
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

TPPSO: A Novel Two-Phase Particle Swarm Optimization
Tareq M. Shami a, Mhd Amen Summakieh b, Mohammed Alswaitti c, Majan Abdullah Al Jahdhami d,

Abdul Manan Sheikh d, Ayman A. El-Saleh d,*

a Department of Electronic Engineering, University of York, York, U.K
b Faculty of Engineering, Multimedia University, Selangor, Malaysia

c Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg
d Department of Electronics and Communication Engineering, College of Engineering, A’Sharqiyah University, Ibra, Oman

Corresponding author: *ayman.elsaleh@asu.edu.om

Abstract— Particle swarm optimization (PSO) is a stout and rapid searching algorithm that has been used in various applications.

Nevertheless, its major drawback is the stagnation problem that arises in the later phases of the search process. To solve this problem,

a proper balance between investigation and manipulation throughout the search process should be maintained. This article proposes a

new PSO variant named two-phases PSO (TPPSO). The concept of TPPSO is to split the search process into two phases. The first phase

performs the original PSO operations with linearly decreasing inertia weight, and its objective is to focus on exploration. The second

phase focuses on exploitation by generating two random positions in each iteration that are close to the global best position. The two

generated positions are compared with the global best position sequentially. If a generated position performs better than the global best

position, then it replaces the global best position. To prove the effectiveness of the proposed algorithm, sixteen popular unimodal,

multimodal, shifted, and rotated benchmarking functions have been used to compare its performance with other existing well-known

PSO variants and non-PSO algorithms. Simulation results show that TPPSO outperforms the other modified and hybrid PSO variants

regarding solution quality, convergence speed, and robustness. The convergence speed of TPPSO is extremely fast, making it a suitable

optimizer for real-world optimization problems.

Keywords— Particle swarm optimization; global optimization; swarm intelligence; exploration; evolutionary algorithms (EAs).

Manuscript received 11 Dec. 2022; revised 19 Jun. 2023; accepted 8 Sep. 2023. Date of publication 30 Nov. 2023.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

In 1995, a promising evolutionary algorithm, namely
Particle Swarm Optimization (PSO) to solve optimization
problems was proposed [1], [2]. The PSO algorithm draws
inspiration from the social relationship between birds flocking
and fish schooling. Naturally, a swarm of birds’ veers to
follow a leader closer to the food source, guiding their flight
in the open space. Birds' social behavior can be translated into
an algorithm for resolving optimization problems. In this
algorithm, particles form a swarm, with each particle
representing a potential solution, and the swarm searches the
space to find the best solution.

PSO is arguably one of the best optimization algorithms
due to its ease of deployment, limited control parameters, and
optimal results at a shorter computational time. In certain
cases, it can outperform various evolutionary algorithms such
as genetic algorithm (GA) [3] and ant colony optimization
(ACO) [4]. However, PSO suffers from premature

convergence [5], [6]. The PSO algorithm has two significant
limitations. Firstly, the particles tend to stagnate in the later
stages of the search process, leading to a lack of further
improvements. Secondly, this issue arises due to an
inadequate balance between exploration and exploitation.
Exploration involves searching for a wide area in the solution
space, while exploitation focuses on intensively searching
around a promising region. To address these limitations,
modifications have been made to the standard PSO (SPSO).

In this paper, we propose a TPPSO that includes a
searching process, divided into two phases. The first phase
focuses on exploration while the second phase focuses on
exploitation. In the first phase, the standard PSO with linearly
decreasing inertia weight is used. In the second phase, a new
idea is introduced where two random positions located near
the global best position is generated in each iteration. The two
generated random positions are benchmarked with the global
best position. Any of the two generated positions replace the
global best position if it achieves better results. TPPSO still

2095

JOIV : Int. J. Inform. Visualization, 7(3-2): Empowering the Future: The Role of Information Technology in Building Resilience - November 2023 2095-2107

has a simple algorithm structure because the only
modification in TPPSO is the addition of the two random
positions.

The rest of this paper is organized as follows. Section 2
presents the related work in brief. The proposed algorithm is
discussed in detail in section 3. In section 4, we tested the
proposed PSO variant on a set of 16 benchmark functions and
compared it to 6 existing PSO variants. Finally, section 5
summarizes this work.

II. MATERIALS AND METHOD

In this section, the related works and proposed algorithms
are presented.

A. Related Works

The PSO is an algorithm consisting of a particle swarm
where each particle acts as a candidate solution and an
objective function evaluates each solution. Each particle � can
fly in the search space and find better solutions by using its
velocity and position vectors, which are defined as:

 �� = ����, ��	, . . . , ����, � = 1,2, . . . , � (1)

 �� = ����, ��	, . . . , ����, � = 1,2, . . . , � (2)

where the velocity vector is ����, the position vector is ����,
the number of dimensions is ���, and the population size is
���. During the PSO process's initial stages, each particle's
velocity and position are randomly set within predefined
ranges. During the evolutionary process, the particles are
attracted by their own historical best position ������ as well
as by the best position found in the whole swarm �����.
Moreover, the velocity and position of the particles are
updated using the following formulas:

 ��� = ��� + ��������������� − ���� + �	����	������� − ���� (3)

 ��� = ��� + ��� (4)

where �� and �	 are the cognitive and social acceleration
coefficients. ����� and ����	 are two uniform random
values generated within [0,1].

PSO is a repetitive process, which means that each particle
in the swarm will fly in the search space to find a better
solution iteratively. If a particle finds a position that is better
than the position in the previous iteration, it records it as
����� and ����� is recorded as the �����, which has the best
solution in the whole swarm. This process continues until the
stopping condition is satisfied. Since the introduction of the
standard PSO, many attempts have been made to propose PSO
variants that can enhance the PSO performance. Three
approaches of PSO variants have been widely used to improve
the PSO performance by avoiding premature convergence.

The first approach improves the PSO performance by
adjusting the controlling parameters of PSO [7]–[13]. Shi and
Eberhart [14] modified the original velocity update Equation
in (3) by introducing a new parameter called inertia weight
and, denoted as $. Based on this modification, the velocity
update equation becomes now in the following form:

��� = $��� + ��������������� − ����
+ �	����	������� − ����

(5)

Increasing the value of the inertia weight increases
exploration, while decreasing it increases exploitation.
According to Shi and Eberhart [14] it is recommended to start
the PSO run with an inertia weight value of 0.9 and linearly
decrease it until it reaches 0.4 by the end of the run. This
approach allows for a global search in the initial stages and
gradually transitions towards a more localized search to refine
the results. Shi and Eberhart named this PSO variant as PSO
with linearly varying inertia weight (PSO-LVIW) and
provided a mathematical formula for the linearly varying
inertia weight, which can be written as follows:

 $ = �$%&' − $%�(�)*+,
* - + $%�((5)

where � the number of the current iteration is, . is the
maximum number of iterations, $%&' and $%�(are the initial
and final values of the inertia weight.

The other controlling parameter that can be adjusted are the
acceleration coefficient �� and �	. In [5], a PSO variant called
a hierarchical PSO with a time-varying acceleration
coefficient (HPSO-TVAC) is proposed. In HPSO-TVAC, the
process starts with a large value of �� and a small value of �	
which allows the particles to explore the search space. As the
number of the current iteration increases, the value of ��
decreases while the value of �	 increases causing the particles
to focus more on exploitation at the last part of the process.
By only adjusting the controlling parameters, the particles still
follow ����� which results in premature convergence in case
that ����� is trapped into local optima.

The second approach hybridizes PSO with other
optimization techniques to enhance the performance of PSO
[15]–[26]. PSO has been hybridized in the literature with
genetic operators like mutation [27], [28], crossover[29], and
selection [30] or with other searching techniques such as DE
[31], GA[32], ACO [33], and gravitational search algorithm
(GSA) [26] . In [26], PSO was combined with GSA, resulting
in a hybrid PSO named GPS. The velocity update equation in
(GPS) algorithm is influenced by both the velocity of the
Particle Swarm Optimization (PSO) and the acceleration of
the Gravitational Search Algorithm (GSA). In [17], a
centripetal accelerated PSO (CAPSO), which is a
combination of PSO and Newton's law of motion is proposed.
Each particle in CAPSO has two more specifications
(acceleration and centripetal acceleration) besides velocity
and position. Although hybridizing PSO with other
optimization techniques enhances the PSO performance, the
resultant PSO variant due to hybridization is more
sophisticated than the original PSO.

The third approach implements different neighborhood
topologies to improve diversity [34]–[36]. The most famous
neighborhood topologies that have been extensively studied
are the star, ring, and Von Neumann topologies. Basically, the
swarm topology can be global (star), local (ring), or a
combination of both. As explained in [37]–[39], the global
version achieves the fastest convergence but cannot avoid
being trapped in local optima whereas the local version
increases the diversity but convergences slowly. In [15], a
fully informed particle swarm (FIPS) is presented where the
velocity of a particle � depends on ����� of each neighbor of
�. The star topology and the ring topology were combined
together to form a single PSO named as unified PSO (UPSO).

2096

Implementing neighborhood topologies helps to avoid
premature convergence but it convergences slowly since
particles are less attracted to the �����. PSO's simplicity and
robustness have led to its wide application in various fields,
including wireless communications and image processing. It
has proven effective in solving diverse optimization problems
[40]–[55].

B. The Proposed Algorithm

The TPPSO improves the PSO performance and eliminates
its stagnation problem by maintaining a proper balance
between exploration and exploitation during the search
operation; PSO algorithm achieves effective results. The basic
concept of TPPSO is to divide the total number of iterations
of PSO into two phases, where each phase consists of a
predefined number of iterations focusing on either exploration
or exploitation. The first phase consists of α number of
iterations, while the number of iterations in the second phase
is the total number of iterations−α. In the first phase, TPPSO
uses the standard PSO with linearly decreasing inertia weight
to focus on exploration since the SPSO has a very strong
ability to explore at the early stage of the PSO process. The
second phase introduces a new concept that balances
exploration and exploitation and prevents premature
convergence. The new concept is to generate two random
positions in each iteration close to the global best position, as
shown in Equations (7) and Equation (8). To utilize the good
position of the global best position, it is promising to search
around this position seeking better solutions. To perform this,
we develop Equations (7) and Equation (8) to search around
the global best position to find solutions that can lead to the
optimal solution.

The two generated positions are compared with �����
sequentially. If any of the two generated positions achieve
better results as compared to ����� , then the global best
position is replaced by that generated position.

 �1����1�� = ����������2) (6)

 �1����1�	 = ����� + �����3� (7)

where rand2 and rand3 are two uniform random variables in
the range [0,1]. The pseudo-code of the proposed algorithm
to solve a minimization problem is provided in Algorithm 1.

Algorithm 1 Pseudo-code of the TPPSO algorithm

1: Initialize the swarm size �, randomly generate the velocity
and positions of each particle in the searching space
2: Phase one:
3: Perform the original PSO with decreasing inertia weight as in

[56]
4: Stop when the number of iterations is > 9
5: Phase two:
6: Compute the fitness value of each particle
7: Update the best position for each particle �����
8: Update the global best position �����
9: Generate the two random positions as in Equation (7) and

Equation (8)
10: if fitness (:1����1��) < fitness (�����) then
11: ����� = :1����1��
12: else
13: ����� = �����

14: endif
15: if fitness (:1����1�) < fitness (�����), then
16: ����� = :1����1�	
17: else
18: ����� = �����
19: endif
20: Update the velocity and positions of each particle using

Equations (3) and (4)
21: Repeat Phases one and two until a stopping condition is

satisfied (e.g., the maximum number of iterations is reached)
22: Return the best solution

Fig. 1 shows an example that illustrates the fundamental

concept of the proposed algorithm. As seen in Fig. 1, the two
generated positions (�1�����1�� and �1�����1�) must be
located close to the global best position. In other words, these
two positions are restricted from having values higher than the
value of the global best position. Implementing this approach
allows the generation of new particles that can focus on
promising areas around the global best position, leading to
better fitness values. In addition, focusing the search around
the global best position, as in the proposed method, improves
the search algorithm's exploitation ability. This is particularly
important in the later stages of the search, as it leads to higher
accuracy and faster speed.

Fig. 1 2D-illustration of the generation boundaries of the two new positions.

III. RESULTS AND DISCUSSION

A. Benchmark Functions

To test the performance of the proposed TPPSO, four
groups of functions listed in Table 1 are used. These groups
are unimodal functions (f_1-f_5), multimodal functions (f_6-
f_11), shifted functions (f_12 and f_13) and rotated functions
(f_14-f_16). Table 1 shows the search ranges (column 4),
minimum values (column 5), and acceptable solutions
(column 6) for each tested function. The acceptable solution
is a value that shows whether a PSO variant can reach a
satisfactory level or not. Table 1 presents the tested functions,
including unimodal and multimodal functions that can
evaluate the performance of TTPSO.

2097

TABLE I
TEST FUNCTIONS

 Test function Name
Search

space minf
Acceptance

solution

   2
1

1

D

i

i

xf x



 Sphere
[-
100,100]

0 1 × 10+<

    
1

2
2 2

2 1

1

100 (1)

D

i i i

i

x xf x x







 
    

  
 Rosenbrock [-10,10] 0 100

Unimodal  3

1 1

D D

i i

i i

x x xf

 

   Schwefel P2.22 [-10,10] 0 61 10

  

2

4

1 1

D i

j

i j

f x x

 

 
 

  
 
 

  Quadric
[-
100,100] 0 61 10

    25

1

0.5

D

i

i

xf x



    Step
[-
100,100] 0 61 10

    2
6

1

10 2 10

D

i i

i

f x x cos x



      Rastrigin
[-
5.12,5.12]

0 100

    2
7

1

10 2 10

D

i i

i

f x cos xy 



     
Noncontinuous
Rastrigin

[-
5.12,5.12]

0 100

Multimodal   2
8

1 1

1
1

4000

D D

i
i

i i

x
f x x cos

i
 

 
   

   Griewank
[-
600,600] 0 61 10

1 2 2 2
9 1 1

1

1

() 10sin() (1) [1 sin (y))] (y 1))

(x ,10,100,4)

D

i i D
i

D

i
i

f x y y
D

u


 








  
      

  






 Generalized
Penalized

[-50,50] 0 61 10

   2

1
0

1
1

1 1
20exp 0.2 exp cos2 20

D D

i i

i i

x x x
D

f e
D


 

  
       

  
  

  Ackley [-32,32] 0 61 10

11

1 0

0

2 0 5

2 0 5 0 5 3 20

D k max
k k

i

i k

k max
k k

k

f ([a cos(b (x .))])

n [a cos(b . .)],a . ,b ,k max





 



 

   

 


 Weierstrass [-0.5,0.5] 0 61 10

Shifted   2
12 3

1 1

1
1 , o

4000

D D

i
i

i i

z
f x z cos fbias z x

i
 

 
      

  
Shifted
Griewank

[-
600.600]

o 100

 

4

13
2

1 1

1 1
20exp 0.2 exp cos 2

20 ,

D D

i i

i i

x z z
D D

e fbias z

f

x o


 

  
     

  
  

    

  Shifted Ackley [-32,32] o 130

    2
14

1

10 2 10

D

i i

i

yf x cos y , y M x



        Rotated
Rastrigin

[-
5.12,5.12] 0 100

Rotated   2
15

1 1

1
1,

4000

D D

i
i

i i

f x y cos y M x
i

y

 

 
     

   Rotated
Griewank

[-
600,600] 0 61 10

 

1
16

2

1

1 1
20exp 0.2 exp cos 2 20

,

D D

i i

i i

x y y
D D

M x

f

e y


 

  
      

  
  

  

  Rotated Ackley [-32,32] 0 61 10

2098

 In 7f ,
0 5

2
0 5

2

i, i

i i
i

x x .

y round(x)
, x .

 


 




 . In 9f , 0

1

m
j j

j j

m
j j

k(x a) , x a

u(x ,a,k ,m) , a x a

k(x) , x a

  


   

    

 .

 In 12f and 13f , o is a shifted vector [57].

 In 14 16f f , M is a transformation matrix [58].

B. Comparison Results

To prove the effectiveness of TPPSO, TPPSO is tested on
16 benchmarking functions and compared with 3 prominent
PSO variants, namely SPSO, inertia weight PSO (IWPSO)
[36], PSO-LVIW [14], HPSO-TVAC [5], and two well-
known meta-heuristic algorithms: MTDE [59] and GWO
[60]. The selected PSO variants have shown significant
improvements in PSO performance. Besides, these PSO
variants represent three different categories that have been
discussed in section II. PSO-LVIW and HPSO-TVAC are two
prominent PSO variants that control the PSO parameters to
improve the PSO performance. Lastly, MTDE and GWO are
two recent meta-heuristic algorithms with outstanding
optimization performance.

C. Experimental Settings
The parameter settings for all the compared algorithms are

listed in Table 2. The parameter settings for each algorithm
are set as recommended by their original references. For
TPPSO, 9 is chosen to be 50, which means that the first phase
is performed in the first 50 iterations while the second phase
is performed in the rest of the iterations. It is expected that
TPPSO requires some iterations at the early stages to explore
the search space. The amount of time to explore the search
space can vary depending on the problem; however,
performing 50 to 100 iterations can ensure efficient
exploration. Thus, this work sets alpha to 50 for exploration
purposes.

TABLE II
PARAMETER SETTINGS FOR THE PSO VARIANTS AND THE OTHER

ALGORITHMS USED IN THIS EXPERIMENTAL STUDY

Approach Parameter Setting

All Number of iterations 500
 Runs 30
 Swarm Size 40
SPSO 1 2,c c 2, 2

PSO-LVIW
1 2, ,c c w 2, 2 , 0.9- 0.4

HPSO-
TVAC

1 1 2 2, , ,ci f i fc c c 2.5,0.5,0.5,2.5

MTDE WinIter, H, initial, final,
Mu, μf, σ

20,5,0.001,2,
log(D),0.5,0.2

GWO a [2 0]
TPPSO �� , �	 , $, 9 1.49,1.49,0.9-

0.4,50

The population size and maximum number of iterations are

kept consistent across all algorithms to ensure a fair
comparison. For TPPSO, it is noteworthy that the swarm
consists of 38 particles plus the two generated particles,
resulting in a swarm size of 40.

D. Solution Accuracy

The solution accuracy and standard deviation (SD) on all
the tested functions for D=30, D=100, and D=200 are reported
in Table 3, Table 4, and Table 5, respectively. For each test
problem, the algorithm that achieves the best performance
(lowest value) is in the first rank, while the worst algorithm is
in the sixth rank.

TABLE III
MINIMIZATION, RESULTS OF THE TESTED FUNCTIONS, IN TABLE. 1 (D=30)

Function TPPSO SPSO PSO-LVIW HPSO-TVAC MTDE GWO

 Mean 0 1.5571e+03 2.3224e-04 5.3543e-05 0.0282 1.4191e-30
=� SD 0 232.6220 3.1161e-04 5.5817e-05 0.0292 3.4283e-30

 Rank 1 6 4 3 5 2
 Mean 5.4972e-04 3.1748e+03 38.0283 56.2835 73.7438 26.8248

=	 SD 9.8913e-04 691.3292 24.1431 38.5503 32.8107 0.8149
 Rank 1 6 3 4 5 2
 Mean 0 16.8016 0.0042 30.4333 0.0255 1.6316e-18

=2 SD 0 1.2632 0.0043 14.5358 0.0384 1.6214e-18
 Rank 1 5 3 6 4 2
 Mean 5.0000e+07 4.4499e+03 372.5001 0.4216 363.2092 3.7773e-07

=3 SD 1.3582e+08 722.5389 161.1148 0.2809 193.1975 6.8283e-07
 Rank 6 5 4 2 3 1
 Mean 0 1.4889e+03 2.5605e-04 0.0021 0.0465 0.7347

=> SD 0 163.2636 4.4336e-04 0.0017 0.0967 0.3695
 Rank 1 6 2 3 4 5
 Mean 0 202.1452 45.7019 26.0418 24.9509 1.8300

=< SD 0 15.9315 13.4910 9.5554 7.5813 2.9640
 Rank 1 6 5 4 3 2
 Mean 0 201.3163 46.3320 21.6541 23.6652 3.5404

=? SD 0 12.5967 13.2247 4.9287 6.6152 5.3267
 Rank 1 6 5 3 4 2
 Mean 0 14.5303 0.0184 0.0268 0.0649 0.0066

=@ SD 0 1.7152 0.0170 0.0288 0.0645 0.0120
 Rank 1 6 3 4 5 2

2099

Function TPPSO SPSO PSO-LVIW HPSO-TVAC MTDE GWO

 Mean 1.5393e-04 14.3332 0.0104 0.1308 0.8957 0.0403
=A SD 7.7397e-04 2.2265 0.0417 0.2274 0.8659 0.0260

 Rank 1 6 2 4 5 3
 Mean 8.8818e-16 8.9471 0.0402 2.3013 1.6381 5.9745e-14

=�B SD 0 0.3360 0.1690 0.5667 0.5721 9.1263e-15
 Rank 1 6 3 5 4 2
 Mean 0 18.4442 1.7916 4.0478 31.0632 5.9212e-15

=�� SD 0 1.5070 1.5749 1.5746 1.3599 5.3052e-15
 Rank 1 5 3 4 6 2
 Mean -179.9746 -145.6305 -158.2712 -179.9653 -179.7518 -162.0384

=�	 SD 0.0399 21.8798 13.7675 0.0393 0.1873 16.6939
 Rank 1 6 5 2 3 4

=�2 Mean -138.0809 -130.7126 -139.8459 -135.0970 -124.1309 -132.3962
 SD 0.8031 0.8917 0.4569 2.4616 5.0710 2.1531
 Rank 2 5 1 3 6 4

=�3 Mean 113.2833 233.0715 124.2203 288.2401 83.1584 167.2067
 SD 45.6016 18.3171 45.8939 42.3496 23.4971 70.3349
 Rank 2 5 3 6 1 4

=�> Mean -178.9469 -24.7025 -89.8141 -178.4281 -176.0862 -63.2488
 SD 0.2721 108.3838 75.7400 0.3813 2.4393 83.2179
 Rank 1 6 4 2 3 5

=�< Mean -119.0499 -118.9561 -118.9897 -119.0936 -118.9348 -118.9384
 SD 0.1004 0.0659 0.0697 0.1008 0.0601 0.0586
 Rank 2 4 3 1 6 5

Average rank 1.5 5.56 3.31 4.66 4.18 2.93
Final rank 1 6 3 5 4 2

TABLE IV
 MINIMIZATION RESULTS OF THE TESTED FUNCTIONS IN TABLE 1 (D=100)

Function TPPSO SPSO PSO-LVIW HPSO-TVAC MTDE GWO

=� Mean 0 1.4322e+04 132.4667 61.3521 2.6160e+03 7.9548e-14
 SD 0 365.9316 29.6266 18.6388 693.2875 5.6941e-14
 Rank 1 6 4 3 5 2

=	 Mean 0.6889 9.4012e+04 1.6874e+03 905.2238 9.0017e+03 97.4403
 SD 1.3342 1.4535e+04 3.0846e+03 217.0080 5.5723e+03 0.7104
 Rank 1 6 4 3 5 2

=2 Mean 0 109.8841 32.2799 338.6000 33.8988 7.2193e-09
 SD 0 6.6518 79.7094 75.7676 6.3060 2.7829e-09
 Rank 1 5 3 6 4 2

=3 Mean 6.7610e+09 8.2588e+04 4.7983e+04 1.1959e+05 2.1866e+04 199.9672
 SD 3.4801e+09 2.9740e+03 1.1870e+04 6.0372e+04 6.0384e+03 163.2223
 Rank 6 4 3 5 2 1

=> Mean 0 1.3991e+04 93.7115 21.0450 2.2731e+03 8.5891
 SD 0 907.8180 26.0172 17.2864 919.8658 1.0455
 Rank 1 6 4 3 5 2

=< Mean 0 951.5819 241.5384 127.6055 227.7619 7.9327
 SD 0 26.0928 31.0776 22.2214 37.7182 9.1829
 Rank 1 6 5 3 4 2

=? Mean 0 951.6198 219.9738 137.7836 230.3660 9.1897
 SD 0 14.0024 32.2415 27.7149 45.6752 6.6644
 Rank 1 6 4 3 5 2

=@ Mean 0 142.6861 2.0673 1.5991 24.0153 4.7917e-14
 SD 0 7.6544 0.3373 0.1910 6.9443 3.3317e-14
 Rank 1 6 4 3 5 2

=A Mean 0.0554 8.8676e+05 7.4106 8.4648 2.3063e+03 0.2864
 SD 0.0149 9.7301e+05 2.7682 2.1066 3.3065e+03 0.0709
 Rank 1 6 3 4 5 2

=�B Mean 8.8818e-16 12.7550 3.4417 10.1793 9.7578 2.4469e-08
 SD 0 0.0721 0.3792 0.7670 0.9278 9.5466e-09
 Rank 1 6 3 5 4 2

=�� Mean 0 92.7434 33.5246 51.2011 136.0206 5.1661e-06
 SD 0 1.4782 6.4406 4.7726 21.4867 9.2979e-06
 Rank 1 5 3 4 6 2

=�	 Mean -153.8430 145.7969 18.2130 -176.8263 76.0878 203.9014
 SD 12.7305 93.8520 84.5935 0.6018 65.0579 81.1562
 Rank 2 5 3 1 4 6

=�2 Mean -127.4656 -127.0749 -134.5771 -122.9057 -125.4693 -125.7666
 SD 1.3826 0.6928 1.7883 0.4704 0.7489 0.5496
 Rank 2 3 1 6 5 4

=�3 Mean 2.9487e+03 1.3830e+03 1.7753e+03 1.6525e+03 1.7082e+03 1.5104e+03

2100

TABLE V
MINIMIZATION RESULTS OF THE TESTED FUNCTIONS IN TABLE 1 (D=200)

` TPPSO SPSO PSO-LVIW HPSO-TVAC MTDE GWO

=� Mean 0 5.8899e+04 2.3614e+03 2.9993e+03 2.0182e+04 9.2093e-09
 SD 0 4.0496e+03 408.1431 496.8034 5.2114e+03 2.6866e-09
 Rank 1 6 3 4 5 2

=	 Mean 3.4305 6.6707e+05 8.1355e+03 1.0625e+04 7.0923e+04 197.9074
 SD 6.7403 1.6182e+05 1.4991e+03 1.9523e+03 1.9856e+04 0.4328
 Rank 1 6 3 4 5 2

=2 Mean 0 441.0067 163.3612 4.9937e+03 148.6501 9.6735e-06
 SD 0 36.7520 112.9599 854.6921 21.4207 1.9292e-06
 Rank 1 5 4 6 3 2

=3 Mean 6.6705e+10 3.7899e+05 2.0448e+05 4.2709e+07 9.7116e+04 1.2677e+04
 SD 1.8059e+10 4.4378e+04 4.8161e+04 1.2218e+07 4.1539e+04 5.8830e+03
 Rank 6 4 3 5 2 1

=> Mean 0 5.5767e+04 2.5169e+03 246.8372 1.7616e+04 27.4161
 SD 0 1.9652e+03 444.6781 110.1380 3.5330e+03 1.9402
 Rank 1 6 4 3 5 2

=< Mean 0 2.0929e+03 725.6229 371.5672 915.0265 18.2434
 SD 0 6.3344 55.2308 27.6465 69.3331 7.6131
 Rank 1 6 4 3 5 2

=? Mean 0 2.0481e+03 749.2382 371.1106 909.3811 16.8214
 SD 0 112.1901 77.9294 43.2959 82.6924 8.9949
 Rank 1 6 4 3 5 2

=@ Mean 0 578.1110 23.5791 27.8720 185.2158 5.0983e-09
 SD 0 16.2579 1.1681 5.1032 34.5019 2.9210e-09
 Rank 1 6 3 4 5 2

=A Mean 0.2357 3.0589e+07 1.4785e+03 43.1634 8.7800e+04 0.4620
 SD 0.0347 8.7002e+06 927.6033 16.9688 5.9280e+04 0.0536
 Rank 1 6 4 3 5 2

=�B Mean 8.8818e-16 15.0721 6.2231 12.7309 12.3002 6.8640e-06
 SD 0 0.2812 0.3242 0.5037 0.5318 1.2885e-06
 Rank 1 6 3 5 4 2

=�� Mean 0 213.5643 108.6252 139.4067 307.6020 0.0106
 SD 0 12.4614 8.2523 7.0823 24.6321 0.0023
 Rank 1 5 3 4 6 2

=�	 Mean -179.4576 2.5810e+03 1.9450e+03 -176.3804 6.6474e+03 5.1459e+03
 SD 0.8174 749.3975 889.1476 2.0301 399.3929 300.6229
 Rank 1 4 3 2 6 5

=�2 Mean -118.3003 -118.9938 -119.0615 -118.3657 -119.1880 -119.0543
 SD 0.0497 0.0685 0.0456 0.0573 0.0371 0.1161
 Rank 6 4 2 5 1 3

=�3 Mean 1.5294e+04 5.1201e+03 5.1038e+03 1.0151e+04 4.7748e+03 5.2578e+03
 SD 1.6277e+03 169.8610 87.2599 592.5911 79.9205 201.9053
 Rank 6 3 2 5 1 4

=�> Mean 8.8804e+04 5.0024e+04 5.1477e+04 4.8672e+04 4.6875e+04 4.3713e+04
 SD 1.1213e+04 2.4274e+03 2.5277e+03 7.9278e+03 3.1219e+03 3.7427e+03
 Rank 6 4 5 3 2 1

=�< Mean -118.2745 -118.4886 -118.5002 -118.2885 -118.5066 -118.5094
 SD 0.0436 0.0088 0.0111 0.0382 0.0221 0.0148
 Rank 6 4 3 5 2 1

Average rank 2.56 5.37 3.31 3.5 3.87 2.18
Final rank 2 6 3 4 5 1

1) Solution Accuracy when D=30: The performance of
TPPSO on all the unimodal functions was superior as
compared to all other algorithms used in the test. Based on the
results reported in Table 3, it is observable that TPPSO could
achieve the exact optimal solution for �=� , =2 , =>�. While the
other algorithms had difficulties locating the global optimum

for =	 , TPPSO managed to reach to a value that is very close
to the global optimum. Unimodal functions are known to have
a single minimum only, requiring more exploitation than
explorations. Based on this fact, TPPSO, GWO, and MTDE
proved they have strong exploitation abilities since they
performed well on the unimodal functions.

Function TPPSO SPSO PSO-LVIW HPSO-TVAC MTDE GWO

 SD 273.5421 269.7822 190.9855 149.0092 126.7819 113.9867
 Rank 6 1 5 3 4 2

=�> Mean 2.1413e+04 7.0081e+03 6.8055e+03 4.0869e+03 5.9378e+03 4.6191e+03
 SD 5.1119e+03 1.6157e+03 868.2218 1.3642e+03 593.9261 990.4402
 Rank 6 5 4 1 3 2

=�< Mean -118.2561 -118.5854 -118.6143 -118.3050 -118.5982 -118.5927
 SD 0.0594 0.0167 0.0276 0.0632 0.0195 0.0138
 Rank 6 4 1 5 2 3

Average rank 2.375 5 3.375 3.625 4.25 2.375
Final rank 1 5 2 3 4 1

2101

Multimodal functions require strong exploration abilities
since they have many local minimums. Besides the strong
exploitation abilities of TPPSO on unimodal functions,
TPPSO showed that its exploration abilities are strong as well.
TPPSO outperformed the other algorithms for all the tested
multimodal functions. It is noteworthy that TPPSO achieves
the exact optimal solution for �=<, =? , =@, =���.

To further validate the effectiveness of TPPSO, it was
tested on shifted and rotated functions. TPPSO successfully
reached the acceptance solution on the two shifted functions
=�	 and =�2 and its results on these two functions are
comparable to the algorithm.

Overall, TPPSO achieves the best results for 12 functions
�=� − =2 , => − =�	, =�>� out of the 16 tested functions.
Moreover, TPPSO had the ability to reach the exact optimal
solution for 7 functions �=� , =2 , =>, =< , =? , =@ , =���. As shown in
Table 3, TPPSO has the best overall rank, followed by GWO,
PSO-LVIW, MTDE, HPSO-TVAC, and SPSO.

Figures 2, 3, and 4 show the convergence curves of the
proposed TTPSO and the other algorithms for all tested
functions when D=30. These figures show that TPPSO can
converge toward the optimal solution without being stuck at
the local optimal, unlike other algorithms. Moreover, the
figures illustrate that PSO and MTDE algorithms are trapped
in local optima very early, which restricts them from making
any improvements.

(a)

(b)

(c)

(d)

(e)

Fig. 2 Convergence graphs on the unimodal functions when D=30 (a) =� (b)
=	 (c) =2 (d) =3 (e) =>

0 100 200 300 400 500

Iteration

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

F
it
n
e
s
s

10
6

TPPSO

SPSO

PSO-LVIW

HPSO-TVAC

MTDE

GWO

0 100 200 300 400 500

Iteration

0

1

2

3

4

5

6

F
it
n
e
s
s

10
9

TPPSO

SPSO

PSO-LVIW

HPSO-TVAC

MTDE

GWO

2102

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3 Convergence graphs on the multimodal functions when D=30 (a) =<
(b) =? (c) =@ (d) =A (e) =�B(f) =�� .

0 100 200 300 400 500

Iteration

50

100

150

200

250

300

350

400

F
it
n
e
s
s

TPPSO

SPSO

PSO-LVIW

HPSO-TVAC

MTDE

GWO

0 100 200 300 400 500

Iteration

0

100

200

300

400

500

600

700

F
it
n

e
s
s

TPPSO

SPSO

PSO-LVIW

HPSO-TVAC

MTDE

GWO

0 100 200 300 400 500

Iteration

-1

0

1

2

3

4

5

6

F
it
n
e
s
s

10
8

TPPSO

SPSO

PSO-LVIW

HPSO-TVAC

MTDE

GWO

0 100 200 300 400 500

Iteration

0

5

10

15

20

25

30

F
it
n
e
s
s

TPPSO

SPSO

PSO-LVIW

HPSO-TVAC

MTDE

GWO

0 100 200 300 400 500

Iteration

0

10

20

30

40

50

60

70

F
it
n
e
s
s

TPPSO

SPSO

PSO-LVIW

HPSO-TVAC

MTDE

GWO

2103

(a)

(b)

(c)

(d)

(e)

Fig. 4 Convergence graphs on the shifted and rotated functions when D=30
(a) =�	 (b) =�2,(c) =�3 (d) =�> (e) =�<

2) Solution Accuracy when D=100 and D=200: As the
number of dimensions increases and multiple local optima
exist, the searching algorithm becomes more susceptible to be
trapped in local optima. Therefore, testing the proposed PSO
algorithm for high-dimensional cases is essential. TPPSO is
tested on dimensions of 100 and 200, and the results are
recorded in Table 4 and Table 5, respectively. The results in
Table 4 and Table 5 validate that the TPPSO is not much
affected if the number of dimensions increases. The results for
all the tested functions f�, f2, f> − f@, f�B, f�� are the same
results when D=30. For f	, fA, f�	 − f�< the solution accuracy
of TPPSO is not much affected as compared to TPPSO with
D=30. The performance of other compared algorithms
decreases with increasing the number of dimensions.

E. Convergence Speed

TPPSO and the other algorithms are compared regarding
convergence speed, as illustrated in Table 6. The convergence
speed is determined by computing the mean number of
iterations that are required to reach the acceptance solution
shown in column 6 of Table 1. As seen in Table 6, TPPSO
achieves the smallest mean number of iterations for =� , =2, =>

0 100 200 300 400 500

Iteration

0

10

20

30

40

50

60

70

F
it
n
e
s
s

TPPSO

SPSO

PSO-LVIW

HPSO-TVAC

MTDE

GWO

0 100 200 300 400 500

Iteration

-150

-140

-130

-120

-110

-100

-90

F
it
n
e
s
s

TPPSO

SPSO

PSO-LVIW

HPSO-TVAC

MTDE

GWO

0 100 200 300 400 500

Iteration

0

200

400

600

800

1000

1200

F
it
n
e
s
s

TPPSO

SPSO

PSO-LVIW

HPSO-TVAC

MTDE

GWO

0 100 200 300 400 500

Iteration

-1000

0

1000

2000

3000

4000

5000

F
it
n
e
s
s

TPPSO

SPSO

PSO-LVIW

HPSO-TVAC

MTDE

GWO

0 100 200 300 400 500

Iteration

-119.1

-119

-118.9

-118.8

-118.7

-118.6

-118.5

F
it
n

e
s
s

TPPSO

SPSO

PSO-LVIW

HPSO-TVAC

MTDE

GWO

2104

=@ , =�B and =��. It is noteworthy that TPPSO required only a
very small mean number of iterations (less than 123 mean
number of iterations) to reach, the acceptable solution for all
the functions expect =3, =A, =�3 and =�< . This demonstrates that
the convergence speed of TPPSO is extremely fast. When
D=100 and D=200, TPPSO was not much affected except for
=A , =�	 , =�2. Although TPPSO was not able to converge to the

acceptance solution of =A, it managed to obtain a value that is
very close to it.

Table 6 shows the poor performance of SPSO, PSO-LVIW,
HPSO-TVAC, and MTDE regarding convergence speed.
GWO performed quite well for most of the tested functions.
Overall, TPPSO outperforms all the other Algorithms in terms
of convergence speed.

TABLE VI
CONVERGENCE SPEED OF THE TESTED FUNCTIONS IN TABLE 1 (D=30)

Function TPPSO SPSO PSO-LVIW HPSO-TVAC MTDE GWO

=� Mean iterations 59 - - - - 90
Rank 1 - - - - 2

=	 Mean iterations 54 - 274 368 385 36
 Rank 2 - 3 4 5 1

=2 Mean iterations 57 - - - - 115
 Rank 1 - - - - 2

=3 Mean iterations - - - - - 426
 Rank - - - - - 1

=> Mean iterations 63 - - - - -
 Rank 1 - - - - -

=< Mean iterations 53 - 185 79 313 48
 Rank 2 - 4 3 5 1

=? Mean iterations 53 - 186 71 307 49
 Rank 2 - 4 3 5 1

=@ Mean iterations 59 - - - - -
 Rank 1 - - - - -

=A Mean iterations - - - - - -
 Rank - - - - - -

=�B Mean iterations 62 - - - - 124
 Rank 1 - - - - 2

=�� Mean iterations 64 - - - - 149
 Rank 1 - - - - 2

=�	 Mean iterations 56 23 22 78 160 35
 Rank 4 2 1 5 6 3

=�2 Mean iterations 123 93 34 310 - 272
 Rank 3 2 1 5 - 4

=�3 Mean iterations - - - - 435 -
 Rank - - - - 1 -

=�> Mean iterations 83 53 33 141 190 217
 Rank 3 2 1 4 5 6

=�< Mean iterations - - - - - -
 Rank - - - - - -

IV. CONCLUSION
This paper presented a new PSO variant named TPPSO that

splits the search process into two stages. The first stage
focuses on exploration, whereas the second focuses more on
exploitation. The first phase performs the same operations as
the original PSO with decreasing inertia weight. In the second
phase, two random positions that are closely benchmarked
with the global best position are generated and compared
sequentially with the global best position in each iteration.
Any of the two generated random positions replace the global
best position in case it achieves better results. This concept
helps to maintain a proper balance between exploration and
exploitation.

To validate the effectiveness of the proposed algorithm, it
was tested on 16 unimodal, multimodal, shifted, and rotated
functions. The simulation results show that TPPSO is an
effective and efficient PSO variant. The performance of
TPPSO in terms of solution accuracy, convergence, speed,
and reliability is superior as compared to the other existing

PSO, variants and well-known meta-heuristic algorithms such
as GWO, and MTDE. In addition, TPPSO does not add any
complexity to the original PSO structure, as the only
modification in TPPSO is the addition of the two random
positions. In future work, TPPSO can be used to solve real-
world power electronics and telecommunication optimization
problems.

ACKNOWLEDGMENTS,

This research work was supported in part by the Research
Seed Fund of A’Sharqiyah University in the Sultanate of
Oman.

REFERENCES

[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
Proceedings of ICNN’95 - International Conference on Neural
Networks, doi: 10.1109/icnn.1995.488968.

[2] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” MHS’95. Proceedings of the Sixth International Symposium
on Micro Machine and Human Science, doi:
10.1109/mhs.1995.494215.

2105

[3] E. Shahamatnia, I. Dorotovič, J. M. Fonseca, and R. A. Ribeiro, “An
evolutionary computation based algorithm for calculating solar
differential rotation by automatic tracking of coronal bright points,” J.
Sp. Weather Sp. Clim., vol. 6, 2016, doi: 10.1051/swsc/2016010.

[4] C. H. Jang, F. Hu, F. He, J. Li, and D. Zhu, “Low-Redundancy Large
Linear Arrays Synthesis for Aperture Synthesis Radiometers Using
Particle Swarm Optimization,” IEEE Trans. Antennas Propag., vol.
64, no. 6, pp. 2179–2188, Jun. 2016, doi: 10.1109/TAP.2016.2543755.

[5] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing
hierarchical particle swarm optimizer with time-varying acceleration
coefficients,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 240–255,
Jun. 2004, doi: 10.1109/TEVC.2004.826071.

[6] K. Luu, M. Noble, A. Gesret, N. Belayouni, and P. F. Roux, “A parallel
competitive Particle Swarm Optimization for non-linear first arrival
traveltime tomography and uncertainty quantification,” Comput.
Geosci., vol. 113, pp. 81–93, Apr. 2018,
doi: 10.1016/j.cageo.2018.01.016.

[7] M. Abdulkadir, A. H. M. Yatim, and S. T. Yusuf, “An improved PSO-
based MPPT control strategy for photovoltaic systems,” Int. J.
Photoenergy, vol. 2014, 2014, doi: 10.1155/2014/818232.

[8] P. Melin, F. Olivas, O. Castillo, F. Valdez, J. Soria, and M. Valdez,
“Optimal design of fuzzy classification systems using PSO with
dynamic parameter adaptation through fuzzy logic,” Expert Syst.
Appl., vol. 40, no. 8, pp. 3196–3206, Jun. 2013,
doi: 10.1016/j.eswa.2012.12.033.

[9] L. Zhang, Y. Tang, C. Hua, and X. Guan, “A new particle swarm
optimization algorithm with adaptive inertia weight based on Bayesian
techniques,” Appl. Soft Comput. J., vol. 28, pp. 138–149, 2015,
doi: 10.1016/j.asoc.2014.11.018.

[10] Q. Liu, “Order-2 stability analysis of particle swarm optimization,”
Evol. Comput., vol. 23, no. 2, pp. 187–216, Jun. 2015,
doi: 10.1162/EVCO_a_00129.

[11] K. R. Harrison, A. P. Engelbrecht, and B. M. Ombuki-Berman,
“Optimal parameter regions and the time-dependence of control
parameter values for the particle swarm optimization algorithm,”
Swarm Evol. Comput., vol. 41, pp. 20–35, Aug. 2018,
doi: 10.1016/j.swevo.2018.01.006.

[12] M. B. Shafik, H. Chen, G. I. Rashed, R. A. El-Sehiemy, M. R.
Elkadeem, and S. Wang, “Adequate topology for efficient energy
resources utilization of active distribution networks equipped with soft
open points,” IEEE Access, vol. 7, pp. 99003–99016, 2019,
doi: 10.1109/ACCESS.2019.2930631.

[13] H. Liu, X. W. Zhang, and L. P. Tu, “A modified particle swarm
optimization using adaptive strategy,” Expert Syst. Appl., vol. 152,
Aug. 2020, doi: 10.1016/j.eswa.2020.113353.

[14] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” 1998
IEEE International Conference on Evolutionary Computation
Proceedings. IEEE World Congress on Computational Intelligence
(Cat. No.98TH8360), doi: 10.1109/icec.1998.699146.

[15] Institute of Electrical and Electronics Engineers and IEEE
Computational Intelligence Society, 2020 IEEE Congress on
Evolutionary Computation (CEC) : 2020 conference proceedings.
2020, 2020.

[16] P. J. Angeline, “Using selection to improve particle swarm
optimization,” 1998 IEEE International Conference on Evolutionary
Computation Proceedings. IEEE World Congress on Computational
Intelligence (Cat. No.98TH8360), doi: 10.1109/icec.1998.699327.

[17] Z. Beheshti and S. M. Siti, “CAPSO: Centripetal accelerated particle
swarm optimization,” Inf. Sci. (Ny)., vol. 258, pp. 54–79, Feb. 2014,
doi: 10.1016/j.ins.2013.08.015.

[18] J. Dash, B. Dam, and R. Swain, “Optimal design of linear phase multi-
band stop filters using improved cuckoo search particle swarm
optimization,” Appl. Soft Comput. J., vol. 52, pp. 435–445, Mar. 2017,
doi: 10.1016/j.asoc.2016.10.024.

[19] Wen-Jun Zhang and Xiao-Feng Xie, “DEPSO: hybrid particle swarm
with differential evolution operator,” SMC’03 Conference
Proceedings. 2003 IEEE International Conference on Systems, Man
and Cybernetics. Conference Theme - System Security and Assurance
(Cat. No.03CH37483), doi: 10.1109/icsmc.2003.1244483.

[20] N. Higashi and H. Iba, “Particle swarm optimization with Gaussian
mutation,” Proceedings of the 2003 IEEE Swarm Intelligence
Symposium. SIS’03 (Cat. No.03EX706), doi:
10.1109/sis.2003.1202250.

[21] P. S. Andrews, “An Investigation into Mutation Operators for Particle
Swarm Optimization,” 2006 IEEE International Conference on
Evolutionary Computation, doi: 10.1109/cec.2006.1688424.

[22] P. S. Shelokar, P. Siarry, V. K. Jayaraman, and B. D. Kulkarni,
“Particle swarm and ant colony algorithms hybridized for improved
continuous optimization,” Appl. Math. Comput., vol. 188, no. 1, pp.
129–142, May 2007, doi: 10.1016/j.amc.2006.09.098.

[23] Y. P. Chen, W. C. Peng, and M. C. Jian, “Particle swarm optimization
with recombination and dynamic linkage discovery,” IEEE Trans.
Syst. Man, Cybern. Part B Cybern., vol. 37, no. 6, pp. 1460–1470, Dec.
2007, doi: 10.1109/TSMCB.2007.904019.

[24] Y. T. Kao and E. Zahara, “A hybrid genetic algorithm and particle
swarm optimization for multimodal functions,” Appl. Soft Comput. J.,
vol. 8, no. 2, pp. 849–857, Mar. 2008, doi:
10.1016/j.asoc.2007.07.002.

[25] M. S. Kiran, M. Gündüz, and Ö. K. Baykan, “A novel hybrid algorithm
based on particle swarm and ant colony optimization for finding the
global minimum,” Appl. Math. Comput., vol. 219, no. 4, pp. 1515–
1521, Nov. 2012, doi: 10.1016/j.amc.2012.06.078.

[26] H. C. Tsai, Y. Y. Tyan, Y. W. Wu, and Y. H. Lin, “Gravitational
particle swarm,” Appl. Math. Comput., vol. 219, no. 17, pp. 9106–
9117, 2013, doi: 10.1016/j.amc.2013.03.098.

[27] T. Jamrus, C. F. Chien, M. Gen, and K. Sethanan, “Hybrid Particle
Swarm Optimization Combined With Genetic Operators for Flexible
Job-Shop Scheduling Under Uncertain Processing Time for
Semiconductor Manufacturing,” IEEE Trans. Semicond. Manuf., vol.
31, no. 1, pp. 32–41, Feb. 2017, doi: 10.1109/TSM.2017.2758380.

[28] M. Sharma and J. K. Chhabra, “Sustainable automatic data clustering
using hybrid PSO algorithm with mutation,” Sustain. Comput.
Informatics Syst., vol. 23, pp. 144–157, Sep. 2019,
doi: 10.1016/j.suscom.2019.07.009.

[29] Y. Heryadi, “A Hybrid Particle Swarm Optimization With Crossover
and Mutation of Genetic Algorithm for Solving the Wide Constraint
Problem,” 2019.

[30] Y. Ding, K. Zhou, and W. Bi, “Feature selection based on
hybridization of genetic algorithm and competitive swarm optimizer,”
Soft Comput., vol. 24, no. 15, pp. 11663–11672, Aug. 2020,
doi: 10.1007/s00500-019-04628-6.

[31] N. Kumar Yadav, “Hybridization of Particle Swarm Optimization with
Differential Evolution for Solving Combined Economic Emission
Dispatch Model for Smart Grid,” 2019.

[32] G. F. Fan, L. L. Peng, X. Zhao, and W. C. Hong, “Applications of
hybrid EMD with PSO and GA for an SVR-based load forecasting
model,” Energies, vol. 10, no. 11, Nov. 2017,
doi: 10.3390/en10111713.

[33] S. A. Mogaji, B. K. Alese, A. O. Adetunmbi, M. S. Alaba, A. B.
Kayode, and A. Adebayo, “Validation of Hybridized Particle Swarm
Optimization (PSO) Algorithm with the Pheromone Mechanism of
Ant Colony Optimization (ACO) using Standard Benchmark
Function. Securing Networks and Cyber-physical Systems View
project Validation of Hybridized Partic,” 2018. [Online]. Available:
www.caeaccess.org

[34] R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle
swarm: Simpler, maybe better,” IEEE Trans. Evol. Comput., vol. 8,
no. 3, pp. 204–210, Jun. 2004, doi: 10.1109/TEVC.2004.826074.

[35] X. Li, “Niching without niching parameters: Particle swarm
optimization using a ring topology,” IEEE Trans. Evol. Comput., vol.
14, no. 1, pp. 150–169, Feb. 2009, doi: 10.1109/TEVC.2009.2026270.

[36] J. Kennedy and K.-J. Gov, “Population Structure and Particle Swarm
Performance,” 2002.

[37] J. Kennedy and K.-J. Gov, “Small Worlds and Mega-Minds: Effects
of Neighborhood Topology on Particle Swarm Performance,” 1999.

[38] A. Lin, W. Sun, H. Yu, G. Wu, and H. Tang, “Global genetic learning
particle swarm optimization with diversity enhancement by ring
topology,” Swarm Evol. Comput., vol. 44, pp. 571–583, Feb. 2019,
doi: 10.1016/j.swevo.2018.07.002.

[39] N. Lynn, M. Z. Ali, and P. N. Suganthan, “Population topologies for
particle swarm optimization and differential evolution,” Swarm Evol.
Comput., vol. 39, pp. 24–35, Apr. 2018, doi:
10.1016/j.swevo.2017.11.002.

[40] X. Hao, N. Yao, J. Wang, and L. Wang, “Distributed resource
allocation optimisation algorithm based on particle swarm
optimisation in wireless sensor network,” IET Commun., vol. 14, no.
17, pp. 2990–2999, Oct. 2020, doi: 10.1049/iet-com.2020.0368.

[41] A. A. El-Saleh, T. M. Shami, R. Nordin, M. Y. Alias, and I. Shayea,
“Multi-objective optimization of joint power and admission control in
cognitive radio networks using enhanced swarm intelligence,”
Electron., vol. 10, no. 2, pp. 1–27, Jan. 2021, doi:
10.3390/electronics10020189.

2106

[42] O. Evsutin, A. Shelupanov, R. Meshcheryakov, D. Bondarenko, and
A. Rashchupkina, “The algorithm of continuous optimization based on
the modified cellular automaton,” Symmetry (Basel)., vol. 8, no. 9,
2016, doi: 10.3390/sym8090084.

[43] O. Almomani, “A Hybrid Model Using Bio-Inspired Metaheuristic
Algorithms for Network Intrusion Detection System,” Comput. Mater.
Contin., vol. 68, no. 1, pp. 409–429, Mar. 2021,
doi: 10.32604/cmc.2021.016113.

[44] M. H. Alkinani, E. A. Zanaty, and S. M. Ibrahim, “Medical image
compression based on wavelets with particle swarm optimization,”
Comput. Mater. Contin., vol. 67, no. 2, pp. 1577–1593, 2021,
doi: 10.32604/cmc.2021.014803.

[45] J. Wang, Y. Gao, C. Zhou, R. Simon Sherratt, and L. Wang, “Optimal
coverage multi-path scheduling scheme with multiple mobile sinks for
WSNs,” Comput. Mater. Contin., vol. 62, no. 2, pp. 695–711, 2020,
doi: 10.32604/cmc.2020.08674.

[46] E. N. Al-Khanak et al., “A heuristics-based cost model for scientific
workflow scheduling in cloud,” Comput. Mater. Contin., vol. 67, no.
3, pp. 3265–3282, Mar. 2021, doi: 10.32604/cmc.2021.015409.

[47] M. El Mamoun, Z. Mahmoud, and S. Kaddour, “SVM model selection
using PSO for learning handwritten Arabic characters,” Comput.
Mater. Contin., vol. 61, no. 3, pp. 995–1008, 2019,
doi: 10.32604/cmc.2019.08081.

[48] S. K. Gopalakrishnan, S. Kinattingal, S. P. Simon, and K. A. Kumar,
“Enhanced energy harvesting from shaded PV systems using an
improved particle swarm optimisation,” IET Renew. Power Gener.,
vol. 14, no. 9, pp. 1471–1480, Jul. 2020, doi: 10.1049/iet-
rpg.2019.0936.

[49] H. Xiang, M. Peng, Y. Sun, and S. Yan, “Mode Selection and Resource
Allocation in Sliced Fog Radio Access Networks: A Reinforcement
Learning Approach,” IEEE Trans. Veh. Technol., vol. 69, no. 4, pp.
4271–4284, Apr. 2020, doi: 10.1109/TVT.2020.2972999.

[50] D. T. C. Lai, M. Miyakawa, and Y. Sato, “Semi-supervised data
clustering using particle swarm optimisation,” Soft Comput., vol. 24,
no. 5, pp. 3499–3510, Mar. 2020, doi: 10.1007/s00500-019-04114-z.

[51] T. R. Farshi, J. H. Drake, and E. Özcan, “A multimodal particle swarm
optimization-based approach for image segmentation,” Expert Syst.
Appl., vol. 149, Jul. 2020, doi: 10.1016/j.eswa.2020.113233.

[52] T. Gao, B. Cao, and M. Zhang, “Multiobjective Complex Network
Clustering Based on Dynamical Decomposition Particle Swarm
Optimization,” IEEE Access, vol. 8, pp. 32341–32352, 2020,
doi: 10.1109/ACCESS.2020.2972123.

[53] B. Kizielewicz and W. Sałabun, “A new approach to identifying a
multi-criteria decision model based on stochastic optimization
techniques,” Symmetry (Basel)., vol. 12, no. 9, Sep. 2020,
doi: 10.3390/SYM12091551.

[54] C. Qin and X. Gu, “Article improved PSO algorithm based on
exponential center symmetric inertiaweight function and its
application in infrared image enhancement,” Symmetry (Basel)., vol.
12, no. 2, Feb. 2020, doi: 10.3390/sym12020248.

[55] Z. Ma, X. Yuan, S. Han, D. Sun, and Y. Ma, “Improved chaotic
particle swarm optimization algorithm with more symmetric
distribution for numerical function optimization,” Symmetry (Basel).,
vol. 11, no. 7, Jul. 2019, doi: 10.3390/sym11070876.

[56] B. Y. Qu, P. N. Suganthan, and S. Das, “A distance-based locally
informed particle swarm model for multimodal optimization,” IEEE
Trans. Evol. Comput., vol. 17, no. 3, pp. 387–402, 2013,
doi: 10.1109/TEVC.2012.2203138.

[57] K. Tang et al., “Benchmark Functions for the CEC’2008 Special
Session and Competition on Large Scale Global Optimization,” 2007.
[Online]. Available: http://nical.ustc.edu.cn/cec08ss.php.

[58] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar,
“Comprehensive learning particle swarm optimizer for global
optimization of multimodal functions,” IEEE Trans. Evol. Comput.,
vol. 10, no. 3, pp. 281–295, Jun. 2006,
doi: 10.1109/TEVC.2005.857610.

[59] M. H. Nadimi-Shahraki, S. Taghian, S. Mirjalili, and H. Faris,
“MTDE: An effective multi-trial vector-based differential evolution
algorithm and its applications for engineering design problems,” Appl.
Soft Comput. J., vol. 97, Dec. 2020, doi: 10.1016/j.asoc.2020.106761.

[60] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,”
Adv. Eng. Softw., vol. 69, pp. 46–61, 2014,
doi: 10.1016/j.advengsoft.2013.12.007.

2107

