊗k ∼= (Sp1 ⊗ Sp2)(u⊗k
1 ⊗ u⊗k

2 ) = (u⊗k
1 ⊗ u⊗k

2 )(Sp1 ⊗ Sp2)
∼= (u1 ⊗ u2)⊗kSp.

Consequently, Sp ∈ HomG1×̃G2(k, l) and by linearity, HomG(k, l) ⊆
HomG1×̃G2(k, l).

We conclude by a dimension argument. Recall that the dimension of
HomH(k, l) of a compact matrix quantum group (H,w) is given by hH(χk+l

w )
where hH is the Haar measure on H and χw =

∑
i wii. The Haar measure

of G1×̃G2 is given by hG1 ⊗ hG2 by [30]. We have

dim HomG1×̃G2(k, l) = hG1 ⊗ hG2(χk+l
u1⊗u2

)
= hG1 ⊗ hG2(χk+l

u1
χk+l

u2
)

= hG1(χk+l
u1

)hG2(χk+l
u2

)
= dim HomG1(k, l) · dim HomG2(k, l)
= dim span{Sp1 | p1 ∈ C1} · dim span{Sp2 | p2 ∈ C2}
= dim span{Sp1 | p1 ∈ C1} ⊗ span{Sp2 | p2 ∈ C2}
= dim span{Sp1 ⊗ Sp2 | p1 ∈ C1, p2 ∈ C2}.

Once again, reordering the elements of the tensor product (CN1 ⊗CN2)⊗k ∼=
(CN1)⊗k ⊗ (CN2)⊗k, we observe that Sp1 ⊗ Sp2

∼= Sp whenever p = ( p2
p1 ). It

allows us to conclude:

dim HomG1×̃G2(k, l) = dim span{Sp1 ⊗ Sp2 | p1 ∈ C1, p2 ∈ C2}
= dim span{Sp | p = ( p2

p1 ) , p1 ∈ C1, p2 ∈ C2}
= dim span{Sp | p ∈ C1 × C2}
= dim HomG(k, l). □

Corollary 4.5. — In particular, the quantum groups Sn×̃Sn, Sn×̃S+
n ,

S+
n ×̃S+

n or On×̃S+
n etc. are spatial partition quantum groups.

We observe that the class of spatial partition quantum groups is closed
under taking the glued direct product (increasing the number m). This is
not the case for easy quantum groups: taking the glued direct product, we
leave the class of easy quantum groups entering the class of spatial partition
quantum groups.
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4.3. Glued tensor products with amalgamation over partitions

Forming the Kronecker product C1 × C2 of two categories Ci ⊆ P (with
easy quantum groups (G, u) and (H, v)), we obtain a category of spatial
partitions respecting the (two) levels. We will obtain further relations for the
generators uijvkl of C(G×̃H), if we throw in partitions mixing the levels.
See also [7] for further ways of amalgamation.

Definition 4.6. — Let (G, u) and (H, v) be compact matrix quantum
groups such that the matrices u and v have the same size. Put w(i,k)(j,l) :=
uijvkl ∈ C(G)⊗maxC(H). Let p ∈ P (2). The glued direct product over p (or
the p-amalgamated glued direct product) (G, u)×̃p(H, v) (or short G×̃pH)
is given by the C∗-subalgebra

C∗(uijvkl | i, j, k, l = 1, . . . , n)
⊆ C(G)⊗max C(H)/⟨the elements w(i,k)(j,l) satisfy the relations R(p)⟩.

Lemma 4.7. — The C∗-algebra in Definition 4.6 admits a comultipli-
cation turning (G, u)×̃p(H, v) into a compact matrix quantum group with
fundamental representation u×̃pv := (uijvkl)i,j,k,l=1,...,n.

Proof. — The C∗-algebra C(G×̃H) of Definition 4.3 admits a comulti-
plication due to [25]. We can view C(G×̃pH) as a quotient of C(G×̃H), and
consider the following diagram.

C(G×̃H) ∆ //

α

��

C(G×̃H)⊗ C(G×̃H)

α⊗α

��
C(G×̃pH) C(G×̃pH)⊗ C(G×̃pH)

Hence, all we have to check is that the map (α ⊗ α) ◦∆ factorizes through
α. For doing so, we only need to check that the elements∑

s,t

w(i,k)(s,t) ⊗ w(s,t)(j,l) ∈ C(G×̃pH)⊗ C(G×̃pH)

satisfy the relations R(p), which is the case. □

Theorem 4.8. — Let (Gi, ui) ⊆ O+
n be easy quantum groups with cate-

gories Ci ⊆ P for i = 1, 2. Let p ∈ P (2). The spatial partition quantum group
associated to the category ⟨C1 × C2, p⟩ is G1×̃pG2 ⊆ O+

n2 .

Proof. — Let (G, v) be the spatial partition quantum group associated to
the category ⟨C1 ×C2, p⟩. We denote by u the generating matrix of G1×̃pG2
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and by w the generating matrix of G1×̃G2. Because the relations R(p) only
involve elements of C(G1×̃G2), we have

C(G1×̃pG2)∼=C(G1×̃G2)/⟨the elementsw(i,k)(j,l) satisfy the relationsR(p)⟩

via the canonical isomorphism wIJ 7→ uIJ .

By definition, the space of intertwiners of G contains the one of G1×̃G2.
By universality of Tannaka–Krein theorem, it means that G is a quan-
tum subgroup of G1×̃G2, or more precisely, that there exists a surjective
∗-homomorphism φ : C(G1×̃G2) → C(G) mapping wIJ to vIJ . Because
vIJ satisfy the relation R(p), this homomorphism can be quotiented into a
surjective ∗-homomorphism φ : C(G1×̃pG2) → C(G) mapping uIJ to vIJ ,
meaning that G is a quantum subgroup of G1×̃pG2.

Conversely, the space of intertwiners of G1×̃pG2 is bigger than the one of
G, because it contains Sp and Sq for q ∈ C1×C2, which means that it contains
span{Sq | q ∈ ⟨C1 × C2, p⟩}. By universality of Tannaka–Krein theorem, it
implies that G1×̃pG2 is a quantum subgroup of G. □

It is straightforward to generalize Definition 4.6 to products of an ar-
bitrary finite number m ∈ N of quantum groups, allowing for an amalga-
mation with arbitrary partitions P (m). One can also choose G1 and G2 of
the above proposition to be spatial partition quantum groups rather than
easy quantum groups, after extending Definition 4.6 to an amalgamation of
G ⊆ O+

n1
1···n1

m1
and H ⊆ O+

n2
1···n2

m2
with respect to a partition p ∈ P (m1+m2)

π ,
where π = ker(n1

1, . . . , n
1
m1
, n2

1, . . . , n
2
m2

). Observe that an amalgamation
with a partition respecting the levels boils down to the glued direct product
without amalgamation.

Example 4.9. — Let C1 = C2 = NC2.

(a) For p =
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

, the category ⟨NC2 ×NC2,
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

⟩ corresponds to O+
n ×̃pO

+
n

with

C(O+
n ×̃pO

+
n )

= C∗

(
uijvkl

∣∣∣∣∣ (uij), (vkl) are orth., uijvkl = vkluij ,
∑

k

ui1kvi2k = δi1i2

)
.

(b) For p =
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

, the category ⟨NC2×NC2,
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
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�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

⟩ corresponds to O+
n ×̃pO

+
n

with

C(O+
n ×̃pO

+
n ) = C∗

(
uijvkl

∣∣∣∣ (uij), (vkl) are orth.,
uijvkl = vkluij , uijvkl = uklvij

)
.
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Quantum groups based on spatial partitions

4.4. Noncrossing product of categories

Building on an extension of the setting of spatial partition quantum
groups to the colored situation (Remark 3.9), we may give another con-
struction for defining new categories from old ones, in the sense of Thm, 4.4.
We first need a notion of non-crossing colored spatial partitions.

For this purpose, we extend the isomorphism of Remark 2.4 from white
points to white and black points: for any m ∈ N, k, l ∈ N0 and a fixed color
pattern on {1, . . . , k, k + 1, . . . , k + l} × {1, . . . ,m}, the sets

A := {1, . . . , km, km+ 1, . . . , km+ lm}
and

B := {1, . . . , k, k + 1, . . . , k + l} × {1, . . . ,m}
are in bijective correspondence by identifying a point (x − 1)m + y ∈ A,
1 ⩽ x ⩽ k + l, 1 ⩽ y ⩽ m with the point (x, y) ∈ B if (x, y) is white and
by identifying a point xm + 1 − y ∈ A, 1 ⩽ x ⩽ k + l, 1 ⩽ y ⩽ m with the
point (x, y) ∈ B if (x, y) is black. This reverse order on black points reflects
the identity u⊗ v = v ⊗ u.

We can define two different products using this isomorphism. The defi-
nition of the noncrossing product C1 ×nc C2 and of the free product C1 ∗ C2
of categories C1 ⊆ P and C2 ⊆ P of colored partitions follow Definition 4.1
with additional conditions of being noncrossing:

• We place a partition p from C1 on level one, and a partition q from
C2 on level two and consider the resulting partition

(
q
p

)
.

• For the definition of C1 ×nc C2, we require that the partitions p
and q do not cross each other under the above isomorphism. More
precisely,

(
q
p

)
is in C1×ncC2 whenever there exists a partition r ⩽

(
q
p

)
which respects the levels and which is noncrossing under the above
isomorphism.
• For the definition of C1 ∗ C2, we require in addition that for each

block of r on the first level, the restriction of p to this block is in
C1, and for each block of r on the second level, the restriction of q
to this block is in C2.

As a consequence, C1 ∗C2 ⊆ C1×nc C2. For example, putting
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P (m)(k, l) ∼= P (km, lm) of Remark 2.4 respects the category operations. Hence, if
we view P (m) as a subset of P , a category C ⊆ P (m) of spatial partitions corresponds
to a set C � ⊆ P which is closed under the category operations (as operations in
P ). However, C � is not a category of partitions in Banica-Speicher’s sense, since it
does not contain the base partitions nor |. From this point of view, we somehow
modified Banica and Speicher’s definition of categories of partitions C ⊆ P by simply
replacing the base partitions ∈ P and | ∈ P by different ones, namely by

(m) ∈ P (m)(0, 2) ←→ {{1,m+ 1}, {2,m+ 2}, . . . , {m, 2m}} ∈ P (0, 2m)

and

|(m) ∈ P (m)(1, 1) ←→ |⊗m ∈ P (m,m)

using the isomorphism P (m)(k, l) ∼= P (km, lm) of Remark 2.4. From the combina-
torial point of view, there is no difficulty in choosing different base partitions for
Banica and Speicher’s categories of partitions, but so far a quantum group interpre-
tation of such categories was missing. In this article, we provide one for the case of

(m) and |(m).

Remark 2.10. In view of Remark 2.7, we define a category of colored spatial

partitions as in Definition 2.8 replacing (m) and |(m) by •◦
(m)

, ◦•
(m)

, ◦
◦ (m)

and

•
• (m)

. We will leave the colored case as a side remark, for the moment.

Definition 2.11. Let C ⊆ P be a set of partitions. Using the notation of Definition
2.5, we denote by

[C](m) := {p(m) | p ∈ C} ⊆ P (m)

the amplification of C.
Lemma 2.12. If C ⊆ P is a category of partitions, then the amplification [C](m) ⊆
P (m) is a category of spatial partitions.

Proof. A direct proof is straightforward. Alternatively, one can use the fact that the
isomorphism of Remark 2.4 respects the category operations. �

Example 2.13. Here are examples of categories of spatial partitions. We will see
more exotic ones in Section 5.
(a) The set P (m) of all spatial partitions is a category of spatial partitions. It is

maximal in the sense that it contains all other categories of spatial partitions.
We have [P ](m) �= P (m) for m �= 1, since a spatial partition in the amplification
[P ](m) of P consists of m copies of a partition from P to all levels; the set P (m)

in turn is much larger containing any spatial partition.

(b) The set P
(m)
2 of all spatial pair partitions (i.e. all blocks consist of exactly

two points) is a category of spatial partitions. Again, we have [P2]
(m) �= P

(m)
2

for m �= 1.

on both level
gives us the noncrossing partition {{1, 4}, {2, 3}}, meaning that
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P (m)(k, l) ∼= P (km, lm) of Remark 2.4 respects the category operations. Hence, if
we view P (m) as a subset of P , a category C ⊆ P (m) of spatial partitions corresponds
to a set C � ⊆ P which is closed under the category operations (as operations in
P ). However, C � is not a category of partitions in Banica-Speicher’s sense, since it
does not contain the base partitions nor |. From this point of view, we somehow
modified Banica and Speicher’s definition of categories of partitions C ⊆ P by simply
replacing the base partitions ∈ P and | ∈ P by different ones, namely by

(m) ∈ P (m)(0, 2) ←→ {{1,m+ 1}, {2,m+ 2}, . . . , {m, 2m}} ∈ P (0, 2m)

and

|(m) ∈ P (m)(1, 1) ←→ |⊗m ∈ P (m,m)

using the isomorphism P (m)(k, l) ∼= P (km, lm) of Remark 2.4. From the combina-
torial point of view, there is no difficulty in choosing different base partitions for
Banica and Speicher’s categories of partitions, but so far a quantum group interpre-
tation of such categories was missing. In this article, we provide one for the case of

(m) and |(m).

Remark 2.10. In view of Remark 2.7, we define a category of colored spatial

partitions as in Definition 2.8 replacing (m) and |(m) by •◦
(m)

, ◦•
(m)

, ◦
◦ (m)

and

•
• (m)

. We will leave the colored case as a side remark, for the moment.

Definition 2.11. Let C ⊆ P be a set of partitions. Using the notation of Definition
2.5, we denote by

[C](m) := {p(m) | p ∈ C} ⊆ P (m)

the amplification of C.
Lemma 2.12. If C ⊆ P is a category of partitions, then the amplification [C](m) ⊆
P (m) is a category of spatial partitions.

Proof. A direct proof is straightforward. Alternatively, one can use the fact that the
isomorphism of Remark 2.4 respects the category operations. �

Example 2.13. Here are examples of categories of spatial partitions. We will see
more exotic ones in Section 5.
(a) The set P (m) of all spatial partitions is a category of spatial partitions. It is

maximal in the sense that it contains all other categories of spatial partitions.
We have [P ](m) �= P (m) for m �= 1, since a spatial partition in the amplification
[P ](m) of P consists of m copies of a partition from P to all levels; the set P (m)

in turn is much larger containing any spatial partition.

(b) The set P
(m)
2 of all spatial pair partitions (i.e. all blocks consist of exactly

two points) is a category of spatial partitions. Again, we have [P2]
(m) �= P

(m)
2

for m �= 1.

(2)
is an

element of the noncrossing product C1 ×nc C2. In addition, each restriction
is
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P (m)(k, l) ∼= P (km, lm) of Remark 2.4 respects the category operations. Hence, if
we view P (m) as a subset of P , a category C ⊆ P (m) of spatial partitions corresponds
to a set C � ⊆ P which is closed under the category operations (as operations in
P ). However, C � is not a category of partitions in Banica-Speicher’s sense, since it
does not contain the base partitions nor |. From this point of view, we somehow
modified Banica and Speicher’s definition of categories of partitions C ⊆ P by simply
replacing the base partitions ∈ P and | ∈ P by different ones, namely by

(m) ∈ P (m)(0, 2) ←→ {{1,m+ 1}, {2,m+ 2}, . . . , {m, 2m}} ∈ P (0, 2m)

and

|(m) ∈ P (m)(1, 1) ←→ |⊗m ∈ P (m,m)

using the isomorphism P (m)(k, l) ∼= P (km, lm) of Remark 2.4. From the combina-
torial point of view, there is no difficulty in choosing different base partitions for
Banica and Speicher’s categories of partitions, but so far a quantum group interpre-
tation of such categories was missing. In this article, we provide one for the case of

(m) and |(m).

Remark 2.10. In view of Remark 2.7, we define a category of colored spatial

partitions as in Definition 2.8 replacing (m) and |(m) by •◦
(m)

, ◦•
(m)

, ◦
◦ (m)

and

•
• (m)

. We will leave the colored case as a side remark, for the moment.

Definition 2.11. Let C ⊆ P be a set of partitions. Using the notation of Definition
2.5, we denote by

[C](m) := {p(m) | p ∈ C} ⊆ P (m)

the amplification of C.
Lemma 2.12. If C ⊆ P is a category of partitions, then the amplification [C](m) ⊆
P (m) is a category of spatial partitions.

Proof. A direct proof is straightforward. Alternatively, one can use the fact that the
isomorphism of Remark 2.4 respects the category operations. �

Example 2.13. Here are examples of categories of spatial partitions. We will see
more exotic ones in Section 5.
(a) The set P (m) of all spatial partitions is a category of spatial partitions. It is

maximal in the sense that it contains all other categories of spatial partitions.
We have [P ](m) �= P (m) for m �= 1, since a spatial partition in the amplification
[P ](m) of P consists of m copies of a partition from P to all levels; the set P (m)

in turn is much larger containing any spatial partition.

(b) The set P
(m)
2 of all spatial pair partitions (i.e. all blocks consist of exactly

two points) is a category of spatial partitions. Again, we have [P2]
(m) �= P

(m)
2

for m �= 1.

, which is in every category of colored partitions, meaning that
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P (m)(k, l) ∼= P (km, lm) of Remark 2.4 respects the category operations. Hence, if
we view P (m) as a subset of P , a category C ⊆ P (m) of spatial partitions corresponds
to a set C � ⊆ P which is closed under the category operations (as operations in
P ). However, C � is not a category of partitions in Banica-Speicher’s sense, since it
does not contain the base partitions nor |. From this point of view, we somehow
modified Banica and Speicher’s definition of categories of partitions C ⊆ P by simply
replacing the base partitions ∈ P and | ∈ P by different ones, namely by

(m) ∈ P (m)(0, 2) ←→ {{1,m+ 1}, {2,m+ 2}, . . . , {m, 2m}} ∈ P (0, 2m)

and

|(m) ∈ P (m)(1, 1) ←→ |⊗m ∈ P (m,m)

using the isomorphism P (m)(k, l) ∼= P (km, lm) of Remark 2.4. From the combina-
torial point of view, there is no difficulty in choosing different base partitions for
Banica and Speicher’s categories of partitions, but so far a quantum group interpre-
tation of such categories was missing. In this article, we provide one for the case of

(m) and |(m).

Remark 2.10. In view of Remark 2.7, we define a category of colored spatial

partitions as in Definition 2.8 replacing (m) and |(m) by •◦
(m)

, ◦•
(m)

, ◦
◦ (m)

and

•
• (m)

. We will leave the colored case as a side remark, for the moment.

Definition 2.11. Let C ⊆ P be a set of partitions. Using the notation of Definition
2.5, we denote by

[C](m) := {p(m) | p ∈ C} ⊆ P (m)

the amplification of C.
Lemma 2.12. If C ⊆ P is a category of partitions, then the amplification [C](m) ⊆
P (m) is a category of spatial partitions.

Proof. A direct proof is straightforward. Alternatively, one can use the fact that the
isomorphism of Remark 2.4 respects the category operations. �

Example 2.13. Here are examples of categories of spatial partitions. We will see
more exotic ones in Section 5.
(a) The set P (m) of all spatial partitions is a category of spatial partitions. It is

maximal in the sense that it contains all other categories of spatial partitions.
We have [P ](m) �= P (m) for m �= 1, since a spatial partition in the amplification
[P ](m) of P consists of m copies of a partition from P to all levels; the set P (m)

in turn is much larger containing any spatial partition.

(b) The set P
(m)
2 of all spatial pair partitions (i.e. all blocks consist of exactly

two points) is a category of spatial partitions. Again, we have [P2]
(m) �= P

(m)
2

for m �= 1.

(2)
∈

C1 ∗ C2. Similarly, we can verify that
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P (m)(k, l) ∼= P (km, lm) of Remark 2.4 respects the category operations. Hence, if
we view P (m) as a subset of P , a category C ⊆ P (m) of spatial partitions corresponds
to a set C � ⊆ P which is closed under the category operations (as operations in
P ). However, C � is not a category of partitions in Banica-Speicher’s sense, since it
does not contain the base partitions nor |. From this point of view, we somehow
modified Banica and Speicher’s definition of categories of partitions C ⊆ P by simply
replacing the base partitions ∈ P and | ∈ P by different ones, namely by

(m) ∈ P (m)(0, 2) ←→ {{1,m+ 1}, {2,m+ 2}, . . . , {m, 2m}} ∈ P (0, 2m)

and

|(m) ∈ P (m)(1, 1) ←→ |⊗m ∈ P (m,m)

using the isomorphism P (m)(k, l) ∼= P (km, lm) of Remark 2.4. From the combina-
torial point of view, there is no difficulty in choosing different base partitions for
Banica and Speicher’s categories of partitions, but so far a quantum group interpre-
tation of such categories was missing. In this article, we provide one for the case of

(m) and |(m).

Remark 2.10. In view of Remark 2.7, we define a category of colored spatial

partitions as in Definition 2.8 replacing (m) and |(m) by •◦
(m)

, ◦•
(m)

, ◦
◦ (m)

and

•
• (m)

. We will leave the colored case as a side remark, for the moment.

Definition 2.11. Let C ⊆ P be a set of partitions. Using the notation of Definition
2.5, we denote by

[C](m) := {p(m) | p ∈ C} ⊆ P (m)

the amplification of C.
Lemma 2.12. If C ⊆ P is a category of partitions, then the amplification [C](m) ⊆
P (m) is a category of spatial partitions.

Proof. A direct proof is straightforward. Alternatively, one can use the fact that the
isomorphism of Remark 2.4 respects the category operations. �

Example 2.13. Here are examples of categories of spatial partitions. We will see
more exotic ones in Section 5.
(a) The set P (m) of all spatial partitions is a category of spatial partitions. It is

maximal in the sense that it contains all other categories of spatial partitions.
We have [P ](m) �= P (m) for m �= 1, since a spatial partition in the amplification
[P ](m) of P consists of m copies of a partition from P to all levels; the set P (m)

in turn is much larger containing any spatial partition.

(b) The set P
(m)
2 of all spatial pair partitions (i.e. all blocks consist of exactly

two points) is a category of spatial partitions. Again, we have [P2]
(m) �= P

(m)
2

for m �= 1.

(2)
,
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P (m)(k, l) ∼= P (km, lm) of Remark 2.4 respects the category operations. Hence, if
we view P (m) as a subset of P , a category C ⊆ P (m) of spatial partitions corresponds
to a set C � ⊆ P which is closed under the category operations (as operations in
P ). However, C � is not a category of partitions in Banica-Speicher’s sense, since it
does not contain the base partitions nor |. From this point of view, we somehow
modified Banica and Speicher’s definition of categories of partitions C ⊆ P by simply
replacing the base partitions ∈ P and | ∈ P by different ones, namely by

(m) ∈ P (m)(0, 2) ←→ {{1,m+ 1}, {2,m+ 2}, . . . , {m, 2m}} ∈ P (0, 2m)

and

|(m) ∈ P (m)(1, 1) ←→ |⊗m ∈ P (m,m)

using the isomorphism P (m)(k, l) ∼= P (km, lm) of Remark 2.4. From the combina-
torial point of view, there is no difficulty in choosing different base partitions for
Banica and Speicher’s categories of partitions, but so far a quantum group interpre-
tation of such categories was missing. In this article, we provide one for the case of

(m) and |(m).

Remark 2.10. In view of Remark 2.7, we define a category of colored spatial

partitions as in Definition 2.8 replacing (m) and |(m) by •◦
(m)

, ◦•
(m)

, ◦
◦ (m)

and

•
• (m)

. We will leave the colored case as a side remark, for the moment.

Definition 2.11. Let C ⊆ P be a set of partitions. Using the notation of Definition
2.5, we denote by

[C](m) := {p(m) | p ∈ C} ⊆ P (m)

the amplification of C.
Lemma 2.12. If C ⊆ P is a category of partitions, then the amplification [C](m) ⊆
P (m) is a category of spatial partitions.

Proof. A direct proof is straightforward. Alternatively, one can use the fact that the
isomorphism of Remark 2.4 respects the category operations. �

Example 2.13. Here are examples of categories of spatial partitions. We will see
more exotic ones in Section 5.
(a) The set P (m) of all spatial partitions is a category of spatial partitions. It is

maximal in the sense that it contains all other categories of spatial partitions.
We have [P ](m) �= P (m) for m �= 1, since a spatial partition in the amplification
[P ](m) of P consists of m copies of a partition from P to all levels; the set P (m)

in turn is much larger containing any spatial partition.

(b) The set P
(m)
2 of all spatial pair partitions (i.e. all blocks consist of exactly

two points) is a category of spatial partitions. Again, we have [P2]
(m) �= P

(m)
2

for m �= 1.

(2)

and
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P (m)(k, l) ∼= P (km, lm) of Remark 2.4 respects the category operations. Hence, if
we view P (m) as a subset of P , a category C ⊆ P (m) of spatial partitions corresponds
to a set C � ⊆ P which is closed under the category operations (as operations in
P ). However, C � is not a category of partitions in Banica-Speicher’s sense, since it
does not contain the base partitions nor |. From this point of view, we somehow
modified Banica and Speicher’s definition of categories of partitions C ⊆ P by simply
replacing the base partitions ∈ P and | ∈ P by different ones, namely by

(m) ∈ P (m)(0, 2) ←→ {{1,m+ 1}, {2,m+ 2}, . . . , {m, 2m}} ∈ P (0, 2m)

and

|(m) ∈ P (m)(1, 1) ←→ |⊗m ∈ P (m,m)

using the isomorphism P (m)(k, l) ∼= P (km, lm) of Remark 2.4. From the combina-
torial point of view, there is no difficulty in choosing different base partitions for
Banica and Speicher’s categories of partitions, but so far a quantum group interpre-
tation of such categories was missing. In this article, we provide one for the case of

(m) and |(m).

Remark 2.10. In view of Remark 2.7, we define a category of colored spatial

partitions as in Definition 2.8 replacing (m) and |(m) by •◦
(m)

, ◦•
(m)

, ◦
◦ (m)

and

•
• (m)

. We will leave the colored case as a side remark, for the moment.

Definition 2.11. Let C ⊆ P be a set of partitions. Using the notation of Definition
2.5, we denote by

[C](m) := {p(m) | p ∈ C} ⊆ P (m)

the amplification of C.
Lemma 2.12. If C ⊆ P is a category of partitions, then the amplification [C](m) ⊆
P (m) is a category of spatial partitions.

Proof. A direct proof is straightforward. Alternatively, one can use the fact that the
isomorphism of Remark 2.4 respects the category operations. �

Example 2.13. Here are examples of categories of spatial partitions. We will see
more exotic ones in Section 5.
(a) The set P (m) of all spatial partitions is a category of spatial partitions. It is

maximal in the sense that it contains all other categories of spatial partitions.
We have [P ](m) �= P (m) for m �= 1, since a spatial partition in the amplification
[P ](m) of P consists of m copies of a partition from P to all levels; the set P (m)

in turn is much larger containing any spatial partition.

(b) The set P
(m)
2 of all spatial pair partitions (i.e. all blocks consist of exactly

two points) is a category of spatial partitions. Again, we have [P2]
(m) �= P

(m)
2

for m �= 1.

(2)

are in the free
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product C1 ∗ C2. Since the conditions are maintained under the category
operations, we deduce that C1×ncC2 ⊆ P (2) and C1 ∗C2 ⊆ P (2) are categories
of colored spatial partitions on two levels. Remark that for some categories
(including P2 and NC2), we have C1 ×nc C2 = C1 ∗ C2.

Theorem 4.10 is the unitary version of Theorem 4.4, where we used the
glued free product of [25, Def. 6.4]: if (G, u) and (H, v) are two compact
matrix quantum groups with u = (uij)i,j=1,...,n and v = (vkl)k,l=1,...,m, the
glued free product G∗̃H of G and H is given by the C∗-subalgebra

C∗(uijvkl | i, j = 1, . . . , n and k, l = 1, . . .m) ⊆ C(G) ∗ C(H).

Theorem 4.10. — Let (Gi, ui) ⊆ O+
n be easy quantum groups with cat-

egories Ci ⊆ P for i = 1, 2. The spatial partition quantum group associated
to the category C1 ∗ C2 is G1∗̃G2 ⊆ U+

n2 .

Proof. — The intertwiners between tensor products of the representa-
tions u1, ū1, u2 and ū2 of G1∗G2 are explicitely given by [13, Prop. 2.15]: they
are linear combinations of compositions of morphisms of the type id⊗R⊗ id
where R is either an intertwiner between tensor products of the representa-
tions u1, ū1 of G1 or an intertwiner between tensor products of the represen-
tations u2, ū2 of G2.

Let us describe this set of intertwiners in a different way. Two tensor
products of the representations u1, ū1, u2 and ū2 of length k and l can be
seen as a decoration of k upper points and l lower points by u1, ū1, u2 and ū2.
Given such a decoration, we can consider a partition p of k+ l points which
does not connect the points decorated by u1, ū1 with the points decorated
by u2, ū2 such that:

• there exists a noncrossing partition r which is coarser than p and
which does not connect the points decorated by u1, ū1 with the
points decorated by u2, ū2,
• the restriction of p to each block of r decorated by u1, ū1 is in C1,

and the restriction of p to each block of r decorated by u2, ū2 is
in C2.

Let us call such a partition an admissible partition. They form a category of
colored partitions. We claim that the intertwiners between tensor products
of the representations u1, ū1, u2 and ū2 of G1 ∗G2 are exactly given by the
linear combinations of the morphisms Tp for p an admissible partition in the
sense above.

Let us briefly sketch the proof. On one hand, if p is in C1 or C2, the mor-
phism id⊗Tp⊗ id can be written as T|⊗a⊗p⊗|⊗b with the admissible partition
|⊗a ⊗ p ⊗ |⊗b. Taking the closure by linear combination and composition
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gives us that every intertwiner between tensor products of the representa-
tions u1, ū1, u2 and ū2 is given by the linear combinations of the morphisms
Tp for p an admissible partition. Conversely, if p is an admissible partition,
there exists a noncrossing partition r which is as described above. There
exists at least one interval block in r. Doing some rotation if necessary, we
can assume that this block is supported on consecutive points on the upper
left corner. Because p is admissible, the restriction of p to this block of r
is a partition p1 of C1 or C2, and we can decompose p = p1 ⊗ p2 with p2
admissible. But Tp1 is an intertwiner between tensor products of the rep-
resentations u1, ū1, u2 and ū2 of G1∗̃G2. We conclude by induction on the
number of blocks of the admissible partitions.

Thus we can describe the set of intertwiners between tensor products of
the representations u1⊗u2 and u1 ⊗ u2 = ū2⊗ ū1 of G1 ∗G2, or equivalently
between tensor products of the fundamental representation of G1∗̃G2 and
its adjoint, as linear combination of Tp with p an admissible partition. Using
the isomorphism described at the beginning of the section, we see that it
coincides exactly with

span{Sp | p ∈ C1 ∗ C2}. □

5. Examples of spatial partition quantum groups

In this section, several examples of spatial partition quantum groups are
given. Of course, easy quantum groups are such examples. Interestingly,
spatial partition quantum groups are also related to other known quantum
groups. For instance, the new machine of spatial partition quantum groups
covers some quantum symmetry groups of finite quantum spaces.

We first take a look at the natural cornerstones of the theory.

5.1. Amplifications of easy quantum groups

A trivial class of spatial partition quantum groups is obtained by the
amplification of easy quantum groups.

Proposition 5.1. — Let n1, . . . , nm ∈ N. Let Gn ⊆ O+
n be an easy

quantum group with category C ⊆ P . Then, the spatial partition quantum
group associated to [C](m) is the easy quantum group Gn1···nm

⊆ O+
n1···nm

with category C.
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Proof. — By Lemma 2.12, [C](m) ⊆ P (m) is a category of spatial parti-
tions; it thus gives rise to a spatial partition quantum group. For p ∈ C(k, l),
the maps

Tp : (Cn1n2...nm)⊗k → (Cn1n2...nm)⊗l

and Sp(m) : (Cn1n2...nm)⊗k → (Cn1n2...nm)⊗l

coincide by Remark 3.6. As a consequence, the intertwiner spaces of the
spatial partition quantum group associated to [C](m) and of the easy quantum
group with category C are the same, which allows us to conclude by the
Tannaka–Krein theorem. □

Corollary 5.2. — We have the following correspondences of spatial
partition quantum groups:

S+
n1···nm

←→ [NC](m), O+
n1···nm

←→ [NC2](m),
Sn1···nm

←→ [P ](m), On1···nm
←→ [P2](m).

5.2. Minimal and maximal spatial partition quantum groups

In the case m = 1, we have Sn ←→ P and O+
n ←→ NC2. Since every

category of partitions satisfies P ⊇ C ⊇ NC2, we have

Sn ⊆ G ⊆ O+
n

for easy quantum groups G. The case m ⩾ 2 is different, since we may have

Sn1···nm
̸⊆ G ⊆ O+

n1···nm

for spatial partition quantum groups G, whenever [P ](m) ̸⊇ C ⊇ [NC2](m)

(see Example 2.13). We are thus interested in finding the minimal spatial
partition quantum group corresponding to the maximal category of spatial
partitions P (m).

Theorem 5.3. — Let n1, . . . , nm ∈ N and let π = ker(n1, . . . , nm). The
category P (m)

π of all π-graded partitions corresponds to the spatial partition
quantum group

Sni1
×̃ . . . ×̃Snir

⊆ O+
n1···nm

,

where {ni1 , . . . , nir} is the set {n1, . . . , nm} without repetitions.

In the special case n1 = . . . = nm = n, we have

P (m) ←→ Sn ⊆ O+
nm .

– 758 –



Quantum groups based on spatial partitions

Proof. — We only prove the special case m = 2 and n1 = n2 = n, the
general case following from a straightforward adaption and an application
of Theorem 4.4. Recall from Definition 3.2 and Example 3.3 that Sn can be
viewed as a quantum subgroup ofO+

n2 by mapping the generators v(i1,i2)(j1,j2)
of C(O+

n2) to the product v′
(i1,i2)(j1,j2) := ui1j1ui2j2 in C(Sn).

Let A be the C∗-algebra generated by elements v(i1,i2)(j1,j2) satisfying all
relations (Rp) for all p ∈ P (m). By Proposition 3.12 and Corollary 2.19, this
is equivalent to satisfying all relations (Rp) for all generators p of P (2) as
listed in Corollary 2.19. It is easy to check that v′

(i1,i2)(j1,j2) ∈ C(Sn) satisfies
all these relations, hence a map φ : A → C(Sn) mapping v(i1,i2)(j1,j2) →
v′

(i1,i2)(j1,j2) exists by the universal property. Conversely, the elements u′
ij :=∑

k v(ik)(j1) ∈ A satisfy the relations of C(Sn) as can be verified directly.
This yields a map ψ : C(Sn) → A mapping uij to u′

ij by the universal
property and we have that φ and ψ are inverse to each other. Thus, A and
C(Sn) are isomorphic; the isomorphism respects ∆.

An alternative proof using intertwiners is based on the observation that
the map from C(O+

n2) to C(Sn) maps the matrix v to u⊗2. Thus, intertwiners
between v⊗k and v⊗l give rise to intertwiners between (u⊗2)⊗k = u⊗2k and
(u⊗2)⊗l = u⊗2l. Since the linear span of {Tp | p ∈ P (2k, 2l)} coincides with
the linear span of {Sp | p ∈ P (2)(k, l)}, we deduce that the intertwiners of
Sn viewed as a subgroup of O+

n2 and the intertwiners of the spatial partition
quantum group which corresponds to the category of all spatial partitions on
two levels are the same, which allows us to conclude by the Tannaka–Krein
theorem. □

We conclude that in the case m = 2 and n1 = n2 = n, we have, for any
spatial partition quantum group G,

Sn ⊆ G ⊆ O+
n2 .

Recall that the class of easy quantum groups only covers the case

Sn2 ⊆ G ⊆ O+
n2 .

More striking, while the obstruction for easy quantum groups G ⊆ O+
1024 is

S1024 ⊆ G, we only have Z/Z2 ⊆ G for spatial quantum groups G ⊆ O+
1024.

Remark 5.4. — Although our approach yields a larger class of quantum
subgroups of O+

n2 , we may not construct a quantum group G with Sn2 ⊆ G ⊆
O+

n2 which is not an easy quantum group. Indeed, if G is spatial partition
with category C ⊆ P (2) and if Sn2 ⊆ G ⊆ O+

n2 , then C ⊆ [P ](2) since
Sn2 corresponds to [P ](2). But this means that any partition p ∈ C is a 2-
amplification of a partition p′ ∈ P . Restriction of C to partitions on its first
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level yields a category of partitions C′ ⊆ P such that C = [C′](2), hence G is
an easy quantum group by Proposition 5.1.

5.3. Examples in the case m = 2

In this subsection, we restrict to the case m = 2 and n1 = n2 = n and we
provide an incomplete list of categories C ⊆ P

(2)
2 of spatial pair partitions

(all blocks are of size 2). In order to distinguish them, we introduce the
following five sets.

Definition 5.5. — We define the following subsets of P (2)
2 .

(a) We let

Cresplevels := {( p2
p1 ) | p1, p2 ∈ P2} ⊆ P (2)

2

be the set of all spatial partitions respecting the levels.
(b) A spatial partition p ∈ P (2)

2 is called level symmetric, if it is sym-
metric when swapping the levels one and two. In other words, if two
points (x1, y1) and (x2, y2) form a block of p, then also (x1, ȳ1) and
(x2, ȳ2) form a block, where ȳ :=

{ 1 if y=2
2 if y=1 . We put

Csymm := {p ∈ P (2)
2 | p is level symmetric} ⊆ P (2)

2 .

(c) We let

Cnodiagonal :=
{
p ∈ P (2)

2

∣∣∣∣∣ no two points (x, 1) and (y, 2)
with x ̸= y form a block

}
⊆ P (2)

2

be the set of all spatial partitions having no diagonal strings between
the levels. We put

Csymm
nodiagonal := Cnodiagonal ∩ Csymm.

(d) We let

Cnoviceversa := {p ∈ P (2)
2 |no two points (x, 1) and (x, 2) form a block} ⊆ P (2)

2

be the set of all spatial partitions having no geodesic strings between
the levels. We put

Csymm
noviceversa := Cnoviceversa ∩ Csymm.

(e) We let
Ceven :=

⋃
k+l=2n, n∈N

P
(2)
2 (k, l) ⊆ P (2)

2

be the set of all spatial partitions whose number of blocks is even.
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Remark 5.6. — We have Cresplevels = Cnodiagonal ∩ Cnoviceversa and
Cresplevels ⊆ Ceven. Moreover, Csymm

noviceversa ⊆ Ceven.

Lemma 5.7. — The sets Cresplevels, Csymm, Csymm
nodiagonal, C

symm
noviceversa and

Ceven are categories of spatial partitions.

Proof. — We may use Lemma 2.17(b) with π =↑ ⊗ ↑ for the set Cresplevels.
As for the others, one can directly verify stability under the category oper-
ations. □

Recall that there are only three subcategories of P2 in the case m = 1,
namely NC2, ⟨ ��@@ ⟩ and P2 (see [32]). For m = 2 we have many more.

Theorem 5.8. — All of the following categories are subcategories of
P

(2)
2 . They are all distinct.

(a) The amplifications [NC2](2) = ⟨∅⟩, [⟨��@@ ⟩](2) = ⟨��@@ (2)⟩ and [P2](2) =

⟨
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

⟩ (see Proposition 5.1).

(b) The categories C1 × C2 with Ci ∈ {NC2, ⟨ ��@@ ⟩, P2} as in Section 4.

(c) The category ⟨
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

⟩.

(d) The category ⟨
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

⟩.

(e) The category ⟨

4 GUILLAUME CÉBRON AND MORITZ WEBER

(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

,
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

⟩.

(f) The category ⟨

4 GUILLAUME CÉBRON AND MORITZ WEBER

(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

⟩.

(g) The category ⟨

4 GUILLAUME CÉBRON AND MORITZ WEBER

(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.
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(see Definition 4.6; see also the work in [Fre19]). The latter one is the compact
matrix quantum group given by

C∗(uijvkl) ⊆ C(G)⊗max C(H)/�uijvkl satisfy intertwiner relations associated to p�
and the matrix u×̃pv = (uijvkl). We then have the following answer to Question 2.

Theorem 1 (Thm. 4.4, Thm. 4.8). Let (Gi, ui) ⊆ O+
n be easy quantum groups with

categories Ci ⊆ P for i = 1, 2. Then,

C1 × C2 corresponds to (G1, u1)×̃(G2, u2) ⊆ O+
n2 ;

�C1 × C2, p� corresponds to (G1, u1)×̃p(G2, u2) ⊆ O+
n2 .

Regarding Question 3, we have the following result.

Theorem 2 (Thm. 5.3). For n1 = . . . = nm = n the maximal category P (m) of all
spatial partitions corresponds to Sn ⊆ O+

nm. We thus have Sn ⊆ G ⊆ O+
nm for all

spatial partition quantum groups; in particular Snm �⊆ G ⊆ O+
nm is possible.

Hence, while for instance easy quantum groups G ⊆ O+
1024 come with the restric-

tion S1024 ⊆ G, our approach only requires Z/2Z ⊆ G. The next two theorems of
combinatorial type show that the step from m = 1 to m = 2 is huge.

Theorem 3 (Thm. 2.18, Cor. 2.19, Thm. 2.20). The category P (2) (resp. P
(2)
2 ) of

all spatial (resp. spatial pair) partitions is generated by the partitions |(2), (2) and

P (2) : ❜ ❜✓✓✓✓✈✈✉
�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
, ↑(2);

P
(2)
2 : ❜ ❜✓✓✓✓✈✈✉

�
, ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ , ❜ ❜❜ ❜❜ ❜❜ ❜

, ❜ ❜❜ ❜❜ ❜❜ ❜
(note that ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
and ❜ ❜❜ ❜❜ ❜❜ ❜

�= ❜ ❜❜ ❜❜ ❜❜ ❜
).

Recall that for m = 1, we have P (1) = � ✁✁❆❆ , , ↑� and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

Theorem 4 (Thm. 5.8). The following subcategories of P
(2)
2 are all distinct:

�∅�, � ��❅❅
(2)�, � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �, � ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��, � ❜ ❜✓✓✓✓✈✈✉

�
�, � ❆❆❆❆✄

✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�, P (2)

2 , C1 × C2
with Ci ∈ {NC2, � ��❅❅ �, P2} (non-exhaustive list).

Recall that in the case m = 1, we have exactly three subcategories of P
(1)
2 , namely

NC2 = �∅�, � ��❅❅ � and P
(1)
2 = � ✁✁❆❆ � (see [Web13]).

We provide also two outlooks in the unitary case. We define a free product
C1 ∗ C2 of two categories due to a certain noncrossing condition 1 between the levels
(Section 4.4). Considering particular finite quantum spaces (B,ψ) in the sense of
Wang [Wan98], namely B =

�n
l=1 MN(C) and ψ(x1 ⊕ · · ·⊕ xn) =

1
nN

�n
l=1 TrN(xl),

where TrN is the unnormalized trace on MN(C), we observe that the relations of
the quantum automorphism group of (B,ψ) may be expressed in terms of spatial
partitions (see Sect. 5.5).

1. Note that it is not so clear a priori how to define noncrossing three-dimensional partitions.

⟩.
(h) The category generated by the following spatial partition.
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(d) We let

Cnoviceversa := {p ∈ P
(2)
2 | no two points (x, 1) and (x, 2) form a block} ⊆ P

(2)
2

be the set of all spatial partitions having no geodesic strings between the levels.
We put

Csymm
noviceversa := Cnoviceversa ∩ Csymm.

(e) We let

Ceven :=
�

k+l=2n, n∈N
P

(2)
2 (k, l) ⊆ P

(2)
2

be the set of all spatial partitions whose number of blocks is even.

Remark 5.6. We have Cresplevels = Cnodiagonal ∩ Cnoviceversa and Cresplevels ⊆ Ceven.
Moreover, Csymm

noviceversa ⊆ Ceven.
Lemma 5.7. The sets Cresplevels, Csymm, Csymm

nodiagonal, Csymm
noviceversa and Ceven are categories

of spatial partitions.

Proof. We may use Lemma 2.17(b) with π =↑ ⊗ ↑ for the the set Cresplevels. As for
the others, one can directly verify stability under the category operations. �

Recall that there are only three subcategories of P2 in the case m = 1, namely
NC2, � ��❅❅ � and P2 (see [Web13]). For m = 2 we have many more.

Theorem 5.8. All of the following categories are subcategories of P
(2)
2 . They are

all distinct.

(a) The amplifications [NC2]
(2) = �∅�, [� ��❅❅ �](2) = � ��❅❅

(2)� and [P2]
(2) = � ❜ ❜❜ ❜❜ ❜❜ ❜

✁✁❆❆✁✁❆❆✁
✁❆❆✁✁❆❆ �

(see Proposition 5.1).

(b) The categories C1 × C2 with Ci ∈ {NC2, � ��❅❅ �, P2} as in Section 4.

(c) The category � ❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉��.

(d) The category � ❆❆❆❆✄
✄
✄
✄
✉❜ ❜❜
❜
�.

(e) The category � ❆❆❆❆✄
✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜❜

❜
✓✓✓
✓
✓✓✓
✓✈✈✉��.

(f) The category � ❜ ❜✓✓✓✓✈✈✉
�
�.

(g) The category � ❆❆❆❆✄
✄
✄
✄
✉❜ ❜❜
❜
, ❜ ❜✓✓✓✓✈✈✉

�
�.

(h) The category generated by the following spatial partition.

✪✪◦
✪✪◦
✪✪◦
✪✪◦

✪✪◦
✪✪◦
✪✪◦
✪✪◦

✄
✄
✄
✄

✄
✄
✄
✄

(i) The category P
(2)
2 itself.

(i) The category P (2)
2 itself.

Proof. — We may distinguish the above categories using those of Lem-
ma 5.7: We have the following containments of categories. Observe that p ∈ C
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if and only if ⟨p⟩ ⊆ C, since ⟨p⟩ is the smallest category containing p.

Cresplevels Csymm Csymm
nodiagonal C

symm
noviceversa Ceven

(a) ⊆ ⊆
(b) ⊆ ̸⊆
(c) ̸⊆ ⊆ ⊆ ̸⊆ ⊆
(d) ̸⊆ ⊆ ̸⊆ ⊆ ⊆
(e) ̸⊆ ⊆ ̸⊆ ̸⊆ ⊆
(f) ̸⊆ ⊆ ⊆ ̸⊆ ̸⊆
(g) ̸⊆ ⊆ ̸⊆ ̸⊆ ̸⊆
(h) ̸⊆ ̸⊆ ⊆
(i) ̸⊆ ̸⊆ ̸⊆

Hence, all of the categories (a) to (i) are distinct. □

It is very likely that the above list is not complete. However, we believe
that (a) and (b) list all categories respecting the levels. The above categories
are of interest since they correspond to quantizations of the orthogonal group
On in a way. By Proposition 5.1, the amplifications [NC2](2), [⟨ ��@@ ⟩](2) and
[P2](2) correspond to O+

n2 , O∗
n2 and On2 respectively. By Theorem 4.4, the

categories C1 × C2 with Ci ∈ {NC2, ⟨ ��@@ ⟩, P2} correspond to glued ten-
sor products of O+

n , O∗
n and On. As for determining the quantum groups

corresponding to the categories (c-h) of Theorem 5.8, use the C∗-algebraic
relations of Section 3.6. Note that the quantum groups of Example 4.9 do
not come into play here, since ⟨NC2 × NC2, p⟩ ̸= ⟨p⟩ in both cases due to
Csymm.

Concerning the quantum group G corresponding to the category P (2)
2 , it

is easy to check, like in Theorem 5.3, that the elements

v′
(i1,i2)(j1,j2) := ui1j1ui2j2 ∈ C(On)

satisfy all relations R(p) for p ∈ P (2)
2 (using Theorem 2.20). However, this

map is not surjective; in particular, u′
ij :=

∑
k v(i,k)(j,1) ∈ C(G) does not give

rise to an orthogonal matrix (or equivalenty:
∑

k uijuk1 ̸= uij in C(On)).
Thus, we have to leave the question open to which quantum group P

(2)
2

corresponds.

5.4. From quantum subgroups of O+
n2 to quantum subgroups of O+

n

Starting with a quantum subgroup G of O+
n2 we may associate a quantum

subgroup G̊ of O+
n to it, under certain conditions.
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Definition 5.9. — Let G ⊆ O+
n2 be a compact matrix quantum group

such that C(G) is generated by u(i,k)(j,l), for i, j, k, l = 1, . . . , n. We put

ůij :=
∑

k

u(i,k)(j,1).

Let C(G̊) ⊆ C(G) be the C∗-subalgebra of C(G) generated by the elements
ůij for i, j ∈ {1, . . . , n}.

The elements ůij are self-adjoint. We now investigate, when C(G̊) gives
rise to a compact matrix quantum group G̊ ⊆ O+

n . We express the necessary
condition in terms of C∗-algebraic relations R(p) associated to partitions
p ∈ P (2) as in Section 3.6. However, our next proposition does not only work
for spatial partition quantum groups, it holds for general compact matrix
quantum groups.

Proposition 5.10. — Suppose the relations R(p) for p = b bb
b

are sat-
isfied for the elements u(i,k)(j,l) ∈ C(G) and suppose Sn ⊆ G ⊆ O+

n2 (where
Sn ⊆ G is in the sense of Example 3.3). Then:

(a) We have, independently of the choice of x and y,

ůij =
∑

k

u(i,k)(j,x) =
∑

k

u(i,y)(j,k).

(b) The map ∆ : C(G) → C(G) ⊗ C(G) restricts to ∆ : C(G̊) →
C(G̊)⊗ C(G̊) with ∆(̊uij) =

∑
k ůik ⊗ ůkj.

(c) The C∗-algebra C(G̊) gives rise to a compact matrix quantum group
G̊ with

Sn ⊆ G̊ ⊆ O+
n .

(d) If in addition the relations R(p) for p ∈ {
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❜ ❜❜
❜
:
�

g

u(g,b2)(i1,i2) =
�

h

u(b1,b2)(h,i2) (in particular independent of i1, b1)

❜ ❜❜
❜
:
�

g

u(b1,g)(i1,i2) =
�

h

u(b1,b2)(i1,h) (in particular independent of i2, b2)

❜ ❜↑↑ , ❜ ❜↑↑ ∗ :
�

g1,g2

u(i1,i2)(g1,g2) =
�

g1,g2

u(g1,g2)(j1,j2) = 1

❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ : u(b1,b2)(i1,i2)u(b3,b4)(i3,i4) = u(b3,b2)(i3,i2)u(b1,b4)(i1,i4)

❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ : u(b1,b2)(i1,i2)u(b3,b4)(i3,i4) = u(b1,b4)(i1,i4)u(b3,b2)(i3,i2)

❜ ❜❜ ❜❜ ❜❜ ❜
: δj1j3

�

g

u(g,j2)(i1,i2)u(g,j4)(i3,i4) = δi1i3
�

h

u(j1,j2)(h,i2)u(j3,j4)(h,i4)

❜ ❜❜ ❜❜ ❜❜ ❜
: δj2j4

�

g

u(j1,g)(i1,i2)u(j3,g)(i3,i4) = δi2i4
�

h

u(j1,j2)(i1,h)u(j3,j4)(i3,h)

❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉�

: δb1b2
�

g

u(g,g)(i1,i2) = δi1i2
�

h

u(b1,b2)(h,h)

❜ ❜✓✓✓✓✈✈✉
�
:
�

g

u(b1,b2)(g,g) = δb1b2

❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉�

: δi1i2
�

g

u(g,g)(j1,j2) = δj1j2
�

g

u(i1,i2)(g,g)

❆❆❆❆✄
✄
✄
✄
✉❜ ❜❜
❜
: u(i1,i2)(j1,j2) = u(i2,i1)(j2,j1)

Remark 3.13. Inspired from the above relations for ❜ ❜✓✓✓✓✈✈✉
�
, we view them more

generally for (uij)i,j=1,...,n as
�

k∈I
uik = δi∈I

for some subset I ⊆ {1, . . . , n}. For instance:
�

k even

uik = δi even.

It is easy to check that these relations pass through the comultiplication. Hence,
one can define some partial versions of quantum permutation groups.

,
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Let C(G̊) ⊆ C(G) be the C∗-subalgebra of C(G) generated by the elements ůij for
i, j ∈ {1, . . . , n}.

The elements ůij are self-adjoint. We now investigate, when C(G̊) gives rise to

a compact matrix quantum group G̊ ⊆ O+
n . We express the necessary condition in

terms of C∗-algebraic relations R(p) associated to partitions p ∈ P (2) as in Section
3.6. However, our next proposition does not only work for spatial partition quantum
groups, it holds for general compact matrix quantum groups.

Proposition 5.10. Suppose the relations R(p) for p = ❜ ❜❜
❜
are satisfied for the

elements u(i,k)(j,l) ∈ C(G) and suppose Sn ⊆ G ⊆ O+
n2 (where Sn ⊆ G is in the sense

of Example 3.3). Then:
(a) We have, independently of the choice of x and y,

ůij =
�

k

u(i,k)(j,x) =
�

k

u(i,y)(j,k).

(b) The map Δ : C(G) → C(G) ⊗ C(G) restricts to Δ : C(G̊) → C(G̊) ⊗ C(G̊)
with Δ(̊uij) =

�
k ůik ⊗ ůkj.

(c) The C∗-algebra C(G̊) gives rise to a compact matrix quantum group G̊ with

Sn ⊆ G̊ ⊆ O+
n .

(d) If in addition the relations R(p) for p ∈ { ❜ ❜↑↑ , ❜ ❜❜
❜❜ ❜
} are satisfied for the

elements u(i,k)(j,l) ∈ C(G), then

Sn ⊆ G̊ ⊆ S+
n .

Proof. (a) This is exactly what the relations R(p) for p = ❜ ❜❜
❜
are.

(b) We compute, using (a):

Δ(̊uij) =
�

l

Δ(u(i,l)(j,1)) =
�

l,k,m

u(i,l)(k,m)⊗u(k,m)(j,1) =
�

k,m

ůik⊗u(k,m)(j,1) =
�

k

ůik⊗ůkj.

(c) By (b), G̊ is a compact matrix quantum group. The matrix ů = (̊uij) is
orthogonal due to the following computation using (a) and G ⊆ O+

n2 :
�

k

ůikůjk =
�

k,m

ůiku(j,1)(k,m) =
�

k,l,m

u(i,l)(k,m)u(j,1)(k,m) =
�

l

δijδl1 = δij.

Similarly
�

k ůkiůkj = δij. Hence, G̊ ⊆ O+
n . As for proving Sn ⊆ G̊, note that by

assumption we have a ∗-homomorphism ϕ : C(G) → C(Sn) mapping u(i,k)(j,l) to
vijvkl, where we denote the generators of C(Sn) by vij. Thus, ϕ(̊uij) = vij which

proves Sn ⊆ G̊.

} are satisfied for
the elements u(i,k)(j,l) ∈ C(G), then

Sn ⊆ G̊ ⊆ S+
n .

Proof. —

(a). — This is exactly what the relations R(p) for p = b bb
b

are.
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(b). — We compute, using (a):

∆(̊uij) =
∑

l

∆(u(i,l)(j,1)) =
∑

l,k,m

u(i,l)(k,m) ⊗ u(k,m)(j,1)

=
∑
k,m

ůik ⊗ u(k,m)(j,1) =
∑

k

ůik ⊗ ůkj .

(c). — By (b), G̊ is a compact matrix quantum group. The matrix ů =
(̊uij) is orthogonal due to the following computation using (a) and G ⊆ O+

n2 :∑
k

ůikůjk =
∑
k,m

ůiku(j,1)(k,m) =
∑

k,l,m

u(i,l)(k,m)u(j,1)(k,m) =
∑

l

δijδl1 = δij .

Similarly
∑

k ůkiůkj = δij . Hence, G̊ ⊆ O+
n . As for proving Sn ⊆ G̊, note

that by assumption we have a ∗-homomorphism φ : C(G)→ C(Sn) mapping
u(i,k)(j,l) to vijvkl, where we denote the generators of C(Sn) by vij . Thus,
φ(̊uij) = vij which proves Sn ⊆ G̊.

(d). — All we have to check is that the elements ůij satisfy ů2
ij = ůij

and
∑

l ůil =
∑

l ůlj = 1. This follows directly from (a) and the relations
R(p) which we list below.

R(p) for p =

QUANTUM GROUPS BASED ON SPATIAL PARTITIONS 19

❜ ❜❜
❜
:
�

g

u(g,b2)(i1,i2) =
�

h

u(b1,b2)(h,i2) (in particular independent of i1, b1)

❜ ❜❜
❜
:
�

g

u(b1,g)(i1,i2) =
�

h

u(b1,b2)(i1,h) (in particular independent of i2, b2)

❜ ❜↑↑ , ❜ ❜↑↑ ∗ :
�

g1,g2

u(i1,i2)(g1,g2) =
�

g1,g2

u(g1,g2)(j1,j2) = 1

❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ : u(b1,b2)(i1,i2)u(b3,b4)(i3,i4) = u(b3,b2)(i3,i2)u(b1,b4)(i1,i4)

❜ ❜❜ ❜❜ ❜❜ ❜
✁✁❆❆✁✁❆❆ : u(b1,b2)(i1,i2)u(b3,b4)(i3,i4) = u(b1,b4)(i1,i4)u(b3,b2)(i3,i2)

❜ ❜❜ ❜❜ ❜❜ ❜
: δj1j3

�

g

u(g,j2)(i1,i2)u(g,j4)(i3,i4) = δi1i3
�

h

u(j1,j2)(h,i2)u(j3,j4)(h,i4)

❜ ❜❜ ❜❜ ❜❜ ❜
: δj2j4

�

g

u(j1,g)(i1,i2)u(j3,g)(i3,i4) = δi2i4
�

h

u(j1,j2)(i1,h)u(j3,j4)(i3,h)

❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉�

: δb1b2
�

g

u(g,g)(i1,i2) = δi1i2
�

h

u(b1,b2)(h,h)

❜ ❜✓✓✓✓✈✈✉
�
:
�

g

u(b1,b2)(g,g) = δb1b2

❜ ❜❜
❜

✓✓✓
✓
✓✓✓
✓✈✈✉�

: δi1i2
�

g

u(g,g)(j1,j2) = δj1j2
�

g

u(i1,i2)(g,g)

❆❆❆❆✄
✄
✄
✄
✉❜ ❜❜
❜
: u(i1,i2)(j1,j2) = u(i2,i1)(j2,j1)

Remark 3.13. Inspired from the above relations for ❜ ❜✓✓✓✓✈✈✉
�
, we view them more

generally for (uij)i,j=1,...,n as
�

k∈I
uik = δi∈I

for some subset I ⊆ {1, . . . , n}. For instance:
�

k even

uik = δi even.

It is easy to check that these relations pass through the comultiplication. Hence,
one can define some partial versions of quantum permutation groups.

:
∑
g1,g2

u(b1,b2)(g1,g2) =
∑
g1,g2

u(g1,g2)(b1,b2) = 1;

R(p) for p =
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Let C(G̊) ⊆ C(G) be the C∗-subalgebra of C(G) generated by the elements ůij for
i, j ∈ {1, . . . , n}.

The elements ůij are self-adjoint. We now investigate, when C(G̊) gives rise to

a compact matrix quantum group G̊ ⊆ O+
n . We express the necessary condition in

terms of C∗-algebraic relations R(p) associated to partitions p ∈ P (2) as in Section
3.6. However, our next proposition does not only work for spatial partition quantum
groups, it holds for general compact matrix quantum groups.

Proposition 5.10. Suppose the relations R(p) for p = ❜ ❜❜
❜
are satisfied for the

elements u(i,k)(j,l) ∈ C(G) and suppose Sn ⊆ G ⊆ O+
n2 (where Sn ⊆ G is in the sense

of Example 3.3). Then:
(a) We have, independently of the choice of x and y,

ůij =
�

k

u(i,k)(j,x) =
�

k

u(i,y)(j,k).

(b) The map Δ : C(G) → C(G) ⊗ C(G) restricts to Δ : C(G̊) → C(G̊) ⊗ C(G̊)
with Δ(̊uij) =

�
k ůik ⊗ ůkj.

(c) The C∗-algebra C(G̊) gives rise to a compact matrix quantum group G̊ with

Sn ⊆ G̊ ⊆ O+
n .

(d) If in addition the relations R(p) for p ∈ { ❜ ❜↑↑ , ❜ ❜❜
❜❜ ❜
} are satisfied for the

elements u(i,k)(j,l) ∈ C(G), then

Sn ⊆ G̊ ⊆ S+
n .

Proof. (a) This is exactly what the relations R(p) for p = ❜ ❜❜
❜
are.

(b) We compute, using (a):

Δ(̊uij) =
�

l

Δ(u(i,l)(j,1)) =
�

l,k,m

u(i,l)(k,m)⊗u(k,m)(j,1) =
�

k,m

ůik⊗u(k,m)(j,1) =
�

k

ůik⊗ůkj.

(c) By (b), G̊ is a compact matrix quantum group. The matrix ů = (̊uij) is
orthogonal due to the following computation using (a) and G ⊆ O+

n2 :
�

k

ůikůjk =
�

k,m

ůiku(j,1)(k,m) =
�

k,l,m

u(i,l)(k,m)u(j,1)(k,m) =
�

l

δijδl1 = δij.

Similarly
�

k ůkiůkj = δij. Hence, G̊ ⊆ O+
n . As for proving Sn ⊆ G̊, note that by

assumption we have a ∗-homomorphism ϕ : C(G) → C(Sn) mapping u(i,k)(j,l) to
vijvkl, where we denote the generators of C(Sn) by vij. Thus, ϕ(̊uij) = vij which

proves Sn ⊆ G̊.

:
∑

g

u(b1,b2)(i1,i2)u(b1,g)(i3,i4) = δi1i3u(b1,b2)(i1,i2). □

Remark 5.11. — We may also define G̊ via ůij :=
∑

k u(k,i)(1,j) and re-

quire the relations R(p) with p = b bb
b

in Proposition 5.10; this will yield an
analogue result.

We conclude that we may produce quantum groups G̊ which are inter-
mediate between Sn and O+

n , just like easy quantum groups. However, it is
not clear for the moment whether or not they yield quantum groups which
are not easy quantum groups. Non-easy quantum groups have been studied
only very recently, see [10, 15].

5.5. Links with quantum symmetries of finite quantum spaces; case
m = 3

In [31], Wang investigated quantum symmetry groups of finite quantum
spaces, see also [1, 5, 18]. More precisely, let TrN denote the unnormalized
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trace on MN (C), i.e. TrN (x) =
∑N

i=1 xii for x = (xij) ∈ MN (C). A finite
quantum space (B,ψ) consists in a finite dimensional C∗-algebra B and a
state (to be more precise: a δ-form) ψ : B → C given as follows:

B =
n⊕

l=1
MNl

(C), ψ(x1 ⊕ · · · ⊕ xn) =
n∑

l=1
TrNl

(Qlxl)

Here, the matrices Ql ∈ MNl
(C) are invertible and positive satisfying∑n

l=1 TrNl
(Ql) = 1 and TrNl

(Q−1
l ) = dim(B).

In [31], Wang computed the maximal quantum group acting on B in a
ψ preserving way. Let us call it the quantum automorphism group of (B,ψ)
and denote it by G+(B,ψ). If N1 = · · · = Nn = 1, B = Cn and Ql = 1

n ,
then S+

n is the resulting quantum automorphism group. In the general case,
G+(B,ψ) can be described in terms of generators and relations, see [18]: the
underlying C∗-algebra is the universal C∗-algebra generated by elements
u(i,j,a)(r,s,b) with a, b ∈ {1, . . . , n}, i, j ∈ {1, . . . , Na}, r, s ∈ {1, . . . , Nb} and
relations

(A1a)
∑Nc

w=1 u(x,w,c)(k,l,a)u(w,y,c)(r,s,b) = δabδlru(x,y,c)(k,s,a)

(A1b)
∑Nc

w=1(Q−1
c )wwu(s,r,b)(y,w,c)u(l,k,a)(w,x,c) = δabδlr(Q−1

a )llu(s,k,a)(y,x,c)
(A2) u∗

(x,y,c)(k,l,a) = u(y,x,c)(l,k,a)

(A3a)
∑n

b=1
∑Nb

x=1(Qb)xxu(x,x,b)(k,l,a) = δkl(Qa)kk

(A3b)
∑n

a=1
∑Na

k=1 u(x,y,b)(k,k,a) = δxy

Let us consider the special case N := N1 = · · · = Nn, n ∈ N and
Ql := 1

nNE, where E ∈MN (C) denotes the N×N unit matrix. So, we have:

B =
n⊕

l=1
MN (C), ψ(x1 ⊕ · · · ⊕ xn) = 1

nN

n∑
l=1

TrN (xl)

Let m := 3, n1 := n2 := N and n3 := n. Let π be the partition π =
{1, 2}{3} ∈ P (3). Consider the category C of colored spatial partitions gen-
erated by the following π-graded partitions:

p1a =

%%◦
%%◦
%%◦

%%◦
%%◦
%%◦

%%◦
%%◦
%%◦

AA

��

p1b =

%%◦
%%◦
%%◦

%%◦
%%◦
%%◦

%%◦
%%◦
%%◦

AA
@@

p2 =

%%◦
%%◦
%%◦

%%•
%%•
%%•

�
�
�
�
�
�
�

E
E
E
E
E

p3a =

%%◦
%%◦
%%◦

%%

p3b =

%%◦
%%◦
%%◦

%%
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By a direct computation using Definition 3.10 and its extension in the colored
case (Remark 3.14), we observe that the spatial partition quantum group
associated to C coincides with G+(B,ψ). Note that we have p1b = p∗

1a and
p3b = p∗

3a, so as generators, the partitions p1b and p3b are redundant.

In [1] (see also [5, §3.1]), another description by diagrams was given,
namely by 2-cabled Temperley–Lieb diagrams. Denoting the matrix units
in B =

⊕n
l=1 MNl

(C) by e
(k)
ij , the unit map ν : C → B, 1 7→

∑
i,k e

(k)
ii

corresponds to δ− 1
2 , the multiplication map µ : B⊗B → B, e(k)

ij ⊗ e
(t)
rs 7→

δktδjre
(k)
is corresponds to δ

1
2 | ⊗ ⊗ | and the identity map idB : B → B

corresponds to | ⊗ | in the Temperley–Lieb picture; the maps ν, µ and idB

are understood as intertwiners in Hom(0, 1), Hom(2, 1) and Hom(1, 1) for
G+(B,ψ) giving rise to the relations (A1a) and (A3b) resp. We observe
that restricting the partitions p1a and p3b to the levels k = 1 and k = 2
and rearranging the points, our diagrams coincide with the Temperley–Lieb
picture.

In any case, we conclude that spatial quantum groups provide a fine
tuned way of describing the representation categories of quantum automor-
phism groups of finite quantum spaces, at least in the special case B =⊕n

l=1 MN (C).

6. Open questions

Throughout this article, a number of questions arose. They can be the
starting point for further investigations. For the convenience of the reader,
we list them here.

(1) Classify all categories C ⊆ P (2)
2 ; see also Theorem 5.8. In particular,

are there other categories apart those from Theorem 5.8(a) and (b),
who respect the levels?

(2) Are the quantum groups arising from Theorem 5.8 related to other
known quantum groups (in terms of certain product constructions,
for instance)? In particular, what does the quantum group corre-
sponding to P (2)

2 look like?
(3) Are all quantum groups Sn ⊆ G̊ ⊆ O+

n arising from Proposition 5.10
easy quantum groups or can we produce non-easy ones this way?

(4) Recall that we have Sn ⊆ O+
n2 , see Example 3.3(c), but S+

n ̸⊆ O+
n2 .

However, S+
n ⊆ U+

n2 holds. Thus, it would be interesting to classify
all spatial partition quantum groups S+

n ⊆ G ⊆ U+
n2 since these are

the ones relevant for free probability in the sense of [2, 12, 28].
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(5) Determine the category generated by the partitions p1a, p1b, p2,
p3a, p3b in Section 5.5.

(6) Can we adapt the definition of spatial quantum groups such that
they also cover general quantum automorphism groups of finite
quantum spaces (see Section 5.5)?

(7) Given that Section 5.5 provides quantum spaces which spatial quan-
tum groups act on, can we find canonical quantum spaces which
general spatial quantum groups act on? See also [11].
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