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Abstract
The stability of the representation of finite rank operators in terms of a basis is analyzed.
A conditioning is introduced as ameasure of the stability properties. This conditioning
improves some other conditionings because it is closer to the Lebesgue function.
Improved bounds for the conditioning of the Fourier sumswith respect to an orthogonal
basis are obtained, in particular, for Legendre, Chebyshev, and disk polynomials. The
Lagrange and Newton formulae for the interpolating polynomial are also considered.

Keywords Conditioning · Lebesgue function · Least squares approximation ·
Lagrange interpolation
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1 Introduction

The representation of a continuous function in a finite dimensional space depends on
the choice of a basis. A first possibility consists of expanding the function in terms of
a Lagrange basis with respect to some set of nodes so that the coefficients with respect
to the basis are values of the function. The representation in terms of the Lagrange
basis with respect to the Chebyshev sites turns out to be a very stable representation
of polynomials (see pp. 12–15 of [2]).
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A related problem is the representation of operators of finite rank in terms of a given
basis. The Lebesgue function provides a pointwise bound for the error propagation
of an operator independently of the formula used for evaluation. However, the choice
of a basis for expressing the operator might provide worse stability results for the
evaluation than those predicted by the Lebesgue function. Some operators, such as
orthogonal projections, have good stability properties if an orthogonal basis is used
[5]. In order to measure the stability properties, we introduce a condition number
associated with the representation.

The bound provided by the Lebesgue function is lower than the conditioning of any
representation of the operator with respect to a basis. It would be an ideal situation to
have an evaluation formula for the operator whose condition is exactly the Lebesgue
function. However, many common formulae for the operator in terms of an orthog-
onal basis give rise to a condition number higher than the Lebesgue function. If the
conditioning is closer to the Lebesgue function, then the corresponding representation
is more stable. In the case that the conditioning coincides with the Lebesgue function,
the representation is optimal. The Lagrange formula for the interpolation operator is
optimally stable as we will show in Section5 (see also [3]). In contrast, the Newton
formula may present numerical instability [1].

In previous research, a different conditioning for comparing different representa-
tions of an operator has been considered [3–6, 8]. However, this conditioning tends to
overestimate the instability, especially when dealing with Fourier representations with
respect to orthogonal polynomials, as we shall see later. The conditioning proposed
in this paper is sharper in the sense that it resembles more closely the Lebesgue func-
tion. This conditioning might be harder to compute in some cases, but it can be easily
bounded in the case of orthogonal projections, giving rise to sharper and practical
bounds.

In Sect. 2, we introduce a conditioning κ(x, B, B−1) of a basis B, and we show
that it is smaller than the condition number cond(x, B, B−1) used in [3]. In fact,
Example 1 illustrates that it can be considerably smaller. In Sect. 3, we extend the
proposed conditioning to the case of representations of a continuous linear operator on
the space of continuous functions on a compact domainwith finite rank κ(x, B,�).We
compare it with the condition number cond(x, B,�), discussed in [5], and prove that
κ(x, B,�) ≤ cond(x, B,�).We also show that both conditionings are invariant under
reordering or rescaling of the basis. Moreover, both conditionings coincide in the case
where the functionals associatedwith the representation are nonnegative. In Sect. 4, we
consider the conditioning of least squares problems. The Christoffel function relates
the values of the Fourier sum operator Sn[ f ](x) with ‖ f ‖2, the norm associated
with the scalar product. This relation allows us to provide practical bounds for the
conditioning κ(x, P,�) of the representation of Sn in terms of an orthogonal basis P .
In Theorem1,we provide bounds for both conditionings, andwe can say that the bound
for κ(x, P,�) is lower than the corresponding bound for cond(x, P,�). We describe
some relevant examples, considering Legendre polynomials, Chebyshev polynomials,
and disk polynomials. In the three cases, the bounds for κ(x, P,�) considerably
improve the bounds for cond(x, P,�). Section5 focusses on the conditioning of
Lagrange interpolation. The representation of the interpolation operatorwith respect to
the Lagrange basis L and the evaluation functionals X ′ is optimal, because κ(x, L, X ′)
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coincides with the Lebesgue function. Moreover, both condition numbers coincide,
κ(x, L, X ′) = cond(x, L, X ′). In Sect. 6, we consider the conditioning of the Newton
representation of the interpolating polynomial. In this case, the conditioning depends
on the ordering of the nodes.Wecharacterize the orderings such that both conditionings
coincide. As a consequence, if the nodes are increasingly ordered or, more generally,
if they follow a central ordering with respect to a center (see [4]), both conditionings
coincide. Finally, Sect. 7 considers the discrete case, which can be analyzed as a
particular case of a Lagrange interpolation operator.

2 Conditioning of a basis

Let K be a compact domain in R
d . Let U = 〈b0, . . . , bn〉 be the vector space gener-

ated by (b0, . . . , bn) with linearly independent b0, . . . , bn ∈ C(K ). Then, the linear
mapping

B : c ∈ R
n+1 �→

n∑

i=0

ci bi ∈ U

can be regarded as a basis of U whose inverse B−1 is the corresponding coordinate
mapping.Let us denote byπi (u) := (B−1u)i , i = 0, . . . , n, the coordinate projections.
Each function u ∈ U can be written in terms of the basis

u(x) = B(π0u, . . . , πnu)(x) =
n∑

i=0

πi (u)bi (x), x ∈ K .

In order to compute u(x) expressed in terms of a given basis, we evaluate each of the
terms πi (u)bi (x) and sum up all of them. Since the computation of each coefficient
πi (u), i = 0, . . . , n, can be affected by an error εi , we shall obtain instead

n∑

i=0

(πi (u) + εi )bi (x) = u(x) +
n∑

i=0

εi bi (x), x ∈ K .

So, we can assume that the computed value is the exact expression of a perturbed
function u(x) + e(x), where the perturbation e(x) = ∑n

i=0 εi bi (x) belongs to the
space U . The sign of the errors in the coefficients is difficult to predict. In the worst
of the cases, when we evaluate the function u at a given point x , all summands may
have the same nonstrict sign, for instance, εi bi (x) ≥ 0 for all i = 0, . . . , n. So, the
size of the perturbation can reach the following upper bound

|e(x)| ≤
n∑

i=0

|εi ||bi (x)|, x ∈ K .

We can write

|e(x)| ≤ ‖ε‖∞
n∑

i=0

|bi (x)|, x ∈ K ,

and bound the size of the perturbation in terms of the norm of the error vector ε =
(ε0, . . . , εn). So,

∑n
i=0 |bi (x)| gives a bound for the relative error |e(x)|/‖ε‖∞.
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The size of the error of a coefficient depends on how the coefficient has been
computed. However, the previous bound does not reveal the influence of the error εi
of each coefficient to the error propagation e(x). Moreover, the starting point in some
problems is a perturbed function, and we want to measure how the perturbation might
affect the evaluation of the function in terms of a given basis. For this purpose, we
note that εi = πi (e), i = 0, . . . , n, and then

∑n
i=0 |εi ||bi (x)| = ∑n

i=0 |πi (e)bi (x)|.
In order to measure the size of the error, we introduce

‖e‖∞ := max
x∈K |e(x)|.

The quantity supe∈U ,‖e‖∞=1
∑n

i=0 |πi (e)bi (x)| can be regarded as a pointwise bound
for the error in the computation of a function inU at x with respect to a given basis B,
relative to the size of the perturbation ‖e‖∞. This suggests the following definition.

Definition 1 Let B be a basis of a (n + 1)-dimensional space of functions U . The
conditioning of B at a point x of the domain K is

κ(x, B, B−1) := sup
e∈U ,‖e‖∞=1

n∑

i=0

|πi (e)bi (x)|, x ∈ K .

Since any e ∈ U with ‖e‖∞ = 1 can be expressed in the form

e(x) =
∑n

i=0 cibi (x)

‖∑n
i=0 cibi‖∞

, x ∈ K ,

for some c = (c0, . . . , cn) �= 0, we can write

κ(x, B, B−1) = sup
c �=0

∑n
i=0 |ci ||bi (x)|

‖∑n
i=0 cibi‖∞

, x ∈ K .

Proposition 1 Let B be a basis of an (n+1)-dimensional space of continous functions
U defined on a compact set K and let π0, . . . , πn be the corresponding coordinate
projections. Let us define

cond(x, B, B−1) :=
n∑

i=0

‖πi‖∞|bi (x)|, x ∈ K ,

where ‖πi‖∞ := supe∈U ,‖e‖∞=1 |πi e|. Then, we have

κ(x, B, B−1) ≤ cond(x, B, B−1), x ∈ K .

Proof Since for each e ∈ U we have

|πi (e)| ≤ ‖πi‖∞‖e‖∞,
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we can write

κ(x, B, B−1)= sup
e∈U ,‖e‖∞=1

n∑

i=0

|πi (e)bi (x)|≤
n∑

i=0

‖πi‖∞|bi (x)|=cond(x, B, B−1).

�
The conditioning cond(x, B, B−1) has been used in previous papers [3–5]. We

want to show that, in some cases, cond(x, B, B−1) is much bigger than κ(x, B, B−1)

and so, cond(x, B, B−1) overestimates the error propagation of the representation of
a function in terms of a basis.

Example 1 Let us consider the basis b0(x) = 1, b1(x) = x of the space P1 of polyno-
mials of degree less than or equal to 1 on the domain [−1, 1]. Then, the corresponding
basis mapping is B(c0, c1) = c0 + c1x . Let us show that the coordinate projections
have unit norm. Since π0(p) = (p(−1) + p(1))/2, we have that

|π0(p)| = 1

2
|p(−1) + p(1)| ≤ ‖p‖∞, ∀p ∈ P1.

Taking p(x) = b0(x), we see that |π0(p)| = 1 = ‖p‖∞ and conclude that ‖π0‖∞ =
1. On the other hand, we can write π1(p) = (p(1) − p(−1))/2 and deduce that

|π1(p)| = 1

2
|p(1) − p(−1)| ≤ ‖p‖∞, ∀p ∈ P1.

Taking p(x) = b1(x), we see that |π1(p)| = 1 = ‖p‖∞ and we deduce that ‖π1‖∞ =
1. Then, in this case

cond(x, B, B−1) = 1 + |x |.
On the other hand, we can write

κ(x, B, B−1) = sup
‖e‖∞=1

(|π0(e)| + |π1(e)||x |)

= sup
‖e‖∞=1

1

2
(|e(1) + e(−1)| + |e(1) − e(−1)||x |).

Denoting a0 := |e(1) + e(−1)|/2 ≥ 0 and a1 := |e(1) − e(−1)|/2 ≥ 0, we find that

a0 + a1 = max(|e(−1)|, |e(1)|) ≤ 1

and
a0 + a1|x | ≤ a0 + a1 ≤ 1.

Therefore, κ(x, B, B−1) ≤ 1 and, since the value 1 is attained for e(x) = 1, we
conclude that

κ(x, B, B−1) = 1.
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So, we find that κ(x, B, B−1) < cond(x, B, B−1) if x �= 0. In particular, for x = 1,
we have

κ(1, B, B−1) = 1, cond(1, B, B−1) = 2.

3 Conditioning of an operator

The norm of a continuous linear operator on the space of continuous functions on a
compact domain K ⊂ R

d

T : C(K ) → C(K ),

is also called the Lebesgue constant. We can introduce a Lebesgue function as

λ(x; T ) := sup
‖e‖∞=1

|T [e](x)|.

The following result proves that the supremum value of the Lebesgue function coin-
cides with the Lebesgue constant.

Proposition 2 Let T : C(K ) → C(K ) be a continuous linear operator on the space
of continuous functions defined on the compact domain K . Then, we have

‖T ‖∞ = sup
x∈K

λ(x; T ).

Proof From

λ(x; T ) = sup
‖e‖∞=1

|T [e](x)| ≤ sup
‖e‖∞=1

‖T [e]‖∞ = ‖T ‖∞,

we deduce that
sup
x∈K

λ(x; T ) ≤ ‖T ‖∞.

On the other hand, for each e ∈ C(K ) with ‖e‖∞ = 1, we have that

|T [e](x)| ≤ sup
‖ f ‖∞=1

|T [ f ](x)| = λ(x; T ).

Then, we deduce that

‖T [e]‖∞ ≤ sup
x∈K

λ(x; T ), e ∈ C(K ), ‖e‖∞ = 1,

and
‖T ‖∞ = sup

‖e‖∞=1
‖T [e]‖∞ ≤ sup

x∈K
λ(x; T ).

�
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If T has finite rank, dimU = n + 1, with U = T [C(K )], we can obtain the
representation of T with respect to a basis B : Rn+1 → U of the form

T [ f ](x) =
n∑

i=0

πi T [ f ]bi (x).

Defining� := B−1 ◦T , we have that� f = (φ0 f , . . . , φn f ), where φi : C(K ) → R

is the linear functional obtained applying the i-th coordinate map to T [ f ]

φi f = πi T [ f ], f ∈ C(K ).

In this way, the relation T = B ◦ � can be understood as a way of representing the
operator by choosing a basis (b0, . . . , bn) and a system of functionals (φ0, . . . , φn).

Definition 2 Let U be a finite dimensional subspace of C(K ) with dimU = n + 1
and let B : Rn+1 → U be a basis mapping for U . Let � : C(K ) → R

n+1 whose
components φi : C(K ) → R, i = 1, . . . , n, are continuous linear functionals defined
on C(K ). We define

κ(x, B,�) := sup
e∈C(K ),‖e‖∞=1

n∑

i=0

|φi (e)bi (x)|.

The conditioning κ(x, B,�) can be regarded as a pointwise bound for the error in
the computation of the operator T = B ◦� expressed in terms of the basis B, relative
to the size of any perturbation e ∈ C(K ).

Proposition 3 Let T : C(K ) → C(K ) be a continuous linear operator of finite rank
U = T [C(K )] with dim(U ) = n + 1. Let B : U → R

n+1 be a basis mapping and let
� = B−1 ◦ T . Then, we have

|T [ f̃ ](x) − T [ f ](x)| ≤ κ(x, B,�)‖ f̃ − f ‖∞, x ∈ K , f , f̃ ∈ C(K ).

We also have the following inequality relating κ(x, B,�) and the Lebesgue function
λ(x; T )

λ(x; T ) ≤ κ(x, B,�), x ∈ K ,

and so,
‖T ‖∞ ≤ max

x∈K κ(x, B,�).

Proof Let φi : C(K ) → R be the components of �, i = 0, . . . , n, and let e = f̃ − f
be the perturbation function. Since T [e] = ∑n

i=0 φi (e)bi , we can write

|T [ f + e](x) − T [ f ](x)| = |T [e](x)| ≤
n∑

i=0

|φi (e)bi (x)| ≤ κ(x, B,�)‖e‖∞. (1)
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By the above inequality, we have that

λ(x; T ) = sup
‖e‖∞=1

|T [e](x)| ≤ κ(x, B,�)

and

‖T ‖∞ = sup
‖e‖∞=1

‖T [e]‖∞ = sup
‖e‖∞=1

max
x∈K |T [e](x)| ≤ max

x∈K κ(x, B,�).

�
Note that, in contrast to κ(x, B,�), the Lebesgue function λ(x; T ) depends only

on the finite rank operator and not on the choice of the basis. Different bases B may
lead to different conditionings κ(x, B,�). If κ(x, B,�) is close to λ(x; T ), the basis
B provides a quasi-optimal conditioned representation of the operator at the point x .

In [5], the following measure for the conditioning was introduced:

cond(x, B,�) :=
n∑

i=0

‖φi‖∞|bi (x)|.

Let us show that κ(x, B,�) provides a measure of the conditioning sharper than
cond(x, B,�).

Proposition 4 Let U be a finite dimensional subspace of C(K ) with dimU = n + 1
and let B : Rn+1 → U be a basis mapping for U. Let � : C(K ) → R

n+1 whose
components φi : C(K ) → R, i = 0, 1, . . . , n, are continuous linear functionals
defined on C(K ). Then, we have the following inequality:

κ(x, B,�) ≤ cond(x, B,�), x ∈ K .

Proof Taking into account that |φi (e)| ≤ ‖φi‖∞‖e‖∞, we have

κ(x, B,�) = sup
‖e‖∞=1

n∑

i=0

|φi (e)bi (x)| ≤
n∑

i=0

‖φi‖∞|bi (x)| = cond(x, B,�).

�
For a given operator T : C(K ) → C(K ), with U := T [C(K )], we can compare

different representations with respect to different bases. If B and B̄ are two basis
mappings of U , we can write

T [ f ](x) =
n∑

i=0

φi ( f )bi (x) =
n∑

i=0

φ̄i ( f )b̄i (x),
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where � = B−1 ◦ T and �′ = B̄−1 ◦ T . We have already mentioned that the con-
ditioning depends on the choice of the basis. A reordering of the elements of a basis
corresponds to a reordering of the associated functionals. In the same way, a rescaling
of the basis b̄i (x) = kibi (x), implies a rescaling of the functions φ̄i = 1

ki
φi . Let us

show now that the conditionings cond(x, B,�) and κ(x, B,�) are invariant under
reordering or rescaling of the basis.

Proposition 5 Let φi : C(K ) → R, i = 0, . . . , n, be a sequence of linear functionals
and B be a basis mapping of a finite dimensional space U ⊂ C(K ). Let ki �= 0,
i = 0, . . . , n, and σ : {0, 1, . . . , n} → {0, 1, . . . , n} be any permutation. Let b̄i (x) =
kibσ(i)(x) and φ̄i ( f ) = φσ(i)( f )/ki . Then

cond(x, B,�) = cond(x, B̄, �̄), κ(x, B,�) = κ(x, B̄, �̄), x ∈ K .

Proof Clearly,

n∑

i=0

‖φ̄i‖∞|b̄i (x)| =
n∑

i=0

‖φσ(i)‖∞
|ki | |ki ||bσ(i)(x)| =

n∑

i=0

‖φi‖∞|bi (x)|,

which implies that cond(x, B,�) = cond(x, B̄, �̄). On the other hand,

n∑

i=0

|φ̄i (e)||b̄i (x)| =
n∑

i=0

|φσ(i)(e)|
|ki | |ki ||bσ(i)(x)| =

n∑

i=0

|φi (e)||bi (x)|,

and taking the supremum when ‖e‖∞ = 1, we deduce that κ(x, B,�) = κ(x, B̄, �̄).
�

In some cases, we can deduce the equality of both conditionings. We say that a
functional φ : C(K ) → R is nonnegative if φ( f ) ≥ 0 for any nonnegative continuous
function f ∈ C(K ), f ≥ 0.

Lemma 1 If φ : C(K ) → R is a nonnegative continuous linear functional, then
‖φ‖∞ = φ(1).

Proof Clearly,
φ(1) = |φ(1)| ≤ sup

‖e‖∞=1
|φ(e)| ≤ ‖φ‖∞.

On the other hand, we have for any e ∈ C(K ) with ‖e‖∞ = 1 that both 1 + e(x)
and 1 − e(x) are nonnegative functions. By the nonnegativity of φ, φ(1) + φ(e) and
φ(1) − φ(e) are nonnegative values and hence |φ(e)| ≤ φ(1). Therefore

‖φ‖∞ = sup
‖e‖∞=1

|φ(e)| ≤ φ(1).

�
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Now, we deduce the equality of both conditionings if the corresponding functionals
are nonnegative.

Proposition 6 Let φi : C(K ) → R, i = 0, . . . , n, be a sequence of nonnegative linear
functionals and B be a basis mapping of a finite dimensional space U ⊂ C(K ). Then

κ(x, B,�) = cond(x, B,�), x ∈ K .

Proof By Lemma 1, we have that φi (1) = ‖φi‖∞. So, we deduce that

κ(x, B,�) ≥
n∑

i=0

φi (1)|bi (x)| =
n∑

i=0

‖φi‖∞|bi (x)| = cond(x, B,�)

and, using Proposition 4, the result follows. �
In some cases, the basis B of the space U can be chosen such that all functions

bi attain its maximum absolute value at the same point. Legendre and Chebyshev
polynomials form relevant bases of the space of polynomials of degree not greater
than n and attain its maximum absolute value on [−1, 1] at x = 1.

Proposition 7 Let U be a finite dimensional subspace of C(K ) with dimU = n + 1
and let B : Rn+1 → U be a basis mapping for U such that there exists x0 ∈ K such
that all basis functions attain its maximum at the same point x0 ∈ K,

max
x∈K |bi (x)| = |bi (x0)|

and � : C(K ) → R
n+1 whose components φi : C(K ) → R, i = 0, 1, . . . , n,

are continuous linear functionals defined on C(K ). Then, the maximum condition is
attained at x0,

max
x∈K cond(x, B,�) = cond(x0, B,�), max

x∈K κ(x, B,�) = κ(x0, B,�).

Proof Clearly, we have

cond(x, B,�) =
n∑

i=0

‖φi‖∞|bi (x)| ≤
n∑

i=0

‖φi‖∞|bi (x0)| = cond(x0, B,�)

and

κ(x, B,�) = sup
‖e‖∞=1

n∑

i=0

|φi (e)||bi (x)| ≤ sup
‖e‖∞=1

n∑

i=0

|φi (e)||bi (x0)| = κ(x0, B,�).

�
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4 Conditioning of least squares problems

In this section, orthogonal projections arising in least squares problems will be con-
sidered. We first deduce some general properties of the conditioning of projectors.

Definition 3 Let T : C(K ) → C(K ) be a linear operator. We say that T is a projector
if T [u] = u for all u ∈ U , where U := T [C(K )].

If T is a projector, then T ◦B = B for any basis mapping ofU . So, if� = B−1 ◦T ,
we have

� ◦ B = B−1 ◦ T ◦ B = I ,

where I is the identity map from R
n+1 → R

n+1. In other words, the system of
functionals (φ0, . . . , φn) is dual to the basis (b0, . . . , bn) in the sense that

φi (b j ) = δi j , i, j = 0, . . . , n,

where δi j is the Kronecker symbol. This implies that the restriction of � to the space
U coincides with the coordinate mapping B−1, that is,

�u = B−1u, u ∈ U .

The following proposition shows that the condition of the representation of a projector
is always greater than or equal to the corresponding condition of the basis.

Proposition 8 Let T : C(K ) → C(K ) be a projector on a finite dimensional space
U and let B be a basis mapping of U. If � = B−1 ◦ T , then

cond(x, B, B−1) ≤ cond(x, B,�), x ∈ K ,

and
κ(x, B, B−1) ≤ κ(x, B,�), x ∈ K .

Proof Let π0, . . . , πn be the coordinate mappings with respect to B. Since T is a
projector, then φi u = πi u for all u ∈ U , i = 0, . . . , n. Then

‖φi‖∞ = sup
e∈C(K ),‖e‖∞=1

|φi e| ≥ sup
e∈U ,‖e‖∞=1

|φi e| = sup
e∈U ,‖e‖∞=1

|πi e| = ‖πi‖∞

and we conclude that

cond(x, B,�) =
n∑

i=0

‖φi‖∞|bi (x)| ≥
n∑

i=0

‖πi‖∞|bi (x)| = cond(x, B, B−1).
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In the same way, we deduce that

κ(x, B,�) = sup
e∈C(K ),‖e‖∞=1

n∑

i=0

|φi (e)bi (x)| ≥ sup
e∈U ,‖e‖∞=1

n∑

i=0

|φi (e)bi (x)|

= sup
e∈U ,‖e‖∞=1

n∑

i=0

|πi (e)bi (x)| = κ(x, B, B−1).

�
Let K be a compact set of Rd and μ be a nonnegative regular Borel measure with

0 < μ(K ) < ∞. Let us define the semidefinite symmetric bilinear form

〈 f , g〉 =
∫

K
f (x)g(x)dμ(x), (2)

and ‖ f ‖2 := 〈 f , f 〉1/2. The best approximation of f ∈ C(K ) in a finite dimensional
subspaceU is a function minimizing ‖ f − u‖2, u ∈ U . If the bilinear form is positive
definite on the finite dimensional subspaceU , then the best approximation exists, it is
unique and it is characterized by the property that the error is orthogonal to the space
U . If P = (p0, . . . , pn) is an orthogonal basis of U , then the solution of the least
squares problem can be given as the n-th Fourier sum

Sn[ f ] =
n∑

i=0

〈 f , pi 〉
‖pi‖22

pi , f ∈ C(K ).

Introducing the Christoffel-Darboux kernel

Kn(x, y) :=
n∑

i=0

pi (x)pi (y)

‖pi‖22
,

we can express the n-th Fourier sum in the form

Sn[ f ](x) =
∫

K
Kn(x, y) f (y)dμ(y).

Using the Cauchy-Schwarz inequality

|Sn[ f ](x)|2 ≤
∫

K
Kn(x, y)

2dμ(y)
∫

K
f (y)2dμ(y) = Kn(x, x)‖ f ‖22,

we deduce that the values of the Fourier sum at x and the norm ‖ f ‖2 for f ∈ C(K )

can be related by the Christoffel function 1/Kn(x, x) (see Theorem 3.6.6 of [7]). Since
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the measure of K is finite, we have that

‖ f ‖22 ≤ ‖ f ‖2∞μ(K )

and the following upper bound for the Lebesgue function in terms of the Christoffel
function follows

|λ(x; Sn)|2 ≤ ‖1‖2
√
Kn(x, x).

The next result shows that the same bound can be deduced for the conditioning
κ(x, P,�) for the Fourier sum expressed in terms of an orthogonal basis P .

Theorem 1 Let K be a compact set ofRd andμ be a nonnegative finite Borel measure.
Let P = (p0, . . . , pn) be an orthogonal basis of a space U with respect to the bilinear
form 〈 f , g〉 := ∫

K f (x)g(x)dμ(x) and

φi f := 〈 f , pi 〉
‖pi‖22

, i = 0, . . . , n.

Let

Kn(x, y) :=
n∑

i=0

pi (x)pi (y)

‖pi‖22
,

be the Christoffel-Darboux kernel associated to the basis P. Then, the Lebesgue
function of the Fourier sum operator Sn[ f ](x) := ∑n

i=0 φi f pi (x) is given by

λ(x; Sn) =
∫

K
|Kn(x, y)|dμ(y),

and we have the following bounds for the conditionings

cond(x, P,�) =
n∑

i=0

‖pi‖1
‖pi‖22

|pi (x)| ≤ ‖1‖2
n∑

i=0

|pi (x)|
‖pi‖2 , (3)

κ(x, P,�) ≤ ‖1‖2
√
Kn(x, x) = ‖1‖2

( n∑

i=0

|pi (x)|2
‖pi‖22

)1/2
. (4)

Proof Let

Kn(x, y) :=
n∑

i=0

pi (x)pi (y)

‖pi‖22
,

be the Christoffel-Darboux kernel associated to the orthogonal basis P . The Lebesgue
function of the projector Sn can be written in the form

λ(x; Sn) := sup
‖e‖∞=1

∣∣∣
∫

K
Kn(x, y)e(y)dμ(y)

∣∣∣.
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Choosing for each x ∈ K a sequence en(y) of functions in C(K ) with ‖en‖∞ = 1
converging to sign(K (x, y)), where

sign(x) :=

⎧
⎪⎨

⎪⎩

−1, x < 0,

0, x = 0,

1, x > 0,

we deduce that

λ(x; Sn) =
∫

K
|Kn(x, y)|dμ(y).

By the Riesz representation Theorem (see Theorem 6.19 of Chapter 6 of [9]),

‖φi‖∞ =
∫
K |pi (y)|dμ(y)

‖pi‖22
= ‖pi‖1

‖pi‖22
,

where ‖pi‖1 := ∫
K |pi (x)|dμ(x). Then, we obtain (see Proposition 1 of [5])

cond(x, P,�) =
n∑

i=0

‖pi‖1
‖pi‖22

|pi (x)|.

Using the Cauchy-Schwarz inequality
∫
K |pi (x)|dμ(x) ≤ ‖pi‖2‖1‖2, the bound (3)

follows. Now, let us bound

κ(x, P,�) = sup
‖e‖∞=1

n∑

i=0

|〈e, pi 〉|
‖pi‖22

|pi (x)|.

From the Cauchy-Schwarz inequality, we obtain

n∑

i=0

|〈e, pi 〉|
‖pi‖22

|pi (x)| ≤
( n∑

i=0

|〈e, pi 〉|2
‖pi‖22

)1/2( n∑

i=0

|pi (x)|2
‖pi‖22

)1/2
.

Using Bessel inequality and the fact that |e(x)| ≤ 1, for all x , we deduce that

n∑

i=0

|〈e, pi 〉|2
‖pi‖22

≤ ‖e‖22 ≤ μ(K ) = ‖1‖22.

Then, the bound (4) follows. �
We remark that the bound in (4) is lower than the bound in (3) because

n∑

i=0

|pi (x)|2
‖pi‖22

≤
( n∑

i=0

|pi (x)|
‖pi‖2

)2
.
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Now, let us analyze some common Fourier approximations with respect to different
scalar products, giving rise to classical orthogonal polynomials.

In the case that μ is the Lebesgue measure on [−1, 1], we can take the basis of
Legendre polynomials P = (P0, . . . , Pn). Taking into account that

‖Pi‖22 = 2

2i + 1
, ‖Pi‖1 ≤ √

2‖Pi‖2 = 2√
2i + 1

,

we have that

cond(x, P,�) =
n∑

i=0

‖Pi‖1
‖Pi‖22

|Pi (x)| ≤
n∑

i=0

√
2i + 1|Pi (x)|.

From the fact that the Legendre polynomials attain its maximum value Pn(1) = 1 at
x = 1 (see Section 7.2 of [10]), we deduce from Proposition 7 that

max
x∈[−1,1] cond(x, P,�) = cond(1, P,�) ≤

n∑

i=0

√
2i + 1

(see Proposition 2 of [5]). Using Proposition 7, we deduce that κ(x, P,�) attains its
maximum value at x = 1, and from (4), we get

max
x∈[−1,1] κ(x, P,�) = κ(1, P,�) ≤ √

2
( n∑

i=0

2i + 1

2

)1/2 = n + 1.

We remark that

2
√
2

3

√
(n + 1)3 ≤

n∑

i=0

√
2i + 1 ≤ 1 + (4n + 5)

√
2n + 1

6
,

which implies that the bound for cond(x, P,�) is higher than the bound for
κ(x, P,�).

Example 2 Let us consider the Fourier sum that associates to each function its best
approximation in the least squares sense in the space of polynomials of degree not
greater than 1

S1[ f ](x) := 1

2

∫ 1

−1
f (t)dt + 3x

2

∫ 1

−1
t f (t)dt =

∫ 1

−1

1 + 3xt

2
f (t)dt .

Let us first compute the Lebesgue function of S1. By Theorem 1,

λ(x; S1) = sup
‖e‖∞=1

∣∣∣
∫ 1

−1

1 + 3xt

2
e(t)dt

∣∣∣ = 1

2

∫ 1

−1
|1 + 3xt |dt .

123



52 Page 16 of 33 Carnicer et al.

Using the change of variables τ = −t , we deduce

λ(−x; S1) = 1

2

∫ 1

−1
|1 − 3xt |dt = 1

2

∫ 1

−1
|1 + 3xτ |dτ = λ(x; S1).

So, the Lebesgue function is an even function.
If |x | ≤ 1/3, then 1 + 3xt is nonnegative for each t ∈ [−1, 1], and we obtain

λ(x; S1) = 1

2

∫ 1

−1

∣∣1 + 3xt
∣∣dt = 1

2

∫ 1

−1
(1 + 3xt)dt = 1, |x | ≤ 1/3.

Otherwise, if |x | > 1/3, then 1 + 3xt changes its sign at t = −1
3x , and we deduce that

1

2

∫ 1

−1

∣∣1 + 3xt
∣∣dt = 1

2

(∣∣∣
∫ −1

3x

−1
(1 + 3xt)dt

∣∣∣ +
∣∣∣
∫ 1

−1
3x

(1 + 3xt)dt
∣∣∣
)

= 1

2

(∣∣∣1 − 1

3x
− 3x

2

(
1 − 1

9x2

)∣∣∣ +
∣∣∣1 + 1

3x
+ 3x

2

(
1 − 1

9x2

)∣∣∣
)

= 1

2

(∣∣∣1 − 3x

2
− 1

6x

∣∣∣ +
∣∣∣1 + 3x

2
+ 1

6x

∣∣∣
)
.

Using the identity max(|a|, |b|) = |a + b|/2 + |a − b|/2, we obtain

λ(x; S1) = max
(
1,

3|x |
2

+ 1

6|x |
)

= 1

2

(
3|x | + 1

3|x |
)
, |x | ≥ 1/3.

The continuous linear functionals for the representation of S1 with respect to the
basis of Legendre polynomials P0(x) = 1, P1(x) = x , are

φ0[ f ] = 1

2

∫ 1

−1
f (t)dt, φ1[ f ] = 3

2

∫ 1

−1
t f (t)dt .

The corresponding norms are ‖φ0‖∞ = 1, ‖φ1‖∞ = 3/2. So, a direct computation
gives

cond(x, P,�) = 1 + 3

2
|x |.

Now, we compute

κ(x, P,�) = sup
‖e‖∞=1

1

2

∣∣∣
∫ 1

−1
e(t)dt

∣∣∣ + 3|x |
2

∣∣∣
∫ 1

−1
te(t)dt

∣∣∣.
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We use the identity |a| + |b| = max(|a − b|, |a + b|), to obtain

1

2

∣∣∣
∫ 1

−1
e(t)dt

∣∣∣ + 3|x |
2

∣∣∣
∫ 1

−1
te(t)dt

∣∣∣ = 1

2
max

s∈{−1,1}

∣∣∣
∫ 1

−1
(s + 3|x |t)e(t)dt

∣∣∣ ≤
‖e‖∞
2

max
s∈{−1,1}

∫ 1

−1

∣∣s + 3|x |t∣∣dt .

By the symmetry of the functions t ∈ [−1, 1] �→ |1 + 3|x |t |, t ∈ [−1, 1] �→ | − 1 +
3|x |t |, we see that both have the same integral and obtain

κ(x, P,�) ≤ 1

2

∫ 1

−1

∣∣1 + 3|x |t∣∣dt = λ(|x |; S1) = λ(x; S1).

From Proposition 3, we deduce that

κ(x, B,�) = λ(x; T ) = 1

2

∫ 1

−1

∣∣1 + 3xt
∣∣dt .

So, we have that

λ(x; S1) = κ(x, P,�) < cond(x, P,�).

Thus, we can say that the basis of Legendre polynomials has the optimal condi-
tioning κ(x, B,�) = λ(x; T ). However, the conditioning cond(x, P,�) does not
show the good behavior of the basis. By Proposition 7, the maximum value of both
conditionings is attained at x = 1

‖T ‖∞ = κ(1, P,�) = 5

3
<

5

2
= cond(1, P,�).

Chebyshev polynomials T = (T0, . . . , Tn) are orthogonal with respect to dμ(x) =
dx/

√
1 − x2 on the interval [−1, 1]. Taking into account that‖T0‖2 = 2π ,‖Tn‖22 = π ,

for n ≥ 1, we deduce from (4) that

κ(x, T , τ ) ≤ √
2π

( 1

2π
+ 1

π

n∑

i=1

Ti (x)
2
)1/2 =

(
1 + 2

n∑

i=1

Ti (x)
2
)1/2

.

The norm of the functionals τi f = 〈 f , Ti 〉/‖Ti‖2 can be computed from the fact
that ‖T0‖1 = π and ‖Tn‖1 = 2, for n ≥ 1,

‖τ0‖∞ = 1, ‖τn‖∞ = 4

π
, n ≥ 1,
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giving rise to

cond(x, T , τ ) =
n∑

i=0

‖τi‖∞|Ti (x)| = 1 + 4

π

n∑

i=1

|Ti (x)|,

So, we find again that the bound for κ(x, T , τ ) is lower than cond(x, T , τ ). Since
Chebyshev polynomials attain its maximum absolute value at x = 1, we deduce
from Proposition 7, that the maximum conditionings κ(x, T , τ ) and cond(x, T , τ ) are
attained at x = 1

max
x∈[−1,1] cond(x, T , τ ) = cond(1, T , τ ) = 1 + 4n

π

and
max

x∈[−1,1] κ(x, T , τ ) = κ(1, T , τ ) ≤ √
2n + 1.

Disk polynomials (cf. section 2.6 of [7]) can be used for approximation of functions
in the disk D = {(r cos θ, r sin θ)|0 ≤ r ≤ 1; θ ∈ [−π, π ]}. An orthogonal basis of
Gegegenbauer-like orthogonal polynomials with respect to the measure

d(μ, θ) = α + 1

π
(1 − r2)αdrdθ

is given by

Zα
j,m(r , θ) :=

{
Rα
j,|m|(r) cos(|m|θ), if m ≥ 0,

Rα
j,|m|(r) sin(|m|θ), if m < 0,

2 j + |m| ≤ n, (5)

where

Rα
j,|m|(r) := P(α,|m|)

j (2r2 − 1)

P(α,|m|)
j (1)

r |m|

and P(α,m)
j denotes the usual Jacobi polynomial of degree j in [−1, 1]. In Theorem 3

of [6], the conditioning of the basis has been computed as

cond(r , θ, Zα,�α) =
�n/2�∑

j=0

Hα
j, j

hα
j, j

|Rα
j,0(r)| (6)

+ 4

π

n∑

m=1

�(n−m)/2�∑

j=0

Hα
j+m, j

hα
j+m, j

|Rα
j,m(r)|(| cosmθ | + | sinmθ |),
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where

Hα
j+m, j := 2(α + 1)

∫ 1

0
|Rα

j,m(r)|r(1 − r2)αdr ,

hα
j+m, j := 2(α + 1)

P(α,m)
j (1)2

∫ 1

0
P(α,m)
j (2r2 − 1)2r2m+1(1 − r2)αdr .

The integral defining hα
j+m, j can be expressed in terms of the square of the norm of

the usual Jacobi polynomials (see formula (8) of [6]) giving rise to

hα
j+m,m = ( j + m)! j !

(α + 2 j + m + 1)(α + 2) j+m−1(α + 1) j
, j + m > 0,

where (t) j := t(t + 1) · · · (t + j − 1) denotes the usual Pochhammer symbol. For
j = m = 0, we have hα

0,0 = 1. First, we provide the values of the norm of the basis
(see the proof of Theorem 3 of [6])

‖Zα
j,0‖2α = hα

j, j , ‖Zα
j,m‖2α = 1

2
hα
j+m, j .

We now compute a bound for κ(r , θ, Zα,�α) using formula (4).

κ(r , θ, Zα,�α)2 ≤
�n/2�∑

j=0

Zα
j,0(r , θ)2

hα
j, j

+ 2
n∑

m=1

�(n−m)/2�∑

j=0

Zα
j,m(r , θ)2 + Zα

j,−m(r , θ)2

hα
j+m, j

=
�n/2�∑

j=0

Rα
j,0(r)

2

hα
j, j

+ 2
n∑

m=1

�(n−m)/2�∑

j=0

Rα
j,m(r)2

hα
j+m, j

.

Since the polynomials Z j,m attain their maximum value at the boundary r = 1, we
get that Rα

j,m(r) ≤ Rα
j,m(1) = 1 and deduce the following bound

max
r∈[0,1],θ∈[0,2π ] κ(r , θ, Zα,�α) ≤

( �n/2�∑

j=0

1

hα
j, j

+ 2
n∑

m=1

�(n−m)/2�∑

j=0

1

hα
j+m, j

)1/2
.

Since hα
j+m, j is a decreasing function of α, α ∈ [0,∞), we deduce that the least bound

is attained for the Zernike polynomials corresponding to α = 0

max
r∈[0,1],θ∈[0,2π ] κ(r , θ, Z0,�0) ≤

( �n/2�∑

j=0

(2 j + 1) + 2
n∑

m=1

�(n−m)/2�∑

j=0

(2 j +m + 1)
)1/2

.
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Then, we can write

�n/2�∑

j=0

(2 j + 1) + 2
n∑

m=1

�(n−m)/2�∑

j=0

(2 j + m + 1)

=
�n/2�∑

j=0

(2 j + 1) +
n∑

l=1

2� l + 1

2
�(l + 1) =

n∑

l=0

(l + 1)2 = (n + 1)(n + 2)(2n + 3)

6
,

and obtain the bound

max
r∈[0,1],θ∈[0,2π ] κ(r , θ, Z0,�0) ≤

√
(n + 1)(n + 2)(2n + 3)

6
.

In Proposition 2 of [6] it was shown that

max
r∈[0,1],θ∈[0,2π ] cond(r , θ, Zα,�α) ≤

�n/2�∑

j=0

1√
hα
j, j

+ 4
√
2

π

n∑

m=1

�(n−m)/2�∑

j=0

1√
hα
j+m, j

.

With an analogous reasoning, we get that the bound is a decreasing function of α ∈
[0,∞) and the least bound is obtained for α = 0

max
r∈[0,1],θ∈[0,2π ] cond(r , θ, Z0,�0) ≤ 4

√
2

5π
(n + 5/2)(n + 3/2)3/2.

Clearly, the bound for κ(r , θ, Z0,�0) is lower than the bound for cond(r , θ, Z0,�0).

5 Conditioning of Lagrange interpolation

An interesting case of a projector is the Lagrange interpolation operator. Given a
sequence of distinct nodes X = (x0, . . . , xn) with x0, . . . xn ∈ K and a subspace
U ⊂ C(K ) with dimU = n + 1 such that the Lagrange interpolation problem

u(xi ) = f (xi ), i = 0, . . . , n,

has a unique solution in U , we can define the operator

T : C(K ) → C(K ),

which associates to each f ∈ C(K ) its unique interpolant in U at the sequence of
nodes. Let l0, . . . , ln ∈ U be the fundamental solution associated to the sequence of
nodes, that is

l j (xi ) = δi j ,
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where δi j is the Kronecker symbol. Then, we can express the operator in terms of the
Lagrange basis

L : c ∈ R
n+1 →

n∑

i=0

ci li ∈ U ,

as follows

T [ f ] =
n∑

i=0

f (xi )li (x).

The functionals X ′ := L−1 ◦ T associated to the Lagrange representation of the
interpolant L[ f ] are the evaluation functionals at the nodes

x ′
i f := f (xi ), i = 0, . . . , n.

Theorem 2 LetU be a subspace ofC(K )withdimU = n+1and let X = (x0, . . . , xn)
be a sequence of nodes such that the Lagrange interpolation problem has a unique
solution in U. Let T be the Lagrange interpolation operator, L be the Lagrange basis
and let X ′ = (x ′

0, . . . , x
′
n) be the evaluation functionals at the nodes,

x ′
i f := f (xi ), i = 0, . . . , n.

Then

λ(x; T ) = κ(x, L, X ′) = cond(x, L, X ′) =
n∑

i=0

|li (x)| x ∈ K . (7)

If, in addition, the constant functions belong to U, we also have that

κ(x, L, L−1) = cond(x, L, L−1) =
n∑

i=0

|li (x)| ≥ 1, x ∈ K .

Proof By propositions 3 and 4, we have that

λ(x; T ) ≤ κ(x, L, X ′) ≤ cond(x, L, X ′), x ∈ K .

The evaluation functionals have unit norm, and we can write

cond(x, L, X ′) =
n∑

i=0

‖x ′
i‖∞|li (x)| =

n∑

i=0

|li (x)|.

Given ξ ∈ K , let u ∈ U be the solution of the interpolation problem

u(xi ) = signli (ξ), i = 0, . . . , n.
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Let us define

e(x) :=

⎧
⎪⎨

⎪⎩

1, if u(x) > 1,

u(x), if |u(x)| ≤ 1,

−1, if u(x) < −1.

Then, we have that ‖e‖∞ = 1 and e ∈ C(K ). For this function, we can write

T [e](x) =
n∑

i=0

sign(li (ξ))li (x).

In particular,

T [e](ξ) =
n∑

i=0

sign(li (ξ))li (ξ) =
n∑

i=0

|li (ξ)|.

So, the value |T [e](ξ)| = ∑n
i=0 |li (ξ)| is attained and we deduce that

λ(ξ ; T ) ≥
n∑

i=0

|li (ξ)|

for each ξ ∈ K . So, we have shown (7).
Since the interpolation operator is a projection, we deduce from Proposition 8 that

cond(x, L, L−1) ≤ cond(x, L, X ′) and κ(x, L, L−1) ≤ κ(x, L, X ′). Let π0, . . . , πn

be the coordinate projections corresponding to the Lagrange basis. If 1 ∈ U , by
Proposition 1, we have that

cond(x, L, L−1) ≥ κ(x, L, L−1) = sup
e∈U ,‖e‖∞=1

n∑

i=0

|πi (e)li (x)| ≥
n∑

i=0

|πi (1)li (x)|

=
n∑

i=0

|li (x)| = cond(x, L, X ′) ≥ cond(x, L, L−1).

Finally, if 1 ∈ U , we also have that
∑n

i=0 li (x) = 1 and, by the triangular inequality,∑n
i=0 |li (x)| ≥ 1 for all x ∈ K . �
So, we have shown that the Lagrange representation of the interpolation L[ f ] =∑n
i=0 f (xi )li has optimal conditioning and that both κ(x, L, X ′) and cond(x, L, X ′)

coincide for this representation.
We observe that the Lagrange representation is a particular case of a representation

with respect to a set of nonnegative functionals and that the equality of κ(x, L, X ′)
and cond(x, L, X ′) could also be obtained by direct application of Proposition 6.

Let us compute the conditionings of the representation of the interpolant L[ f ]with
respect to any other basis. Let us denote

skeel(A) :=
∥∥∥|A−1||A|

∥∥∥∞ ,
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the Skeel condition number, where |A| stands for the matrix whose entries are the
absolute values of the entries of A.

Theorem 3 LetU be a subspace ofC(K )withdimU = n+1and let X = (x0, . . . , xn)
be a sequence of nodes such that the Lagrange interpolation problem has a unique
solution in U. Let T be the Lagrange interpolation operator and B : Rn+1 → U
be a basis mapping. Let � = B−1 ◦ T be the corresponding set of functionals of
the representation of T with respect to the basis B. Let b0(x), . . . , bn(x) be the basis
functions associated to B and let

M(B, X) := (b j (xi ))i, j=0,...,n ∈ R
(n+1)×(n+1)

be the collocation matrix of the basis B at the set of nodes X. Then, we have

cond(x, B,�) = (|b0(x)|, . . . , |bn(x)|)|M(B, X)−1|(1, 1, . . . , 1)T , (8)

max
k∈{0,...,n} cond(xk, B, B−1) =

∥∥∥|M(B, X)| |M(B, X)−1|
∥∥∥∞ = skeel(M(B, X)−1),

(9)
κ(x, B,�) = max

ε0,...,εn∈{−1,1}(|b0(x)|, . . . , |bn(x)|)|M(B, X)−1ε|, (10)

and

max
k=0,...,n

κ(xk, B,�) = max
ε0,...,εn∈{−1,1}

∥∥∥|M(B, X)||M(B, X)−1ε|
∥∥∥∞ . (11)

Proof The matrix M(B, X) is the matrix of change of basis between (b0, . . . , bn) and
the Lagrange basis (l0, . . . , ln)

(b0, . . . , bn) = (l0, . . . , ln)M(B, X).

Let us observe that the basis mapping corresponding to (b0, . . . , bn) is given by

Bc =
n∑

j=0

c j b j =
n∑

i=0

n∑

j=0

b j (xi )c j li = L M(B, X)c, i = 0, . . . , n.

The corresponding functionals � = B−1 ◦ T can be expressed in terms of the inverse
of the matrix M(B, X)

�(u) =
⎛

⎜⎝
φ0(u)

...

φn(u)

⎞

⎟⎠ = B−1(T [u]) = M(B, X)−1X ′(u) = M(B, X)−1

⎛

⎜⎝
u(x0)

...

u(xn)

⎞

⎟⎠ .
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Using the notation M(B, X)−1 = (mi j )i, j=0,...,n , we can write

φi (u) =
n∑

j=0

mi ju(x j ).

Proposition 2 of [3] can be immediately generalized to a multivariate setting to derive

‖φi‖ =
n∑

j=0

|mi j |.

Then, we deduce that

⎛

⎜⎝
‖φ0‖∞

...

‖φn‖∞

⎞

⎟⎠ = |M(B, X)−1|
⎛

⎜⎝
1
...

1

⎞

⎟⎠ .

And we obtain a formula for cond(x, B,�)

cond(x, B,�)=
n∑

i=0

‖φi‖∞ |bi (x)|=(|b0(x)|, . . . , |bn(x)|) |M(B, X)−1| (1, 1, . . . , 1)T

and (8) holds. In particular, we can write

⎛

⎜⎝
cond(x0, B, B−1)

...

cond(xn, B, B−1)

⎞

⎟⎠ = |M(B, X)| |M(B, X)−1|
⎛

⎜⎝
1
...

1

⎞

⎟⎠

and (9) follows.
For the computation of κ(x, B,�), we take into account that

κ(x, B,�) = max‖e‖=1

n∑

i=0

|φi (e)||bi (x)| = max‖e‖=1

n∑

i=0

|e(xi )||bi (x)|.

Denoting εi = e(xi ), i = 0, . . . , n and ε = (ε0, . . . , εn)
T , we can write �(e) =

M(B, X)−1ε and

κ(x, B,�) = max‖ε‖∞=1
(|b0(x)|, . . . , |bn(x)|)|M(B, X)−1ε|.

Taking into account that for each x

F(ε0, . . . , εn) := (|b0(x)|, . . . , |bn(x)|)|M(B, X)−1ε| =
n∑

i=0

∣∣∣bi (x)
i∑

j=0

mi jε j

∣∣∣
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is a convex function in each of the variables ε0, . . . , εn and that a convex function
defined on an interval attains its maximum value at the ends, we deduce that the
maximum is attained only for ε0, . . . , εn ∈ {−1, 1} and then

κ(x, B,�) = max
ε0,...,εn∈{−1,1}(|b0(x)|, . . . , |bn(x)|)|M(B, X)−1ε|,

that is, (10) holds. In particular, we have

κ(xk, B,�) = max
ε0,...,εn∈{−1,1}(|b0(xk)|, . . . , |bn(xk)|)|M(B, X)−1ε|

and (11) follows. �

6 Conditioning of the Newton interpolation formula

Let us now compute the conditioning of the Newton representation of the Lagrange
interpolation formula

L[ f ] =
n∑

i=0

di f ωi ,

where
di f = [x0, . . . , xi ] f ,

is the i-th order divided difference of f at the nodes x0, . . . , xi and

ωi (x) =
i−1∏

j=0

(x − x j ), i = 1, . . . , n,

with the convention that ω0 is the constant polynomial ω0(x) = 1. Since

di f =
i∑

k=0

f (xk)

ω′
i+1(xk)

,

we deduce (see Proposition 2 of [3]) that

‖di‖∞ =
i∑

k=0

1

|ω′
i+1(xk)|

and

cond(x, ω, d) =
n∑

i=0

|ωi (x)|
i∑

k=0

1

|ω′
i+1(xk)|

.

123



52 Page 26 of 33 Carnicer et al.

Using formula (10), the conditioning κ(x, ω, d) can be computed in the following
way

κ(x, ω, d) = max
ε0,...,εn∈{−1,1}

n∑

i=0

∣∣∣ωi (x)
i∑

k=0

εk

ω′
i+1(xk)

∣∣∣.

Definition 4 Let x0, . . . , xn be a sequence of distinct nodes. We say that xn leaves
the other nodes at one side if either xk < xn , k = 0, . . . , n − 1, or xk > xn , k =
0, . . . , n − 1, that is, there exist σ ∈ {−1, 1} such that

sign(xk − xn) = σ, k = 0, . . . , n − 1.

Theorem 4 Let x0, . . . , xn be a sequence of distinct nodes. Then, we have that

κ(x, ω, d) = cond(x, ω, d)

if and only if each node xi leaves the previous nodes x0, . . . , xi−1 at one side, that is,
there exist σ1, . . . , σn such that

sign(xk − xi ) = σi , k = 0, . . . , i − 1.

Proof Let us define s0 := 1 and

si := σ1 · · · σi , i = 1, . . . , n.

Then, we have that

sign(ω′
i+1(xk)) =

∏

j∈{0,...,i}\{k}
sign(xk − x j ) =

∏

j∈{0,...,k−1}
(−σk)

∏

j∈{k+1,...,i}
σ j

= (−σk)
kσk+1 · · · σi = (−σk)

ksksi , k ≤ i .

Choosing εk := (−σk)
ksk , k = 0, . . . , n, we have that

sign(ω′
i+1(xk)) = siεk

and

‖di‖∞ = si

i∑

k=0

εk

ω′
i+1(xk)

, i = 0, . . . , n.

So,

κ(x, ω, d) ≥
n∑

i=0

∣∣∣ωi (x)
i∑

k=0

εk

ω′
i+1(xk)

∣∣∣ =
n∑

i=0

‖di‖∞ |ωi (x)| = cond(x, ω, d).
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From Proposition 4, we deduce that κ(x, ω, d) = cond(x, ω, d).
Conversely, let us assume that κ(x, ω, d) = cond(x, ω, d) for a given x /∈

{x0, . . . , xn}. Let ε0, . . . , εn ∈ {−1, 1} be such that

κ(x, ω, d) =
n∑

i=0

∣∣∣ωi (x)
i∑

k=0

εk

ω′
i+1(xk)

∣∣∣.

Since

|ωi (x)|
∣∣∣

i∑

k=0

εk

ω′
i+1(xk)

∣∣∣ ≤ |ωi (x)|
i∑

k=0

1

|ω′
i+1(xk)|

,

we have that

κ(x, ω, d) =
n∑

i=0

|ωi (x)|
∣∣∣

i∑

k=0

εk

ω′
i+1(xk)

∣∣∣ ≤
n∑

i=0

|ωi (x)|
i∑

k=0

1

|ω′
i+1(xk)|

= cond(x, ω, d).

Since ωi (x) �= 0, equality κ(x, ω, d) = cond(x, ω, d) holds if and only if

∣∣∣
i∑

k=0

εk

ω′
i+1(xk)

∣∣∣ =
i∑

k=0

1

|ω′
i+1(xk)|

, i = 0, . . . , n,

which implies that εkω
′
i+1(xk), k = 0, . . . , i , have the same strict sign si for any

i = 0, . . . , n. So we have that

sign(ω′
i+1(xk)) = siεk, k = 0, . . . , i, i = 0, . . . , n.

Now, we use the recurrence

ω′
i+1(xk) = (xk − xi )ω

′
i (xk), i < k,

to deduce that
siεk = sign(xk − xi )si−1εk .

Defining σi := si si−1, we conclude that

sign(xk − xi ) = σi , k = 0, . . . , i − 1,

that is, each xi leaves the previous nodes x0, . . . , xi−1 to the left (σi = −1) or to the
right (σi = 1). �
Definition 5 We say that the sequence (x0, . . . , xn) follows a central orderwith respect
to a center c if the sequence of distances of the nodes to the center is monotonically
increasing, that is,

|x0 − c| ≤ |x1 − c| ≤ · · · ≤ |xn − c|.
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If the nodes form a monotonic sequence, we can consider that they follow a central
order with respect to the first node x0. In fact, if x0 < · · · < xn , then the distances
|xi − x0| = xi − x0, i = 0, . . . , n, form an increasing sequence. If x0 > · · · > xn , then
the distances |xi − x0| = x0 − xi , i = 0, . . . , n, also form an increasing sequence.

Corollary 1 Let x0, . . . , xn be a sequence of distinct nodes following a central order
with respect to a center c. Then,

κ(x, ω, d) = cond(x, ω, d).

Proof In order to apply the characterization of Theorem 4, let us show that each xi ,
i ∈ {1, . . . , n}, leaves the previous nodes at one side. Let σi := sign(c−xi ) ∈ {−1, 1}.
If σi (c − x j ) > 0 for some j ∈ {0, . . . , i − 1}, then c leaves xi and x j at the same
side and, since both nodes are distinct, we have that |xi − c| > |x j − c| and

σi (x j − xi ) = σi (c − xi ) − σi (c − x j ) = |xi − c| − |x j − c| > 0.

Otherwise, if σi (c − x j ) < 0 for some j ∈ {0, . . . , i − 1}, then

σi (x j − xi ) = σi (c − xi ) − σi (c − x j ) = |xi − c| + |x j − c| > 0.

Therefore,
sign(x j − xi ) = sign(c − xi ) = σi , j = 0, . . . , i − 1,

that is, xi leaves all previous nodes at the same side as c. �
In [4], some nice properties of the central ordering were described. In particular, for

equidistant nodes, the central orderingwith respect to the center of the interval provides
lower bounds for the conditioning of the Newton formula than the corresponding
bounds for increasing nodes.

An ordering of the nodes giving rise to conditionings that are relatively close to
the Lebesgue function is the central ordering with respect to the evaluation point (see
Section 4 of [4]). Using Corollary 1, we also deduce that

κ(x, ω, d) = cond(x, ω, d),

for evaluation of the Newton formula using nodes following a central ordering with
respect to x , that is,

|xn − x | ≥ · · · ≥ |x1 − x | ≥ |x0 − x |.

Let us illustrate with an example that κ(x, ω, d) can be lower than cond(x, ω, d).

Example 3 Let us consider the set of nodes x0 = 0, x1 = 2, x2 = 1 on the interval
[0, 2]. Then, the conditioning of the Newton formula

p(x) = f (x0) + f (x1) − f (x0)

2
x + f (x2) − 2 f (x1) + f (x0)

2
x(x − 2),
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can be computed as follows:

κ(x, ω, d) = sup
ε0,ε1,ε2∈{−1,1}

|ε0|+ |ε1 − ε0|
2

x+ |ε2 − 2ε1 + ε0|
2

x(2− x), x ∈ [0, 2].

We can easily deduce that the supremum can be achieved either for (ε0, ε1, ε2) =
(1, 1,−1) or (ε0, ε1, ε2) = (1,−1, 1) and we have that

κ(x, ω, d) = max(1+2x(2− x), 1+ x + x(2− x)) =
{
1 + 2x(2 − x), x ∈ [0, 1],
1 + 3x − x2, x ∈ [1, 2].

On the other hand,
cond(x, ω, d) = 1 + x + 2x(2 − x).

Evaluating at x = 1, we have

3 = κ(1, ω, d) < cond(1, ω, d) = 4.

The maximum value of κ is attained at x = 3/2, and we have

3.25 = 13

4
= κ(3/2) < cond(3/2) = 4.

On the other hand, the maximum value of cond is attained at x = 5/4 and

3.1875 = 51

16
= κ(5/4) < cond(5/4) = 33

8
= 4.125.

7 Conditioning in the discrete case

The discrete case corresponds to K = {x0, . . . , xn}, where x0, . . . , xn are distinct
points in R

d . Each real function f defined on K can be completely described by the
vector ( f (x0), . . . , f (xn)) ∈ R

n+1. The functions l j ∈ R
K defined by l j (xi ) = δi j ,

j = 0, . . . , n, form a basis of C(K ) = R
K corresponding to the basis mapping

L : (c0, . . . , cn) ∈ R
n+1 →

n∑

j=0

c j l j ∈ R
K .

Since

f (x) =
n∑

j=0

f (x j )l j (x),

the coordinate projectors πi are the evaluation functionals

πi f = f (xi ), i = 0, . . . , n.
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Considering the whole set K as a set of nodes, the functions l0, . . . , ln can be regarded
as the Lagrange basis with respect to the Lagrange interpolation problem, find u ∈ R

K

such that
u(xi ) = f (xi ), i = 0, . . . , n.

This problemhas a unique solution and the interpolation operator T : RK → R
K is the

identity mapping because the interpolation space coincides with the whole set C(K ).
Since T is the identity mapping, the evaluation functionals are just the coordinate
projections B−1 = π = (π0, . . . , πn). The discrete case can be analyzed using the
tools of Sect. 5. Any basis B ofRK can be identifiedwith the corresponding collocation
matrix M(B, K ) = (b j (xi ))i, j=0,...,n . By Theorem 2, the maximum conditioning in
this case can be expressed with the formulae

max
k=0,...,n

(cond(xk, B, B−1)) = skeel(M(B, K )−1),

max
k=0,...,n

κ(xk, B, B−1) = max
ε0,...,εn∈{−1,1}

∥∥∥ |M(B, K )| |M(B, K )−1ε|
∥∥∥∞ .

Any linear operator T : RK → R
K is described by the effect on the basis L

T [l j ] =
n∑

i=0

ai j li

and, since f = ∑n
j=0 f (x j )l j , we can write

T [ f ] =
n∑

j=0

n∑

i=0

ai j f (x j )li .

and we have

T [ f ](xi ) =
n∑

j=0

ai j f (x j ).

The coordinate mapping π transforms each function f into a vector π f in such a way
that

‖ f ‖∞ = max
i=0,...,n

| f (xi )| = ‖π f ‖∞ .

Defining A = (ai j )i, j=0,...,n ∈ R
(n+1)×(n+1), we can express the norm of the operator

T in terms of the norm of the matrix A. From πT [ f ] = Aπ f , we obtain

‖T ‖∞ = max‖ε‖∞=1
‖Aε‖∞ = ‖A‖∞ = max

i=0,...,n

n∑

j=0

|ai j |.

Conversely, since any square matrix A ∈ R
(n+1)×(n+1) defines the mapping x ∈

R
n+1 �→ Ax ∈ R

n+1 and the spaceRn+1 can be regarded as the space of real functions
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on the set K = {0, 1, . . . , n}, we can view any matrix as an operator. Let us show
that the different conditionings coincide with the Lebesgue function and give rise to a
corresponding vector, whose maximum entry is the infinity norm of the matrix.

Proposition 9 Let A ∈ R
(n+1)×(n+1) and let T : R{0,1,...,n} → R

{0,1,...,n} be the linear
operator defined by

T [ f ] =
n∑

j=0

ai j f ( j)li , f ∈ R
{0,1,...,n},

where li is the function defined on {0, 1, . . . , n} whose values are given by li ( j) =
δi j , j = 0, . . . , n, for each i = 0, . . . , n. Let π = (π0, . . . , πn) be the evaluation
functionals πi f = f (i), i = 0, . . . , n, and � = π ◦ T . Then, the Lebesgue function
is given by

λ(i; T ) =
n∑

j=0

|ai j |, i = 0, . . . , n,

and
κ(x, T ,�) = cond(x, T ,�) = λ(x; T ), x ∈ {0, 1, . . . , n}.

Proof For each error function e, we obtain an error vector

ε = πe = (e(0), . . . , e(n))T

such that πT [e] = Aε. So, the values of the Lebesgue function at x = i are given by

λ(i; T ) = max‖e‖∞=1
|T [e](i)| = max‖ε‖∞=1

|
n∑

j=0

ai jε j | =
n∑

j=0

|ai j |.

Collecting all the values of the Lebesgue function, we can form a vector

πλ(·; T ) = |A|(1, . . . , 1)T .

From the definition of �, we have that

φi e = πi (T [e]) = T [e](i) =
n∑

j=0

ai j e( j)

and we deduce that

‖φi‖∞ = max‖e‖∞=1
|T [e](i)| = max‖ε‖∞=1

|
n∑

j=0

ai jε j | =
n∑

j=0

|ai j |.
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So,

cond(x, L,�)=
n∑

i=0

‖φi‖∞ |li (x)|=
n∑

i=0

λ(i; T )li (x) = λ(x; T ), x ∈ {0, 1, . . . , n}.

We also have

κ(i, L,�) = sup
‖e‖∞=1

n∑

j=0

|φ j (e)|l j (i) = sup
‖e‖∞=1

|φi (e)| = ‖φi‖∞ =
n∑

j=0

|ai j |.

Therefore, the result follows. �
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