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A B S T R A C T

The food industry is shifting toward automated and customized processes, leading to the emergence of smart
cooking devices that improve cooking outcomes. However, these devices can be invasive, costly, and only
applicable to certain foods. To address these issues, a noninvasive digital twin that monitors food during
cooking using a common frying pan with a temperature sensor and a weighing scale is proposed. A case study
for a French crêpe is presented, in which we developed a digital twin using a neural network trained on over
400,000 simulation data points. The results show that the digital twin can accurately estimate the properties
of the crêpe during cooking in real time with a mean absolute percentage error of less than 5% and predict
when it will be cooked according to user criteria. The approach offers significant benefits over existing smart
cooking devices, as it can be applied to a wide range of cooking processes. The proposed technology enables
food process automation and has potential applications in both home and professional kitchens.
1. Introduction

New technologies, such as artificial intelligence (AI) and the In-
ternet of Things (IoT), are being developed in the food processing
sector to enhance food quality, safety, and flavor (Khouryieh, 2021;
Knorr and Augustin, 2021). Among these technologies, the use of digital
twins (DTs) is one of the most promising and involves the virtual
representation of a physical system to reproduce complex processes
in real time and provide valuable information, ultimately leading to
the best decision-making (Defraeye et al., 2021; Verboven et al., 2020;
Khan et al., 2022). With the aid of new devices, such as IoT sensors
that connect the DT and the physical system in real time, production
lines and products themselves can be improved (Kaur et al., 2019).

In pursuit of achieving desirable attributes in food products, the
study of flavors and aromas is becoming increasingly essential for the
production of new foods (such as 3D printing or cell cultivation), as
well as the cooking process itself (Nachal et al., 2019; Mishyna et al.,
2020; Zhang et al., 2021). Two popular trends in cooking are the use
of AI for recipe creation and the use of DTs to monitor the state of food
being cooked in real time (Wang et al., 2019). The latter is of special
interest, as it can account for the variability caused by the human–
system interaction during cooking (Aguilera, 2018; Dolejšová et al.,
2020).
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Recent studies have demonstrated the use of DTs to monitor the
cooking processes of ice cream machines (Karadeniz et al., 2019),
food in convection ovens (Kannapinn and Schäfer, 2021), and chicken
fillets (Kannapinn et al., 2022). This work aims to develop a DT to
monitor the cooking process of food in a frying pan on an induction
hob, demonstrating that representative food properties, such as tem-
perature, color, and weight loss, can be accurately monitored using a
temperature sensor in the pan and a weighing scale in the hob. The
proposed technology is particularized to the frying of a French crêpe
(Fig. 1) in a pan heated by a smart induction hob, which can control
the pan temperature according to a control algorithm (Cabeza-Gil et al.,
2020a). With this DT, the cooking process of the French crêpe can be
estimated in real time and forecast in advance, enabling the user to
make informed decisions during the cooking process and paving the
way for a fully autonomous cooking kitchen.

In contrast to prior studies that utilized reduced-order models
(ROMs) for digital twin development (Kannapinn and Schäfer, 2021;
Kannapinn et al., 2022), this work proposes a digital twin architecture
based on deep neural networks (DNNs). The neural network is trained
with a vast amount of data (over 400,000 samples) obtained from
high-fidelity simulations using the finite element method (FEM). While
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Fig. 1. DT for assisted cooking. The physical twin is connected to the DT through IoT sensors: the temperature sensor placed in the pan (𝑇 (𝑡−5,…,𝑡−1,𝑡)
𝑠𝑒𝑛𝑠𝑜𝑟 , pink circle), the initial weight

of the batter (𝑊 𝑡=0
𝑐𝑟𝑒𝑝𝑒), and the target temperature of the pan provided by the user in the smart cooking hob (𝑇 𝑡

𝑡𝑎𝑟𝑔𝑒𝑡). With these data, the virtual model can provide the crêpe state
in real time (the temperature and color on both sides and the weight loss, 𝑇 𝑡

𝑐𝑟𝑒𝑝𝑒, 𝐿
∗𝑡
𝑐𝑟𝑒𝑝𝑒 and 𝑊𝐿𝑡

𝑐𝑟𝑒𝑝𝑒, respectively).
ROMs require less computational capacity and ensure that the physical
principles govern the digital twin’s predictions, the combination of
neural networks and FEM might provide more accurate predictions in
complex scenarios and unusual cases.

2. Methods

The digital twin developed here can replicate the cooking process of
a French crêpe. By using data from IoT sensors, it can monitor cooking
parameters from the physical twin, such as the temperature of the
frying pan and the weight of the batter. Based on this information, the
system can calculate in real time several parameters that describe the
state of the crêpe, including its temperature, color, and weight loss (as
shown in Fig. 1). This allows the system to provide information about
the doneness of the food and estimate when it should be turned over
or removed from the pan.

In this section, the development process of the digital twin is
outlined, covering its inception through to its final architecture and op-
eration. The first step involves elucidating the mathematical model for
cooking a French crêpe on a smart induction cooktop. This model pro-
vides the groundwork for creating high-fidelity simulations, achieved
through the numerical resolution of the mathematical model using
FEM. Following this, the strategy for generating large amounts of in
silico data to train the neural network is discussed, and these data
are subsequently utilized to train the neural network. Finally, the DT
architecture, which is essentially a neural network, and its functionality
are comprehensively described.

2.1. Mathematical model for the cooking of a French crêpe

The cooking of the crêpe was modeled as a coupled transient heat
and mass transfer problem, where the batter was heated by contact
with the hot surface of a pan. The mathematical model involved several
simplifying assumptions: an axisymmetric representation of the geom-
etry and heating flux power was used; only energy and mass transport
mechanisms were considered, with the assumption that the crêpe batter
was reasonably viscous; the thickness was very low and no gas phase
overpressure was assumed, avoiding the need to account for any change
of momentum of the batter bulk; the pan was heated by an inward
heating flux, and heat was transferred to the batter with a very high
thermal contact conductance; the heat was transferred to the batter by
conduction and convection from the air, which constituted the heat
2

loss mechanism in the external surface; liquid water diffused within
the crêpe batter, and local evaporation occurred simultaneously; water
and water vapor transport were considered separately as multiphase
transport species, and the water vapor generated in the crêpe batter
migrated to the top surface and diffused into the environment; the
thermal contact conductance drastically decreased as a crust formed
on the bottom of the batter in contact with the pan when the viscosity
increased.

In this section, the key equations that define the crêpe cooking
model are presented. For a more comprehensive description of this
model, the reader is referred to Lorente-Bailo et al. (2021). The equa-
tion that governs the heat transfer mechanism in the aluminum pan is:

𝑃 + 𝑘𝑝𝑎𝑛∇2𝑇 = 𝜌𝑐𝑒
𝜕𝑇
𝜕𝑡

(1)

where 𝑃 is the volumetric power density generated by induction, 𝑘𝑝𝑎𝑛
is the thermal conductivity, 𝜌 is the density and 𝑐𝑒 is the specific heat
of the pan material.

Inside the crêpe, considering the water energy absorption during
evaporation:

∇ ⋅
(

𝑘crêpe∇𝑇
)

= 𝜌crêpe𝐶crêpe
𝜕𝑇
𝜕𝑡

+𝑄𝑒𝑣𝑝 (2)

where the evolution of the crêpe heat conductivity is a function of
batter porosity 𝜀, water content per unit of dry mass 𝑋𝑙, air heat
conductivity 𝜆𝑎𝑖𝑟 and the parameters 𝑎 and 𝑏:

𝑘crêpe =
(

𝑎
𝑋𝑙

1 +𝑋𝑙
+ 𝑏

) (1 − 𝜀)
(

2
(

𝑎 𝑋𝑙
1+𝑋𝑙

+ 𝑏
)

+ 𝜆𝑎𝑖𝑟
)

+ 3𝜀𝜆𝑎𝑖𝑟

(1 − 𝜀)
(

2
(

𝑎 𝑋𝑙
1+𝑋𝑙

+ 𝑏
)

+ 𝜆𝑎𝑖𝑟
)

+ 3𝜀
(

𝑎 𝑋𝑙
1+𝑋𝑙

+ 𝑏
)

(3)

For batters made of wheat flour, 𝑎 = 0.8026 W/(m⋅K) and 𝑏 = 0.8374
W/(m⋅K) were selected (Lorente-Bailo et al., 2021). The density and
specific heat of the crêpe were calculated considering the density and
specific heat of the batter constituents and the solid, liquid and vapor
mass fractions (𝑥𝑠, 𝑥𝑙 and 𝑥𝑣):

𝜌crêpe = 1
𝑥𝑠
𝜌𝑠

+ 𝑥𝑙
𝜌𝑙

+ 𝑥𝑣
𝜌𝑣

𝐶crêpe = 𝑥𝑠𝐶𝑠 + 𝑥𝑙𝐶𝑙 + 𝑥𝑣𝐶𝑣 (4)

The term 𝑄𝑒𝑣𝑝 represents the energy absorbed by the water during
the evaporation process:

𝑄 = 𝜌 𝜎 𝑓 𝐿 (5)
𝑒𝑣𝑝 𝑝 𝑒𝑣𝑝 𝑣 𝑒𝑣𝑝
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Fig. 2. Two-dimensional axisymmetric finite element mesh and 3D view representation of the three domains.
where 𝜎𝑒𝑣𝑝 is an evaporation rate constant, 𝐿𝑒𝑣𝑝 is the water latent heat
of vaporization, and 𝑓𝑣 is an empirical normalized function:

𝑓𝑣 =

⎧

⎪

⎨

⎪

⎩

𝑒𝑥𝑝
(

−
( 𝑇−𝑇𝜂𝑚𝑎𝑥

𝜉

)2
)

, 𝑇 ≤ 𝑇𝜂𝑚𝑎𝑥

1, 𝑇 > 𝑇𝜂𝑚𝑎𝑥

(6)

where 𝑇𝜂𝑚𝑎𝑥 = 74.7 ◦C and 𝜉 = 3.33 𝑜C.
The relations that govern the diffusion of the liquid and vapor

phases inside the product are:
𝜕𝑥𝑙
𝜕𝑡

= ∇
(

𝐷𝑙∇𝑥𝑙
)

− 𝜎𝑒𝑣𝑝𝑓𝑣,
𝜕𝑥𝑣
𝜕𝑡

= ∇
(

𝐷𝑣∇𝑥𝑣
)

+ 𝜎𝑒𝑣𝑝𝑓𝑣 (7)

where 𝑥𝑠+𝑥𝑙+𝑥𝑣 = 1 is the constraint. 𝐷𝑙 = 4.3337⋅10−10 m2/s and 𝐷𝑣 =
9.6599⋅10−8 m2/s are the water and vapor diffusion coefficients, respec-
tively, and 𝜎𝑒𝑣𝑝 = 5.1623 ⋅ 10−4 s−1 is the rate of water evaporation. The
empirical conductivity and evaporation constants were obtained from
an optimization fitting performed at our previous research comparing
numerical and experimental data (Lorente-Bailo et al., 2021).

2.1.1. Boundary conditions
An initial uniform temperature of 20 ◦C was considered for all

the parts of the model, the glass, the pan and the crêpe. All external
surfaces of the cooking system had convection heat losses (ℎglass, ℎpan,
ℎcrêpe) and only the pan was considered to have radiation losses (𝑒). A
ℎcrêpe of 14.5 W/(m2⋅ K) was considered. The remaining terms were
varied according to the design of experiments conducted shown in
Section 2.3.

Moreover, a mass flow of vapor was incorporated in the top surface
of the crêpe according to:

−𝐷𝑣∇𝑥𝑣 = 𝑘𝑣𝜌crêpe(𝑥𝑣 − 𝑥𝑣𝑎 ) (8)

where 𝑥𝑣𝑎 is the humidity of the surrounding air governed by the
following equation:

𝑥𝑣𝑎 = 𝑥′𝑣𝑎
𝜌𝑎

𝜌crêpe
(9)

where 𝑥′𝑣𝑎 is the vapor fraction and 𝜌𝑎 is the air density at ambient
temperature.

To model the thermal interaction between the crêpe and the pan, a
thermal contact conductance was considered as:

ℎcrêpe
𝑐 (𝑡) = ℎcrêpe

𝑐0 (1.05 − 𝑓𝑣) (10)

where ℎcrêpe
𝑐0 = 1905 W/(m2⋅ K). The thermal interaction between the

pan and glass was modeled with a thermal contact conductance, ℎ𝑐 . Its
value throughout the batch of simulations is discussed in Section 2.3.

2.2. Computational model and the finite element mesh

An axisymmetric computational model was developed to reproduce
the cooking process in COMSOL Multiphysics® v.5.2a. The model con-
sisted of three different domains, as shown in Fig. 2. The vitroceramic
glass had a thickness of 4 mm, the aluminum pan had an internal
diameter of 180 mm and a thickness of 5 mm, and the lateral wall
was 50 mm in height. The crêpe diameter was identical to the interior
3

diameter of the pan and had variable thickness depending on the mass
considered by the user. The selected discretization consisted of 1118
quadrilateral elements and 1393 nodes using a quadratic approxima-
tion for both the mass and heat transfer. Automatic time increments
were taken by the implicit backward differentiation method, and so-
lution outcomes were saved every 1 s. The power-density field acting
in the pan via the induction hob was implemented using a distribution
determined experimentally as in Sanz-Serrano et al. (2017). Since this
power depends on the target temperature chosen, the smart cooking
system supplies power until the target temperature is reached. This was
achieved by controlling the power supplied by a PI algorithm with the
temperature sensor in the pan (see Fig. 1). To implement this power
control in COMSOL, an ordinary differential equation (ODE) was used
in the domain defined by the bottom surface of the pan. The target
temperature was randomly chosen in every simulation and could vary
randomly throughout cooking.

2.2.1. State of the crêpe
The solution provided by the model allows us to establish the cook-

ing state of the crêpe, defined in this case by the following variables:
temperature of the batter throughout the cooking process (calculated
for all the nodes of the FEM, Fig. 3), evolution of weight loss as a result
of evaporation, and evolution of the color on both sides of the product.

The weight loss percentage (WL) of the crêpe was calculated as
follows:

WL(𝑡) =
⎛

⎜

⎜

⎜

⎝

1 −
∫𝑉

𝜌crêpe(𝑡)𝑑𝑉

∫𝑉
𝜌crêpe0𝑑𝑉

⎞

⎟

⎟

⎟

⎠

⋅ 100 (11)

where 𝜌crêpe0 is the initial crêpe density and 𝜌crêpe(𝑡) is the actual
density.

Browning is the result of a combination of Maillard reactions and
caramelization (Ame, 1992). A browning model can be defined by first-
order kinetics with the browning rate depending on the temperature
and the water content (Sanz-Serrano et al., 2017). The evaluation of the
progress of browning can be conveniently carried out by the lightness
parameter 𝐿∗ of the standard color space CIE 𝐿∗𝑎∗𝑏∗:

𝐿∗
crêpe(𝑟, 𝑧) = −

(

𝑘1 +
𝑘2
𝑥𝑙

)

𝑒

⎛

⎜

⎜

⎜

⎜

⎝

−
𝐴1 +

𝐴2
𝑥𝑙

𝑇 (𝑟, 𝑧)

⎞

⎟

⎟

⎟

⎟

⎠ (12)

where 𝑇 (𝑟, 𝑧) is the temperature in the crêpe domain. The parameters
dependent on the water content, 𝑘1 = 15.4, s−1, 𝑘2 = 2.22 ⋅ 10−14 s−1,
𝐴1 = 3.22⋅10−14 K and 𝐴2 = 2240 K, were fitted from experimental data.

2.3. In-silico dataset acquisition

A machine learning methodology, specifically a DNN, has been
stated as the base for the DT. DNNs need large amounts of data to
be defined reliably. The main problem with these approaches usually
comes from the acquisition of these training data. The ideal approach is
to use experimental data. However, numerical models often replace it
for two reasons: the capability to provide essential data that cannot be
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Fig. 3. Model outcome for one of the cooking simulations where 3D representations of the temperature (𝑜𝐶) distribution are shown on both sides of the crêpe just before the turn
over.
Fig. 4. Experimental data is used to validate the FE model. The FE model creates multiple high-fidelity scenarios that are used to train a DNN. Last, the trained DNN is programmed
in the DT to elucidate aspects of the ongoing cooking process in real-time.
physically measured (Defraeye et al., 2021) (in this work, the color and
temperature of the side of the crêpe in contact with the pan) and, above
all, the possibility to provide a considerably larger dataset. Thus, the
data needed to design a usable DNN for this purpose were obtained via
high-fidelity simulations of the cooking of a French crêpe (Cabeza-Gil
et al., 2020a; Lorente-Bailo et al., 2021; Bonet-Sánchez et al., 2022) as
described in Section 2.1. The results provided by the model constitute
the dataset used to train the DNN that will predict the cooking process
in real time for the DT, as described in Fig. 4.

Different cooking scenarios were simulated considering, on the one
hand, the variability introduced by the user and, on the other hand,
the heat transfer parameters related to different pan characteristics (
Table 1). During preparation, it was considered that the user could
add an amount of batter between 90.8 and 136.2 g during the first
90 s after turning on the induction cooktop. The target temperature
range of the smart cooktop was between 120 and 220 ◦C and was
randomly changed throughout the cooking process, simulating possible
interactions between the user and the induction hob. This means that
the user can set the cookware surface temperature between that range
at all times. The simulations also considered the cooking time for each
surface of the batter, which lasted from 30 to 90 s.

To account for different geometries and construction materials of
the pan, Table 1 shows the ranges of thermal properties and loss coef-
ficients for the conduction, convection and radiation mechanisms that
pans might present. A large number of possible scenarios of the cooking
4

process were generated by randomly varying the coefficients for the
boundary conditions of the glass and the pan, as well as the thermal
conductance, in each simulation according to the ranges provided in
Table 1.

A total of 4490 different computational models were simulated
using a Latin hypercube sampling method. Fig. 5 summarizes the wide
variety of cooking simulations performed by describing a representative
scenario. As shown in this figure, the cooking was discretized in time
steps of one second (𝛥𝑡 = 1𝑠), and the simulation ended when the crêpe
was turned out (after cooking the second crêpe side).

2.4. Architecture of the deep neural network

The DNN was trained with the aim of estimating the system state
(crêpe and pan) at the following time step (t+1). As previously men-
tioned, the crêpe state is defined by its average temperature (𝑇𝑐𝑟𝑒𝑝𝑒) and
color (𝐿∗

𝑐𝑟𝑒𝑝𝑒) on both sides and the weight loss it experiences during the
cooking process (𝑊𝐿𝑐𝑟𝑒𝑝𝑒).

A total of 3349 (88%) of the 4490 simulated cooking processes were
used to train and validate the DNN, while the remaining 541 (12%)
cooking simulations were used in the testing phase. Since a sample rate
of 1 s was chosen, and the final cooking time for each simulation was
randomly chosen, a training dataset of 399,318 different cooking states
was obtained.
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Table 1
Range of the parameter variation for the heat transfer properties of the pan and heat transfer mechanisms at the model contours (Bonet-Sánchez et al., 2022).

Intrinsic properties of the pan Loss coefficients

Density
𝜌 [Kg m−3]

Specific heat
𝑐𝑒 [J g−1 K−1]

Conductivity
𝑘 [W m−1 K−1]

Pan convective coef.
ℎ𝑝𝑎𝑛 [W m−2 K−1]

Glass convective coef.
ℎ𝑔𝑙𝑎𝑠𝑠 [W m−2 K−1]

Thermal contact conductance
ℎ𝑐 [W m−2 K−1]

Pan emissivity
𝑒 [-]

7800 [300–450] [50–220] [3–9] [3–9] [50–100] [0.5–1]
Fig. 5. Example of a cooking simulation in an induction system with PI control. (a) shows the temperature of the pan sensor and the power applied, and (b) shows the surface
average temperature (𝑇𝑐𝑟𝑒𝑝𝑒) and color of the crêpe (𝐿∗

𝑐𝑟𝑒𝑝𝑒). The temperature target level was set to 150 ◦C. The crêpe was added 80 s after the beginning of cooking, when the
pan temperature had reached the initial target temperature. Adding the crêpe implies a temperature drop of 20 ◦C in the pan. Then, the underside of the crêpe was cooked 70
s before it was flipped . Right after, the temperature target level was increased from 150 ◦C to 200 ◦C at 165 s, simulating a possible interaction of the user with the induction
hob. Note that the down side of the crêpe is always in contact with the pan; thus, it changes when the crêpe is turned over.
The DNN was customized as follows. The widely used rectified
linear unit (ReLU) was selected as the activation function (Ramachan-
dran et al., 2018) since the ReLU function overcomes the vanishing
gradient problem, allowing models to learn faster and perform bet-
ter (Moolayil, 2019). The chosen optimization method was the Adam
function (Kingma and Ba, 2014), as it has shown good performance in
the training of DNNs. The selected loss function, which will guide the
neural network in its training, was the mean squared error (MSE). The
root mean squared error (RMSE) and mean absolute percentage error
(MAPE) were also used as metrics:

MSE = 1
𝑛
∑

(𝒚 − �̂�)2 (13)
5

𝑛 𝑖=1
RMSE = 1
𝑛

𝑛
∑

𝑖=1

√

(𝒚 − �̂�)2, (14)

MAPE = 1
𝑛

𝑛
∑

𝑖=1

‖𝒚 − �̂�‖
𝒚

(15)

where 𝑛 is the number of samples, 𝒚 is the ground-truth value and
�̂� is the predicted response. MSE is an interesting metric because it
overexposes the presence of outliers in the predictions and is recom-
mended when the error distribution is expected to be Gaussian (Chai
and Draxler, 2014).

Finally, two additional functions to improve the performance of the
DNN were included: (i) a function that reduces the learning rate when
there has not been a decrease in the loss function (MSE) in 10 epochs
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Fig. 6. DNN architecture. The final network consists of three hidden layers with 1024
eurons each, a total of 7 inputs and 4 output variables.

nd (ii) an early stopping at 50 epochs if the loss function does not
ecrease at an established rate without reaching the total number of
pochs initially determined. This last function is important in terms
f computational training cost. A batch size of 32 was used, which is
he number of samples processed at once during training and before an
pdate of the parameters of the network. DNN training was performed
n Keras (Chollet et al., 2015) and resulted in an average training time
f 4 h and 30 min using a commercially available GPU (GeForce GTX
060 SUPER).

A sensitivity analysis as in Cabeza-Gil et al. (2020b) was performed
o define the simplest neural network possible to best predict the
esults. To achieve this, the following procedure to find the optimal
NN was conducted. Initially, a DNN with three hidden layers of 256
eurons each was trained. Subsequent iterations doubled the number of
eurons per layer until the MSE did not decrease. The final architecture
onfiguration is shown in Fig. 6.

.5. Development of the digital twin

The design of the DT is meant for an executable at the device
evel. The executable contains a trained DNN that uses as input the
nformation measured by the IoT sensors in the physical system and
rovides as output the virtual representation of the problem. For the
urpose and validity of this work, the DT is a set of Python code
hat contains the trained DNN. Since the overall aim is to provide
nformation about a cooking process, the sampling rate of these sensors
as established at 1 Hz for data acquisition, a sufficient frequency to
ake informed decisions while cooking and to perform calculations

y the integrated algorithm in real time. The same rate was used to
stimate the crêpe state.

The overall structure and architecture of the DT is presented in
ig. 7, according to the estimation and forecasting functionalities. The
nput variables of the DT, which are provided by the IoT sensors
Fig. 7.a), include the initial weight of the batter 𝑊 𝑡=0

𝑐𝑟𝑒𝑝𝑒, the target
temperature of the pan established by the user 𝑇 𝑡

𝑡𝑎𝑟𝑔𝑒𝑡, and an event
detection input (FLAG𝑡) that indicates the turn over of the crêpe and
the pan sensor temperature at the current and five previous seconds
𝑇 (𝑡−5,…,𝑡−1,𝑡)
𝑠𝑒𝑛𝑠𝑜𝑟 . These are also inputs for the DNN that runs below the DT,

as well as other internal inputs that are fed backward from previous
iterations of the DNN, as shown in the green lines in Fig. 7.b, such as
the average temperature of the crêpe in the bottom and upper surfaces
𝑇 𝑡
𝑐𝑟𝑒𝑝𝑒, the average color of the crêpe in both surfaces based on the

lightness value of the CIELAB color space 𝐿∗𝑡
𝑐𝑟𝑒𝑝𝑒 and the weight loss

due to water evaporation 𝑊𝐿𝑡
𝑐𝑟𝑒𝑝𝑒. The crêpe temperature and color

are averaged due to both the high homogeneity in the surfaces and to
6

reduce model parameters. o
2.6. Digital twin functionality

The DT developed in this study can estimate and even forecast
different parameters of the cooking process that define the state of
the crêpe in the pan, which in this study have been defined as the
temperature and color of the food on both sides and the weight loss
(see Fig. 1). These three parameters could be subsequently used to
determine the degree of doneness of the food and establish their
value when the crêpe required turning over or was fully cooked.
The estimation functionality of the DT consists of determining these
parameters in the current instant, considering the temperature of the
pan and other inputs. The forecast functionality entails predicting
the outcome of the cooking process as long as no further action is
taken by the user, which is to say, the DT can predict when the crêpe
will be properly cooked. Both actions are achieved through a deep
neural network (DNN) that feeds on the data provided in real time
by the IoT sensors: a temperature sensor in the pan, the temperature
target level imposed by the user in a smart induction hob and the
initial weight of the added food (Fig. 7). The estimation of the state
of the crêpe (temperature, color and weight loss) is performed with the
real pan temperature obtained directly from the sensor at the specific
instant, as well as the five previously measured temperatures. These
measurements are also used to predict the temperature of the pan in
the following instant for the forecast. By inputting the pan temperature
in several timepoints, the system can predict the characteristics of the
cooking system (i.e., the pan characteristics (𝑘, ℎ𝑐) including heat losses
(ℎ𝑝𝑎𝑛, 𝑒)). This temperature will be an input for a new iteration, and
following this procedure in a loop, the final state (moment when the
degree of doneness customized by the user is achieved) of the crêpe
will eventually be obtained.

When using the estimation functionality of the DT, the output or
estimated data is the state of the crêpe at the current instant. In fact, at
the instant immediately after (t+1)–, i.e., the average temperature of
the crêpe 𝑇 𝑡+1

𝑐𝑟𝑒𝑝𝑒, its average color 𝐿∗𝑡+1
𝑐𝑟𝑒𝑝𝑒 and weight loss 𝑊𝐿𝑡+1

𝑐𝑟𝑒𝑝𝑒. These
arameters and the estimated temperature of the pan sensor 𝑇 𝑡+1

𝑠𝑒𝑛𝑠𝑜𝑟 are
lso outputs of the DNN. Note that with these estimations, the DT is
ble to monitor the color and consequently the degree of doneness even
or the hidden surface of the crêpe. As can be observed in Fig. 7.a,
he output variables that define the state of the food (𝑇 𝑡+1

𝑐𝑟𝑒𝑝𝑒, 𝐿
∗𝑡+1
𝑐𝑟𝑒𝑝𝑒 and

𝐿𝑡+1
𝑐𝑟𝑒𝑝𝑒) are used subsequently as inputs of the DNN to calculate the

ext step of the process.
When performing the forecast functionality, the DT can also an-

icipate the evolution of the cooking process and provide the user some
seful information, such as when to turn over or remove the crêpe
o avoid a burned side. This is inferred from the output parameters
ommented on previously but predicted in the future after several loop
terations of the system. These iterations involving future values of
ariables can be performed with the DNN estimation of the pan sensor
emperature in the next instant 𝑇 𝑡+1

𝑠𝑒𝑛𝑠𝑜𝑟 (see blue lines in Fig. 7.b). With
his predicted temperature and the variables that characterize the state
f the crêpe fed as new inputs, and after several internal iterations of
he DNN, a forecast of the whole cooking process can be performed.
his prediction will be valid provided that the user does not perform
ny modifications in the cooking, such as turning over the crêpe or
hanging the target temperature. If any of those actions were taken,
he prediction would be updated by the DT.

. Results

.1. Model results

The performance of the DT has been evaluated with the testing
ataset. A total of 541 cooking scenarios were obtained from FE sim-
lations that are completely new to the system. This means that the
arget temperature, the initial weight of the batter and the temperature

f the pan of each of these scenarios were introduced as inputs, as
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Fig. 7. Schematic outline (a) and architecture (b) of the DT. (a) The DT is able to provide information of the state of the crêpe only with the information provided by the IoT
sensors. (b) Internal functioning of the DT. The information provided by the IoT sensors is complemented by three internal inputs related to the state of the crêpe in the measuring
instant. These internal inputs are fed backward from the system (see green line). This loop is performed in both the estimation and forecast, as the information related to the state
of the crêpe cannot come from the sensors. 𝑇 𝑡+1

𝑠𝑒𝑛𝑠𝑜𝑟 is only relevant and fed backward (blue line) for the forecast functionality, while the estimation functionality is derived from
the physical sensor in the pan.
these would be the data provided by the IoT sensors in the real cooking
process. With these inputs, the DT performs the estimation in real time
for each time period (𝛥𝑡 = 1𝑠) and the forecast of the state of the
crêpe, and these results are subsequently compared with the simulated
outcome with the metrics defined in Section 2.4. Moreover, the effect
of the possible noise in the measurements taken in the real situation is
quantified and evaluated at the end of this section.

3.2. Estimation in real-time

Table 2 shows the RMSE and MAPE of the 541 cooking scenarios
used for testing. The RMSE and MAPE of the crêpe state (temperature,
color and weight loss) were calculated once the batter was poured into
the pan for each simulation. The mean of all simulations was calculated
and is shown in Table 2 with the standard deviation. A relative error
below 5% is achieved for all responses, implying that the DT can
7

provide physical estimations in real time with high accuracy. As an
illustrative example of the cooking process, Fig. 8 shows the estimated
and ground-truth values for a representative cooking scenario. Both
present significant agreement during the whole cooking process. The
weight loss of the crêpe differs slightly for long cooking times.

3.3. Cooking forecast

Table 3 shows the RMSE and MAPE of the forecast values of the
541 cooking scenarios. The variables related to the state of the crêpe
were evaluated once the crêpe was added to the pan, whereas the
temperature of the pan sensor was predicted from the beginning of
cooking. As could be expected, the forecast response presents higher
errors than the estimation in real time, as this functionality is based
on the iteratively estimated temperature of the pan for future time
intervals. Fig. 9 shows an example of the forecast throughout a certain
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Fig. 8. Example cooking scenario and real-time estimation of double-sided crêpe cooking. The state of the crêpe is only known at the start of cooking as initial conditions. All
estimations of the state of the crêpe are performed based on the estimation in the previous increment, as well as on data from the sensors. Note that ‘‘down’’ refers to the crêpe
side in contact with the pan, while ‘‘up’’ refers to the visible side. Thus, when the crêpe is turned over, the temperature of the opposite face is measured.
Table 2
Mean and standard deviation of the real-time estimation error metrics in the 541 cooking simulations. The proper estimation is evaluated using the RMSE and
MAPE. The MAPE of the weight loss is not calculated due to the amount of times the ground truth for this variable takes the value of zero.

𝑇crêpe(𝑑𝑜𝑤𝑛) 𝑇crêpe(𝑢𝑝) 𝐿∗
crêpe(𝑑𝑜𝑤𝑛) 𝐿∗

crêpe(𝑢𝑝) 𝑊𝐿crêpe

RMSE 5.86 ± 1.41 (◦C) 4.79 ± 1.41 (◦C) 1.03 ± 0.52 L 0.89 ± 0.53 L 1.07 ± 0.57 (%)
MAPE 4.32 ± 1.27 (%) 2.83 ± 0.90 (%) 1.21 ± 0.77 (%) 0.66 ± 0.65 (%) –
Table 3
Mean and standard deviation of the forecast error metrics in the 541 cooking simulations. Same as in the estimation functionality, the MAPE of the weight loss is not calculated
due to the amount of times the ground truth for this variable takes the value of zero.

𝑇𝑠𝑒𝑛𝑠𝑜𝑟 𝑇crêpe(𝑑𝑜𝑤𝑛) 𝑇crêpe(𝑢𝑝) 𝐿∗
crêpe(𝑑𝑜𝑤𝑛) 𝐿∗

crêpe(𝑢𝑝) 𝑊𝐿crêpe

RMSE 9.68 ± 12.37 (◦C) 9.07 ± 5.08 (◦C) 5.21 ± 1.44 (◦C) 1.11 ± 0.51 L 0.92 ± 0.59 L 1.07 ± 0.57 (%)
MAPE 4.68 ± 6.32 (%) 6.65 ± 3.55 (%) 3.69 ± 1.74 (%) 1.31 ± 0.75 (%) 0.72 ± 0.64 (%) –
cooking scenario. The forecast temperature of the bottom side of the
crêpe is less accurate than the estimated temperature shown in the
previous section, as can also be seen in Table 3. This is expected for the
forecasting functionality, as the temperature of the sensor is estimated
for future times instead of working with the actual value measured in
real time by the IoT sensor, similar to the estimation functionality. As
can be observed in Fig. 9, the longer the period of DT prediction is, the
greater the error.

3.4. Evaluation of the effect of noise measurements by the IoT sensors in
DT estimation

In the study, two different evaluations of the sensors were carried
out. Initially, to assess the effect and relevance of each IoT sensor in
the estimation of the cooking process, the value of each sensor was
8

randomly introduced in the system (see Table 4, lines #1, #2 and #3).
With this new random value, the estimated results, in terms of the color
of the down and up sides of the crêpe, were compared with values
reported in Section 3.2 (Table 4, line #0). If the new results do not
differ notably from the original values, the effect of the measurements
provided by that sensor in particular would be negligible for the DT.
This evaluation was performed as a sensitivity analysis to verify that all
IoT sensors are necessary for the DT of the cooking process. Out of the
three values measured by the IoT sensors, only the target temperature
seems to not have a meaningful effect on the estimated response of
the DT (see Table 4). This parameter does not affect the real-time
estimation, as the temperature of the system cannot drastically change
immediately after a variation in the target temperature. Therefore, no
parameters of the state of the crêpe vary significantly in 1 s even with
an abrupt change in the target temperature. This measure is, however,
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Fig. 9. Example of forecasting crêpe cooking. The DT performs its forecast during periods when external actions are not performed in the system, as shown above the graphs.
The first forecast involves the beginning of the cooking up to 55 s, when the crêpe is added. From this moment, the DT forecasts the variables up to 65 s, where the target
temperature was changed. Then, it forecasts until the crêpe is turned around (t=145 s). Finally, the crêpe was removed at 190 s. Note that in the real application, the DT would
give a forecast for a long period (i.e., 200 s), but the forecast of the DT would be updated once a perturbation was performed (e.g., a change in the target temperature or adding
the crêpe). In the weight loss of the crêpe, the estimation values cannot be seen, as they lie right below the prediction values.
crucial for forecasting the cooking process, as it leads the temperature
of the system in the long term.

After that, the effect of possible noisy measurements typical of ex-
perimental situations was tested (see Table 4, lines #4, #5 and #6). For
that purpose, different scenarios considering different deviations in the
temperature pan sensor and the initial batter weight were evaluated.
Speckle noise was added. The results obtained show that the error due
to noisy variations in the measurements of the sensors is notably low
in all cases lower than 1.4%.

4. Discussion

The main goal of this research was to develop a noninvasive DT that
could estimate and forecast food properties during cooking. Although
the method was particularized to the cooking of a double-sided crêpe
as a proof-of-concept, it could be applied to different types of food in
a domestic induction hob using other common vessels. The DT allows
9

us to know the main features that characterize the state of the crêpe
(temperature, color and weight loss) during and in advance of the cook-
ing process with a MAPE less than 4.32 ± 1.27% in temperature and
1.21 ± 0.77% for the color on both sides of the crêpe in the estimation
functionality. For the forecasting functionality, a temperature and color
MAPE less than 6.65 ± 3.55% and 3.69 ± 1.74%, respectively, were
obtained.

The biggest potential of this technology against other nonconnected
approaches that do not use IoT sensors (and thus are not connected
in real-time to the physical inputs) is the capability of instantaneously
responding to any possible user interaction (e.g., adding the crêpe or
changing the target temperature). Another advantage of the method is
that it works for any pan that lies in the range of the characterizing
variables simulated (Table 1), provided that a temperature sensor is
placed on the cookware surface, with no need to input or even know
the specific pan characteristics.

The results showed that the DT can elucidate physical aspects of
the ongoing process with a high accuracy (a relative error below 5%),
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Table 4
MAPE of the estimation of the color of both sides of the crêpe in the sensitivity analysis of the IoT sensors (lines #1, #2 and #3) and when
the inputs of the sensors are varied randomly simulating noisy or erroneous measurements (lines #4, #5 and #6).

Physical input Variability range MAPE 𝐿∗
crêpe(𝑑𝑜𝑤𝑛) (%) MAPE 𝐿∗

crêpe(𝑢𝑝) (%)

#0 – – 1.21 ± 0.76 0.66 ± 0.65
#1 Target temperature Totally random 1.39 ± 0.09 0.98 ± 1.11
#2 Temperature pan sensor Totally random ∞ ∞
#3 Initial batter weight Totally random ∞ ∞
#4 Temperature pan sensor [−2.5, 2.5] ◦C 1.23 ± 0.82 0.73 ± 0.69
#5 Initial batter weight [−10, 10] g 1.33 ± 0.76 0.77 ± 0.67
#6 Temperature pan sensor –

Initial batter weight
[−2.5, 2.5] g–◦C 1.24 ± 0.77 0.71 ± 0.63
r

D

m
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as can be observed in Table 2. As expected, the forecast results were
slightly less accurate than the estimated values in real time (see Ta-
ble 3). However, the most unfavorable situation was evaluated, where
the prediction was performed only once at the beginning of the process
or when a change was introduced in the system. In the real situation,
the prediction could be performed and updated as many times as the
designer wants, improving the accuracy while moving forward in the
cooking process.

These results showed that a DNN can be accurately trained to
reproduce the FE model results in real time (t<1 ms, the amount
of time taken to update the estimation by the DT), considering only
the information provided by the IoT sensors (temperature of the pan
sensor and weight of the crêpe). Moreover, if the FE model is properly
validated, the outputs of the DNN and thus of the DT can be accepted as
valid for the physical cooking system. With the novelty of forecasting
included in this study, the variables of interest (crêpe state) can be
quantified over time only by knowing its initial state. The critical
point of this technology is to develop a realistic FE model since the
validity of the dataset depends on it. As long as there are high-fidelity
simulations (Moya et al., 2021), the DT will provide accurate data.
Furthermore, this particular study could not be performed with only
experimental data, as the color and temperature of the crêpe side in
contact with the base pan can only be currently quantified through
numerical methods.

Reviewing the other study in the literature, Kannapinn and Schäfer
(2021) obtained an RMSE of less than one degree in the microwave
cooking process. However, the authors performed a different approach
to build their DT, formulating a hybrid physics-based data-driven DT
framework, whereas this DT is based on a DNN trained with the
data obtained from an FE model that combines two validated mod-
els (Lorente-Bailo et al., 2021; Cabeza-Gil et al., 2020a). The data-
driven approach intrinsically takes into account the physics of the
problem, while the trained DNN can resemble a black box. However,
the DNN has two distinct advantages: i) By definition, all kinds of
complex physical relations are considered between the outputs and
inputs; ii) all possible scenarios can be introduced and trained in the
DNN, assuring that the DNN will be robust against any unpredictable
event.

Contrary to other implementations in the market (e.g., the smart
grilling hub Weber Connect (Weber-Stephen Products LLC, USA)),
which requires a temperature sensor in the cooked food, the proposed
technology is noninvasive and thus does not alter the food properties.
Moreover, this is a fixed installation and avoids the need for the
user to set up the device. This technology could be implemented for
cooking different types of food (vegetables, soup, meat) in different
cooking appliances if properly validated FE models are created. The
implementation of this system could change domestic cooking, as
different actions could be carried out based on AI.

The main limitation of this study is its theoretical approach. Al-
though the variability inherent to experimental measurements in the
IoT sensors was considered (Section 3.4), the manufacturer should con-
sider the speed and quality of data collection and other unimaginable
events that occur in real situations that could lead to inaccurate DT
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predictions. One solution for this problem could be the addition of some t
physical controllers in the input and output of the DT to filter outliers
and ensure that the input physically makes sense. Moreover, the crêpe
state was considered to be defined by the temperature, color and weight
loss. There are other parameters that could be added to the model to
customize the degree of doneness, such as the texture (tenderness) for
meat DT solutions. However, numerical models simulating these effects
are still in an early stage of development.

Finally, we utilized the average temperatures of the crêpe as key
markers. To enhance the construction of an augmented reality cooking
model across the entire spectrum, it is possible to explore more refined
architectures like convolutional neural networks. These architectures
could effectively extract variables within the whole domain.

5. Conclusions

A smart cooking technology based on digital twins that provides
information on the state of food in real time and in advance was
developed. This noninvasive system uses the information provided by
IoT sensors and is thus suitable for use in smart kitchens. The cooking
of a double-sided French crêpe in an induction hob was used as a proof
of concept. Nonetheless, there is a wide range of possible applications
as long as high-fidelity simulations of different cooking processes are
developed.
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Fig. 10. Experimental results of the average surface temperature (T∗
crêpe), weight loss (WL∗

crêpe) and color (L∗
crêpe). The experimental data shown are the mean (±) standard deviation

of five replicates..
Appendix. Model validation

The set of parameters that were used in the model to develop
the DT were obtained from a previous work (Lorente-Bailo et al.,
2021) where only one side of the crêpe was cooked. Since the results
presented in this study involved cooking both sides, a validation of the
computational model is presented briefly in this section.

A series of cooking tests (𝑛 = 5) were performed using crêpe batter
(wheat flour, 26.77% w/w, whole milk 51.63% w/w, pasteurized hen
egg 21.03% w/w and salt 0.57% w/w) and a forged aluminum 180 mm
diameter and 5 mm thickness pan with a thin bottom steel layer and a
nonstick coating (Easy Induction, Kuhn Rikon, Zell, Switzerland). The
crêpes were cooked for 90 s and then turned over to complete a total
cooking time of 120 s. The crêpe weight loss during the process was
monitored by placing the hob on a balance (DS30K0.1L, Kern & Sohn,
Balinger-Frommern, Germany) with 0.1 g precision that records data
every 1 s. During the cooking period, a thermographic image of the
upper side of the crêpe was taken at 30 s intervals, and the radial
temperature profiles were determined using the software Testo IRsoft
(Instrumentos Testo S.A., Barcelona, Spain). A schematic diagram of the
cooking of the crêpe is shown in Fig. 1. For color measuring, once the
crêpe had cooled down, it was placed on a scanner (Canon Scan Lide
210), and the image was digitized and formatted to the CIE Lab profile
to obtain the L∗ coordinate.

The experimental and numerical results obtained for the average
surface temperature, weight loss during cooking of a double-sided
French crêpe and color evolution are represented in Fig. 10. Note that
the experimental curves are discontinuous due to the turn over process.
The root mean squared error of the results is 3.3 ◦C for the temperature,
1.16 for the weight loss and 2.12 for the luminosity parameter.
11
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