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SUMMARY 

In the past few decades, metaheuristic optimization methods have emerged as an effective 

approach for addressing structural design problems. Structural optimization methods are based 

on mathematical algorithms that are population-based techniques. Optimization methods use 

technology development to employ algorithms to search through complex solution space to find 

the minimum. In this paper, a simple algorithm inspired by hurricane chaos is proposed for 

solving structural optimization problems. In general, optimization algorithms use equations that 

employ the global best solution that might cause the algorithm to get trapped in a local 

minimum. Hence, this methodology is avoided in this work. The algorithm was tested on several 

common truss examples from the literature and proved efficient in finding lower weights for the 

test problems. 

KEYWORDS: structural optimization; optimum truss design; stochastic search method; 

metaheuristic algorithm; size optimization. 

1. INTRODUCTION 

Optimization methods or Optimization Algorithms aim to reach the best results for a problem 

under certain circumstances [1, 2]. In recent decades, various optimization methods have 

emerged, with the concept behind them based on characteristics and behavior of natural, 

biological, molecular, physical, swarm of insects, and neurobiological systems [3]. A common 

approach in metaheuristic optimization is randomly generating an initial population of 

potential solutions and gradually updating the population in the systematic process [4, 5]. 

Examples of metaheuristic methods in literature include but not limited to, Genetic Algorithms 

GA [6-9]; Evolution Strategies ES [10-15]; Particle Swarm Optimization [16-21]; Artificial 

Immune Algorithm AIA [22]; Simulated Annealing SA [23-25]; Ant Colony Optimization ACO 

[26-29]; Harmony Search HS [30-33]; Artificial Bee Colony algorithm ABC [34-37]; 

Gravitational Search Algorithm GSA [38]; Shuffled Frog Leaping SFL [39]; Big Bang-Big Crunch 

optimization BB-BC [40, 41]; Charged System Search CSS [42]; Teaching-Learning-Based 

Optimization TLBO [4, 5, 43-46]; Imperialist Competitive Algorithm ICA [47]; Flower 
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Pollination Algorithm FPA [48]; Swallow Swarm Optimization algorithm SSO [49]; Water 

Evaporation Optimization WEO [50]; Water Cycle Algorithm WCA [51]; Passing Vehicle Search 

PVS [52]; Water Wave Optimization WWO [53]; Jaya Algorithm JA [54-56]; Colliding Bodies 

Optimization CBO [57-59]; Fruit Fly Algorithm FFA [60-62]; Grenade Explosion Method GEM 

[63]; and many modified, improve and hybrid algorithms [64-69]. 

GAs rely on the concept of Darwinian theory about evolution, where the fittest solution would 

survive through the consequent iterations until the end of the process [6-9]. GAs encode the 

population of solutions as strings of DNAs and cross or mutate them to produce new 

generations. PSO algorithms use the social behavior of birds while flying to find food sources 

[6, 8]. SA is a unique algorithm that simulates the thermodynamic change in a metal state 

based on the metal temperature [3, 24]. HS algorithm tries to find the nice tune while the 

musician works on his performance [32], CSS makes use of mechanics and physical laws that 

affect the particles in the system [42], and the ICA tries to mimic countries behavior based on 

human social or more accurate political behavior [47]. The Jaya algorithm aims to improve the 

solution in each iteration by a concept of victory, as the algorithm’s name indicates, and 

involves an interaction between the best and worst solutions in the population [54-56]. 

Examples of using optimization algorithms to solve engineering and optimal design problems 

are available in the literature. Kaveh and Ghazaan used CBO to solve the sizing optimization 

problem of truss structures with stress and displacement constraints [59]. Similar works can 

be found [5, 25, 32, 33, 37]. Farshchin et al. [45] and Pham [71] solved the optimum design 

problem of truss structures with frequency constraints [45]. Degertekin et al. solved sizing, 

layout, and topology design optimization of truss structures utilizing the Jaya algorithm [56]. 

In this work, a new algorithm for solving structural optimization problems is proposed and 

tested on three common examples from the literature. The common optimization algorithms 

employ equations that rely on the global best solution as guidance for convergence, which 

might lead the algorithm to be trapped in a local optimum. This methodology is avoided in this 

work, and the algorithm randomly moves in the search space, which makes it more diverse and 

gives a higher probability of finding the actual global minimum. 

The remaining of this paper is organized as follows: Section 2 provides a description of the 

proposed algorithm; Section 3 defines the structural optimization problem; Section 4 shows 

how to implement the proposed algorithm to solve structural optimization problems; Section 5 

presents the test problems, sensitivity analysis, and results; finally the paper is concluded in 

Section 6. 

2. DESCRIPTION OF THE PROPOSED ALGORITHM 

The proposed algorithm tries to mimic a hurricane chaos movement that drives the particles in 

the solution space intending to hit the solution at least once. Imagine a hurricane phenomenon 

where unbalanced air pressure in a hurricane system creates a vortex with a curving axis. This 

vortex moves as a hurricane or tornado, carrying many objects or particles. These objects 

move in the hurricane based on their self-weight, distance from the hurricane axis, and 

hurricane velocity. The hurricane axis movement drives or leads the whole system. This axis 

has curving points that change position in the system with each iteration. This will lead the 

particles to change their position. Figure 1 gives an illustration of such a hurricane system. 
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Fig. 1  An illustration of such a Hurricane system 

A set of points named the “axis of points” is selected to represent the hurricane axis, and the 

particles in the population are randomly assigned to the axis points. Now, the system is given 

an initial velocity which is not uniform but rather each particle in the system has its initial 

velocity as described in Eq. (1) where a random factor is assigned to represent the self-weight 

or inertia for each particle. The system is moving according to the axis movement that drags 

the whole system together, and the initial step size is calculated in Eq. (2). At the same time, 

the hurricane axis would randomly change its shape by Eq. (3), where the axis points play a 

major role. For this purpose, a random factor is assigned as a curvature factor. Moreover, one 

additional random factor is employed as to describe a changing speed for the system and is 

defined as an acceleration factor. In the following, the inertia, curving, and acceleration factors 

are hypothetical quantities to mimic the hurricane system. The above theory is expressed 

mathematically as follows: 

1. Create the population of particles X0; 

Consider a solution space with N initial particles distributed randomly. The initial position of 

the particle i is 1 2 3 n
i i i i iX0 ( x ,x ,x ,.....,x=    )  for i 1,2,3.....N= , where d

ix  is the position of ith 

particle in the dth dimension. 

2. Randomly create a number g of curving points referred to as X1 that represent the “axis of 

points”, where the curving points are of the same dimension size as the solution vectors X0; 

3. For the initial hurricane velocity; find the new position X00 for each particle as follows: 

 
d d d

i i 1 mX00 X0 a rand() X1= + ⋅ ⋅  (1) 

1a rand()⋅  here represents an inertia factor for the particles relative to the axis points which 

decides the initial velocity for each particle in the system. The subscript m indicates (refers to) 

the curving points on the hurricane axis. 

4. Calculate the initial step of the system related to the hurricane's initial velocity from step 

(3): 

 dx X00 X0= −  (2) 

in steps 3 and 4 the particles are randomly assigned to specific points on the hurricane axis as 

in Eq. (1) while Eq. (2) provides the first step of the system related to the hurricane axis, and it 

can be considered as the initial step size of the hurricane system where it does not change with 

iterations, i.e., X0 and X00 are fixed for all iterations in each separate run; 
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5. Update the particles' positions X0 according to the following expression: 

 
d d d d

i 2 m i 3 iX (ite ) [a rand() X1 X (ite 1)] a rand() dx= ⋅ ⋅ − − + ⋅ ⋅  (3) 

Where the procedure starts with d d
i iX X0= . With each iteration ite in step 5, the algorithm 

randomly chooses one point on the axis to update the position of all the particles in the system. 

The movement of the hurricane axis from step 4 gives a random update for the particles urged 
by the hurricane axis movement. 2a rand()⋅  here represents a curving factor of the hurricane 

axis that is randomly changing with each iteration, 3a rand()⋅ is a speeding or acceleration 

factor for the hurricane axis to give a randomly changing velocity with each iteration leading 

the curving points (axis points) to change their position, hence, all the particles in the system 

would change their position accordingly. The factors 1a , 2a , and 3a are selected for each case 

separately as desired by the researcher. From this expression the effect of curving points is 

amplified based on the term d d
2 m i[ a rand() X1 X ( ite 1)]⋅ ⋅ − − . A fly back mechanism is 

employed to send the particles back to the solution space in case of violation of the upper and 

lower boundaries. Each particle gets its inertia factor for each run, which means that this factor 

is fixed throughout all iterations for one run. While, the curving, and acceleration factors are 

updated with each iteration for each particle. It is worth mentioning that the random factors 

are not fixed for each particle, but each dimension takes its random factor where it is 

mentioned. 

 

Fig. 2  Flowchart of the proposed optimization 
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3. STRUCTURAL OPTIMIZATION PROBLEM 

The goal of employing optimization algorithms in structural design is usually to find the 

structure's minimal weight under certain constraints. Constraints are usually defined as stress 

limits, frequency limits, and/or displacement limits on the nodes. These limitations could be 

applied separately or in combination. In this paper, the optimization problem is defined as 

follows [59, 69]: 

 

nm

i i i

1

t c
i i i

min j max

min k max

W ( A) γ  L  A

    subjected to

stress constraints:  σ σ σ     i 1,2 ,3 , ......nm

displacement constraints:  δ  < δ δ    j 1,2 ,3 , ......nn

cross-section constraints: A A A     k 1,2 ,3 ,.....

=

< < =

< =

< < =



.ng

 (4) 

in which, W(A) is the weight of the structure as a function of the cross-section A of the 

structural elements, γ is the material density of the structural member i, L is the length of 

member i, c
iσ  and t

iσ  define the stress limits in tension and compression stresses for member 

i. minδ  and maxδ  define the displacement limits for node j. nm is the number of elements, nn is 

the number of nodes, ng is the number of groups of elements for a specific design (problem), 

where for each case the structural elements are grouped based on the loading conditions and 

design specifics. 

3.1 PENALTY FUNCTION 

Structural optimization problems are unconstrained problems. In order to deal with 

constraints penalty functions are employed. 

The penalty function in this work is defined as follows [56]: 

 
cP ( 1 )φ= +  (5) 

where c takes a fixed value of 2 in this work, however, it might take an updating value when 

needed to sharpen the influence of penalty [56], ϕ is the combined penalties of the stress and 

displacement constraints, expressed as [56]: 

 

njnm

s d

1 1

  φ φ φ= +   (6) 

Where nm is the number of members in the structure, and nj is the number of joints, the stress 

constraint penalty s φ  for member i , and the displacement constraint penalty d φ  for node j 

are defined as [46]: 

 

s

i allowable
s

allowable

if there is no violations of the constraints

in case the stress in member i violates the stress boundaries

0

σ σ

σ

 

 

φ                             

φ          

=


−
=



 (7) 



Dandash Alaa, Liao HuaLin, Xiao WenSheng: A Novel Algorithm for Solving Structural Optimization Problems 

80 ENGINEERING MODELLING 36 (2023) 2, 75-94 

 permissible

permiss

d

j

ible

d ermis

if there is no violations of the constraints

in case the joint j displacement violates the p  boundarisib e sl e

0  

δ δ

δ

 

 

φ                             

φ        

=


−
=



 (8) 

where, allowableσ  defines the stress limit in member i , permissibleδ  defines the displacement 

limit for joint j. 

The stress and displacement violations are considered according to the following expression 

[41]: 

 PW W ( A ) P= ⋅  (9) 

Equation (9) is the evaluation function used to choose the best design that has fewer 

constraints' violations, while the goal function is W(A). 

4. IMPLEMENTATION OF THE HURRICANE ALGORITHM FOR TRUSS 

OPTIMIZATION 

1. The proposed algorithm is a population-based algorithm, hence, the first step is to generate 

a random population that represents possible solutions for the problem. The upper and lower 

limits for design variables are set for each example separately. The values for each solution 

vector are decided according to the following Eq. [56]: 

 
d d d d

i min max minx0 x rand() ( x x )= + ⋅ −  (10) 

where rand()  is a randomly generated value in the [0,1] interval, d
minx  and d

maxx  are the upper 

and lower limits for the design vector d
vx0  on the dth dimension. 

2. Calculate the structure weight W(A); stress iσ  and displacement jδ  violations; penalty 

functions P; and the penalized weight Wp according to Eqs. (4-9). 

3. Compare the results from all particles in the population using the penalized weight Wp from 

step 2 and save the best weight as the current best weight. 

4. Update the population according to Eq. (3). 

5. Update the best function value Wp, whereas, at the end of each iteration: 

a. The algorithm compares the best obtained weight Wp in the current iteration with the 

current best weight from previous iterations. 

b. If any design in the current iteration has a lower penalized weight Wp than the current best 

weight it will automatically replace it, otherwise the algorithm keeps current best weight 

unchanged. 

6. Repeat steps (2.-5.) until the maximum number of iterations (structural analysis) is reached. 
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Fig. 3  Flowchart of structural optimization process with the proposed algorithm 

5. TESTING THE ALGORITHM 

To test this algorithm, three examples of structural optimization benchmarks were considered. 

Namely, the Ten-bar planar truss; the Twenty-five bar spatial truss; and the Seventy-two bar 

spatial truss that are demonstrated hereinafter. For the test, 50 independent runs were 

executed, and each run completed 2000 iterations with 40,000 structural analyses for each run. 

Each run is terminated when it reaches the maximum number of iterations. In all the tests, the 

number of initial populations is set to 20 particles. The factors of inertia, curvature and 
acceleration are set as 1 2 3a a a 1= = = . The number of curving points is chosen for each case to 

find the minimum value of weight for each example. 

5.1 TEN-BAR PLANAR TRUSS 

The 10-bar truss problem is a common example in the field of structural optimization. Figure 4 

shows the structure’s conditions for this test. The material density is 2767.990 kg/m3 and the 

elasticity modulus is 68,950 MPa. The stress limit for each member is 172.375 MPa in both 

tension and compression, while all nodes are subjected to displacement limits of 5.08 cm in 

both vertical and horizontal directions. In this example, the algorithm deals with 10 design 

variables ranging from 0.6452 cm2 to 225.806 cm2. Two load cases are studied: Case 1, P1 = 

444.8 kN and P2 = 0; and Case 2, P1 = 667.2 kN and P2 = 222.4 kN. Many researchers dealt with 

this problem, e.g., Lee and Geem employed the harmony search HS algorithm [33], Sonmez 

used the ABC algorithm [37], Camp et al. used the TLBO [46] and GA algorithm [70], and Li et 

al. utilized different variations of the PSO algorithm [20]. The results are presented in Table 1 

and Table 2 for load case 1 and load case 2, respectively. 
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Fig. 4  Schematic of the structure of the 10-bar truss problem, L=914.4 cm 

Table 1 and Table 2 show that the proposed algorithm found the lightest weight of all other 

methods, however, it needed double the number of structural analyses compared to the HS 

algorithm [33] yet much less than the PSO algorithm [20]. In this example the number of 

curving points on the hurricane axis is set to 10 for load case 1 and 5 for load case 2. 

The proposed algorithm found the best design to be 2281.434 kg and 2086.162 kg of weight, for 

case 1 and case 2 respectively, this shows that the proposed algorithm has proven superior to 

the other methods in finding the lightest design. The proposed algorithm completed 40,000 

structural analyses compared to 125,000 and 150,000 structural analyses for HPSP and PSO 

algorithms respectively. However, the HS and the EHS algorithms needed 20,000 and 11,402 

structural analyses to finish the task in case 2. 

 

Table 1  Results of optimized design for 10-bar truss compared to previous researchers’ work (load case 1) 

Design variables 

[cm2] 

Lee and 

Geem [33] 

Sonmez 

[37] 

Camp et 

al. [46] 

Camp et 

al. [70] Li et al. [20] 

This 

study 

 HS ABC TLBO GA PSOPC PSO HCOA 

A1 194.516 197.083 197.857 186.580 197.219 215.929 141.986 

A2 0.658 0.6452 0.6452 0.6452 0.6452 0.7097 0.6452 

A3 146.516 149.548 149.406 155.290 148.219 149.529 164.811 

A4 98.516 98.18 98.210 90.064 97.729 99.839 95.797 

A5 0.658 0.6452 0.6452 0.6452 0.6452 23.542 0.6452 

A6 3.51 3.555 3.497 3.613 3.529 0.748 0.6452 

A7 48.652 48.148 135.648 141.613 48.342 53.729 119.541 

A8 139.096 135.858 48.164 49.613 136.509 150.580 42.760 

A9 138.387 138.716 0.6452 0.6452 136.490 148.477 0.6452 

A10 0.6452 0.6452 138.490 142.516 0.6452 1.226 170.856 

Number of 

structure analyses 

20,000 500*103 NA NA 150,000 150,000 40,000 

Weight (kg) 2294.216 2295.576 2295.619 2302.576 2295.631 2508.139 2281.434 
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Table 2  Results of optimized design for 10-bar truss compared to previous researchers’ work (load case 2) 

Design variables [cm2] 

Lee and 

Geem [33] 

Sonmez 

[37] Li et al. [20] 

Kaveh and 

Talatahari [69] 

Degertekin 

[32] 
This 

study HS ABC HPSO PSO HPSACO EHS 

A1 149.999 151.4692 150.664 147.967 149.638 152.187 143.998 

A2 0.6581 0.6484 0.6452 0.729 0.6452 0.6452 0.6452 

A3 165.9997 162.834 164.529 163.580 158.613 164.013 210.351 

A4 93.613 92.606 91.935 92.729 91.748 93.471 51.701 

A5 0.6452 0.6458 0.6452 0.6452 0.6452 0.6452 0.6452 

A6 12.755 12.710 12.723 12.839 12.703 12.742 19.023 

A7 78.774 80.082 79.761 79.651 80.574 79.755 102.627 

A8 81.355 83.177 83.768 83.374 83.387 81.819 102.126 

A9 131.355 131.189 131.329 133.406 135.174 131.109 0.6452 

A10 0.6452 0.6452 0.652 0.6452 0.6516 0.6452 75.997 

Number of structure 

analyses 

20,000 500*103 125,000 150,000 10,650 11,402 40,000 

Weight (kg) 2117.737 2121.487 2121.583 2122.572 2120.898 2122.368 2086.162 

5.2 TWENTY-FIVE-BAR SPATIAL TRUSS 

Figure 5 shows the 25-bar spatial truss, the material density is 2767.990 kg/m3 and the 

modulus of elasticity is 68,950 MPa. For this example, the structural members of the 25-bar 

truss are grouped into eight different groups, as given in Table 3, the structure was optimized 

under two independent loading conditions as presented in Table 4. The stress limits for each 

group are described in Table 3, while all nodes are subjected to displacement limits of ±0.889 

cm in both vertical and horizontal directions. In this example, the algorithm deals with 8 design 

variables ranging from 0.06452 cm2 to 21.94 cm2. Lamberti solved this problem using an 

improved SA algorithm [25]. The results and comparison are presented in Table 5. 

 

Fig. 5  The structure of the 25-bar truss 



Dandash Alaa, Liao HuaLin, Xiao WenSheng: A Novel Algorithm for Solving Structural Optimization Problems 

84 ENGINEERING MODELLING 36 (2023) 2, 75-94 

Table 3  Characteristics of the 25-bar truss 

Node ID 

Nodal coordinats 
Group 

ID 

Group 

members 

Stress limitations 

in tension [MPa] 

Stress limitations in 

compression [MPa] X [cm] Y [cm] Z [cm] 

1 -95.25 0 508 1 1 257.7903 241.951 

2 95.25 0 508 2 2,3,4,5 257.7903 79.910 

3 -95.25 95.25 254 3 6,7,8,9 257.7903 119.313 

4 95.25 95.25 254 4 10,11 257.7903 241.951 

5 95.25 -95.25 254 5 12,13 257.7903 241.951 

6 -95.25 -95.25 254 6 14,15,16,17 257.7903 46.602 

7 -254 254 0 7 18,19,20,21 257.7903 46.602 

8 254 254 0 8 22,23,24,25 257.7903 76.4077 

9 254 -254 0     

10 -254 -254 0     

Table 4  Loading conditions for 25-bar truss 

Node ID 

Condition 1 Condition 2 

Px [kN] Py [kN] Pz [kN] Px [kN] Py [kN] Pz [kN] 

1 0.0 88.9644 -22.241 4.4482 44.482 -2.2241 

2 0.0 -88.9644 -22.241 0.0 44.482 -2.2241 

3 0.0 0.0 0.0 2.2241 0.0 0.0 

6 0.0 0.0 0.0 2.2241 0.0 0.0 

Table 5  Results of optimized design for 25-bar truss compared to previous researchers’ work 

Design variables [cm2] 

Lee and Geem [33] Li et al. [20] Lamberti [25] 

This study HS HPSO Improved SA 

A1 0.3032 0.06452 0.06452 4.5652 

A2 13.045 12.7097 12.8193 8.1664 

A3 19.032 19.458 19.3129 20.6683 

A4 0.06452 0.06452 0.06452 0.06452 

A5 0.0903 0.06452 0.06452 0.06452 

A6 4.439 4.4774 4.4477 4.6013 

A7 10.690 10.845 10.8187 14.0077 

A8 17.181 17.0516 17.1748 13.2213 

Number of structure 

analyses 

15,000 125,000 1050 40,000 

Weight (kg) 246.927 247.294 247.276 239.015 
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In this case, the algorithm found the best weight of 239.015 kg compared to 246.927, 247.294 

and 247.276 kg for HS, HPSO and improved SA algorithms, respectively. However, the number 

of structural analyses is still an issue, where the improved SA and HS algorithms could solve 

this problem with 1050 and 15000 structural analyses compared to 40,000 structural analyses 

for the proposed algorithm, while the proposed algorithm still performed better than HPSO 

with 125,000 structural analyses. In this example, the number of curving points on the 

hurricane axis is set to 30, in this case, the curvature points play the role of pseudo population. 

However, according to the algorithm concept, this does not affect the number of structural 

analyses. 

5.3 SEVENTY-TWO-BAR SPATIAL TRUSS 

The 72-bar spatial truss is shown in Figure 6, the modulus of elasticity is 68,950 MPa and the 

material density is 2767.990 kg/m3. The displacement limits of 0.635 cm are applied to the 

upper four nodes in both vertical and horizontal directions. The stress limit for each member is 

172.375 MPa in both tension and compression. For this case the structure was optimized under 

two loading conditions as presented in Table 6, design variables for structural members are 

divided into 16 groups: (1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–A18, (5) A19–A22, (6) A23–A30, 

(7) A31–A34, (8) A35–A36, (9) A37–A40, (10) A41–A48, (11) A49–A52, (12) A53–A54, (13) A55–A58, (14) 

A59–A66, (15) A67–A70, (16) A71–A72. The results of optimization are given in Table 7 for loading 

conditions in case 1, while Table 8 provides results for loading conditions in case 2. 

In this example, the number of curving points on the hurricane axis is set to 20 for load case 1 

and 10 for load case 2. The results for load case 1 are abnormal where the algorithm showed a 

bad performance compared to all the other cases. There was no clear explanation for this 

behavior, as the procedure followed in all the cases was the same. The proposed algorithm 

found the best design for case 2 to be 147.059 kg of weight compared to 165.498 kg for the 

HPSO algorithm. Moreover, the proposed algorithm needed 40,000 structural analyses 

compared to 125,000 for HPSO algorithms. 

 

 

L1 = 152.4 cm, L2 = 304.8 cm, L3 = 304.8 cm 

Fig. 6  Schematic of the 72-bar truss: (a) side view; (b) top view; (c) connectivity for one story 
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Table 6  Loading conditions for 72-bar truss 

Node ID 

Case 1 Case 2 

Px [kN] Py [kN] Pz [kN] Px [kN] Py [kN] Pz [kN] 

17 22.441 22.441 -22.441 0 0 -22.441 

18 0 0 0 0 0 -22.441 

19 0 0 0 0 0 -22.441 

20 0 0 0 0 0 -22.441 

 

Table 7  Results of optimized design for 72-bar truss compared to previous researchers’ work (load case 1) 

Design variables [cm2] 

Lee and Geem [33] Li et al. [20] Degertekin [32] Camp [41] 

This study HS HPSO EHS BB-BC 

Group 1 11.5484 11.9806 12.6903 11.9851 7.4645 

Group 2 3.3613 35.5161 3.2903 3.2639 3.6213 

Group 3 0.6452 0.6452 0.6452 0.6452 0.6452 

Group 4 0.6452 0.6452 0.6452 0.6452 1.6916 

Group 5 7.9290 8.0968 8.3419 8.0490 11.5026 

Group 6 3.36774 3.2452 3.2968 3.3993 3.9548 

Group 7 0.6452 0.6452 0.6452 0.6452 0.6452 

Group 8 0.6452 0.6452 0.6452 0.6529 0.6452 

Group 9 3.3355 3.1999 3.2193 3.3606 3.2323 

Group 10 3.2516 3.2645 3.2323 3.3368 5.0722 

Group 11 0.6452 0.6452 0.6452 0.6477 0.9097 

Group 12 0.5616 0.6452 0.6452 0.6484 0.6452 

Group 13 1.0064 0.6452 1.0323 1.0097 0.6452 

Group 14 3.5290 3.3806 3.3677 3.5529 3.1535 

Group 15 2.8516 2.5806 3.0839 2.5303 0.8406 

Group 16 3.8064 3.4452 3.8129 3.8206 2.2168 

Number of structure 

analyses 

15,000 125,000 15,044 19,621 40,000 

Weight (kg) 172.034 167.67 172.8323 172.297 180.458 
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Table 8  Results of optimized design for 72-bar truss compared to previous researchers’ work (load case 2) 

Design variables [cm2] 

Lee and Geem [33] Li et al. [20] Lamberti [25] Erbatur et al. [9] 
This 

study HS HPSO Improved SA GA 

Group 1 12.6645 12.3032 1.0742 0.9999 3.9329 

Group 2 3.1032 3.3806 3.4599 3.4516 0.8187 

Group 3 0.0645 0.0645 2.8774 3.0968 5.0813 

Group 4 0.071 0.0645 3.7168 3.3548 8.0516 

Group 5 7.9548 8.3097 3.3593 2.9677 5.9535 

Group 6 3.2645 3.3742 3.3419 3.4193 0.9116 

Group 7 0.071 0.0645 0.0645 0.7742 1.9981 

Group 8 0.0774 0.0645 0.7361 1.0645 1.4419 

Group 9 3.471 3.5097 8.3245 7.4516 3.9123 

Group 10 3.4387 3.4064 3.3355 3.7742 0.7999 

Group 11 0.0645 0.1226 0.0645 0.6452 1.7806 

Group 12 1.0774 0.129 0.0645 0.6452 5.2826 

Group 13 1.0387 1.1355 12.1716 11.3226 9.0839 

Group 14 3.4968 3.4516 3.3348 3.2581 1.1413 

Group 15 3.0839 2.7484 0.0645 0.6774 0.9129 

Group 16 3.5548 3.9484 0.0645 0.9999 5.2406 

Number of structure 

analyses 

20,000 125,000 N/A N/A 40,000 

Weight (kg) 165.257 165.498 165.018 174.978 147.059 

5.4 SENSITIVITY ANALYSIS 

The case of 25 bars truss and 72 bars truss were selected for the purpose of sensitivity 

analysis, where the number of curving points varied between 5-50. The results did not show a 

clear correlation between the number of curving points and the results improvement. 

However, it showed that each case might have a specific number of curve points that could be 

optimal to find the minimum. The results of the sensitivity analysis are presented in Table 9. 

For the 25-truss case, the best results were found to be 239.015 kg of weight using 30 curving 

points, while the best weight in the 72-truss case 2 was found to be 180.458 kg of weight using 

20 curving points. 
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Table 9  The results of the sensitivity analysis 

Number of curving 

points 

Best weight for 25 bar truss 

example / kg 

Best weight for 72 bar truss example 

(load case1) / kg 

5 248.079 201.979 

7 548.286 199.959 

10 255.668 201.306 

15 249.203 194.847 

20 241.037 180.458 

25 257.574 203.32 

30 239.015 205.758 

35 249.497 210.082 

40 243.146 205.985 

45 255.852 195.793 

50 246.943 202.667 

 

Figure 7 shows the search characteristics of the proposed algorithm. The plot shows that the 

minimum value changes in a stepwise manner, where the plot keeps a specific value for several 

iterations and then changes to a new minimum value when it is found. This is related to the 

algorithm concept as it goes throughout the solution space with the aim of hitting the solution 

at least once. The plot shows a searching characteristic rather than a convergence 

characteristic as in other algorithms. 

  

a) Minimum for the best run; 25 bars truss b) Minimum for the best run; 72 bars truss (load case1) 

Fig. 7  Convergence characteristics of the hurricane chaos algorithm 
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6. CONCLUSIONS 

This paper proposed a simple and efficient algorithm for solving structural design optimization 

problems. Three common examples from the literature were used to test the algorithm. The 

algorithm takes inspiration from a natural phenomenon, where it simulates the chaotic nature 

of a hurricane system. The results showed that the proposed algorithm could achieve good 

performance overall compared to the referenced algorithms from the literature. However, the 

algorithm showed abnormal behavior in one case study. Moreover, the algorithm needs a high 

number of structural analyses to achieve a good performance. The simplicity of the algorithm 

seems like an advantage, however, it has a disadvantage where it needs to decide the proper 

number of hurricane axis curving points. This shows a need for a dynamic updating system like 

PSO. Another way is to use the proposed algorithm in combination with another algorithm to 

improve the diversity of the algorithms. 
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