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Abstract: Multifunctional membrane technology has gained tremendous attention in wastewater
treatment, including oil/water separation and photocatalytic activity. In the present study, a mul-
tifunctional composite nanofiber membrane is capable of removing dyes and separating oil from
wastewater, as well as having antibacterial activity. The composite nanofiber membrane is composed
of cellulose acetate (CA) filled with zinc oxide nanoparticles (ZnO NPs) in a polymer matrix and
dipped into a solution of titanium dioxide nanoparticles (TiO2 NPs). Membrane characterization
was performed using transmission electron microscopy (TEM), field emission scanning electron
microscopy (FESEM), and Fourier transform infrared (FTIR), and water contact angle (WCA) stud-
ies were utilized to evaluate the introduced membranes. Results showed that membranes have
adequate wettability for the separation process and antibacterial activity, which is beneficial for
water disinfection from living organisms. A remarkable result of the membranes’ analysis was that
methylene blue (MB) dye removal occurred through the photocatalysis process with an efficiency of
~20%. Additionally, it exhibits a high separation efficiency of 45% for removing oil from a mixture of
oil–water and water flux of 20.7 L.m−2 h−1 after 1 h. The developed membranes have multifunctional
properties and are expected to provide numerous merits for treating complex wastewater.

Keywords: nanocomposite membrane; photocatalytic; oil/water separation; antibacterial activity

1. Introduction

Modern industries have resulted in various water pollutants, such as dyes and oils
split apart [1]. Physical and biological treatments have high stability, and their aromatic
nature renders them ineffective [2]. Moreover, physical techniques [3] have the potential
to induce the transference of organic compounds to another phase, thereby leading to the
emergence of secondary pollution and additional costs [4,5]. The degradation of pollu-
tants from wastewater, particularly dyes, through photocatalysis is a highly promising,
uncomplicated, and economical approach [6–8]. These dyes such as methylene blue (MB)
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are toxic and non-biodegradable and cause environmental pollution that affects human
health [9]. Membrane technology plays a role in water treatment due to its easy operation,
cost-efficiency, high productivity, and removal capacity [10,11]. Photocatalytic membranes
(PMs) exhibit inherent antimicrobial properties, exceptional hydrophilicity, robust photo-
catalytic oxidation capabilities, and a distinct separation mechanism. These characteristics
enhance the photocatalytic destruction of organic contaminants, bacteria, and viruses
found in water. The contaminants can be effectively degraded to carbon dioxide, water,
and nitrogen gas while operating under ambient temperature conditions. Moreover, an
additional benefit of employing photocatalytic membranes is the requirement to isolate
nano-photocatalyst materials from the system. This particular aspect will encourage the
utilization of photocatalytic membranes in water treatment [12,13]. Furthermore, photocat-
alytic membranes can potentially serve as a pioneering solution for oil–water separation
processes. Nanomaterials in ultra-hydrophilic membranes have advanced oily effluent sep-
aration processes. Polymeric membranes prevent oil droplets from adhering and reducing
filtering resistance [14]. This is due to their ability to effectively mitigate fouling issues and
facilitate chemical and energy free cleaning through solar light irradiation. A cellulose-
based membrane has capabilities for oil–water separation and wastewater purification
treatments. There are several applications of cellulose-based membranes in photocatalytic
degradation, desalination and purification, and reverse osmosis [15].

Photocatalytic nanomaterials offer advantages for preparing highly hydrophilic, self-
cleaning membranes, as they can decompose organic pollutants from the surface and
organic contaminants of fouled pores without secondary pollutants [16,17]. Metallic oxides,
including zinc oxide (ZnO) and titanium dioxide (TiO2), exhibit significant photocatalytic
activity when exposed to sunlight. For example, ZnO has been used as a photocatalytic
material due to its bandgap energy of 3.2 to 3.3 (eV), which makes it a promising pho-
tocatalyst material for hydrogen production [18]. Electrical topologies that reduce the
likelihood of electron–hole recombination and promote effective charge transit dynamics
are attributed to p-n heterojunctions. One significant observation is that semiconductors
with the same photocatalytic properties are incapable of capturing photons within the
visible light spectrum, as they only harvest approximately 4% of the total solar spectrum,
as reported by Revathi [19] and Panthi [20]. Notably, nearly all materials of this nature
experience photocarrier recombination, resulting in a decrease in the efficacy of hydrogen
evolution [19]. In the other hand, TiO2 is a highly researched photocatalytic material owing
to its favorable attributes such as abundant availability, low cost, remarkable chemical
stability, and notable photocatalytic activity. Notwithstanding the manifold benefits of
TiO2, its activation predominantly relies on ultraviolet (UV) radiation, which constitutes
a minor proportion of solar radiation. Consequently, the employment of pure TiO2 in
solar systems results in restricted efficacy in the decomposition of hydrocarbons [21,22].
However, TiO2 exhibits a high band gap energy of 3.2 eV and rapid charge recombination
(photoinduced electrons and holes), constraining its photocatalytic efficacy [23]. Efforts
have been made in research to enhance efficiency by developing composites of TiO2 with
noble metals, graphene oxide (GO), metal-organic frameworks (MOFs), carbon nanotubes
(CNTs), and semiconductors [24–27]. Using nanocomposites inhibits the recombination
process of electron–hole pairs generated by light, enhancing the efficiency of photocataly-
sis [28]. Photocatalytic reactions generate electron–hole pairs after high-energy irradiation.
The combination of distinct semiconductor oxides effectively separates electrons and holes,
leading to elevated levels of photocatalytic performance [29]. TiO2 and ZnO have been
investigated as semiconductor photocatalysts to boost photocatalytic characteristics [30].
These combinations include TiO2/ZnO nanocomposite films, TiO2/ZnO polycrystalline
powders, and TiO2/ZnO composite powders which have a good photocatalytic activity
performance [31–33]. Accordingly, photocatalytic materials applied to solar-light active
membranes can significantly enhance pollutant removal efficiency and membrane surface
cleaning [34].
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The present work examines the engineering of a multifunction photocatalytic mem-
brane that can be utilized for dye degradation, oil–water separation application, and
water disinfection treatment. The fabricated membrane is composed mainly from cellulose
acetate (CA) as a polymer matrix and ZnO NPs immersed into TiO2 NPs solution as a
photocatalytic substitute. The implementation of this particular strategy has the potential
to significantly improve both the photodegradation and antibacterial properties of oily
wastewater and dyes in industrial wastewater. In addition, using polymeric membranes
with nanoparticles would serve nanoparticles for recycling [35]. Electrospinning is used to
fabricate a composite membrane of CA/ZnO NPs followed by immersion in a suspension
solution of TiO2 NPs to facilitate the deposition of TiO2 NPs on the surface of the nanofibers.
The use of a CA/ZnO @ TiO2 NPs-coated membrane for oil–water separation is a proposed
strategy to develop a multifunctional membrane.

2. Materials and Methods
2.1. Materials

All chemicals and other materials utilized in this study were purchased from Sigma
Aldrich. These included cellulose acetate (with an average molecular weight (Mn) of
approximately 50,000 and an acetyl content ranging from 39.20% to 40.20% by weight),
titanium dioxide nanoparticles (TiO2 NPs) nanopowder, <25 nm particle size, 99.7% trace
metals basis, zinc oxide nanoparticles (ZnO NPs) nanopowder, <50 nm particle size (BET),
>97%, acetone, and acetic acid.

2.2. Membrane Fabrication

Cellulose acetate (CA) powder with an 18 wt.% concentration was dissolved in a 3:1
mass ratio of acetic acid to acetone for 12 h, and the mixture was stirred at 200 rpm at room
temperature. Then, 0.5 g of ZnO NPs was added to 18 wt% of the polymer solution, which
used to form a composite nanofiber. The polymer solution was sonicated for 1 h after being
stirred at 200 rpm overnight, which assists to better disperse the nanoparticles throughout
the polymer matrix. Nanofibers were produced using the electrospinning method, as
illustrated in Figure 1. Parameters such as the syringe inner diameter, feed speed, and
collecting distance starting from the needle were adjusted during electrospinning, with
values of 0.52 mm, 1.0 mL/h, and 170 mm being used, respectively. Alligator clips were
used to link a high-voltage DC power source to the anode and an aluminum-foil-covered
flat plate served as the collector and held the needle in place. A high-voltage power
supply (ESN-HV30/ESN-HV30N, NanoNC, Seoul, Republic of Korea) and a syringe pump
(supplier: NanoNC, Republic of Korea) were used at a high voltage of 20 kV at room
temperature for the electrospinning process [36].

A sonication bath was used to disperse the TiO2 NPs into the distilled water, after
which the developed nanocomposite CA/ZnO NPs membrane was placed in the bath.
After 1 h in a sonication bath at 70 ◦C, the membrane was coated with TiO2 NPs suspended
in distilled water and then dried at 50 ◦C for 3 h. A VULCAN 3 -550 electric furnace was
used to calcine the resultant composite of (CA/ZnO NPs)/TiO2 NPs for 4 h at 700 ◦C.
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Figure 1. Illustrative diagram shows nanocomposite membrane fabrication steps: electrospinning
setup component, dip coating of TiO2 NPs, membrane drying, and calcination.

2.3. Membrane Characterization

Field emission scanning electron microscopy (FESEM) with energy dispersive X-
ray spectroscopy (FESEM-EDX; Quanta FEG 250; Japan) was applied to describe the
morphologies of the introduced membranes. Creating a high-resolution image with a
better conductive surface, a 10 nm gold film was applied to the small-size membranes
before investigation using FESEM. Nanofibers of the composite membranes were analyzed
with transmission electron microscopy (TEM), using JEOL’s JEM-2100 model. FT-IR (4100,
JASCO, Tokyo, Japan) was used to evaluate the chemical bonding of blended membranes.
Moreover, the water contact angle was used to test membrane wettability using the DPRO
image standard (Phoenix, SEO, New York, NY, USA).

2.4. Antibacterial Properties

The experimental procedure for evaluating the synthesized samples’ antibacterial
properties was conducted according to our previous report [14]. In brief, various materials
were assessed using a strain of Gram-negative bacteria, namely E. coli. The Muller–Hinton
agar plate model was utilized and subsequently incubated at 37 ◦C for 1–2 days while
maintaining a pH of 7.3 ± 0.1. The circular filter paper, measuring 6 mm in diameter,
underwent sterilization through autoclaving at a temperature of 121 ◦C for 20 min. The
sample used for the experiment had a concentration of 1.5× 108 CFU/mL and was obtained
from various sources. The discs that had been impregnated were subjected to incubation
at 37 ◦C for 48 h. A positive control was utilized, with 30 mg/disc of Tetracycline being
employed. The investigated hybrid materials and growth inhibition diameter were in
millimeters (mm).

2.5. Measurements of Membrane Performance

The CA/ZnO @ TiO2 NPs membrane was placed within a magnetic filter funnel (PALL,
300 mL, Port Washington, NY, USA) to function as a separation membrane. A 20 cm2 area
of effective filtration was measured for the funnel. The polyphenylene sulfone measuring
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cup contained the oil/water mixtures at a concentration of 50 v/v%. The separation was
accomplished through the differential weight of the liquids. Concurrently, in order to
assess the membrane separation efficacy, stability, separation efficiency, and liquid flux
were measured for the various cycles of the oil removal mode.

The flow (J) of liquid across the membrane was calculated according to the follow-
ing equation:

J = V/A × ∆t (1)

where A (m2) is the effective (surface) area of the separation membrane in the setup, V (mL)
is the volume of filtrated liquid, and t (h) is the filtration time.

Equation (2) was used to determine each mixture’s separation efficiency.

ï= V1/V0 × 100 (2)

V0 is the water volume before separation, while V1 is the authorized water volume
after separation.

Methylene blue (MB) with a concentration of (10 ppm) according to previously re-
ported work was used as simulation wastewater [37]. Samples with dye concentrations
were exposed to direct sunshine irradiation and were used as a straightforward photochem-
ical reactor to test the photocatalytic materials. Each experiment maintained the produced
photocatalytic nanomaterial’s initial concentration and mixed solution volume. A 50 mL
glass beaker contained 10 mg of the manufactured components and a 15 mL organic dye
solution (10 ppm). To reach desorption-absorption equilibrium before usage, the combined
solution was agitated for 30 min in the dark. After that, the initial concentrations of the dye
mixture were measured using a spectrophotometer. After that, samples in the beakers were
placed in the sun. The efficiency of the photocatalyst material was then evaluated after
samples of 1 mL were tested at various intervals, centrifuged, and measured for absorbance
at a maximum wavelength of 646 nm. Regarding the UV-vis absorption peak, both MB
samples had corresponding wavelengths of 646 nm. The rate of dye deterioration was
calculated using the following equation:

Degradation efficiency (%) = (1 − C/C0) × 100% (3)

C0 is the initial concentration, while C is the dye concentration throughout irradiation.
Members of the engineering faculty of South Valley University in Qena, Egypt, conducted
all experiments on a sunny day between 2 and 4 PM in June with high-intensity solar light
and 25 MJ/m2 solar radiation.

3. Results
3.1. Morphology and Structure Analysis

Inorganic chemicals are challenging to spin into fibers. As a result, viscoelastic poly-
mers are employed as fiber-assisting templates to create inorganic/polymer hybrid precur-
sor fibers before they are converted to inorganic fibers. Figure 2 illustrates FESEM images
of the fabricated membrane morphology. Figure 2a represents an FESEM image of pure CA
nanofibers exhibiting rather smooth, spherical threads that were consistently distributed.
Figure 2b shows FESEM images of the nanofiber composite CA/ZnO NPs. The findings
demonstrated the production of nanofibers without beads, which may be attributed to ideal
circumstances and effective ZnO NP integration. The membrane nanofiber surface of the
third sample (Figure 2c) was coated with a dispersed TiO2 NPs solution using a dip coating
process in a water bath at 70 ◦C, followed by drying at 130 ◦C for 60 min. The resultant
composites were imaged using FESEM, and the images showed nanoparticles forming on
the nanofibers’ outermost surface. In contrast to expectations, sheet-like particles rather
than nanofibers were unexpectedly produced during the calcination of CA/ZnO/TiO2
composite nanofibers at 700 ◦C in the oven (Figure 2d). The supporting CA polymer must
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be switched from a thermoplastic to a thermosetting polymer in order to create ZnO/TiO2
composite nanofibers that resemble fibers.
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The CA/ZnO @ TiO2 NPs nanofiber membrane and calcined CA/ZnO @ TiO2 NPs
sample at lower and higher resolution TEM images are shown in Figure 3. The CA/ZnO
@ TiO2 NPs nanofiber membrane exhibits integration of ZnO NPs within the nanofiber
structure and the presence of TiO2 NPs on the membrane’s upper surface. The HR-TEM
images of one fiber shown in Figure 3a,b reveal ZnO dispersion throughout the fiber, along
with the crystal distribution and the attachment of TiO2 NPs on the membrane surface.
TEM images and EDS mapping of the calcined sample confirm the existence of ZnO and
TiO2 NPs, as indicated in Figure 3c,d. TEM was used to measure the size of nanoparticles
of ZnO and TiO2. TiO2 typically appears as green spots and ZnO as blue to determine the
size of each nanoparticle, which ranges from 16–72 nm and 36.7 nm, respectively. EDS
mapping also displayed the elemental distribution in the CA/ZnO @ TiO2 NPs sample to
investigate the elemental distribution.
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3.2. Chemical Composition (FTIR)

Figure 4 displays FTIR spectra of the fabricated membranes. The analysis of the pure
CA nanofiber exhibited a distinctive absorption peak related to the carbonyl (C=O) bond
stretching at wavenumbers 1752 and 1236 cm−1. This absorption band can be attributed
to the presence of the acetate substituent, as indicated by the C-O-C alkoxyl stretching.
The band at 3480 cm−1 was also assigned to an O-H stretching vibration, while the band
at 1368 cm−1 was assigned to a C-CH3 methyl bending vibration [38]. The CA @ ZnO
composite membrane exhibits a -C-O vibration, albeit with a discernible 10 cm−1 black
shift compared to cellulose. This observation reveals a slight reduction in the strength
of the C-O bonds within the cellulose, potentially resulting from a chemical interaction
with ZnO. The CA@ZnO membrane shows distinct peaks at 894, and 603 cm−1. These
peaks correspond to the tetrahedral coordination of Zn formation, and stretching vibrations
of Zn-O bond, which suggest the presence of ZnO [39,40]. As reported in the literature,
the absorption peak observed at 500–900 cm−1 is attributed to the Ti-O stretching and
Ti-O-Ti bridging stretching modes in TiO2 [41]. The findings of this study demonstrate the
successful grafting of TiO2 NPs onto the surface of the CA/ZnO @ TiO2 NPs membrane.
The FTIR spectra obtained from the calcined sample show absorption peaks observed at
3440 cm−1 that are attributed to physically adsorbed water molecules containing (-OH)
groups [42]. Additionally, the band detected at 1400 cm−1 can be attributed to the stretching
vibration of carbon-oxygen (C-O) bonds [43]. Furthermore, the absorption peaks at 550 and
650 cm−1 are attributed to stretching vibrations of the Ti-O-Ti and the vibration mode
of the -Zn-O-Ti groups, respectively [42]. The findings indicate successfully creating a
uniform composite nanofiber membrane consisting of CA/ZnO. Additionally, the excellent
deposition of TiO2 NPs onto the material surface of the CA/ZnO @ TiO2 NPs membrane
was observed. Furthermore, doping the two semiconductor materials was achieved through
the calcination/annealing of the sample, forming a composite S-S heterojunction material.
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3.3. Wettability and Antibacterial Test

Water contact angles (WCAs) of the three membranes are illustrated in Figure 5i. The
findings show that the pure CA membrane exhibits inferior wetting properties compared
to the CA/ZnO NPs and CA/ZnO @ TiO2 NPs membranes. Notably, the WCA value of the
CA/ZnO @ TiO2 NPs membrane is the lowest, recording 50◦. This is due to the fact that
ZnO and TiO2 NPs can adsorb hydroxyl groups (-OH) that are hydrophilic, enhancing the
surface energy of membranes and making them more hydrophilic [44,45]. Consequently,
incorporating ZnO and TiO2 NPs augments the surface energy, facilitating the membrane’s
capacity to absorb water [46,47]. The membrane matrix’s nanoparticles act as sponge-like
structures featuring interconnected pores of uniform size, resulting in enhanced water flux
and improved permeability [48]. These findings indicate that the hydrophilicity of the
CA/ZnO @ TiO2 NPs membrane is superior to that of both the pure CA membrane and the
CA/ZnO NPs membrane. The observed low value of the contact angle of the CA/ZnO
@ TiO2 NPs membrane suggests that the membrane CA/ZnO NPs coated with TiO2 NPs
possesses promising capabilities for use in oil–water separation applications.
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Wastewater contains diverse living organisms, including microbial and other con-
taminants. Zinc oxide (ZnO) with antibacterial activity was aimed at eliminating and
disinfecting wastewater originating from living organisms. Figure 5ii presents the optical
depiction of the inhibition zone of the control sample and the CA/ZnO @ TiO2 NPs mem-
brane. The findings suggest that the composite membrane exhibits the most substantial
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inhibition zone, measuring at 15 ± 0.8 mm, compared to the control sample (Tetracycline),
which measures a 30 mm inhibition zone in the Gram (-ve) bacteria test. According to the
results, the synthesized sample contains about 50% of the reported antibacterial material
(Tetracycline), indicating that the composite TiO2/ZnO NPs have generated a unique chem-
ical structure with increased antimicrobial characteristics [14]. The primary benefits of the
resultant inorganic oxide antibacterial material stem from its biocidal properties, which
have been observed to induce zone inhibition and bacterial eradication, specifically in the
case of Escherichia coli. The interaction of materials with the bacterial cell membrane in
the presence of water elucidates the antibacterial activity mechanism, as a result of which
reactive oxygen species are produced, including hydroxyl radicals, superoxide, and H2O2.
The OH• radicals and/or superoxide containing negatively charged particles can effec-
tively traverse the cell membrane and persist on the external surface of bacteria, impairing
proteins, lipids, and DNA. In contrast, it has been observed that H2O2 can permeate the
cell membrane and effectively eliminate bacteria, thereby serving as a disinfectant agent in
wastewater treatment through the photocatalytic and separation process [49,50].

3.4. Membranes’ Photocatalytic Activity

When a semiconductor photocatalyst surface is exposed to light photons, it undergoes
heterogeneous photocatalytic reactions [51]. Electrons (e−) from the valence band (VB) of
the nanoparticles (NPs) are excited to the conduction band (CB) when the light of photon
energy is greater than the semiconductor’s bandgap energy that is irradiated. This process
generates positively charged holes (h+) in the VB, which can either recombine, creating
thermal energy that hinders the photocatalysis process, or diffuse to the surface of the
photocatalyst and react with the adsorbed molecules. The holes (h+) react with H2O,
producing hydroxyl radicals (oxidative potential +2.8 V). Meanwhile, the O2 molecule
traps the conduction band electrons, generating a superoxide anion radical (•O2

−). These
reactive radicals decompose pollutants into less harmful substances in a quick and non-
selective manner. The equations below illustrate the potential interfacial reactions that may
occur [52–55].

NPs + light→ h+
(VB) + e− (CB) (4)

e− (CB) + O2 → radical •O2
− (5)

h+
(VB) + H2O→ •OH (6)

•O2
−/•OH + substrate→ degradable products (7)

An alternate possibility involves the oxidation of substrate molecules by positive holes
(h+) which possess a high oxidative potential, as demonstrated by Equation (7) [56].

h+
(VB) + substrate→ substrate+ → degradable products (8)

The results of MB photodegradation are introduced in Figure 6. The study examined
the photodegradation curve with respect to the duration of light exposure (120 min) at
different intervals of time. This was achieved by adding 15 cm3 of MB solution and pho-
tocatalytic membrane and exposing the solution to direct sunlight at different intervals
of time. Subsequently, an evaluation was conducted on the CA/ZnO @ TiO2 NPs pho-
tocatalytic membranes using a UV spectrometer to measure absorbance at a wavelength
of 64 nm for MB. The prepared composite membranes exhibit a remarkable capacity for
photodegradation, which is sustained for 120 min under sunlight intensity. Irradiating
the membrane commenced promptly after immersion in the solution, without any sup-
plementary duration for soaking. The MB control exhibited little degradation, whereas
the CA/ZnO @ TiO2 NPs membrane demonstrated absorption of 15% of MB after 30 min.
After 120 min, about 20% of the MB dye was absorbed under sunlight. Figure 7 displays the
photocatalytic degradation performance of organic dye using CA/ZnO and CA/ZnO/TiO2
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materials as active photocatalyst substrates. The degradation points were found by esti-
mating the exact content or molarity to the initial molarity against the estimated time of
sunlight exposure. The data of dye photocatalytic degradation indicated the acceptable
photodegradation ability of the prepared CA/ZnO and CA/ZnO/TiO2 with higher perfor-
mance in the case of the CA/ZnO/TiO2 substrate, which could be due to the existence of a
superior semiconductor in its chemistry (TiO2).
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Figure 6. Membranes’ photocatalytic performance using MB dye. Control is referring to MB degrada-
tion without any catalyst materials.

To describe the degradation kinetics of the utilized dye, the pseudo-first order was
applied to fit the experimental data as shown in Figure 7:

Ln (C/Co) = kt (9)

The first-order rate constants for the prepared CA/ZnO and CA/ZnO/TiO2 materials
were 0.0013 min−1 and 0.00175 min−1, respectively. Experimentally, the kinetics of dye
degradation is faster by 34% in the case of the CA/ZnO/TiO2 material if compared with the
CA/ZnO material. This could be attributed to the existence of Titania, which was reported
to be the best semiconductor oxide up to now.

Figure 8 is a schematic illustrating the composite photocatalytic mechanism when
exposed to sunlight. Methylene blue (MB) was absorbed onto the surface of the photo-
catalyst. Many oxygen vacancies can be produced by the deposition of Ti3+ on the outer
surface rather than Zn2+. The composite nanoparticles increased photocatalytic activity,
which occurs due to electron transfer between TiO2 and ZnO. Consequently, the charge
carriers produced after the absorption of visible-light radiation are subsequently on ZnO’s
conduction band (CB) of 3.37 eV and TiO2’s valence band (VB) 3.22 eV, as reported in
reference [57]. Yi Zhou et al. [49], by leveraging TiO2’s larger band, CB, were able to
demonstrate electron transfer from the surface of the ZnO structure to the TiO2 one via
the Z-scheme photocatalytic mechanism. Dye photodegradation is boosted as electrons
transported to the TiO2 structure could recombine with the generated holes on the Titania
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VB. These electrons (h+) gather on the surface of ZnO and interact with oxygen molecules
that have been absorbed to generate superoxide radicals (•O2−). The active chemicals
(•O2−, h+) degraded MB into inert molecules.
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The separation of the oil–water mixture is illustrated in Figure 9. The CA/ZnO @
TiO2 NPs membrane demonstrates excellent permeation flux and oil rejection during the
separation period, followed by a slight decrease in water flux after a continuous operation
of 1 h. The observed increased water flux can be due to various factors, including the
porous network architecture of electrospun membranes and the hydrophilic nature of
the membranes, primarily due to the chemical existence of ZnO beside TiO2 NPs. The
network structure facilitates the transportation of water molecules across the membrane by
providing additional pathways, thereby simplifying their transmission [58]. The CA/ZnO
@ TiO2 NPs membrane keeps a final average water flux value of oil/water emulsion
22.5 L.m−2 h−1, which decreased to 20.7 L.m−2 h−1. Figure 9 displays the outcomes of the
oil-in-water separation procedure, including the time-dependent permeation of membranes
throughout the separation process. Furthermore, the membranes exhibit a remarkable oil
rejection rate of 66%.
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Figure 9. Membrane’s water flux and oil separation efficiency of modified CA/ZnO @ TiO2 NPs membrane.

Upon contact between the water-in-oil emulsion and membrane, the emulsion droplets
broke apart onto the interface of the nanofiber’s membrane during the oil/water separation
process. Subsequently, the aqueous component of the emulsion permeated the nanofiber’s
membrane and was collected. The droplets present in a soybean-and-water emulsion
and permeate were scrutinized using an optical microscope in order to validate the high
separation efficacy of membranes for oil–water emulsion. Figure 10b–d display optical
micrographs of the as-prepared water-in-oil emulsions before and after separation using
the developed membranes. Several droplets were detected in the filtrate of the pristine
CA membrane. In contrast, optical microscopy revealed no oil droplets in the filtrate
produced by the CA/ZnO NPs and CA/ZnO @ TiO2 NPs membranes, demonstrating their
high-efficiency oil–water separation capabilities.



Membranes 2023, 13, 810 14 of 17Membranes 2023, 13, x FOR PEER REVIEW 15 of 18 
 

 

 

Figure 10. Optical microscope photographs of oily wastewater before and after separation were rec-

orded for three distinct membranes. (a) oil/water emulsion before separation (b) CA, (c) CA/ZnO 

NPs, and (d) CA/ZnO @ TiO2 NPs. Microscopic images at a magnification of 10×. 

4. Conclusions 

A facile multifunctional TiO2-coated membrane was fabricated for utilization as a 

membrane for dye removal and gravity-driven oil–water separation. The membrane’s 

SEM image and contact angle measurement confirm the surface roughness and wettability 

necessary for efficient oil–water separation. The multifunction-coated membrane effi-

ciently removed methylene dye from separated water due to the excellent photocatalytic 

properties of ZnO and TiO2 NPS when exposed to UV illumination. This is due to ZnO 

and TiO2 NPs being effective photocatalysts for the photocatalytic destruction of organic 

contaminants and microorganisms like sulfur-reducing bacteria found in crude oil. Fur-

thermore, it was observed that the CA/ZnO @ TiO2 NPs membrane exhibited a significant 

separation efficiency of 45% during the oil–water separation process and an excellent wa-

ter flux of 20.7 L.m−2 h−1 after 1 h. The aforementioned facts suggests that through appro-

priate enhancements in material synthesis, modifications to the photocatalytic process, 

and improvements to the oil-water separation system, the produced membrane exhibits 

the capacity to serve as a versatile membrane capable of concurrently facilitating the de-

composition of organic pollutants within the water and separating oil from water. The 

current investigation contributes to enhancing cutting-edge solar irradiation technologies 

integrated with oil–water separation materials, which hold potential for commercial utili-

zation. 

Author Contributions: H.M.M. and M.M.S.: Conceptualization, Methodology, Data curation, Writ-

ing—original draft, resources; I.M.A.M. and M.S.A.E.-s.: Writing and editing, review; E.A.N.: edit-

ing and review, Funding acquisition; M.A.M.: editing and review; M.T.: Methodology, editing and 

review, Validation. All authors have read and agreed to the published version of the manuscript. 

Figure 10. Optical microscope photographs of oily wastewater before and after separation were
recorded for three distinct membranes. (a) oil/water emulsion before separation (b) CA, (c) CA/ZnO
NPs, and (d) CA/ZnO @ TiO2 NPs. Microscopic images at a magnification of 10×.

4. Conclusions

A facile multifunctional TiO2-coated membrane was fabricated for utilization as a
membrane for dye removal and gravity-driven oil–water separation. The membrane’s
SEM image and contact angle measurement confirm the surface roughness and wetta-
bility necessary for efficient oil–water separation. The multifunction-coated membrane
efficiently removed methylene dye from separated water due to the excellent photocat-
alytic properties of ZnO and TiO2 NPS when exposed to UV illumination. This is due
to ZnO and TiO2 NPs being effective photocatalysts for the photocatalytic destruction of
organic contaminants and microorganisms like sulfur-reducing bacteria found in crude
oil. Furthermore, it was observed that the CA/ZnO @ TiO2 NPs membrane exhibited
a significant separation efficiency of 45% during the oil–water separation process and
an excellent water flux of 20.7 L.m−2 h−1 after 1 h. The aforementioned facts suggests
that through appropriate enhancements in material synthesis, modifications to the pho-
tocatalytic process, and improvements to the oil-water separation system, the produced
membrane exhibits the capacity to serve as a versatile membrane capable of concurrently
facilitating the decomposition of organic pollutants within the water and separating oil
from water. The current investigation contributes to enhancing cutting-edge solar irradia-
tion technologies integrated with oil–water separation materials, which hold potential for
commercial utilization.
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