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Evaluating the Fitting Performance of
AGARCH(1,1), NAGARCH(1,1), and

VGARCH(1,1) Models
Didit B. Nugroho, Veny M. Ningtyas and Hanna A. Parhusip

Abstract—This study compares the performance of
the GARCH(1,1), AGARCH(1,1), NAGARCH(1,1), and
VGARCH(1,1) models fitted to real data. The observed real
data are the USD exchange rate against IDR in the daily
period from January 2010 to December 2017. To identify the
superiority and evaluate the performance of those models in
capturing the heavy-tailed and skewed character in exchange
rate distribution, the return error is assumed to be the Normal,
Skew Normal (SN), Skew Curved Normal (SCN), and Student-t
distributions. The model’s parameters are estimated using the
GRG Non-Linear method in Excel Solver and the ARWM
method in the MCMC scheme implemented in the Scilab
program. Estimation results using Excel’s Solver have similar
values to the estimates obtained using MCMC, concluding that
Excel’s Solver has a good ability in estimating the model’s
parameters. Based on AIC values, this study concludes that the
NAGARCH(1,1) model under Student-t distribution performs
the best.

Index Terms—AGARCH(1,1), NAGARCH(1,1),
VGARCH(1,1).

I. INTRODUCTION

In the financial market, volatility is one phenomenon that
has the potential to lead the greater risks and uncertainties
to the value of an investment, which causes the interest of
the investors in the market to become unstable. According to
[1], volatility of financial markets describes the fluctuations in
the value of a market asset over a certain period of time. In
statistics, volatility is defined to be a standard deviation of the
returns (changes in the logarithmic price)[2], [3]. It measures
the difference in the value of the asset’s return movement
for a given financial time series. Therefore, the existence of
volatility impacts the reality of global financial markets in
relation to the risk management.

The existence of volatility for financial time series has raised
the problem heteroscedasticity, which means that the volatility
changes over different time periods. One popular class that can
be used to model the time-varying volatility is the GARCH
(Generalized Autoregressive Conditional Heteroscedasticity)
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proposed by [4]. GARCH model has symmetrical volatility re-
sponse characteristics to returns, meaning that the past positive
returns (good news) and negative returns (bad news) have the
same effect on the current volatility. The relationship between
return and volatility is not always symmetrical but also can be
asymmetric, meaning that positive and negative returns have
different effects on volatility. Therefore, the asymmetric effect
is essential in modeling and forecasting volatility.

Some articles have proposed several extensions and mod-
ifications of GARCH model to accommodate an asymmetric
effect in volatility. This study focuses only on three asym-
metric GARCH models proposed by [5], namely AGARCH
(Asymmetric GARCH), NAGARCH (Nonlinear Asymmetric
GARCH), and VGARCH (Vector GARCH) models. They
applied these models to the TOPIX (Tokyo Price Index) data
by assuming a Normal distribution for return errors. They
showed that the proposed models fit data better than the
GARCH(1,1) model. The first contribution of this study is
to extend the models of [5] by assuming that the return errors
follow four different sets of distributions: Normal, Skew-
Normal (SN) of [6], Skew-Curved Normal (SCN) of [7], and
Student-t. To the best of the authors’ knowledge, there is no
study investigating the performance of such distributions on
the models of [5].

In evaluating the performance of models, this study fits
the models on the buying rate of USD (US Dollars) to IDR
(Indonesian Rupiah) in the daily period from January 2010
to December 2017. When we fit a model, it means that we
estimate the model. Therefore, this study’s second contribu-
tion is using Excel’s Solver’s GRG (Generalized Reduced
Gradient) Non-Linear and Adaptive Random Walk Metropolis
(ARWM) methods to estimate the studied model. Here, we
employ the ARWM method in the Markov Chain Monte Carlo
(MCMC) scheme and implement this in Scilab by writing our
version. Both methods are compared to evaluate their ability
to estimate the considered GARCH(1,1) models. For other
GARCH-type models, [8]–[9] showed that Excel’s Solver’s
GRG Non-Linear and ARWM methods have good ability for
parameter estimation.

II. STATISTICAL MODELING

A. GARCH(1,1) Models

Returns are often expressed as a normal distribution and
explained in terms of mean and standard deviation [10]. Let
Rt be an asset return at time t and follows a normal distribution



INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 9, NO. 2, NOVEMBER 2023 45

with the mean 0 and variance σ2
t . The equation for the return

can be expressed as follows:

Rt = zt , where zt ∼ N(0,σ2
t ). (1)

Study in [4] modeled the conditional variance in Eq. (13)
as a GARCH(p,q) process in which p and q denote the lag
length on returns and variances, respectively. The most popular
GARCH-type model and often used in many empirical studies
in financial time series is perhaps the GARCH(1,1) model. In
this case, the current conditional variance is calculated based
on the past weighted squared return and the past weighted
variance. Mathematically, the GARCH(1,1) process is defined
as

σ
2
t = ω +αR2

t−1 +βσ
2
t−1, (2)

in which the weighting factors are positive, requiring ω > 0
and 0 ≤ α,β < 1 to ensure the positivity of variance and 0 ≤
α +β < 1 for stationary condition.

To capture the asymmetric effect, [5] incorporated new
information to the measure of volatility via the News Impact
Curve which gives the relation between σt and Rt−1. If
the news impact curve of GARCH model is symmetric and
centered at Rt−1 = 0, the asymmetric GARCH model of [5],
AGARCH, is asymmetric and centered at Rt−1 = −γ . In
particular, the variance process for the AGARCH(1,1) news
impact curve is

σ
2
t = ω +α (Rt−1 + γ)2 +βσ

2
t−1zt ∼ N

(
0,σ2

t
)

(3)

in which γ ∈ R represents an asymmetric parameter, and
conditions for the other parameters are as in the GARCH(1,1)
model. If γ ̸= 0, the effects of positive/negative returns are
asymmetric; if γ = 0, the process reduces to the GARCH(1,1)
process.

Furthermore, [5] modified the AGARCH(1,1) model into
the NAGARCH(1,1) and VGARCH(1,1) models. The variance
process for the NAGARCH(1,1) model assumes that

σ
2
t = ω +α (Rt−1 + γσt−1)

2 +βσ
2
t−1, (4)

whereas the VGARCH(1,1) process is given by

σ
2
t = ω +α

(
Rt−1

σt−1
+ γ

)2

+βσ
2
t−1 (5)

B. Distributions for Return Error

1) Skew-Normal Distribution: Azzalini in [6] introduced
the SN distribution to extend the Normal distribution by
incorporating a parameters λ as parameter skewness. For a
random variable Z, the general form of SN probability density
function with skewness λ ∈ R is given by

f (z) = 2φ(z)Φ(z), (6)

where φ(·) denotes the normal Probability Density Function
(PDF) and Φ(·) denotes the normal Cumulative Distribution
Function (CDF). Therefore, the probability density function of
the SN distribution for a random variable Z with zero-mean
and variance σ2 can be expressed as follows:

f (z) =
1√

2πσ2
exp
{
− x2

2σ2

}(
1+Erf

{
λx√
2σ2

})
. (7)

When λ < 0, the distribution is skewed to the left; when λ > 0,
the distribution is skewed to the right. So λ = 0 will reduce
the SN distribution to a Normal distribution.

2) Skew-Curved Normal Distribution: Arellano-Valle et al.
in [7] introduced the SCN distribution to express an asymmet-
rical class of Normal distribution which is different from the
SN distribution. The SCN probability density function for a
random variable Z with skewness λ is given by

f (z) = 2φ(z)Φ

(
λ z√

1+(λ z)2

)
. (8)

Therefore, the SCN probability density function with zero-
mean, variance σ2, and skewness λ has an expression as
follows:

f (z) =
1√

2πσ2
exp
{
− x2

2σ2

}
×(

1+Erf

{
λx√

2σ2 (1+(λ z)2)

})
. (9)

When λ < 0, the distribution is left-skewed; when λ > 0, the
distribution is right-skewed. So, λ = 0 will reduce the SCN
distribution to a Normal distribution.

3) Student-t Distribution: Student-t distribution was intro-
duced by William Sealy Gosset under the pseudonym ”Stu-
dent” (see [11]). The Student-t density curve is symmetrical
bell-shaped like the Normal distribution but has thicker tails
(often called heavy/fat tails) than the Normal distribution.
Following [12], a random variable Z with zero-mean, variance
σ2, and degrees of freedom ν > 2, the form of the Student-t
probability density function is given by

fν(x) =
Γ
(

ν+1
2

)√
πσ2(ν −2)Γ

(
ν

2

) (1+
x2

σ2(ν −2)

)− 1+ν
2

. (10)

The tail heaviness of the Student-t distribution is determined
by the parameter degrees of freedom ν . Smaller degrees of
freedom give heavier tails on both sides and increasing the de-
grees of freedom makes the Student-t distribution approaches
to a Normal distribution for ν ≥ 30 [13].

III. ESTIMATION AND SELECTION

A. Parameter Estimation

One standard method to estimate the parameters of
GARCH-type models is the Maximum Likelihood Estimation
(MLE)-based method. These methods find the parameter val-
ues which maximize the likelihood function. With the same
purpose as the MLE-based method, this study first utilizes
Excel’s Solver’s GRG Non-Linear method to estimate the
considered models. The GRG Non-Linear method is based
on work published by [14], [15].

Excel’s Solver is one of the add-ins available for Microsoft
Excel that can be used to find an optimal value (maximum
or minimum) for non-linear optimization problems. Com-
pared with other tools which require programming knowledge,
Excel’s Solver tool is preferred by financial practitioners
since numerical optimization in many situations can be done
by Solver. Following steps of [16], in particular, this study
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chooses the GRG Non-Linear method as an estimation method.
According to [17], the existing values in the worksheet cells
for each decision variable are taken as an initial solution such
that any small change will improve the objective value. In
this way, the objective value will increase if the objective is
maximization, or decrease if the objective is minimized until
it achieves optimal solution.

Second, we employ the ARWM method introduced by [18]
to compare the results of Excel’s Solver. Studies in [8]–
[9] successfully applied the method in the Bayesian MCMC
scheme. The ARWM method is developed to improve the
efficiency of the random walk Metropolis algorithm, a type
of simplest sampler commonly used in practice.

In the Bayesian framework, one makes statements about
the probability of a parameter. Using Bayesian terminology,
the estimated probability of a parameter after observing the
data is called a “posterior probability”, and it is often stated
as:

Posterior ∝ Likelihood×Prior, (11)

where the symbol “∝” means “proportional to”. For a pa-
rameter θ , the posterior distribution is denoted by f (θ |data),
the likelihood function is denoted f (data|θ), and the prior
distribution is denoted by f (θ). The ARWM method updates
a parameter value of θ in each MCMC iteration. Given a set of
values θi and step size si at the i-th iteration, the next iteration
of MCMC is completed as follows.
(i) Sample the proposal θ ∗ = θi + si ·qi, where qi ∼ N(0,1).

(ii) Calculate the Metropolis ratio: r(θi,θ
∗) =

f (θ ∗|·)
f (θi|·)

, and

then defines δ = min{1,r(θi,θ
∗)}.

(iii) If δ > u for u ∼ Uniform(u;0,1), then the proposal
is accepted and θi+1 = θ ∗; otherwise, the proposal is
rejected and θi+1 = θi.

(iv) Calculate: s∗ = max

smin,si +

m(θ∗)
(i+1) −0.44

(i+1)0.6

, where

m(θ ∗) is the frequency of proposal acceptance θ ∗ with
the expected acceptance probability 0.44. If s∗ > smax,
then si+1 = smax; if s∗ < smax, then si+1 = si.

B. Model Selection

To perform statistical model selection and comparisons,
several standard statistical tests and information criteria can be
applied. Generally, information criteria such as AIC (Akaike
Information Criterion) can be used to investigate the model
selection among competing models (including for non-nested
models—i.e., situations in which one model is not a particular
case of the other) and determine the best fit model particularly
[19]. The selection of the best model for multiple models for
a given dataset is determined by an AIC score [20]:

AIC = 2K −2log(L̂ )), (12)

where K is the number of estimated parameters and L̂ is the
maximum value of the likelihood function. A lower AIC score
is better—in other words, the model with the lowest AIC score
is the best.

IV. EMPIRICAL APPLICATION
A. Data Description

This study uses the daily returns of the USD currency
exchange rate to IDR from January 2010 to December 2017
(consisting of 1891 observations). The data are selected to
provide evidence that the AGARCH(1,1), NGARCH(1,1),
and VGARCH(1,1) models are more suitable than the
GARCH(1,1) model. The continuous return for the time period
t −1 until t is calculated in percentage as follows:

Rt = 100× (log(Pt)− log(Pt−1)) (13)

where Pt denotes the asset price at the time t.
Figure 1 displays the plot of the daily returns series of

the USD/IDR exchange rate. The figure shows that the return
time series data are stationary, meaning that their fluctuation
is around the average. The Augmented Dickey–Fuller test (see
[21]) produces a statistic of −44.04 (smaller than the critical
value of −1.94) with a p-value of 0.001 (smaller than 5%)
which confirms that the data do not contain the unit roots
anymore, which is stationary. Therefore, the USD/IDR data
satisfied the model’s underlying assumptions.

2010/1/5 2012/1/2 2014/1/2 2016/1/4 2017/12/29
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Fig. 1. Daily return of USD/IDR from January 2010 to December 2017.

To examine whether the USD/IDR exchange rate exhibits
conditional heteroscedasticity or the ARCH effect in the return
series, we use Engle’s Lagrange multiplier test. The ARCH
test confirmed that the returns have heteroscedasticity, which
is indicated by the greater statistical value than the critical
value of 3.84 with a p-value of 0. Therefore, the volatility
analysis needs to be done using the ARCH/GARCH model.

Table I gives an overview of the statistical description
for the daily return of the USD/IDR exchange rates. At the
5% significance level, the Jarque–Bera (JB) normality test
has rejected the Normal distribution for the observed data.
The rejection is indicated by the JB statistic (see [22]) is
greater than the critical value of 5.99—based on the chi-square
distribution table with 2 degrees of freedom. The departure
from the non-normality of the data can also be seen from
their kurtosis values greater than 3—the existence of heavy
tails—and their skewness values not too close to zero—the
distribution is not symmetrical. Therefore, the assumption
of non-normal distributions is appropriate in our case. The
error process is particularly allowed to follow four distribution
function types: Normal, Skew-Normal, Skew-Normal Curved,
and Student-t distributions.

B. Development of Log-likelihood
Suppose a vector of return series is expressed in a se-

quence R = {R1,R2, . . . ,RT}. For mathematical convenience,
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TABLE I
SKEWNESS, KURTOSIS, AND JB STATS FOR RETURNS OF USD/IDR.

Min. Mean Max. SD Skewness Kurtosis JB Stat.
−2.86 0.0197 2.71 0.4378 −0.3504 6.19 839.47

the natural logarithm of the likelihood is usually used in
computation instead of the likelihood. Based on Eqs. 7–10,
we can derive the log-likelihood function of the GARCH(1,1),
AGARCH(1,1), NGARCH(1,1) and VGARCH(1,1) models.
The models with the SN, SCN, and Student-t distributions
for return error with zero-mean and variance σ2

t have a log-
likelihood function at time-t given as follows, respectively:

log(L (θ |Rt)) =−1
2

log(2πσ
2
t )−

R2
t

2σ2
t

+ log

(
1+Erf

{
λRt√
2σ2

t

})
, (14)

log(L (θ |Rt)) =−1
2

log(2πσ
2
t )−

R2
t

2σ2
t

+ log

(
1+Erf

{
λRt√

2σ2
t (1+(λRt)2)

})
, (15)

log(L (θ |Rt)) = logΓ

(
ν +1

2

)
− logΓ

(
ν

2

)
− 1

2
log
(
π(ν −2)σ2

t
)

− ν +1
2

log
(

1+
R2

t

(ν −2)σ2
t

)
, (16)

where θ is the vector of estimated model parameters and the
process of σ2

t follows a considered GARCH-type model.

C. Estimation Details

The Excel’s Solver’s GRG Non-Linear method is applied by
following the similar steps of [16]. Firstly, the initial values
of all unknown parameters are set as follows:

ω = 0.005,α = 0.2,β = 0.7,γ = 0.1,λ = 0,ν = 5. (17)

In the Excel spreadsheet, for each time corresponding to
the return, the variance value of σ2

t and log-likelihood of
log(L (θ |Rt)) are calculated based on Eqs. (14)–(16) accord-
ing to the considered model. Notice that Excel’s Solver does
not have the strict inequalities (“>” and “<”) that implies the
estimation results may not satisfy the model constraints. For
example, a case of α +β = 1 appears in [9], in fact it should
be α +β < 1. All options for GRG Non-Linear method are
set to their default settings.

This study compares the results of the Excel’s Solver’s GRG
Non-Linear method with the ARWM method. We implement
the ARWM method in MCMC algorithm by writing our code
in Scilab program. The MCMC simulation is conducted by
generating a Markov chain with 6000 iterations for each
parameter. The first 1000 samples are removed to eliminate the

non-stationarity parts of the Markov chain caused by taking
any initial parameter values. The remaining 5000 samples
are recorded and used to calculate the posterior means and
the 95% HPD (Highest Posterior Density) intervals. See [23]
for how to calculate this interval. The prior distribution on
parameters (ω,α,β ) is left-truncated Normal distribution of
N(0,1000) as in [24], on parameter ν is exp(0.01) distribution
as in [25], and on parameter (γ,λ ) is Normal distribution of
N(0,1000).

D. Estimation Results

We first assume that if the bias—the difference (in relative
for our case) of the estimated values from two methods—
is very close to zero, two estimating methods are indicated
to give similar results [26]. The estimation results using
Excel’s Solver and MCMC when the models are fitted to
USD/IDR exchange rate time series are presented in Table
II. The result shows that Excel’s Solver produces α +β = 1
(Integrated GARCH model) in the Student-t case, except
the VGARCH(1,1) model. However, it does not appear to
significantly affect the estimation of the other parameters
because the values are similar to those obtained by using
MCMC method. Notice that the violation occurrs when α +β

is very close to 1. Overall, both estimation methods give very
similar results. Therefore, Excel’s Solver has the potential to
be used by financial practitioners with no good knowledge in
programming.

TABLE II
THE ESTIMATION RESULTS USING EXCEL’ SOLVER AND THE POSTERIOR

MEANS USING MCMC FOR THE USD/IDR DATA.

Model Dist. ω γ ν λ α +β

Using Excel’ Solver

(2)

N 0.0063 0.9929
SN 0.0063 - - 0.0760 0.9933
SCN 0.0063 - - 0.0770 0.9933
t 0.0030 - 4.13 - 1.0000

(3)

N 0.0018 0.1208 - - 0.9888
SN 0.0018 0.1188 - 0.0695 0.9890
SCN 0.0018 0.1188 - 0.0704 0.9890
t 0.0027 0.0296 4.13 - 1.0000

(4)

N 0.0024 0.2435 - - 0,9782
SN 0.0024 0.2397 - 0.0687 0.9787
SCN 0.0024 0.2397 - 0.0695 0.9787
t 0.0026 0.0416 3.66 - 1.0000

(5)

N 0.0000 0.1348 - - 0.8708
SN 0.0000 0.1312 - 0.0669 0.8701
SCN 0.0000 0.1312 - 0.0677 0.8701
t 0.0000 −0.0247 3.41 - 0.8362

Using MCMC

(2)

N 0.0068 - - - 0.9871
SN 0.0074 - - 0.0767 0.9876
SCN 0.0068 - - 0.0771 0.9879
t 0.0037 - 4.23 - 0.9948

(3)

N 0.0018 0.1232 - - 0.9861
SN 0.0023 0.1148 - 0.0714 0.9876
SCN 0.0019 0.1205 - 0.0725 0.9872
t 0.0027 0.0320 4.21 - 0.9944

(4)

N 0.0028 0.2308 - - 0.9782
SN 0.0025 0.2437 - 0.0655 0.9781
SCN 0.0026 0.2401 - 0.0689 0.9785
t 0.0027 0.0819 4.20 - 0.9941

(5)

N 0.0005 0.1270 - - 0.8604
SN 0.0006 0.1196 - 0.0679 0.8529
SCN 0.0006 0.1216 - 0.0695 0.8559
t 0.0006 −0.0205 3.42 - 0.8313

A disadvantage of using Excel’s Solver’s GRG Non-Linear
method is the unavailability of statistical significance cri-
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teria for estimate value since the method works based on
the gradient/slope of the objective function. Therefore, the
statistical significance of the key parameters such as asym-
metry and skewness parameters will be based on the 95%
HPD interval obtained by using MCMC method. Table III
reports HPD intervals at the significance level of 5% for the
asymmetry parameter γ . The result shows that the 95% HPD
interval of γ excludes 0—means that the estimated parame-
ter is significant—except in the case of AGARCH(1,1) and
VGARCH(1,1) models under Student-t specification. These
findings indicate that the observed data support incorporating
the asymmetry effect of [5].

It mainly showed that γ > 0 for all cases, except for the
VGARCH(1,1) model with Student-t distribution. Based on
the asymmetric variance process in Eq. (3)–(5), the positive
value of γ implies that the past positive returns will result in
a more considerable increase in current variance than negative
returns of the same absolute magnitude.

TABLE III
HPD INTERVALS AT THE 5% SIGNIFICANCE LEVEL FOR γ .

Dist. Model
(3) (4) (5)

N (0.0853,0.2042) (0.1728,0.3813) (0.0556,0.2888)
SN (0.0770,0.1912) (0.1761,0.3781) (0.0502,0.2956)
SCN (0.0565,0.1545) (0.0907,0.3195) (0.0470,0.3048)
t (−0.0623,0.0725) (0.0038,0.2427) (−0.0985,0.1954)

For the skewness parameter λ , the 95% HPD intervals
are reported in Table IV. The intervals indicate a statistical
significance at the 5% level for parameter λ in both SN
and SCN distributions in each asymmetric model since the
intervals exclude 0. This result shows evidence that both
skewness specifications must be considered in the distribution
of the returns.

TABLE IV
HPD INTERVALS AT THE 5% SIGNIFICANCE LEVEL FOR λ .

Dist. Model
(3) (4) (5)

SN (0.0145,0.1252) (0.0140,0.1284) (0.0101,0.1221)
SCN (0.0113,0.1231) (0.0158,0.1295) (0.0133,0.1317)

E. Model Evaluation

An essential task of modeling is model evaluation. This
section evaluates the competing GARCH models regarding
their in-sample performance and investigated using AIC. Table
V presents the AIC values and ranks each distribution and
model according to their AIC values. We first note that Excel’s
Solver and MCMC give similar results. The results indicate
that NAGARCH(1,1) models are the best fit model, followed
by AGARCH(1,1), GARCH(1,1), and VGARCH(1,1) models.
The only exception is for the Student-t case in which the
GARCH(1,1) model outperforms the AGARCH(1,1). This
result confirms the previous finding that the asymmetry param-
eter in both AGARCH(1,1) dan VGARCH(1,1) models is not
statistically significant. Moreover, AIC selects Student-t as the
best fit distribution for USD/IDR data, followed by SCN and

SN distributions. This result confirms the previous finding that
the skewness parameter in both SN and SCN distributions is
statistically significant. Comparing all results, we can conclude
that the NAGARCH(1,1) model under Student-t distribution
reflects the most appropriate characteristics of the USD/IDR
exchange rate time series.

TABLE V
AIC VALUES OF COMPETING MODELS.

Using Excel’s Solver Using MCMC

Mod. Dist. AIC Rank AIC Rank
Dist. Overall Dist. Overall

(2)

N 1567.71 4 13 1567.97 4 13
SN 1562.83 3 12 1563.80 3 12
SCN 1562.79 2 11 1563.07 2 11
t 1175.30 1 2 1177.23 1 2

(3)

N 1531.85 4 10 1532.02 4 10
SN 1526.04 3 8 1528.32 3 8
SCN 1528.01 2 7 1528.11 2 7
t 1175.51 1 3 1177.63 1 3

(4)

N 1529.07 4 9 1529.37 4 9
SN 1525.41 3 6 1525.53 3 6
SCN 1525.37 2 5 1525,48 2 5
t 1169.95 1 1 1176.47 1 1

(5)

N 1593.81 4 16 1595.71 4 16
SN 1590.45 3 15 1592.80 3 15
SCN 1590.41 2 14 1592.74 2 14
t 1252.04 1 4 1254.30 1 4

V. CONCLUDING REMARKS

This study focuses on the in-sample performance of asym-
metric GARCH(1,1) models of [5], including AGARCH,
NAGARCH, and VGARCH, in terms of their ability to fit
the volatility model for USD/IDR exchange rate return data
over a period January 2010 to December 2017. The fitting
performance is investigated in four different distributional
assumptions for the return errors, namely: Normal, Skew
Normal, Skew-Curved Normal, Student-t distributions. The
GRG Non-Linear in Excel’s Solver and MCMC’s ARWM
method implemented in Scilab are employed to estimate the
considered models. Even though Excel’s Solver violates a
constraint for the Student-t case, Excel’s Solver’s GRG Non-
Linear method can be said to have a good ability to estimate
the asymmetric GARCH models. This is indicated by their
estimates similar to those from MCMC’s ARWM method. AIC
values suggest that NAGARCH(1,1) model under Student-
t distribution performs the best in capturing the USD/IDR
volatility. The analysis confirms the result in [5] that showed
evidence of superiority for the NAGARCH model. The result
also ensures the evidence in [27] that Student-t distribution
provides a better ability to capture heavy tails than skew
normal distribution, even than skew-curved normal.
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