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Abstract— Particle swarm optimization (PSO) is a stout and rapid searching algorithm that has been used in various applications. 

Nevertheless, its major drawback is the stagnation problem that arises in the later phases of the search process. To solve this problem, 

a proper balance between investigation and manipulation throughout the search process should be maintained. This article proposes a 

new PSO variant named two-phases PSO (TPPSO). The concept of TPPSO is to split the search process into two phases. The first phase 

performs the original PSO operations with linearly decreasing inertia weight, and its objective is to focus on exploration. The second 

phase focuses on exploitation by generating two random positions in each iteration that are close to the global best position. The two 

generated positions are compared with the global best position sequentially. If a generated position performs better than the global best 

position, then it replaces the global best position. To prove the effectiveness of the proposed algorithm, sixteen popular unimodal, 

multimodal, shifted, and rotated benchmarking functions have been used to compare its performance with other existing well-known 

PSO variants and non-PSO algorithms. Simulation results show that TPPSO outperforms the other modified and hybrid PSO variants 

regarding solution quality, convergence speed, and robustness. The convergence speed of TPPSO is extremely fast, making it a suitable 

optimizer for real-world optimization problems.  
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I. INTRODUCTION

In 1995, a promising evolutionary algorithm, namely 
Particle Swarm Optimization (PSO) to solve optimization 
problems was proposed [1], [2]. The PSO algorithm draws 
inspiration from the social relationship between birds flocking 
and fish schooling. Naturally, a swarm of birds’ veers to 
follow a leader closer to the food source, guiding their flight 
in the open space. Birds' social behavior can be translated into 
an algorithm for resolving optimization problems. In this 
algorithm, particles form a swarm, with each particle 
representing a potential solution, and the swarm searches the 
space to find the best solution. 

PSO is arguably one of the best optimization algorithms 
due to its ease of deployment, limited control parameters, and 
optimal results at a shorter computational time. In certain 
cases, it can outperform various evolutionary algorithms such 
as genetic algorithm (GA) [3] and ant colony optimization 
(ACO) [4]. However, PSO suffers from premature 

convergence [5], [6]. The PSO algorithm has two significant 
limitations. Firstly, the particles tend to stagnate in the later 
stages of the search process, leading to a lack of further 
improvements. Secondly, this issue arises due to an 
inadequate balance between exploration and exploitation. 
Exploration involves searching for a wide area in the solution 
space, while exploitation focuses on intensively searching 
around a promising region. To address these limitations, 
modifications have been made to the standard PSO (SPSO). 

In this paper, we propose a TPPSO that includes a 
searching process, divided into two phases. The first phase 
focuses on exploration while the second phase focuses on 
exploitation. In the first phase, the standard PSO with linearly 
decreasing inertia weight is used. In the second phase, a new 
idea is introduced where two random positions located near 
the global best position is generated in each iteration. The two 
generated random positions are benchmarked with the global 
best position. Any of the two generated positions replace the 
global best position if it achieves better results. TPPSO still 
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has a simple algorithm structure because the only 
modification in TPPSO is the addition of the two random 
positions.   

The rest of this paper is organized as follows. Section 2 
presents the related work in brief. The proposed algorithm is 
discussed in detail in section 3. In section 4, we tested the 
proposed PSO variant on a set of 16 benchmark functions and 
compared it to 6 existing PSO variants. Finally, section 5 
summarizes this work. 

II. MATERIALS AND METHOD 

In this section, the related works and proposed algorithms 
are presented.  

A. Related Works  

The PSO is an algorithm consisting of a particle swarm 
where each particle acts as a candidate solution and an 
objective function evaluates each solution. Each particle � can 
fly in the search space and find better solutions by using its 
velocity and position vectors, which are defined as: 

 �� = ����, ��	, . . . , ����, � = 1,2, . . . , �    (1) 

 �� = ����, ��	, . . . , ����, � = 1,2, . . . , �    (2) 

where the velocity vector is ����, the position vector is ����, 
the number of dimensions is ���, and the population size is 
���. During the PSO process's initial stages, each particle's 
velocity and position are randomly set within predefined 
ranges. During the evolutionary process, the particles are 
attracted by their own historical best position ������ as well 
as by the best position found in the whole swarm �����. 
Moreover, the velocity and position of the particles are 
updated using the following formulas: 

 ��� = ��� + ��������������� − ���� + �	����	������� − ���� (3) 

 ��� = ��� + ��� (4) 

where �� and �	 are the cognitive and social acceleration 
coefficients. ����� and ����	 are two uniform random 
values generated within [0,1]. 

PSO is a repetitive process, which means that each particle 
in the swarm will fly in the search space to find a better 
solution iteratively. If a particle finds a position that is better 
than the position in the previous iteration, it records it as 
����� and ����� is recorded as the �����, which has the best 
solution in the whole swarm. This process continues until the 
stopping condition is satisfied. Since the introduction of the 
standard PSO, many attempts have been made to propose PSO 
variants that can enhance the PSO performance. Three 
approaches of PSO variants have been widely used to improve 
the PSO performance by avoiding premature convergence. 

The first approach improves the PSO performance by 
adjusting the controlling parameters of PSO [7]–[13]. Shi and 
Eberhart [14] modified the original velocity update Equation 
in (3) by introducing a new parameter called inertia weight 
and, denoted as $. Based on this modification, the velocity 
update equation becomes now in the following form: 

��� = $��� + ��������������� − ����
+ �	����	������� − ���� 

(5) 

Increasing the value of the inertia weight increases 
exploration, while decreasing it increases exploitation. 
According to Shi and Eberhart [14] it is recommended to start 
the PSO run with an inertia weight value of 0.9 and linearly 
decrease it until it reaches 0.4 by the end of the run. This 
approach allows for a global search in the initial stages and 
gradually transitions towards a more localized search to refine 
the results. Shi and Eberhart named this PSO variant as PSO 
with linearly varying inertia weight (PSO-LVIW) and 
provided a mathematical formula for the linearly varying 
inertia weight, which can be written as follows: 

 $ = �$%&' − $%�(� )*+,
* - + $%�( (5) 

where � the number of the current iteration is, . is the 
maximum number of iterations, $%&'  and $%�( are the initial 
and final values of the inertia weight.  

The other controlling parameter that can be adjusted are the 
acceleration coefficient �� and �	. In [5], a PSO variant called 
a hierarchical PSO with a time-varying acceleration 
coefficient (HPSO-TVAC) is proposed. In HPSO-TVAC, the 
process starts with a large value of �� and a small value of �	 
which allows the particles to explore the search space. As the 
number of the current iteration increases, the value of �� 
decreases while the value of �	 increases causing the particles 
to focus more on exploitation at the last part of the process. 
By only adjusting the controlling parameters, the particles still 
follow ����� which results in premature convergence in case 
that ����� is trapped into local optima. 

The second approach hybridizes PSO with other 
optimization techniques to enhance the performance of PSO 
[15]–[26]. PSO has been hybridized in the literature with 
genetic operators like mutation [27], [28], crossover[29], and 
selection [30] or with other searching techniques such as DE 
[31], GA[32], ACO [33], and gravitational search algorithm 
(GSA) [26] . In [26], PSO was combined with GSA, resulting 
in a hybrid PSO named GPS. The velocity update equation in 
(GPS) algorithm is influenced by both the velocity of the 
Particle Swarm Optimization (PSO) and the acceleration of 
the Gravitational Search Algorithm (GSA). In [17], a 
centripetal accelerated PSO (CAPSO), which is a 
combination of PSO and Newton's law of motion is proposed. 
Each particle in CAPSO has two more specifications 
(acceleration and centripetal acceleration) besides velocity 
and position. Although hybridizing PSO with other 
optimization techniques enhances the PSO performance, the 
resultant PSO variant due to hybridization is more 
sophisticated than the original PSO. 

The third approach implements different neighborhood 
topologies to improve diversity [34]–[36]. The most famous 
neighborhood topologies that have been extensively studied 
are the star, ring, and Von Neumann topologies. Basically, the 
swarm topology can be global (star), local (ring), or a 
combination of both. As explained in [37]–[39], the global 
version achieves the fastest convergence but cannot avoid 
being trapped in local optima whereas the local version 
increases the diversity but convergences slowly. In [15], a 
fully informed particle swarm (FIPS) is presented where the 
velocity of a particle � depends on ����� of each neighbor of 
�. The star topology and the ring topology were combined 
together to form a single PSO named as unified PSO (UPSO). 
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Implementing neighborhood topologies helps to avoid 
premature convergence but it convergences slowly since 
particles are less attracted to the �����.  PSO's simplicity and 
robustness have led to its wide application in various fields, 
including wireless communications and image processing. It 
has proven effective in solving diverse optimization problems  
[40]–[55]. 

B. The Proposed Algorithm  

The TPPSO improves the PSO performance and eliminates 
its stagnation problem by maintaining a proper balance 
between exploration and exploitation during the search 
operation; PSO algorithm achieves effective results. The basic 
concept of TPPSO is to divide the total number of iterations 
of PSO into two phases, where each phase consists of a 
predefined number of iterations focusing on either exploration 
or exploitation. The first phase consists of α number of 
iterations, while the number of iterations in the second phase 
is the total number of iterations−α. In the first phase, TPPSO 
uses the standard PSO with linearly decreasing inertia weight 
to focus on exploration since the SPSO has a very strong 
ability to explore at the early stage of the PSO process. The 
second phase introduces a new concept that balances 
exploration and exploitation and prevents premature 
convergence. The new concept is to generate two random 
positions in each iteration close to the global best position, as 
shown in Equations (7) and Equation (8). To utilize the good 
position of the global best position, it is promising to search 
around this position seeking better solutions. To perform this, 
we develop Equations (7) and Equation (8) to search around 
the global best position to find solutions that can lead to the 
optimal solution.  

The two generated positions are compared with ����� 
sequentially. If any of the two generated positions achieve 
better results as compared to ����� , then the global best 
position is replaced by that generated position. 

 �1����1�� = ����������2)   (6) 

 �1����1�	 = ����� + �����3� (7) 

where rand2 and rand3 are two uniform random variables in 
the range [0,1]. The pseudo-code of the proposed algorithm 
to solve a minimization problem is provided in Algorithm 1. 

 
Algorithm 1 Pseudo-code of the TPPSO algorithm 

1: Initialize the swarm size �, randomly generate the velocity 
and positions of each particle in the searching space 
2: Phase one: 
3: Perform the original PSO with decreasing inertia weight as in 

[56] 
4: Stop when the number of iterations is > 9   
5: Phase two: 
6: Compute the fitness value of each particle 
7: Update the best position for each particle ����� 
8: Update the global best position �����   
9: Generate the two random positions as in Equation (7) and  

Equation (8) 
10:       if   fitness (:1����1��) < fitness (�����) then 
11:               ����� = :1����1�� 
12:               else 
13:              ����� = ����� 

14:       endif 
15:       if    fitness (:1����1�	) < fitness (�����), then 
16:              ����� = :1����1�	 
17:                  else 
18:              ����� = ����� 
19:        endif 
20: Update the velocity and positions of each particle using 

Equations (3) and (4) 
21: Repeat Phases one and two until a stopping condition is 

satisfied (e.g., the maximum number of iterations is reached) 
22: Return the best solution 

 
Fig. 1 shows an example that illustrates the fundamental 

concept of the proposed algorithm. As seen in Fig. 1, the two 
generated positions (�1�����1�� and �1�����1�	) must be 
located close to the global best position. In other words, these 
two positions are restricted from having values higher than the 
value of the global best position. Implementing this approach 
allows the generation of new particles that can focus on 
promising areas around the global best position, leading to 
better fitness values. In addition, focusing the search around 
the global best position, as in the proposed method, improves 
the search algorithm's exploitation ability. This is particularly 
important in the later stages of the search, as it leads to higher 
accuracy and faster speed.  

 

 
Fig. 1  2D-illustration of the generation boundaries of the two new positions. 

III. RESULTS AND DISCUSSION 

A. Benchmark Functions 

To test the performance of the proposed TPPSO, four 
groups of functions listed in Table 1 are used. These groups 
are unimodal functions (f_1-f_5), multimodal functions (f_6-
f_11), shifted functions (f_12 and f_13) and  rotated functions 
(f_14-f_16). Table 1 shows the search ranges (column 4), 
minimum values (column 5), and acceptable solutions 
(column 6) for each tested function. The acceptable solution 
is a value that shows whether a PSO variant can reach a 
satisfactory level or not. Table 1 presents the tested functions, 
including unimodal and multimodal functions that can 
evaluate the performance of TTPSO.  
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TEST FUNCTIONS 
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 In 12f  and 13f  , o is a shifted vector [57]. 

 In 14 16f f  , M is a transformation matrix [58]. 

B. Comparison Results 

To prove the effectiveness of TPPSO, TPPSO is tested on 
16 benchmarking functions and compared with 3 prominent 
PSO variants, namely SPSO, inertia weight PSO (IWPSO) 
[36], PSO-LVIW [14], HPSO-TVAC [5], and two well-
known meta-heuristic algorithms: MTDE [59] and GWO 
[60]. The selected PSO variants have shown significant 
improvements in PSO performance. Besides, these PSO 
variants represent three different categories that have been 
discussed in section II. PSO-LVIW and HPSO-TVAC are two 
prominent PSO variants that control the PSO parameters to 
improve the PSO performance. Lastly, MTDE and GWO are 
two recent meta-heuristic algorithms with outstanding 
optimization performance. 

C. Experimental Settings 
The parameter settings for all the compared algorithms are 

listed in Table 2. The parameter settings for each algorithm 
are set as recommended by their original references. For 
TPPSO, 9 is chosen to be 50, which means that the first phase 
is performed in the first 50 iterations while the second phase 
is performed in the rest of the iterations. It is expected that 
TPPSO requires some iterations at the early stages to explore 
the search space. The amount of time to explore the search 
space can vary depending on the problem; however, 
performing 50 to 100 iterations can ensure efficient 
exploration. Thus, this work sets alpha to 50 for exploration 
purposes.  

 

TABLE II 
PARAMETER SETTINGS FOR THE PSO VARIANTS AND THE OTHER 

ALGORITHMS USED IN THIS EXPERIMENTAL STUDY 

Approach Parameter Setting 

All Number of iterations 500 
 Runs 30 
 Swarm Size 40 
SPSO 1 2,c c   2, 2 

PSO-LVIW 
1 2, ,c c w  2, 2 , 0.9- 0.4 

HPSO-
TVAC 

1 1 2 2, , ,ci f i fc c c   2.5,0.5,0.5,2.5 

MTDE WinIter, H, initial, final,    
Mu, μf, σ 

20,5,0.001,2, 
log(D),0.5,0.2 

GWO a [2 0] 
TPPSO �� , �	 , $, 9 1.49,1.49,0.9-

0.4,50 
 
The population size and maximum number of iterations are 

kept consistent across all algorithms to ensure a fair 
comparison. For TPPSO, it is noteworthy that the swarm 
consists of 38 particles plus the two generated particles, 
resulting in a swarm size of 40. 

D. Solution Accuracy 

The solution accuracy and standard deviation (SD) on all 
the tested functions for D=30, D=100, and D=200 are reported 
in Table 3, Table 4, and Table 5, respectively.  For each test 
problem, the algorithm that achieves the best performance 
(lowest value) is in the first rank, while the worst algorithm is 
in the sixth rank.  

TABLE III 
MINIMIZATION, RESULTS OF THE TESTED FUNCTIONS, IN TABLE. 1 (D=30) 

Function   TPPSO SPSO PSO-LVIW HPSO-TVAC MTDE GWO 

 Mean 0 1.5571e+03 2.3224e-04 5.3543e-05 0.0282 1.4191e-30 
=� SD 0 232.6220 3.1161e-04 5.5817e-05 0.0292 3.4283e-30 

 Rank 1 6 4 3 5 2 
 Mean 5.4972e-04 3.1748e+03 38.0283 56.2835 73.7438 26.8248 

=	  SD 9.8913e-04 691.3292 24.1431 38.5503 32.8107 0.8149 
 Rank 1 6 3 4 5 2 
 Mean 0 16.8016 0.0042 30.4333 0.0255 1.6316e-18 

=2  SD 0 1.2632 0.0043 14.5358 0.0384 1.6214e-18 
 Rank 1 5 3 6 4 2 
 Mean 5.0000e+07 4.4499e+03 372.5001 0.4216 363.2092 3.7773e-07 

=3 SD 1.3582e+08 722.5389 161.1148 0.2809   193.1975 6.8283e-07 
 Rank 6 5 4 2 3 1 
 Mean 0 1.4889e+03 2.5605e-04 0.0021 0.0465 0.7347 

=> SD 0 163.2636 4.4336e-04 0.0017 0.0967 0.3695 
 Rank 1 6 2 3 4 5 
 Mean 0 202.1452 45.7019 26.0418 24.9509 1.8300 

=<  SD 0 15.9315 13.4910 9.5554 7.5813 2.9640 
 Rank 1 6 5 4 3 2 
 Mean 0 201.3163 46.3320 21.6541 23.6652 3.5404 

=?  SD 0 12.5967   13.2247 4.9287 6.6152 5.3267 
 Rank 1 6 5 3 4 2 
 Mean 0 14.5303 0.0184 0.0268 0.0649 0.0066 

=@  SD 0 1.7152 0.0170 0.0288 0.0645 0.0120 
 Rank 1 6 3 4 5 2 
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Function   TPPSO SPSO PSO-LVIW HPSO-TVAC MTDE GWO 

 Mean 1.5393e-04 14.3332 0.0104 0.1308 0.8957 0.0403 
=A SD 7.7397e-04 2.2265 0.0417 0.2274 0.8659 0.0260 

 Rank 1 6 2 4 5 3 
 Mean 8.8818e-16 8.9471 0.0402 2.3013 1.6381 5.9745e-14 

=�B SD 0 0.3360 0.1690 0.5667 0.5721 9.1263e-15 
 Rank 1 6 3 5 4 2 
 Mean 0 18.4442 1.7916 4.0478 31.0632 5.9212e-15 

=�� SD 0 1.5070 1.5749 1.5746 1.3599 5.3052e-15 
 Rank 1 5 3 4 6 2 
 Mean -179.9746 -145.6305 -158.2712 -179.9653 -179.7518 -162.0384 

=�	 SD 0.0399 21.8798 13.7675 0.0393 0.1873 16.6939 
 Rank 1 6 5 2 3 4 

=�2 Mean -138.0809 -130.7126 -139.8459 -135.0970 -124.1309 -132.3962 
 SD 0.8031 0.8917 0.4569 2.4616 5.0710 2.1531 
 Rank 2 5 1 3 6 4 

=�3 Mean 113.2833 233.0715 124.2203 288.2401 83.1584 167.2067 
 SD 45.6016 18.3171 45.8939 42.3496 23.4971 70.3349 
 Rank 2 5 3 6 1 4 

=�> Mean -178.9469 -24.7025 -89.8141 -178.4281 -176.0862 -63.2488 
 SD 0.2721 108.3838 75.7400 0.3813 2.4393 83.2179 
 Rank 1 6 4 2 3 5 

=�< Mean -119.0499 -118.9561 -118.9897 -119.0936 -118.9348 -118.9384 
 SD 0.1004 0.0659 0.0697 0.1008 0.0601 0.0586 
 Rank 2 4 3 1 6 5 

Average rank 1.5 5.56 3.31 4.66 4.18 2.93 
Final rank 1 6 3 5 4 2 

TABLE IV 
 MINIMIZATION RESULTS OF THE TESTED FUNCTIONS IN TABLE 1 (D=100) 

Function   TPPSO SPSO PSO-LVIW HPSO-TVAC MTDE GWO 

=� Mean 0 1.4322e+04 132.4667 61.3521 2.6160e+03 7.9548e-14 
 SD 0 365.9316 29.6266 18.6388 693.2875 5.6941e-14 
 Rank 1 6 4 3 5 2 

=	 Mean 0.6889 9.4012e+04 1.6874e+03 905.2238 9.0017e+03 97.4403 
 SD 1.3342 1.4535e+04 3.0846e+03 217.0080 5.5723e+03 0.7104 
 Rank 1 6 4 3 5 2 

=2 Mean 0 109.8841 32.2799 338.6000 33.8988 7.2193e-09 
 SD 0 6.6518 79.7094 75.7676 6.3060 2.7829e-09 
 Rank 1 5 3 6 4 2 

=3 Mean 6.7610e+09 8.2588e+04 4.7983e+04 1.1959e+05 2.1866e+04 199.9672 
 SD 3.4801e+09 2.9740e+03 1.1870e+04 6.0372e+04 6.0384e+03 163.2223 
 Rank 6 4 3 5 2 1 

=> Mean 0 1.3991e+04 93.7115 21.0450 2.2731e+03 8.5891 
 SD 0 907.8180 26.0172   17.2864 919.8658 1.0455 
 Rank 1 6 4 3 5 2 

=< Mean 0 951.5819 241.5384 127.6055 227.7619 7.9327 
 SD 0 26.0928 31.0776 22.2214 37.7182 9.1829 
 Rank 1 6 5 3 4 2 

=? Mean 0 951.6198 219.9738 137.7836 230.3660 9.1897 
 SD 0 14.0024 32.2415 27.7149 45.6752 6.6644 
 Rank 1 6 4 3 5 2 

=@ Mean 0 142.6861 2.0673 1.5991 24.0153 4.7917e-14 
 SD 0 7.6544 0.3373 0.1910 6.9443 3.3317e-14 
 Rank 1 6 4 3 5 2 

=A Mean 0.0554 8.8676e+05 7.4106 8.4648 2.3063e+03 0.2864 
 SD 0.0149 9.7301e+05 2.7682 2.1066 3.3065e+03 0.0709 
 Rank 1 6 3 4 5 2 

=�B Mean 8.8818e-16 12.7550 3.4417 10.1793 9.7578 2.4469e-08 
 SD 0 0.0721 0.3792 0.7670 0.9278 9.5466e-09 
 Rank 1 6 3 5 4 2 

=�� Mean 0 92.7434 33.5246 51.2011 136.0206 5.1661e-06 
 SD 0   1.4782 6.4406 4.7726 21.4867 9.2979e-06 
 Rank 1 5 3 4 6 2 

=�	 Mean -153.8430 145.7969 18.2130 -176.8263 76.0878 203.9014 
 SD 12.7305 93.8520 84.5935 0.6018 65.0579 81.1562 
 Rank 2 5 3 1 4 6 

=�2 Mean -127.4656 -127.0749 -134.5771 -122.9057 -125.4693 -125.7666 
 SD 1.3826 0.6928 1.7883 0.4704   0.7489 0.5496 
 Rank 2 3 1 6 5 4 

=�3 Mean 2.9487e+03 1.3830e+03 1.7753e+03 1.6525e+03 1.7082e+03 1.5104e+03 
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TABLE V 
MINIMIZATION RESULTS OF THE TESTED FUNCTIONS IN TABLE 1 (D=200) 

`  TPPSO SPSO PSO-LVIW HPSO-TVAC MTDE GWO 

=� Mean 0 5.8899e+04 2.3614e+03 2.9993e+03 2.0182e+04 9.2093e-09 
 SD 0 4.0496e+03 408.1431 496.8034 5.2114e+03 2.6866e-09 
 Rank 1 6 3 4 5 2 

=	  Mean 3.4305 6.6707e+05 8.1355e+03 1.0625e+04 7.0923e+04 197.9074 
 SD 6.7403 1.6182e+05 1.4991e+03 1.9523e+03 1.9856e+04 0.4328 
 Rank 1 6 3 4 5 2 

=2  Mean 0 441.0067 163.3612 4.9937e+03 148.6501 9.6735e-06 
 SD 0 36.7520 112.9599 854.6921 21.4207 1.9292e-06 
 Rank 1 5 4 6 3 2 

=3 Mean 6.6705e+10 3.7899e+05 2.0448e+05 4.2709e+07 9.7116e+04 1.2677e+04 
 SD 1.8059e+10 4.4378e+04 4.8161e+04 1.2218e+07 4.1539e+04 5.8830e+03 
 Rank 6 4 3 5 2 1 

=> Mean 0 5.5767e+04 2.5169e+03 246.8372 1.7616e+04   27.4161 
 SD 0 1.9652e+03 444.6781 110.1380 3.5330e+03 1.9402 
 Rank 1 6 4 3 5 2 

=<  Mean 0 2.0929e+03 725.6229 371.5672 915.0265 18.2434 
 SD 0 6.3344 55.2308 27.6465 69.3331 7.6131 
 Rank 1 6 4 3 5 2 

=?  Mean 0 2.0481e+03   749.2382 371.1106 909.3811 16.8214 
 SD 0 112.1901 77.9294 43.2959 82.6924 8.9949 
 Rank 1 6 4 3 5 2 

=@  Mean 0 578.1110 23.5791 27.8720 185.2158 5.0983e-09 
 SD 0 16.2579 1.1681 5.1032 34.5019 2.9210e-09 
 Rank 1 6 3 4 5 2 

=A Mean 0.2357 3.0589e+07 1.4785e+03 43.1634 8.7800e+04 0.4620 
 SD 0.0347 8.7002e+06 927.6033 16.9688 5.9280e+04 0.0536 
 Rank 1 6 4 3 5 2 

=�B  Mean 8.8818e-16 15.0721 6.2231 12.7309 12.3002 6.8640e-06 
 SD 0   0.2812 0.3242 0.5037 0.5318 1.2885e-06 
 Rank 1 6 3 5 4 2 

=��  Mean 0 213.5643 108.6252 139.4067 307.6020 0.0106 
 SD 0 12.4614 8.2523 7.0823 24.6321 0.0023 
 Rank 1 5 3 4 6 2 

=�	  Mean -179.4576 2.5810e+03 1.9450e+03 -176.3804 6.6474e+03 5.1459e+03 
 SD 0.8174 749.3975 889.1476 2.0301 399.3929 300.6229 
 Rank 1 4 3 2 6 5 

=�2  Mean -118.3003 -118.9938 -119.0615 -118.3657 -119.1880 -119.0543 
 SD 0.0497 0.0685 0.0456 0.0573 0.0371 0.1161 
 Rank 6 4 2 5 1 3 

=�3  Mean 1.5294e+04 5.1201e+03 5.1038e+03 1.0151e+04 4.7748e+03 5.2578e+03 
 SD   1.6277e+03 169.8610 87.2599 592.5911 79.9205 201.9053 
 Rank 6 3 2 5 1 4 

=�> Mean 8.8804e+04 5.0024e+04 5.1477e+04 4.8672e+04 4.6875e+04 4.3713e+04 
 SD 1.1213e+04 2.4274e+03 2.5277e+03 7.9278e+03 3.1219e+03 3.7427e+03 
 Rank 6 4 5 3 2 1 

=�<  Mean -118.2745 -118.4886 -118.5002 -118.2885 -118.5066 -118.5094 
 SD 0.0436 0.0088 0.0111 0.0382 0.0221 0.0148 
 Rank 6 4 3 5 2 1 

Average rank 2.56 5.37 3.31 3.5 3.87 2.18 
Final rank 2 6 3 4 5 1 

 

1)   Solution Accuracy when D=30: The performance of 
TPPSO on all the unimodal functions was superior as 
compared to all other algorithms used in the test. Based on the 
results reported in Table 3, it is observable that TPPSO could 
achieve the exact optimal solution for �=� , =2 , =>�. While the 
other algorithms had difficulties locating the global optimum 

for =	 , TPPSO managed to reach to a value that is very close 
to the global optimum. Unimodal functions are known to have 
a single minimum only, requiring more exploitation than 
explorations. Based on this fact, TPPSO, GWO, and MTDE 
proved they have strong exploitation abilities since they 
performed well on the unimodal functions. 

Function   TPPSO SPSO PSO-LVIW HPSO-TVAC MTDE GWO 

 SD 273.5421 269.7822 190.9855 149.0092 126.7819 113.9867 
 Rank 6 1 5 3 4 2 

=�> Mean 2.1413e+04 7.0081e+03 6.8055e+03 4.0869e+03 5.9378e+03 4.6191e+03 
 SD 5.1119e+03 1.6157e+03 868.2218 1.3642e+03 593.9261 990.4402 
 Rank 6 5 4 1 3 2 

=�< Mean -118.2561 -118.5854 -118.6143 -118.3050 -118.5982 -118.5927 
 SD 0.0594 0.0167 0.0276 0.0632 0.0195   0.0138 
 Rank 6 4 1 5 2 3 

Average rank 2.375 5 3.375 3.625 4.25 2.375 
Final rank 1 5 2 3 4 1 

2101



Multimodal functions require strong exploration abilities 
since they have many local minimums. Besides the strong 
exploitation abilities of TPPSO on unimodal functions, 
TPPSO showed that its exploration abilities are strong as well. 
TPPSO outperformed the other algorithms for all the tested 
multimodal functions. It is noteworthy that TPPSO achieves 
the exact optimal solution for �=<, =? , =@, =���.  

To further validate the effectiveness of TPPSO, it was 
tested on shifted and rotated functions. TPPSO successfully 
reached the acceptance solution on the two shifted functions 
=�	  and =�2  and its results on these two functions are 
comparable to the algorithm. 

Overall, TPPSO achieves the best results for 12 functions 
�=� − =2 , => − =�	, =�>�  out of the 16 tested functions. 
Moreover, TPPSO had the ability to reach the exact optimal 
solution for 7 functions �=� , =2 , =>, =< , =? , =@ , =���. As shown in 
Table 3, TPPSO has the best overall rank, followed by GWO, 
PSO-LVIW, MTDE, HPSO-TVAC, and SPSO.  

Figures 2, 3, and 4 show the convergence curves of the 
proposed TTPSO and the other algorithms for all tested 
functions when D=30. These figures show that TPPSO can 
converge toward the optimal solution without being stuck at 
the local optimal, unlike other algorithms. Moreover, the 
figures illustrate that PSO and MTDE algorithms are trapped 
in local optima very early, which restricts them from making 
any improvements.  
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Fig. 2  Convergence graphs on the unimodal functions when D=30 (a) =�  (b) 
=	  (c) =2 (d) =3 (e) => 
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Fig. 3  Convergence graphs on the multimodal functions when D=30 (a) =< 
(b) =?  (c) =@  (d) =A (e) =�B(f) =�� . 
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Fig. 4  Convergence graphs on the shifted and rotated functions when D=30 
(a) =�	 (b) =�2,(c) =�3 (d) =�> (e) =�<  

 

2)   Solution Accuracy when D=100 and D=200: As the 
number of dimensions increases and multiple local optima 
exist, the searching algorithm becomes more susceptible to be 
trapped in local optima. Therefore, testing the proposed PSO 
algorithm for high-dimensional cases is essential. TPPSO is 
tested on dimensions of 100 and 200, and the results are 
recorded in Table 4 and Table 5, respectively. The results in 
Table 4 and Table 5 validate that the TPPSO is not much 
affected if the number of dimensions increases. The results for 
all the tested functions f�, f2, f> − f@, f�B, f�� are the same 
results when D=30. For f	, fA, f�	 − f�< the solution accuracy 
of TPPSO is not much affected as compared to TPPSO with 
D=30. The performance of other compared algorithms 
decreases with increasing the number of dimensions. 

E. Convergence Speed 

TPPSO and the other algorithms are compared regarding 
convergence speed, as illustrated in Table 6. The convergence 
speed is determined by computing the mean number of 
iterations that are required to reach the acceptance solution 
shown in column 6 of Table 1. As seen in Table 6, TPPSO 
achieves the smallest mean number of iterations for =� , =2, => 

0 100 200 300 400 500

Iteration

0

10

20

30

40

50

60

70

F
it
n
e
s
s

TPPSO

SPSO

PSO-LVIW

HPSO-TVAC

MTDE

GWO

0 100 200 300 400 500

Iteration

-150

-140

-130

-120

-110

-100

-90

F
it
n
e
s
s

TPPSO

SPSO

PSO-LVIW

HPSO-TVAC

MTDE

GWO

0 100 200 300 400 500

Iteration

0

200

400

600

800

1000

1200

F
it
n
e
s
s

TPPSO

SPSO

PSO-LVIW

HPSO-TVAC

MTDE

GWO

0 100 200 300 400 500

Iteration

-1000

0

1000

2000

3000

4000

5000

F
it
n
e
s
s

TPPSO

SPSO

PSO-LVIW

HPSO-TVAC

MTDE

GWO

0 100 200 300 400 500

Iteration

-119.1

-119

-118.9

-118.8

-118.7

-118.6

-118.5

F
it
n

e
s
s

TPPSO

SPSO

PSO-LVIW

HPSO-TVAC

MTDE

GWO

2104



=@ , =�B and =��. It is noteworthy that TPPSO required only a 
very small mean number of iterations (less than 123 mean 
number of iterations) to reach, the acceptable solution for all 
the functions expect =3, =A, =�3 and =�< . This demonstrates that 
the convergence speed of TPPSO is extremely fast. When 
D=100 and D=200, TPPSO was not much affected except for 
=A , =�	 , =�2. Although TPPSO was not able to converge to the 

acceptance solution of =A, it managed to obtain a value that is 
very close to it. 

Table 6 shows the poor performance of SPSO, PSO-LVIW, 
HPSO-TVAC, and MTDE regarding convergence speed. 
GWO performed quite well for most of the tested functions. 
Overall, TPPSO outperforms all the other Algorithms in terms 
of convergence speed.  

TABLE VI 
CONVERGENCE SPEED OF THE TESTED FUNCTIONS IN TABLE 1 (D=30) 

Function  TPPSO SPSO PSO-LVIW HPSO-TVAC MTDE GWO 

=� Mean iterations 59 - - - - 90 
Rank 1 - - - - 2 

=	 Mean iterations 54 - 274 368 385 36 
 Rank 2 - 3 4 5 1 

=2 Mean iterations 57 - - - - 115 
 Rank 1 - - - - 2 

=3 Mean iterations - - - - - 426 
 Rank - - - - - 1 

=> Mean iterations 63 - - - - - 
 Rank 1 - - - - - 

=< Mean iterations 53 - 185 79 313 48 
 Rank 2 - 4 3 5 1 

=? Mean iterations 53 - 186 71 307 49 
 Rank 2 - 4 3 5 1 

=@ Mean iterations 59 - - - - - 
 Rank 1 - - - - - 

=A Mean iterations - - - - - - 
 Rank - - - - - - 

=�B Mean iterations 62 - - - - 124 
 Rank 1 - - - - 2 

=�� Mean iterations 64 - - - - 149 
 Rank 1 - - - - 2 

=�	 Mean iterations 56 23 22 78 160 35 
 Rank 4 2 1 5 6 3 

=�2 Mean iterations 123 93 34 310 -   272 
 Rank 3 2 1 5 - 4 

=�3 Mean iterations - - - - 435 - 
 Rank - - - - 1 - 

=�> Mean iterations 83 53 33 141 190 217 
 Rank 3 2 1 4 5 6 

=�< Mean iterations - - - - - - 
 Rank - - - - - - 

IV. CONCLUSION 
This paper presented a new PSO variant named TPPSO that 

splits the search process into two stages. The first stage 
focuses on exploration, whereas the second focuses more on 
exploitation. The first phase performs the same operations as 
the original PSO with decreasing inertia weight. In the second 
phase, two random positions that are closely benchmarked 
with the global best position are generated and compared 
sequentially with the global best position in each iteration. 
Any of the two generated random positions replace the global 
best position in case it achieves better results. This concept 
helps to maintain a proper balance between exploration and 
exploitation. 

To validate the effectiveness of the proposed algorithm, it 
was tested on 16 unimodal, multimodal, shifted, and rotated 
functions. The simulation results show that TPPSO is an 
effective and efficient PSO variant. The performance of 
TPPSO in terms of solution accuracy, convergence, speed, 
and reliability is superior as compared to the other existing 

PSO, variants and well-known meta-heuristic algorithms such 
as GWO, and MTDE. In addition, TPPSO does not add any 
complexity to the original PSO structure, as the only 
modification in TPPSO is the addition of the two random 
positions. In future work, TPPSO can be used to solve real-
world power electronics and telecommunication optimization 
problems. 

ACKNOWLEDGMENTS, 

This research work was supported in part by the Research 
Seed Fund of A’Sharqiyah University in the Sultanate of 
Oman. 

REFERENCES 

[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,” 
Proceedings of ICNN’95 - International Conference on Neural 
Networks, doi: 10.1109/icnn.1995.488968. 

[2] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm 
theory,” MHS’95. Proceedings of the Sixth International Symposium 
on Micro Machine and Human Science, doi: 
10.1109/mhs.1995.494215. 

2105



[3] E. Shahamatnia, I. Dorotovič, J. M. Fonseca, and R. A. Ribeiro, “An 
evolutionary computation based algorithm for calculating solar 
differential rotation by automatic tracking of coronal bright points,” J. 
Sp. Weather Sp. Clim., vol. 6, 2016, doi: 10.1051/swsc/2016010. 

[4] C. H. Jang, F. Hu, F. He, J. Li, and D. Zhu, “Low-Redundancy Large 
Linear Arrays Synthesis for Aperture Synthesis Radiometers Using 
Particle Swarm Optimization,” IEEE Trans. Antennas Propag., vol. 
64, no. 6, pp. 2179–2188, Jun. 2016, doi: 10.1109/TAP.2016.2543755. 

[5] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing 
hierarchical particle swarm optimizer with time-varying acceleration 
coefficients,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 240–255, 
Jun. 2004, doi: 10.1109/TEVC.2004.826071. 

[6] K. Luu, M. Noble, A. Gesret, N. Belayouni, and P. F. Roux, “A parallel 
competitive Particle Swarm Optimization for non-linear first arrival 
traveltime tomography and uncertainty quantification,” Comput. 
Geosci., vol. 113, pp. 81–93, Apr. 2018,  
doi: 10.1016/j.cageo.2018.01.016. 

[7] M. Abdulkadir, A. H. M. Yatim, and S. T. Yusuf, “An improved PSO-
based MPPT control strategy for photovoltaic systems,” Int. J. 
Photoenergy, vol. 2014, 2014, doi: 10.1155/2014/818232. 

[8] P. Melin, F. Olivas, O. Castillo, F. Valdez, J. Soria, and M. Valdez, 
“Optimal design of fuzzy classification systems using PSO with 
dynamic parameter adaptation through fuzzy logic,” Expert Syst. 
Appl., vol. 40, no. 8, pp. 3196–3206, Jun. 2013,  
doi: 10.1016/j.eswa.2012.12.033. 

[9] L. Zhang, Y. Tang, C. Hua, and X. Guan, “A new particle swarm 
optimization algorithm with adaptive inertia weight based on Bayesian 
techniques,” Appl. Soft Comput. J., vol. 28, pp. 138–149, 2015,  
doi: 10.1016/j.asoc.2014.11.018. 

[10] Q. Liu, “Order-2 stability analysis of particle swarm optimization,” 
Evol. Comput., vol. 23, no. 2, pp. 187–216, Jun. 2015,  
doi: 10.1162/EVCO_a_00129. 

[11] K. R. Harrison, A. P. Engelbrecht, and B. M. Ombuki-Berman, 
“Optimal parameter regions and the time-dependence of control 
parameter values for the particle swarm optimization algorithm,” 
Swarm Evol. Comput., vol. 41, pp. 20–35, Aug. 2018,  
doi: 10.1016/j.swevo.2018.01.006. 

[12] M. B. Shafik, H. Chen, G. I. Rashed, R. A. El-Sehiemy, M. R. 
Elkadeem, and S. Wang, “Adequate topology for efficient energy 
resources utilization of active distribution networks equipped with soft 
open points,” IEEE Access, vol. 7, pp. 99003–99016, 2019,  
doi: 10.1109/ACCESS.2019.2930631. 

[13] H. Liu, X. W. Zhang, and L. P. Tu, “A modified particle swarm 
optimization using adaptive strategy,” Expert Syst. Appl., vol. 152, 
Aug. 2020, doi: 10.1016/j.eswa.2020.113353. 

[14] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” 1998 
IEEE International Conference on Evolutionary Computation 
Proceedings. IEEE World Congress on Computational Intelligence 
(Cat. No.98TH8360), doi: 10.1109/icec.1998.699146. 

[15] Institute of Electrical and Electronics Engineers and IEEE 
Computational Intelligence Society, 2020 IEEE Congress on 
Evolutionary Computation (CEC) : 2020 conference proceedings. 
2020, 2020. 

[16] P. J. Angeline, “Using selection to improve particle swarm 
optimization,” 1998 IEEE International Conference on Evolutionary 
Computation Proceedings. IEEE World Congress on Computational 
Intelligence (Cat. No.98TH8360), doi: 10.1109/icec.1998.699327. 

[17] Z. Beheshti and S. M. Siti, “CAPSO: Centripetal accelerated particle 
swarm optimization,” Inf. Sci. (Ny)., vol. 258, pp. 54–79, Feb. 2014, 
doi: 10.1016/j.ins.2013.08.015. 

[18] J. Dash, B. Dam, and R. Swain, “Optimal design of linear phase multi-
band stop filters using improved cuckoo search particle swarm 
optimization,” Appl. Soft Comput. J., vol. 52, pp. 435–445, Mar. 2017, 
doi: 10.1016/j.asoc.2016.10.024. 

[19] Wen-Jun Zhang and Xiao-Feng Xie, “DEPSO: hybrid particle swarm 
with differential evolution operator,” SMC’03 Conference 
Proceedings. 2003 IEEE International Conference on Systems, Man 
and Cybernetics. Conference Theme - System Security and Assurance 
(Cat. No.03CH37483), doi: 10.1109/icsmc.2003.1244483. 

[20] N. Higashi and H. Iba, “Particle swarm optimization with Gaussian 
mutation,” Proceedings of the 2003 IEEE Swarm Intelligence 
Symposium. SIS’03 (Cat. No.03EX706), doi: 
10.1109/sis.2003.1202250. 

[21] P. S. Andrews, “An Investigation into Mutation Operators for Particle 
Swarm Optimization,” 2006 IEEE International Conference on 
Evolutionary Computation, doi: 10.1109/cec.2006.1688424. 

[22] P. S. Shelokar, P. Siarry, V. K. Jayaraman, and B. D. Kulkarni, 
“Particle swarm and ant colony algorithms hybridized for improved 
continuous optimization,” Appl. Math. Comput., vol. 188, no. 1, pp. 
129–142, May 2007, doi: 10.1016/j.amc.2006.09.098. 

[23] Y. P. Chen, W. C. Peng, and M. C. Jian, “Particle swarm optimization 
with recombination and dynamic linkage discovery,” IEEE Trans. 
Syst. Man, Cybern. Part B Cybern., vol. 37, no. 6, pp. 1460–1470, Dec. 
2007, doi: 10.1109/TSMCB.2007.904019. 

[24] Y. T. Kao and E. Zahara, “A hybrid genetic algorithm and particle 
swarm optimization for multimodal functions,” Appl. Soft Comput. J., 
vol. 8, no. 2, pp. 849–857, Mar. 2008, doi: 
10.1016/j.asoc.2007.07.002. 

[25] M. S. Kiran, M. Gündüz, and Ö. K. Baykan, “A novel hybrid algorithm 
based on particle swarm and ant colony optimization for finding the 
global minimum,” Appl. Math. Comput., vol. 219, no. 4, pp. 1515–
1521, Nov. 2012, doi: 10.1016/j.amc.2012.06.078. 

[26] H. C. Tsai, Y. Y. Tyan, Y. W. Wu, and Y. H. Lin, “Gravitational 
particle swarm,” Appl. Math. Comput., vol. 219, no. 17, pp. 9106–
9117, 2013, doi: 10.1016/j.amc.2013.03.098. 

[27] T. Jamrus, C. F. Chien, M. Gen, and K. Sethanan, “Hybrid Particle 
Swarm Optimization Combined With Genetic Operators for Flexible 
Job-Shop Scheduling Under Uncertain Processing Time for 
Semiconductor Manufacturing,” IEEE Trans. Semicond. Manuf., vol. 
31, no. 1, pp. 32–41, Feb. 2017, doi: 10.1109/TSM.2017.2758380. 

[28] M. Sharma and J. K. Chhabra, “Sustainable automatic data clustering 
using hybrid PSO algorithm with mutation,” Sustain. Comput. 
Informatics Syst., vol. 23, pp. 144–157, Sep. 2019,  
doi: 10.1016/j.suscom.2019.07.009. 

[29] Y. Heryadi, “A Hybrid Particle Swarm Optimization With Crossover 
and Mutation of Genetic Algorithm for Solving the Wide Constraint 
Problem,” 2019. 

[30] Y. Ding, K. Zhou, and W. Bi, “Feature selection based on 
hybridization of genetic algorithm and competitive swarm optimizer,” 
Soft Comput., vol. 24, no. 15, pp. 11663–11672, Aug. 2020,  
doi: 10.1007/s00500-019-04628-6. 

[31] N. Kumar Yadav, “Hybridization of Particle Swarm Optimization with 
Differential Evolution for Solving Combined Economic Emission 
Dispatch Model for Smart Grid,” 2019. 

[32] G. F. Fan, L. L. Peng, X. Zhao, and W. C. Hong, “Applications of 
hybrid EMD with PSO and GA for an SVR-based load forecasting 
model,” Energies, vol. 10, no. 11, Nov. 2017,  
doi: 10.3390/en10111713. 

[33] S. A. Mogaji, B. K. Alese, A. O. Adetunmbi, M. S. Alaba, A. B. 
Kayode, and A. Adebayo, “Validation of Hybridized Particle Swarm 
Optimization (PSO) Algorithm with the Pheromone Mechanism of 
Ant Colony Optimization (ACO) using Standard Benchmark 
Function. Securing Networks and Cyber-physical Systems View 
project Validation of Hybridized Partic,” 2018. [Online]. Available: 
www.caeaccess.org 

[34] R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle 
swarm: Simpler, maybe better,” IEEE Trans. Evol. Comput., vol. 8, 
no. 3, pp. 204–210, Jun. 2004, doi: 10.1109/TEVC.2004.826074. 

[35] X. Li, “Niching without niching parameters: Particle swarm 
optimization using a ring topology,” IEEE Trans. Evol. Comput., vol. 
14, no. 1, pp. 150–169, Feb. 2009, doi: 10.1109/TEVC.2009.2026270. 

[36] J. Kennedy and K.-J. Gov, “Population Structure and Particle Swarm 
Performance,” 2002. 

[37] J. Kennedy and K.-J. Gov, “Small Worlds and Mega-Minds: Effects 
of Neighborhood Topology on Particle Swarm Performance,” 1999. 

[38] A. Lin, W. Sun, H. Yu, G. Wu, and H. Tang, “Global genetic learning 
particle swarm optimization with diversity enhancement by ring 
topology,” Swarm Evol. Comput., vol. 44, pp. 571–583, Feb. 2019, 
doi: 10.1016/j.swevo.2018.07.002. 

[39] N. Lynn, M. Z. Ali, and P. N. Suganthan, “Population topologies for 
particle swarm optimization and differential evolution,” Swarm Evol. 
Comput., vol. 39, pp. 24–35, Apr. 2018, doi: 
10.1016/j.swevo.2017.11.002. 

[40] X. Hao, N. Yao, J. Wang, and L. Wang, “Distributed resource 
allocation optimisation algorithm based on particle swarm 
optimisation in wireless sensor network,” IET Commun., vol. 14, no. 
17, pp. 2990–2999, Oct. 2020, doi: 10.1049/iet-com.2020.0368. 

[41] A. A. El-Saleh, T. M. Shami, R. Nordin, M. Y. Alias, and I. Shayea, 
“Multi-objective optimization of joint power and admission control in 
cognitive radio networks using enhanced swarm intelligence,” 
Electron., vol. 10, no. 2, pp. 1–27, Jan. 2021, doi: 
10.3390/electronics10020189. 

2106



[42] O. Evsutin, A. Shelupanov, R. Meshcheryakov, D. Bondarenko, and 
A. Rashchupkina, “The algorithm of continuous optimization based on 
the modified cellular automaton,” Symmetry (Basel)., vol. 8, no. 9, 
2016, doi: 10.3390/sym8090084. 

[43] O. Almomani, “A Hybrid Model Using Bio-Inspired Metaheuristic 
Algorithms for Network Intrusion Detection System,” Comput. Mater. 
Contin., vol. 68, no. 1, pp. 409–429, Mar. 2021,  
doi: 10.32604/cmc.2021.016113. 

[44] M. H. Alkinani, E. A. Zanaty, and S. M. Ibrahim, “Medical image 
compression based on wavelets with particle swarm optimization,” 
Comput. Mater. Contin., vol. 67, no. 2, pp. 1577–1593, 2021,  
doi: 10.32604/cmc.2021.014803. 

[45] J. Wang, Y. Gao, C. Zhou, R. Simon Sherratt, and L. Wang, “Optimal 
coverage multi-path scheduling scheme with multiple mobile sinks for 
WSNs,” Comput. Mater. Contin., vol. 62, no. 2, pp. 695–711, 2020, 
doi: 10.32604/cmc.2020.08674. 

[46] E. N. Al-Khanak et al., “A heuristics-based cost model for scientific 
workflow scheduling in cloud,” Comput. Mater. Contin., vol. 67, no. 
3, pp. 3265–3282, Mar. 2021, doi: 10.32604/cmc.2021.015409. 

[47] M. El Mamoun, Z. Mahmoud, and S. Kaddour, “SVM model selection 
using PSO for learning handwritten Arabic characters,” Comput. 
Mater. Contin., vol. 61, no. 3, pp. 995–1008, 2019,  
doi: 10.32604/cmc.2019.08081. 

[48] S. K. Gopalakrishnan, S. Kinattingal, S. P. Simon, and K. A. Kumar, 
“Enhanced energy harvesting from shaded PV systems using an 
improved particle swarm optimisation,” IET Renew. Power Gener., 
vol. 14, no. 9, pp. 1471–1480, Jul. 2020, doi: 10.1049/iet-
rpg.2019.0936. 

[49] H. Xiang, M. Peng, Y. Sun, and S. Yan, “Mode Selection and Resource 
Allocation in Sliced Fog Radio Access Networks: A Reinforcement 
Learning Approach,” IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 
4271–4284, Apr. 2020, doi: 10.1109/TVT.2020.2972999. 

[50] D. T. C. Lai, M. Miyakawa, and Y. Sato, “Semi-supervised data 
clustering using particle swarm optimisation,” Soft Comput., vol. 24, 
no. 5, pp. 3499–3510, Mar. 2020, doi: 10.1007/s00500-019-04114-z. 

[51] T. R. Farshi, J. H. Drake, and E. Özcan, “A multimodal particle swarm 
optimization-based approach for image segmentation,” Expert Syst. 
Appl., vol. 149, Jul. 2020, doi: 10.1016/j.eswa.2020.113233. 

[52] T. Gao, B. Cao, and M. Zhang, “Multiobjective Complex Network 
Clustering Based on Dynamical Decomposition Particle Swarm 
Optimization,” IEEE Access, vol. 8, pp. 32341–32352, 2020,  
doi: 10.1109/ACCESS.2020.2972123. 

[53] B. Kizielewicz and W. Sałabun, “A new approach to identifying a 
multi-criteria decision model based on stochastic optimization 
techniques,” Symmetry (Basel)., vol. 12, no. 9, Sep. 2020,  
doi: 10.3390/SYM12091551. 

[54] C. Qin and X. Gu, “Article improved PSO algorithm based on 
exponential center symmetric inertiaweight function and its 
application in infrared image enhancement,” Symmetry (Basel)., vol. 
12, no. 2, Feb. 2020, doi: 10.3390/sym12020248. 

[55] Z. Ma, X. Yuan, S. Han, D. Sun, and Y. Ma, “Improved chaotic 
particle swarm optimization algorithm with more symmetric 
distribution for numerical function optimization,” Symmetry (Basel)., 
vol. 11, no. 7, Jul. 2019, doi: 10.3390/sym11070876. 

[56] B. Y. Qu, P. N. Suganthan, and S. Das, “A distance-based locally 
informed particle swarm model for multimodal optimization,” IEEE 
Trans. Evol. Comput., vol. 17, no. 3, pp. 387–402, 2013,  
doi: 10.1109/TEVC.2012.2203138. 

[57] K. Tang et al., “Benchmark Functions for the CEC’2008 Special 
Session and Competition on Large Scale Global Optimization,” 2007. 
[Online]. Available: http://nical.ustc.edu.cn/cec08ss.php. 

[58] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, 
“Comprehensive learning particle swarm optimizer for global 
optimization of multimodal functions,” IEEE Trans. Evol. Comput., 
vol. 10, no. 3, pp. 281–295, Jun. 2006,  
doi: 10.1109/TEVC.2005.857610. 

[59] M. H. Nadimi-Shahraki, S. Taghian, S. Mirjalili, and H. Faris, 
“MTDE: An effective multi-trial vector-based differential evolution 
algorithm and its applications for engineering design problems,” Appl. 
Soft Comput. J., vol. 97, Dec. 2020, doi: 10.1016/j.asoc.2020.106761. 

[60] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” 
Adv. Eng. Softw., vol. 69, pp. 46–61, 2014,  
doi: 10.1016/j.advengsoft.2013.12.007. 

 

2107




