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Abstract— Cortical bone thickness is an important 

predictor of bone strength and fracture risk, and accurate 

classification is crucial for the diagnosis and treatment of 

osteoporosis. The thinning of the cortical layer, indicative of 

compromised bone microarchitecture due to imbalanced 

formation and loss, underscores its significance. Nonetheless, 

quantifying bone thickness is challenging due to the diverse 

skeletal sites and subject variations in bone structure and 

properties. 

A potential solution lies in multi-frequency ultrasound 

assessment of cortical bone, enabling comprehensive property 

characterization across varying wavelengths and penetration 

depths. This research strives to establish a robust methodology 

for evaluating cortical bone thickness by leveraging a 

convolutional model with an attention mechanism to analyse 

multi-frequency ultrasound data. 

Keywords— Bone characterization, Multi-frequency 

ultrasound, Deep learning, Attention mechanism, Chirp signal. 

I. INTRODUCTION 

The primary component of the skeleton in humans is made up 

of mineralized hard bone. It performs a variety of essential 

tasks, including the generation of red and white blood cells 

and the storage of minerals [1, 2]. A significant biomarker of 

bone fragility that indicates a risk of fractures is cortical bone 

thickness and porosity [3]. Therefore, in order to lower the 

risk of fracture, it is clinically necessary to evaluate the 

quality of the cortical bone microstructure. 

Over the past several decades, numerous methods utilizing 

ultrasound have been introduced for the evaluation of both 

micro and macro bone structures. In the 1990s, ultrasonic 

technology was first used to assess bones, which was 

relatively early in the area [4]. Subsequently, various 

Quantitative Ultrasound (QUS) techniques have been 

developed, with some methods relying on ultrasound 

attenuation while traversing through bone. However, the fact 

that it is only applicable to peripheral sites affects how 

reliable it is for scanning and evaluating various bone sites. 

In another study, an ex-vivo research comparing ultrasonic 

and Micro-CT for porosity and thickness measures has been 

presented [3]. Nowadays, the most often used techniques to 

provide a moderately high-resolution ultrasound scan are 

synthetic aperture and compound imaging. This method 

requires a lot of computation power and takes a long time to 

acquire. 

The attention mechanism in Convolutional Neural Networks 

(CNNs) has significance in enhancing the network's capacity 

to concentrate on important characteristics in an input [5]. By 

dynamically highlighting significant regions, the attention 

mechanism allows the CNN to allocate more computational 

resources to key areas. CNNs frequently utilize approaches 

like channel attention, which amplifies informative channels 

in feature maps, and spatial attention, which highlights 

certain spatial regions. 

In this study, a new approach for cortical bone classification 

by integrating RF data and deep neural networks across three 

distinct phases is presented. Firstly, employing the Finite-

Difference Time-Domain (FDTD) method to simulate the 

propagation of ultrasound within cortical bone utilizing 8 

diverse transmit signals within the frequency range of 1-8 

MHz. Secondly, a CNN with 19 layers and 3 parallel paths 

for multi-head attention was introduced, demonstrating a 

unique ability for extracting involved features from 

multidimensional ultrasound RF data. Furthermore, a 

consensus strategy harmonized RF data from successive 

ultrasound array elements (64 signal/acquisition) to further 

eliminate errors. Lastly, the third phase involved real animal 

bone scanning through single pulse-echo acquisitions. 

II. METHODS 

A. Simulation environemnt 

Figure 1 illustrates the configuration of the simulation setup. 

Cortical bone simulation was conducted by employing a 2D 

FDTD approach [6], including diverse porosity levels, 

ranging from 0% to 20%, and thickness variations ranging 

from 1 mm to 8 mm. The cortical bone was represented as a 

linear elastic 2D plate, and a range of environments were 

generated to replicate both intact and pathological tissue 

conditions. The simulation proposed complete immersion of 

the cortical plate within a soft tissue-like medium, while 

perfectly matched layers surrounded the model to minimize 

undesirable boundary reflections. The dynamic propagation 

of mechanical waves within continuous media, governed by 

Hooke's law (as expressed in Equation 2), is captured as: 
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Where, 𝑥 and 𝑡 are the space and time variables, 𝜌(𝑥) is mass 

density, 𝑐(𝑥) is the fourth order rigidity tensor. 𝑣(𝑥, 𝑡) are the 

vector components of the particle velocities. 𝑇(𝑥, 𝑡) are the 

components of the stress tensor. 𝑓𝑖 and 𝜃𝑖 are source terms, in 

which 𝑓 is the vector components of force sources and 𝜃 is 

the tensor components of strain sources. 

 

Figure 1: Simulation environment shows the bone model with realistic pores 

extracted from ex-vivo bone samples, curvature, pores weighting, and 

surface roughness [7]. 

B. Multi-frequency acquisitions 

A typical linear transducer array consisting of 128 elements, 

featuring multiple centre frequencies, spanning from 1 to 8 

MHz, was used for the study. Figure 2 shows a representation 

of RF data acquired from a single channel. Each frequency 

reveals a distinct facet of information, significantly 

influenced by multiple factors including porosity, thickness, 

and frequency variations. For the presented RF response, 

certain frequencies (1-3MHz) effectively capture reflections 

originating from the distal sides of the cortical bone. This 

phenomenon can be attributed to the complicated balance 

between frequency and wavelength, offering insights into the 

complex interactions occurring within the bone medium. This 

interchange between frequency and depth sensitivity 

highlights the richness of information embedded within the 

RF data. 

 

Figure 2: Received RF data from the same channel at different frequencies, 

1-8 MHz, show how the frequency affect the echo from the distal bone side. 

C. Convolutional neural networks 

Figure 3 shows a CNN, characterized by a 19-layer 

architecture and engineered with 3 concurrent pathways for 

dot product attention followed by a multi-head attention layer 

[5], for the purpose of discriminating endosteal and periosteal 

features inherent within multi-dimensional ultrasound RF 

data. The attention process directs its focus to specific 

sections of the input by employing weighted multiplication 

operations [8]. The three parallel paths are used to extract 

relevant features from the signal, by using different kernel 

sizes for convolutional operation, allowing the model to focus 

on different aspects simultaneously. 

Subsequently, the obtained output serves as an input for a 

multi-head self-attention layer. Multi-head self-attention 

essentially operates as an ensemble of attention mechanisms. 

This ensemble effect can improve the model's ability to 

generalize by capturing diverse perspectives of the data, 

leading to a more robust and accurate classification. The 

attention mechanism employed in the convolutional model 

for the input 𝑉 can be described using the following equations 

for the query (𝑄), key (𝐾), and value (𝑉) transformations: 
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Where, 𝑑𝑘 is the dimension of the key vectors.  

Additionally, multi-head self-attention involves linearly 

projecting the input query, key, and value vectors multiple 

times and then concatenating the results as a further step. 

Given ℎ different sets of learned linear projections 𝑊𝑞
𝑖, 𝑊𝑘

𝑖, 

𝑊𝑣
𝑖 for the 𝑖𝑡ℎ head, the multi-head self-attention is calculated 

as follows: 

𝑴𝒖𝒍𝒕𝒊𝑯𝒆𝒂𝒅(𝑸, 𝑲, 𝑽) = 𝑪𝒐𝒏𝒄𝒂𝒕(𝑯𝒆𝒂𝒅𝟏, … , 𝑯𝒆𝒂𝒅𝒉). 𝑾𝒐  (𝟒) 

Where, 𝐻𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑀𝑒𝑐ℎ𝑎𝑛𝑠𝑖𝑚(𝑄. 𝑊𝑞
𝑖 , 𝐾. 𝑊𝑘

𝑖 , 𝑉. 𝑊𝑣
𝑖), 

and 𝑊𝑜 is the learned output projection and ℎ is the total 

number of heads. 

D. Consensus mechanism 

A consensus approach has been employed to leverage the 

collective agreement of the majority within the array of 64 

channels present in each test sample. This consensus strategy 

involves determining the predominant class with 50% or 

higher agreement threshold among these channels as: 

𝑪𝒐𝒏𝒔𝒆𝒏𝒔𝒖𝒔(𝑪) =
𝑵𝒐.  𝒐𝒇 𝑪𝒉𝒂𝒏𝒏𝒆𝒍𝒔 𝑨𝒈𝒓𝒆𝒆𝒊𝒏𝒈 𝒐𝒏 𝑪𝒍𝒂𝒔𝒔 (𝑪)

𝑻𝒐𝒕𝒂𝒍 𝑪𝒉𝒂𝒏𝒏𝒆𝒍𝒔
𝒙𝟏𝟎𝟎     (5) 

Where, 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠(𝐶) is the consensus agreement for a 

specific class. 𝑁𝑜. 𝑜𝑓 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 𝐴𝑔𝑟𝑒𝑒𝑖𝑛𝑔 𝑜𝑛 𝐶𝑙𝑎𝑠𝑠 is the 

count of channels agreeing on given class. 𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 

is the total number of channels. 

The threshold value can be adjusted for accuracy; a higher 

threshold increases precision but may require more 

measurements for confidence.  

 



 

 
 

 

Figure 3: Multi-frequency RF data are fed into a CNN model with attention mechanism to extract features of the echoes from the endosteum and periosteum.

The proposed models are trained on Intel i7-7700HQ CPU @ 

2.80GHz, NVIDIA GeForce GTX 1060 (6 GB) GPU, 16.0 

GB RAM. All models are validated using a new generated 

simulations to avoid overfitting with 10,752 and 2560 data 

points for training and testing respectively. Based on the 

system convergence, 50 epochs have been trained with a 

normal distribution to set the initial layers weights, initial 

learning rate of 0.001, batch size of 16, and ADAM optimizer 

to update the training weights. 

III. RESULTS AND DISCUSSION 

A. Classification and prediciton of bone thickness 

The confusion matrix shown in Figure 4 reveals the 

classifier's performance in classifying critical bone 

thicknesses. For low bone thicknesses, 1 and 2 mm, the 

classifier exhibited a good accuracy, with nearly 100%. 

However, as the bone thickness increased, the classifier's 

accuracy became more variable. For example, for a bone 

thickness of 6 mm, the classifier encountered challenges. 

While most of instances were correctly classified as 6 mm, 

some were slightly under or overestimated as 5 or 7 mm 

respectively. This discrepancy can be attributed to the 

fundamental principles of porosity impacting the speed of 

distal side echoes. This phenomenon highlights the 

complexity of the classification task, with various factors 

leading to occasional misclassifications. In real-life 

applications, a variance of 1 mm in the classification of 

cortical bone thickness can still be considered acceptable, 

given the inherent measurement uncertainties and biological 

variability. Overall, the classifier shows promising relevant 

results, particularly considering the complexities introduced 

by varying porosity levels. 

The scatter plot in Figure 5 illustrates the relationship 

between the predicted cortical bone thickness values 

generated by CNN model and the corresponding target 

thickness. Each point on the plot represents a specific data 

instance among 320 data points for each thickness, with its 

horizontal position indicating the actual predicted thickness 

and its vertical position representing the CNN's target values. 

The plot shows how well the CNN model's predictions align 

with the true cortical bone thicknesses. Ideally, the points 

would form a diagonal line from the bottom left to the upper 

right, indicating perfect alignment between predictions and 

targets. 

 

Figure 4: Confusion matrix illustrating the classification results of a cortical 

bone thickness classifier for thicknesses ranging from 1 to 8 mm. 

 

Figure 5: Scatter plot showing the regression output of the CNN model 

against the actual target cortical bone thicknesses ranging from 1 to 8 mm. 
The plot shows the alignment between the CNN's predictions and the true 

thickness values. Each colour on the plot corresponds to a specific label 

representing a distinct thickness value within this range. 



 

 
 

B. Consensus mechanism 

Consensus mechanism works by harmonizing RF data 

collected from consecutive array elements and helps to 

effectively reduce errors and enhance the overall robustness 

of the model. In Figure 6, the ROC curve on the left shows 

the classifier's performance without employing the consensus 

technique, while the curve on the right shows the enhanced 

performance achieved through the consensus, highlighting 

the significant improvement in accuracy. Through this 

method, a considerable improvement has been observed, 

achieving levels surpassing 80% compared to 72.5%. 

 

Figure 6: (Left) the ROC curve shows the classifier's performance without 

employing consensus, (Right) demonstrates the enhanced performance 

achieved through applying the consensus technique. 

C. Verification of the CNN with GradCAM 

Gradient-weighted Class Activation Mapping (GradCAM) 

results present a comprehensive visualization of the CNN 

focus during classification as in Figure 7. This analysis 

reveals the network's ability to recognise relevant patterns, 

specifically emphasizing proximal and distal echoes as key 

factors for accurate thickness classification. 

 

Figure 7: Heatmap generated using GradCAM technique showing regions of 

interest for cortical bone thickness classification. 

D. Ex-vivo measurements 

For further validation, we conducted an ex-vivo validation 

study utilizing bovine and swine bone samples with varied 

porosity levels, 9.23% for swine and 5.45% for bovine. Bone 

porosity was quantified as the proportion of pore area 

encompassing structures such as Haversian and Volkmann's 

canals, as well as lacunae, within the cortical bone region. 

Empirical measurements were conducted using a ULA-OP 

256 ultrasound system across a sample set comprising 14 

tibia bone acquisitions. Chirp signals with spanning 

frequencies of 3-7 MHz were utilized, with a 3 MHz 

bandwidth and a 2.5 μs pulse duration. Figure 8 shows the 

classification results of cortical thickness. Each point on the 

plot represents a specific acquisition, with its actual measured 

thickness on the x-axis and the corresponding classified 

thickness by the CNN model on the y-axis. 

 

Figure 8: Scatter plot showing the classification output of the model against 

the actual target cortical bone thicknesses. The plot shows the alignment 

between the CNN's classification and the true thickness values. 

IV. CONCLUSION 

This work presented a numerical study aiming to classify 

cortical bone thicknesses based on muti-frequency 

acquisitions. Single pulse-echo approach enabled to acquire 

large dataset, a total number of 10,752 RF data points, which 

is a combination of 8 different thicknesses, 21 different 

porosities, and 8 frequencies. It is demonstrated that CNN can 

be used for extracting the transient features from the RF data 

directly. The attention mechanism has a remarkable ability to 

highlight key zones, particularly the endosteum and 

periosteum. The outcomes showed the potential of CNN and 

multi-frequency to be used in cortical bone quantification. 
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