
THE ITALIAN DOMATIC NUMBER ON VARYING GRAPH FAMILIES

By

Keith G. Gallegos

Honors Scholarship Project

Submitted to the Faculty of

Olivet Nazarene University

for partial fulfillment of the requirements for

GRADUATION WITH UNIVERSITY HONORS

March, 2023

Bachelor of Science

in

Mathematics

Scholarship Project Advisor (printed) Signature Date

Honors Council Chair (printed) Signature Date

Honors Council Member (printed) Signature Date

ABSTRACT

A graph G is a mathematical object that consists of a set of vertices V (G) and set of edges E(G) such that an
edge e ∈ E(G) connects two distinct vertices in V (G). An Italian dominating function f : V (G) −→ {0, 1, 2}
assigns weights of 0, 1, or 2 to each vertex such that each vertex v ∈ V (G) with a weight of 0 (f(v) = 0)
has at least two neighbors u1, u2 ∈ V (G) with weights of 1 (f(u1) = f(u2) = 1) or at least one neighbor
w ∈ V (G) with a weight of 2 (f(w) = 2). In short, if v is assigned a weight of 0, then

∑
w∈N(v) f(w) ≥ 2 for

N(v) denoting all vertices adjacent to v. An Italian dominating family is a set of distinct Italian dominating
functions {f1, f2,..., fn} such that the sum of the weights of some vertex v ∈ V (G) across all Italian
dominating functions in this set does not exceed 2 for every vertex in the graph of G. In other words, an
Italian dominating family must satisfy

∑n
i=1 fi(v) ≤ 2 for all v ∈ V (G). The maximum cardinality of the

Italian dominating family for G is called the Italian domatic number of G, denoted dI(G). In this report,
we determine the Italian domatic number across varying families of Cartesian products, including T1□T2 for
two trees that are not both stars, C3r□C3s for r, s ≥ 1, C4□C3r for r ≥ 1, and C5r□C5s for r, s ≥ 1. We
also classify the Italian domatic number for all trees based upon the presence of a specific configuration in
the tree.

1

Contents
1 Introduction 3

1.1 Terminology . 3
1.2 Research Specifics . 4

2 Methodology 7
2.1 Cartesian Products . 7
2.2 Trees . 8

3 Italian Domatic Number of Cartesian Products 9

4 Italian Domatic Number Algorithm for Trees 14
4.1 The Compound State BST . 16
4.2 The Compound State BBT . 17
4.3 The Compound State ABT . 18
4.4 The Compound State AOO . 18
4.5 The Compound State SOO . 19
4.6 The Compound State SST . 19
4.7 The Compound State BOO . 20
4.8 Algorithm Output . 20

5 Results for Trees 21
5.1 Trees with a Family of 3 Italian Dominating Functions . 21
5.2 Trees with a Family of 3 Distinct Italian Dominating Functions 24
5.3 An Upper Bound for the Italian Domination Number for Trees 29

6 Discussion 29

7 Appendix 32

2

1 Introduction
In the fields of computer science and mathematics, many problems can be measured or solved by examining
connectivity between objects. One everyday example of this type of problem could be finding the shortest
travel distance from one place to another on a map, while some less common examples include flight paths
of planes and solving a maze. Graph theory is a field in mathematics that models and deals with these
problems directly.

In graph theory, graphs are mathematical objects used to measure connectivity between arbitrary objects.
Graphs in this context are not the same as algebraic graphs that model lines or functions. Graphs in graph
theory consist of a collection of vertices along with edges that connect exactly two vertices. Everyday
examples of graphs include family trees, tournament brackets, social networks, and maps with bordered
territories. The map example may be hard to imagine, but if a territory represents a vertex of a graph while
edges connect vertices of territories that are adjacent, then we can construct a graph with the vertices and
edges described.

Graph theory has many useful applications in the real world, such as graph coloring or different graph
covering problems. Graph coloring is used whenever it is desired that a graph be partitioned or grouped in
a specific manner. Graph covering is where a specific set of vertices are chosen that “cover” or in some way
account for all other vertices in the graph. One type of graph covering is known as domination, where a set
of vertices from a graph is chosen such that all vertices not chosen to be part of this set are adjacent to at
least one vertex that was chosen to be part of this set. Our research for this project focuses on a variation
of domination known as Italian domination.

1.1 Terminology
Let G = (V, E) be a simple undirected graph with vertex set V = V (G) and edge set E = E(G). The
number of vertices in G (denoted |V (G)|) is called the order of G. For any two vertices v1, v2 ∈ V (G), v1 and
v2 are considered adjacent if there is an edge directly connecting the two vertices. The open neighborhood
of a vertex v ∈ V (G) is the set of all vertices in V (G) adjacent to v. The open neighborhood of v is denoted
N(v). In the context of this paper, we will refer to this simply as the neighborhood of v. The degree of
vertex v, denoted deg(v) is equal to the number of vertices adjacent to v. In short, deg(v) = |N(v)|. The
minimum degree of a graph G, denoted δ(G), is equal to the the smallest degree among all vertices in G,
where δ(G) = min{deg(v)|v ∈ V (G)}. The maximum degree of G, denoted ∆(G), is defined similarly to the
minimum degree, where ∆(G) = max{deg(v)|v ∈ V (G)}. Consider Figure 1 for some examples of graphs.
For this paper, we work with specific graph structures and families. These specific groups include cycles,
trees, paths, bipartite graphs, and Cartesian products.

Let a set of vertices {v1, v2, ..., vm} occur in a graph G where vn is adjacent to vn+1 for all n ∈ [1, m − 1].
If vm is adjacent to v1, then G contains a cycle of length m. If a graph G only consists of a cycle of length
m, or in other words, there is no vertex outside of this cycle in G, then we denote this graph Cm. Figure
1(c) shows an example of a cycle on 8 vertices. Figure 1(b) is an example of a graph that contains cycles,
but is not a cycle graph.

Trees are defined as any graph that has no cycle. An arbitrary tree will typically be denoted as T . Paths
are a subset of trees where the maximum degree of the path graph is exactly 2. We denote paths on m
vertices Pm. Figure 1(a) is an example of a tree.

Suppose a graph G can have its vertices partitioned into two distinct sets S1 and S2 such that S1 ∪ S2 =
V (G). If any vertex in S1 is only adjacent to vertices in S2 and vice versa, G is said to be bipartite. In
mathematical notation, for v1 ∈ S1 and v2 ∈ S2, then N(v1) ⊆ S2 and N(v2) ⊆ S1. If we were to color a
bipartite graph red and blue for vertices in S1 and S2, respectively, then we can see that red vertices are
only adjacent to blue vertices, and vice versa. This type of coloring is shown for C8 in 1(c). It should also
be noted that a graph G is bipartite if and only if G has no odd cycles. So if no odd cycles can be found in
G, we can conclude that G is bipartite.

A Cartesian product of two graphs G and H, denoted G□H, is a graph defined on pairs of vertices
(g, h) ∈ V (G□H) where g ∈ V (G) and h ∈ V (H). The pair (g, h) is a single vertex in G□H. There is an
edge between any two vertices (g1, h1) and (g2, h2) if and only if g1 = g2 and the edge between h1 and h2 is
in E(H) or h1 = h2 and the edge between g1 and g2 is in E(G). There is also a straightforward, step-by-step

3

(a) (b) (c)

Figure 1: Examples of graphs

(a) (b) (c)

Figure 2: Creating a Cartesian product

way to create a Cartesian product of two graphs (say G1 and G2) using the following instructions:

1. Arrange G1 and G2 such that each appear linear. Orient one vertically and one horizontally illustrated
in Figure 2(a)

2. Create vertices for the Cartesian product. The order of the Cartesian product should be the orders of
G1 and G2 multiplied. Arrange them as shown in Figure 2(b)

3. Add edges. The edges for each column should be identical to the vertical graph, while the edges in
each row should be identical to the horizontal graph. This is shown in Figure 2(c)

1.2 Research Specifics
A dominating set S on a graph G represents a subset of vertices in V (G) such that for any v ̸∈ S, v is
adjacent to at least one vertex in S. In short, N(v) ∩ S ̸= ∅, for all v ∈ V (G) \ S where N(v) represents
all vertices adjacent to v. Domination could also be defined using particular functions. Define a function
f : V (G) → {0, 1} such that any vertex receives a weight of either 0 or 1. Then the support at f is a
dominating set if for every v ∈ V (G) such that f(v) = 0, then

∑
x∈N(v) f(x) ≥ 1.

Domination on graphs have been studied extensively throughout series of papers such as [2], [9] and [13].
Through an article published by Ian Stewart [15] analyzing strategies for defending the Roman Empire, other
concepts of domination were introduced. In Stewart’s work, we see a map of the ancient Roman Empire
demonstrating Constantine’s plan for defending it given four groups of army legions. This can be seen in
Figure 3. Constantine wanted to deploy these groups of army legions in a way such that they are deployed
two groups at a time and such that every city in the ancient Roman Empire that did not have an army legion
deployed in it was adjacent to a city that had exactly two army legions deployed in it. The idea behind

4

Figure 3: Constantine’s flawed attempt to defend the ancient Roman Empire given 4 groups of army legions

this is that for cities with no deployed legions, an adjacent city with two army legions deployed could send
exactly one of its legions so that it could support the attacked city and still remain defended. The only
problem was that given only four groups of these army legions, it would be impossible to defend the ancient
Roman empire. The deployment demonstrated in Figure 3 has left Britain completely undefended.

Stewart’s work ended up paving the way for two new variations of domination on graphs. These variations
were later termed Roman domination and Roman {2}-domination. Roman domination was first introduced
in a series of papers ([10], [6]) by Hedetniemi et al., while Roman {2}-domination first appeared in a paper
by Chellali et al. [3]. Roman {2}-domination was termed Weak {2}-domination in [12] and later referred to
as Italian domination in [11].

An Italian dominating function is a function f : V (G) → {0, 1, 2} (an assignment of weights to all vertices
on G) such that for any vertex v where f(v) = 0,

∑
w∈N(v) f(w) ≥ 2. For any Italian dominating function

f , the sum of all weights throughout the function is known as the weight of the Italian domination function.
The Italian domination number for G, γI(G), is the minimum weight across all Italian dominating functions
for G. Consider the graph shown in Figure 4(a). If all vertices except for vertex b were assigned a weight
of 0 while vertex b was assigned a weight of 2, then we have constructed an Italian dominating function as
shown in Figure 4(b) since all vertices with a weight of 0 are a neighbor to vertices whose weights sum to
at least 2. This type of domination provides several alternative methods to successfully dominate the graph

(a) (b)

Figure 4: An example of an Italian dominating function

5

(a) (b) (c)

Figure 5: An example of an Italian dominating family that satisfies the Italian domatic number for a graph

pertaining to the ancient Roman Empire in Figure 3. Trial and error tells us that the Italian domination
number for this graph is 4 since it cannot be dominated with a weight of 3. We can dominate this with a
weight of 4 by giving Britain, Asia Minor, Iberia, and Egypt a weight of 1 to form one Italian dominating
function. Another can be formed by giving Britain and Asia Minor a weight of 1 while giving Rome a weight
of 2. From this perspective, Constantine could have defended the ancient Roman Empire if he would have
deployed his 4 army legions in a similar manner as described above.

The domatic number of a graph G was first introduced in [5] by Hedetniemi and Cockayne, which stems
from the terms “domination” and “chromatic”. The domatic number of a graph G is the maximum number
of dominating sets in G such that no 2 sets share any common vertex. The domatic number of G is denoted
d(G). A variation of the domatic number known as the Italian domatic number of a graph has also been
extensively studied ([16], [9]). In [16], Volkmann defined the Italian domatic number on simple undirected
graphs as follows: Let F = {f1, f2, ..., ft} be a set of Italian dominating functions. If

∑t
i=1 fi(v) ≤ 2 for all

vertices v ∈ V (G), then this is called an Italian dominating family. Then the Italian domatic number of G is
the maximum cardinality of any such set of distinct Italian dominating functions. We will denote the Italian
domatic number of G as dI(G). See Figure 5 for an example. We refer to the same example graph used in
Figure 4(a). By examining the same vertex in each Italian dominating function, it is clear that the sum of
the weights assigned to this vertex across all functions adds up to at most 2. This is enough to show that
the Italian domatic number for this graph is at least 3. The following theorem allows us to conclude that it
must be at most 3 and as a result, conclude that the Italian domatic number is 3 for this graph.

Theorem 1. [16] For any graph G, dI(G) ≤ δ(G) + 2 for δ(G) equal to the minimum degree of G.

As far as lower bound is concerned, we know that d(G) ≤ dI(G). We can define an Italian dominating
function that corresponds to a dominating function by assigning a value of 2 to any vertex in the dominating
set for G.

Returning to the graph of the ancient Roman Empire in Figure 3, we have already formed two distinct
Italian dominating functions for this graph that satisfy the Italian domatic number. A third can be formed if
we were to give Gaul and Constantinople a weight of 2 while giving Iberia, North Africa, and Egypt a weight
of 1. These Italian dominating functions are shown in Figure 6, where a 3-tuple on vertex v represents (f1(v),
f2(v), f3(v)). In other words, the 3-tuples represent the weight distributions of a vertex in the first, second,
and third Italian dominating function for the graph, respectively. These Italian dominating functions, along
with Theorem 1, allow us to conclude that the Italian domatic number for the graph of the ancient Roman
Empire is 3. However, one of the functions in this Italian dominating family has a weight of 7, which is
greater than the number of army legions Constantine could work with. Although this is undesired, the Italian
dominating family that corresponds to this graph’s Italian domatic number certainly contains a number of
Italian dominating functions of minimum weight, which in this case is 4.

The following theorems come from a series of papers and, along with Theorem 1, will also be used
consistently throughout this research:

6

Figure 6: A version of the graph of the ancient Roman Empire from Figure 3 that includes weight distributions
for an Italian dominating family

Theorem 2. [16] For any graph G, γI(G)dI(G) ≤ 2n for n equal to the order of G.

Theorem 3. [3] For a connected graph G with order n and maximum degree ∆(G), γI(G) ≥ ⌈ 2n
∆(G)+2 ⌉.

2 Methodology
This work has two main focuses or areas of research. The first of these is to classify the Italian domatic
number on some classes of Cartesian products, while the second is to classify the Italian domatic number of
all trees. Both of these areas of research have varying motivations, and as a result have varying methodologies
or methods of proof. For this reason, it is appropriate to discuss each methodology individually.

2.1 Cartesian Products
In research conducted on the Italian domatic number, there has been little work so far done on the Italian
domatic number of Cartesian products. The goal for this section is to focus on Cartesian products that did
not have a large Italian domatic number. By Theorem 1, we know that the Italian domatic number directly
relates to how large the minimum degree of a graph is. Since the minimum degree of any Cartesian product
is the sum of the minimum degrees of the two graphs used to produce it, we decided to prioritize Cartesian
products of graphs with small minimum degrees. For this research, this includes trees (with minimum degree
1) and cycles (with minimum degree 2).

In the case for trees, it is more accurate to say that our motivation for this area of research stems from
results about the Italian domatic number of paths. In [16], Volkmann shows that for a path on n vertices
(denoted Pn), dI(Pn) = 3 for n ≥ 6. Because we had this result, we initially focused on paths. We know
that dI(Pn□Pm) ≤ 4, so our goal was to attempt to find an Italian dominating family of four distinct Italian
dominating functions for the Cartesian product of two paths Pn□Pm. By partitioning the Cartesian product
of two paths (one path of at least length 4) into two bipartite graphs with minimum degree of at least 2, we
were able to find the Italian domatic number for Cartesian products of paths. The same method worked for
trees, where we could find the Cartesian product of two trees (such that one tree is not a star). The methods
of proof for Cartesian products of trees (and subsequently, paths) consisted of partitioning the graph of the
Cartesian product into two separate bipartite graphs. Partitioning these Cartesian products in such a way
allowed us to generate a result for Cartesian products of any two trees that are not both stars. This result
is given later in the paper.

7

After focusing on Cartesian products of graphs with a minimum degree of 1, we moved on to Cartesian
products of graphs with minimum degree 2. The only connected graphs with a minimum degree of 2 are
cycles, where Cn denotes a cycle of length n. This was our next logical step since the only difference between
Pn and Cn is an edge connecting the two vertices of degree 1 in Pn to form Cn. However, this increases
our minimum degree from 1 to 2, and the minimum degree of any Cartesian product of two cycles is now 4.
Because of this, the methods of proof drastically change compared to Cartesian products of trees. In fact,
we could only classify the Italian domatic number for some families of Cartesian products of cycles. These
include C3r□C3s, C4□C3s, and C5r□C5s for positive integers r, s. For all three families, we initially found
the Italian domatic number for each class when both r and s equal 1 and classified each of these findings
as observations. We then used these along with Theorems 2 and 3 to improve the bound for dI in Theorem
1 and to solve for the Italian domatic number of graphs in these families. However, to potentially improve
the upper bound for the Italian domatic number using Theorem 2, we require some value for the Italian
domination number γI . For the first two families, we use Lemma 4, which is introduced in this subsection
to find γI .

Now that we have a way to classify the Italian domination number for each family of Cartesian products
of cycles we work with, we can use Theorem 2 to find an upper bound that is potentially improved from that
given in Theorem 1. As far as lower bounds are concerned, we typically use our observations or results found
for each family where r, s = 1 and extend an Italian dominating family for the whole class that satisfies the
Italian domatic number based on the Italian dominating family formed for these observations. If we are able
to find an Italian dominating family with the same number of distinct functions as our upper bound for dI

from Theorem 2, then we have found the Italian domatic number for all graphs in the family. Our results
for these classes of Cartesian products of cycles are shown later in this paper.

2.2 Trees
For the Italian domatic number on trees, our methodology is built around a somewhat experimental process,
with a hypothesis, experimental procedure, results from the experimentation, and a conclusion. The only
difference is that we must prove that the results yielded from the experimental procedure are true. In the
case for trees, we know from [16] that for a graph G, dI(G) = 1 if and only if G is an empty graph (a graph
with 0 edges). We also know from Theorem 1 that for any tree T , dI(T) ≤ 3, meaning that any tree has
an Italian domatic number of either 2 or 3. So our “hypothesis” or focus is to determine which class of
trees have an Italian domatic number of 2, and subsequently determine which trees have an Italian domatic
number of 3.

To start our “experimental procedure,” we create an algorithm that outputs all trees on a specified number
of vertices that do not have an Italian domatic number of 3. Since trees are graphs that contain no cycles, it
is easier to use an iterator that loops through all possible trees on some number of vertices n. The specific
details of the algorithm are outlined in another section, but our purpose for the algorithm is to determine all
trees that do not have an Italian dominating family comprised of 3 Italian dominating functions. It should
be noted that part of the requirements to form an Italian dominating family is that all functions in the
family are distinct, but for this algorithm, we were unable to implement a way to determine if functions in a
possible Italian dominating family for a tree were distinct. So our output for the algorithm provides us with
trees that cannot be dominated with 3 Italian dominating functions, regardless of distinction. However, we
used the concept of trees having Italian dominating families comprised of non-distinct Italian dominating
functions to prove additional results about the Italian domatic number of trees. Because of the inability for
the algorithm to identify distinct Italian dominating functions in trees, we decided to divide this section into
subsections, one for classifying trees that can be dominated 3 (not necessarily distinct) Italian dominating
functions that would otherwise satisfy the Italian domatic number, and another for classifying which trees
can be dominated with 3 distinct Italian dominating functions.

For the first subsection, after obtaining our results from the algorithm, we focus on classifying trees that
cannot be dominated with 3 Italian dominating functions (regardless of distinction). Since our output for
the algorithm are trees that fall into this class, we analyze each tree in our output and try to find a pattern
or form a conjecture for why these trees fail to contain 3 Italian dominating functions. We were able to
find one structure that was common in all trees in the output for our algorithm. This structure is shown in
Figure 10 later in the paper. The goals for this section are to show that the presence of this structure in

8

any tree T implies that dI(T) = 2 and to classify which trees do not contain this structure but still have an
Italian domatic number of 2.

Once we classify trees that cannot be dominated with 3 (not necessarily distinct) Italian dominating
functions, we move on to our next subsection about classifying those trees that can be dominated with 3
distinct Italian dominating functions. One tool that was essential for almost all proofs in this subsection
is Lemma 24, or the Cut Edge Lemma. This essentially states that if a graph can be partitioned into two
separate graphs that each have an Italian dominating family of three Italian dominating functions, then the
original graph before partition must have an Italian domatic number of 3. We prove this lemma in this
subsection, and onward from here most proofs that involve showing a tree T (in some class for trees) has
an Italian domatic number of 3 involve demonstrating that an edge cut that satisfies Lemma 24 exists in T .
There are some exceptions to this. The end goal for this subsection is to use the results from the previous
subsection along with the results formed in this one to classify all trees that have an Italian domatic number
of 3 and subsequently, those that have an Italian domatic number of 2.

3 Italian Domatic Number of Cartesian Products
A majority of this section will focus on the Italian domatic number of the Cartesian product of cycles. One
way we do this is using Theorem 2, but this requires an Italian domination number γI . Listed below are two
methods for finding the Italian domination number of different classes of Cartesian products of cycles:

Lemma 4. [8] For n ≡ 0 (mod 3),

γI(Cn□Cm) =
{

mn
3 , m ≡ 0 (mod 3)

mn+n
3 , m ≡ 1, 2 (mod 3)

Theorem 5. [14] For an integer n, γI(C5□Cn) = 2n for n ≥ 5.

Along with these statements and Theorem 2, we have another method for finding lower bounds for the
Italian domatic number of Cartesian products. However, we must first show a separate result:

Theorem 6. Suppose G is a graph that can be partitioned into n connected components G1, G2, ... Gn

through any number of edge cuts on G. Then dI(G) ≥ min{dI(G1), dI(G2), ..., dI(Gn)}.

Proof. Let G be a graph that can be partitioned into n connected components G1, G2, ... Gn. Let
min{dI(G1), dI(G2), ..., dI(Gn)} = d. Since dI(G1), dI(G2), ..., dI(Gn) ≥ d, there exists a correspond-
ing family of at least d distinct Italian dominating functions for all G1 through Gn. For each family, choose
the first d Italian dominating functions from each. We will denote the first d Italian dominating functions
as fy

x , where 1 ≤ x ≤ d and 1 ≤ y ≤ n such that x represents xth function in the Italian dominating family
for Gy. Now define the Italian dominating family for G as follows:

fi(v) =

f1

i v ∈ G1
f2

i v ∈ G2
...
fn

i v ∈ Gn

For 1 ≤ i ≤ d, we can form d distinct Italian dominating functions for the Italian dominating family for G,
showing that dI(G) ≥ d, or in other words, dI(G) ≥ min{dI(G1), dI(G2), ..., dI(Gn)}.

As a result from the above theorem, we can show a separate result specific to Cartesian products of any
two graphs.

Corollary 7. For any two graphs G and H, dI(G□H) ≥ max{dI(G), dI(H)}.

Proof. Without loss of generality (WLOG), suppose that max{dI(G), dI(H)} = dI(G) = d. In this case,
we can partition G□H into d partitions of the graph G by removing all edges from H prior to creating the
Cartesian product. Since all partitions are identical, they all must have the same Italian domatic number.
From Theorem 6, we can conclude that dI(G□H) ≥ d, or in other words, dI(G□H) ≥ max{dI(G), dI(H)}.

9

Although Corollary 7 provides a lower bound for the Italian domatic number of Cartesian products, this
lower bound can often be improved upon. For graphs with large minimum degrees, it is often the case
that Corollary 7 implies that the Italian domatic number is greater than some value less than the minimum
degree of the Cartesian product. With all graphs that have been examined throughout this research, the
Italian domatic number has never been less than the minimum degree of its corresponding graph. Although
we have no way to prove this, it should be noted that the lower bound provided in this corollary can often
be improved upon. However, before stating specific results of the Italian domatic number on Cartesian
products, we must first define a specific class of trees.

Trees have many subclasses with specific properties. In particular, one subclass of trees are known as
stars. Stars are trees on n vertices such that n−1 of these vertices are all leaves adjacent to the same vertex.
In other words, if a tree has at least two vertices of degree 2 or more, then it is not a star. We will now
continue on our research with Cartesian products, specifically starting with Cartesian products of trees.

Theorem 8. For any graph G = T1□T2 where T1 and T2 are trees that are not both stars, dI(G) = 4.

Proof. Given two tree graphs that not both stars, T1 and T2, let’s say WLOG, T1 is not a star. Since both
T1 and T2 have leaves, δ(G) = 2. By Theorem 1, the Cartesian product G has an Italian domatic number of
at most 4. We want to show that it must be 4. Since trees are graphs with no cycles, any edge removal from
a tree will result in two disjoint graphs as components. First, perform an edge removal operation, T1−{e},
such that the resulting graphs T ′

1 and T ′′
1 both have an order of n1 and n2, respectively, where n1, n2 > 1.

Let H and J denote two new graphs such that H = T ′
1□T2 and J = T ′′

1 □T2. H and J are both bipartite
graphs, so Theorem 6 implies that dI(G) ≥ 2 since the Italian domatic number of any bipartite graph is at
least 2. However, we can improve this bound with careful construction of Italian dominating functions using
the 2 partitions of H and J . Let A, B represent the partitions of H and C, D represent the partitions of J .
For all vertices v ∈ H, fA(v) and fB(v) can be represented as the following:

fA(v) =
{

1 v ∈ A
0 v ∈ B

fB(v) =
{

1 v ∈ B
0 v ∈ A

We can also represent the partitions of J , fC(v) and fD(v), similarly:

fC(v) =
{

1 v ∈ C
0 v ∈ D

fD(v) =
{

1 v ∈ D
0 v ∈ C

Since H is a bipartite Cartesian product with δ(H) = 2, every vertex in partition A will be adjacent to at
least 2 vertices in partition B, and vice versa. Similarly, we can say the same about partitions C and D for
J . This means that fA, fB , fC , and fD are all Italian dominating functions. Let fAC , fAD, fBC , and fBD

be defined for G as follows:
fAC(v) =

{
fA(v) v ∈ H
fC(v) v ∈ J

fAD(v) =
{

fA(v) v ∈ H
fD(v) v ∈ J

fBC(v) =
{

fB(v) v ∈ H
fC(v) v ∈ J

fBD(v) =
{

fB(v) v ∈ H
fD(v) v ∈ J

Because fA, and fB are distinct Italian dominating functions on H and fC and fD are distinct Italian
dominating functions on J , fAC , fAD, fBC , and fBD are distinct Italian dominating functions on G. In the
Italian dominating family for G formed by fAC , fAD, fBC , and fBD, the sum of the weights of every vertex
across the family is exactly 2. Since there are four families, dI(G) = 4.

10

Figure 7: General form of G

Corollary 9. For two paths, Pm and Pn, where m > 3 or n > 3, then dI(Pm□Pn) = 4.

Proof. Since paths are a subset of tree graphs, Pm and Pn are both trees. Theorem 8 applies since the only
star graphs that are paths are paths with an order less than or equal to 3. It follows that dI(Pm□Pn) = 4.

The following definition from Gao et al. [4] provides a useful way to refer to different components of
Cartesian products. This definition will be used throughout the proof of Theorem 11.

Definition 10 (Fiber). Let the fiber of any Cartesian product G□H be the subgraph of G□H induced by
V (G) × {h} for some vertex v ∈ H.

Theorem 11. Suppose G = C3r□C3s where C3r and C3s are cycles with orders 3r and 3s, respectively, for
r, s > 1. Then dI(G) = 6.

Proof. First, we note that the minimum degree of the Cartesian product of any two cycles is 4, so that
dI(G) ≤ δ(G) + 2 = 6. Since G is a Cartesian product of two cycles, G will have the form presented in
Figure 7. Let Vt denote the vertices of a fiber of CCt

3r , where CCt
3r is V (C3r) × {t} for t ∈ C3s such that

v0 ∈ Vt represents the first vertex, v1 ∈ Vt represents the second, and so on for 0 ≤ t ≤ 3r. Let f0, f1, and
f2 represent different weight distributions for the set Vt, shown below:

fi(vt) =
{

1, t ≡ 0 (mod 3)
0, t ̸≡ 0 (mod 3)

fj(vt) =
{

1, t ≡ 1 (mod 3)
0, t ̸≡ 1 (mod 3)

fk(vt) =
{

1, t ≡ 2 (mod 3)
0, t ̸≡ 2 (mod 3)

Define a function fijk, where i ̸= j ̸= k, as the following:

fijk =

fi(v) if v ∈ CCt

3r , t ≡ 0 (mod 3)
fj(v) if v ∈ CCt

3r , t ≡ 1 (mod 3)
fk(v) if v ∈ CCt

3r , t ≡ 2 (mod 3)

For any vertex t ∈ G that has a weight of 1, t has has a position equivalent to 0, 1, and 2 modulo 3 in every
three consecutive fibers for CCt

3r . This means that every vertex with a weight of 0 is dominated by exactly
two vertices (1 vertex in a similar row and similar column) with weight 1 since any position modulo 3 will
be adjacent to both remaining positions in the fiber. This means fijk is an Italian dominating function.
Six such functions exist that satisfy the Italian domatic number, f012, f021, f102, f120, f201, and f210. As a
result, dI(G) ≥ 6. Because dI(G) is bounded below and above by 6, dI(G) = 6.

Observation 12. dI(C3□C4) = 4

11

Figure 8: C3□C4

A B C D E F G H I J K L
f1 0 0 1 0 1 0 1 0 0 1 0 1
f2 0 1 0 1 0 0 0 0 1 0 1 1
f3 1 0 0 0 0 1 0 1 0 1 1 0
f4 1 1 1 0 0 0 1 1 1 0 0 0

Table 1: Family of Italian dominating functions for C3□C4

Proof. First note Figure 8 and the corresponding table for it. The figure is a graph C3□C4, while the
table represents an Italian dominating family that satisfies the Italian domatic number. Since there are four
functions in the family, dI(G) ≥ 4. Now refer to Theorem 2, which states that γI(G)dI(G) ≤ 2n for any graph
G with order n. Since 3 ≡ 0 (mod 3), Lemma 4 applies for C3□C4, meaning that γI(C3□C4) = 4(3)+3

3 = 5.
We can substitute this value and 3(4) = 12 for γI(G) and n, respectively, into our equation and obtain
5dI(G) ≤ 24. Solving for dI(G) results with dI(G) ≤ 4.8. Since the Italian domatic number has to be an
integer, we can conclude that dI(G) ≤ 4. Since dI(G) is bounded below and above by 4, dI(G) = 4.

Theorem 13. For n ≡ 0 (mod 3), dI(C4□Cn) = 4

Proof. From Theorem 2, we know that γI(G)dI(G) ≤ 2s for some arbitrary graph G with order s. We can
substitute mn+n

3 for γI(G) using Lemma 4, along with substituting s for mn since the order of any Cartesian
product of two graphs is the product of the order of the two individual graphs used to create it. We are
interested in the case for m = 4, so we will make this substitution as well. After these substitutions, we obtain
4n+n

3 dI(G) ≤ 8n. By solving for dI(G), we obtain dI(G) ≤ 24
5 , meaning that the Italian domatic number of

any C4□Cn will be unaffected for any n ≡ 0 (mod 3). Because of this, we know dI(C4□Cn) = dI(C4□C3) = 4
from Observation 12 for any n ≡ 0 (mod 3).

Theorem 5 allows us to find the Italian domination number of graphs of the form C5□Cn for any n ≥ 5.
Although the family of Cartesian products we will work with deviate from this family slightly, it still proves
useful for the following observation:

Observation 14. dI(C5□C5) = 5

Proof. Consider Figure 9 and Table 2. The table represents a family of 5 distinct Italian dominating
functions that satisfy the Italian domatic number for the graph of C5□C5. This example shows that
dI(C5□C5) ≥ 5. According to Theorem 5, we know that γI(C5□C5) = 10. From Theorem 2, we know
that γI(C5□C5)dI(C5□C5) ≤ 50. By substituting, 10dI(C5□C5) ≤ 50, resulting in dI(C5□C5) ≤ 5. Since
dI(C5□C5) is bounded above and below by 5, dI(C5□C5) = 5.

12

Figure 9: General form of C5□C5

A B C D E F G H I J K L M
f1 0 1 0 1 0 1 0 0 0 1 0 0 2
f2 0 0 1 0 1 1 1 0 0 0 0 0 0
f3 1 0 0 1 0 0 1 1 0 0 0 0 0
f4 0 1 0 0 1 0 0 1 1 0 2 0 0
f5 1 0 1 0 0 0 0 0 1 1 0 2 0

N O P Q R S T U V W X Y
f1 0 0 1 0 0 0 1 0 1 0 1 0
f2 2 0 1 1 0 0 0 0 0 1 0 1
f3 0 2 0 1 1 0 0 1 0 0 1 0
f4 0 0 0 0 1 1 0 0 1 0 0 1
f5 0 0 0 0 0 1 1 1 0 1 0 0

Table 2: Family of Italian dominating functions for C5□C5

Theorem 15. For constants r,s ≥ 1, dI(C5r□C5s) ≥ 5

Proof. We will consider induction to first show that dI(C5□C5s) = 5, and then show dI(C5r□C5s) = 5. Refer
to Observation 14 for a base case. Suppose that there exists some positive integer k such that dI(C5□C5k) ≥
5. For this example, we can form an Italian dominating family for C5□C5k similarly to C5□C5 in Observation
14. By dividing the graph into 5x5 subsections and distributing weights to each subsection such that they
are identical to exactly one Italian dominating function from the table corresponding to Figure 9. This
process can be repeated five times, once for each function in the table for Figure 9. By appending another
5x5 subsection to the graph of C5□C5k so that we form C5□C5(k+1), we can distribute weights to this
additional subsection in the same manner. Any vertices along the right-hand side of C5□C5k that were
being dominated from another vertex on the left hand side of the graph will no longer be adjacent, but will
remain dominated in C5□C5(k+1) since the weight distribution in the appended 5x5 subsection is identical
to the weight distributions of all other 5x5 subsections. Five distinct Italian dominating functions can be
formed since there are five distinct Italian dominating functions for the Italian dominating family of C5□C5,
showing that dI(C5□C5(k+1)) ≥ 5. This implies that dI(C5□C5s) ≥ 5 by induction. We will use induction
again to show dI(C5r□C5s) ≥ 5. Consider our previous proof for dI(C5□C5s) = 5 as a base case for any
positive integer s. Suppose there exists a positive integer l such that dI(C5l□C5s) ≥ 5. Similar to before, an
Italian dominating family of 5 Italian dominating functions can be formed if every 5x5 subsection of C5l□C5s

13

have identical weight distributions that match one of the 5 functions in the table for Figure 9. We can form
the graph of C5(l+1)□C5s by appending a 5x5s subsection to the graph of C5l□C5s. If we distribute weights
to the new subsection such that the weight distribution for this is identical to the weight distributions to
all of the 5x5s subsections of C5l□C5s, we can form 5 distinct Italian dominating functions that satisfy the
Italian domatic number for C5(l+1)□C5s, meaning dI(C5(l+1)□C5s) ≥ 5. This implies that dI(C5r□C5s) ≥ 5
by induction.

Corollary 16. For constants r, s ≥ 1, we have the following:

1. dI(C5r□C5s) = 6, if r, s ≡ 0 (mod 3)

2. dI(C5r□C5s) = 5 otherwise

Proof. Consider the following cases:

1. r, s ≡ 0 (mod 3)

2. r ̸≡ 0 (mod 3) or s ̸≡ 0 (mod 3)

3. r, s ̸≡ 0 (mod 3)

For the first case, it is clear from Theorem 11 that dI(C5r□C5s) = 6 since 5r and 5s are both multiples of 3.
For the second case, WLOG, suppose that r ̸≡ 0 (mod 3) and s ≡ 0 (mod 3). From Lemma 4, we

know that γI(C5r□C5s) = 25rs+5s
3 . We can substitute this value into the equation in Theorem 2 to get

25rs+5s
3 dI(C5r□C5s) ≤ 50rs. By solving for dI(C5r□C5s), we obtain dI(C5r□C5s) ≤ ⌊ 30r

5r+1 ⌋. For any value
r ̸≡ 0 (mod 3), dI(G) ≤ 5. We know from Theorem 15 that dI(C5r□C5s) ≥ 5, so dI(C5r□C5s) = 5 since it
is bounded above and below by 5

For the final case, we know that γI(C5r□C5s) ≥ 5 from Theorem 15. For an upper bound, we may
consider Theorems 2 and 3. From Theorem 3, we know that γI(C5r□C5s) ≥ ⌈ 2n

∆(G)+2 ⌉ = ⌈ 50rs
6 ⌉. Since 50,

r, and s are not multiples of 3, ⌈ 50rs
6 ⌉ > 50rs

6 . By Theorem 2, we know γI(C5r□C5s)dI(C5r□C5s) ≤ 50rs.
This implies dI(C5r□C5s) ≤ 50rs

γI (C5r□C5s) ≤ (50rs)/⌈ 50rs
6 ⌉ < (50rs)/ 50rs

6 = 6. Since dI(C5r□C5s) < 6,
dI(C5r□C5s) ≤ 5. By Theorem 1, this implies that dI(C5r□C5s) = 5.

From the cases above, dI(C5r□C5s) ≥ 5, with equality when r ̸≡ 0 (mod 3) or s ̸≡ 0 (mod 3)

4 Italian Domatic Number Algorithm for Trees
For this section, the goal is to determine the Italian domatic number for all trees. In [16], it has been
proven that if dI(G) = 1, then G must be the empty graph (a graph with no edges). This paper also
contains Theorem 1, which states that the maximum bound for the Italian domatic number of any graph
G is δ(G) + 2. Since all trees have a minimum degree of 1, this allows us to conclude that for any tree
T , dI(T) = 2 or dI(T) = 3. This makes the goal for this section determining which trees have an Italian
domatic number of 2. Any tree outside of this group will have an Italian domatic number of 3.

The first step to classifying trees by their Italian domatic number was to create an algorithm that can
determine the number of Italian dominating families a given tree can contain. It should be noted that for
this section, we modify our definition of an Italian dominating family such that distinct Italian dominating
functions are no longer a requirement to form an Italian dominating family.

The algorithm in question is a dynamic programming algorithm developed on SageMath. In short, it
starts with the leaves of the trees and works its way up to the root, determining the cardinality of the
Italian dominating family for each subtree induced by varying vertices throughout the tree. The following
definitions allow us to describe the algorithm in greater detail.

Definition 17 (Basic State). A state that a vertex v can take in an Italian dominating family for a tree T
that satisfies the Italian domatic number for T .

The basic states for the algorithm are defined below.

1. The state “A”, which indicates v is being dominated by another vertex with weight 2 from above

14

2. The state “B”, which indicates v is being dominated from a total weight of 2 below across all children

3. The state “S”, which indicates v is being dominated from at least a weight of 1 above and a weight of
1 below

4. The state “O”, which indicates v contains a weight of 1

5. The state “T”, which indicates v contains a weight of 2

The basic states defined above assumes that the tree is constructed with the root above all other vertices
in the graph. The children would be directly below the root, and so on until we reach the leaves. So when
we say a vertex is dominated above, we assume it sees a weight of 2 from the its parent above, or from the
neighbor closest to the root. Being dominated from below is defined similarly, while containing a certain
weight implies an Italian dominating function assigns a specific vertex some nonzero weight.

This algorithm is designed to inform us whether a given tree has an Italian domatic number of 3 or
not. In this case, the combination of any three basic states for a vertex v must be examined. Consider the
following definition.

Definition 18 (Compound State). The combination of three basics states for v.

An example of a compound state for v is the compound state “AOO”, where v is being dominated above
by a weight of 2 in the first Italian dominating function and contains a weight of 1 in the other two Italian
dominating functions.

There are obviously compound states that would violate the Italian domatic number on G, such as
compound states that contain more that one “T”. The total weight of a vertex throughout the Italian
dominating family must be less than or equal to 2 in order to satisfy the Italian domatic number, so more
than one basic state “T” for any single vertex cannot occur. Since a compound state is a combination of
three basic states, and since there are five different basic states, there are 53 or 125 combinations of different
compound states. It is clear that most of these 125 states will violate the Italian domatic number for G, so
consider the following factors that would allow us to narrow down the 125 total combinations of compound
states to result with compound states that do not violate the Italian domatic number.

1. We may assume that the sum of weights for v across all Italian dominating functions must be exactly
2, so exactly one “T” or two “O” basic states must be present in all compound states.

2. The states “A” and “S” cannot exist together in a compound state since the parent of v must have a
sum weight of no more than 2. Similarly, “A” can only occur at most once in a compound state.

With the factors above, we can narrow the 125 total combinations of compound states to 27 valid compound
states that v can take in an Italian dominating function for G. Since the order in which Italian dominating
functions occur in the Italian dominating family for G does not matter, we can partition the 27 valid
compound states into 7 different equivalence classes based on the basic states each compound state contains.
The classes, along with the compound states, are listed below:

1. AOO, OAO, OOA

2. BOO, OBO, OOB

3. SOO, OSO, OOS

4. BBT, BTB, TBB

5. SST, STS, TSS

6. ABT, ATB, BTA, BAT, TBA, TAB

7. BST, BTS, STB, SBT, TBS, TSB

15

For a given vertex v ∈ V (T), all compound states are boolean (true or false), meaning that v can either
satisfy this compound state or that it cannot. If v can satisfy a certain compound state, then this compound
state with v outputs the value 1. Otherwise, it outputs 0. Using basic and compound states, an algorithm
for determining if a tree can contain a family of 3 (not necessarily distinct) Italian dominating functions that
satisfy the vertex weight conditions for the Italian domatic number has been created. This algorithm allows
us to determine which trees have an Italian domatic number of 2. Any tree that does not have a family of
3 Italian dominating functions is guaranteed to have an Italian domatic number of 2. The “possibility” for
a partial solution to this algorithm is determined entirely by the compound states that the root (r) of the
tree satisfies. The appendix in this report contains the full algorithm for determining the number of Italian
dominating families a tree contains. Below is a description of each equivalence class and how the algorithm
worked in each state.

4.1 The Compound State BST
To set BST [v] to be true (for a parent vertex v), there are three conditions that must be met.

1. First, there must be a child (or children) with a combined weight of 2 in the first family

2. In the second family, at least 1 child has to have a weight of 1

3. The remaining children must have a true state.
We also note that we cannot extend any subtree on a child of v from a compound state in which the first
or second basic state is A or S. This is because the first and second basic states of BST will result with v
having a weight of 0 in both the first and second basic states. With this in mind, we can meet the previous
requirements with two cases:

1. A child u1 with a weight of 2 in the first family, and a distinct child u2 with a weight 1 in
the second family.
Running over all possibilities of u1 and u2, we require that there is a “true” state for u1 in which the
first basic state is T . In particular,

childVal1 = TBA[u1] or TBB[u1] or TBS[u1]

We also require that there is a “true” state for u2 in which the second basic state is either T or O. In
particular,

childVal2 = BTA[u2] or OOA[u2] or BTB[u2] or BTS[u2] or OOB[u2] or OOS[u2]

Lastly, we require that the subtrees rooted at the remaining children are all valid. In particular,

childVal3 = childVal3 and (BTA[u3] or OOA[u3] or BTB[u3] or BTS[u3] or OOB[u3] or OOS[u3])

where childVal3 is set to true by default and u3 represents all vertices that are not u1 or u2.

2. A child u1 with a weight of 1 in the first family, and a distinct child u2 with a weight 1 in
the first and second family.
Running over all the possibilities of u1 and u2, we require that there is a “true” state for u1 in which
the first basic state is O. We also require that the first two basic states for u2 to both be O for u2 to
contain a “true” state. In particular,

childVal1 = OOA[u1] or OOB[u1] or OOS[u1]
childVal2 = OOA[u2] or OOB[u2] or OOS[u2]

For all subtrees rooted at the remaining children, we consider the same case as before, where

childVal3 = childVal3 and (BTS[u3] or OOA[u3] or BTB[u3] or BTS[u3] or OOB[u3] or OOS[u3])

provided that childVal3 is set to “true” by default and that u3 represents all children besides u1 and
u2.

Then at the end, BST [v] is “true” if either case 1 or case 2 is satisfied.

16

4.2 The Compound State BBT
To set BBT [v] to be “true”, there are three conditions that need to be met:

1. First, there must be a child (or children) with a combined weight of 2 in the first family

2. In the second family, there must also be a child (or children) with a combined weight of 2

3. The remaining children must have a true state.

Similar to the Compound State BST , the first and second basic states for the children of v must not be A
since the first two basic states of BBT [v] will give a weight of 0 to v. There are a number of ways to meet
the requirements above. However, determining BBT [v] can be simplified to considering the following two
cases:

1. A child u1 with a weight of 2 in the first family, and a distinct child u2 with a weight 2 in
the second family.
By going through all possibilities of u1 and u2, we require that there is a “true” state for u1 in which
the first basic state is T . We require the same condition for u2 in the second family. In particular,

childVal1 = TBA[u1] or TBS[u1] or TBB[u1]
childVal2 = BTA[u2] or BTS[u2] or BTB[u2]

Notice that the first compound states in the statements for childVal1 and childVal2 are from the
same equivalence class. The same is true for the second and third compound states in each of these
statements. Although compound states from the same equivalence class are identical for any given
vertex, the position of the T ’s in each of these statements was chosen so that it is clear that childVal1
satisfies the first basic state in BBT while childVal2 satisfies the second basic state. We also need
the subtrees rooted at the remaining children to also be satisfied. The only compound state that the
remaining children cannot take is the compound state SST . This is because the vertex v does not
contain a weight of 1 in two separate families. So in particular,

childVal3 = childVal3 and (OOA[u3] or OOB[u3] or OOS[u3] or TBA[u3] or TBS[u3] or TBB[u3])

where childVal3 is “true” by default and u3 represents all children besides u1 and u2.

2. Two distinct children u1 and u2 that each contain a weight of 1 in both the first and
second families.
We again go through all possibilities of compound states for both u1 and u2. We require that there is
a “true” state for u1 in which two basic states are O. Since the order in which the two O states occur
does not affect the cardinality of the Italian dominating family, we can assume that the two O states
occur as the first two states of the compound state u1 haves. The same condition is required for u2.
In particular,

childVal1 = OOA[u1] or OOB[u1] or OOS[u1]
childVal2 = OOA[u2] or OOB[u2] or OOS[u2]

For the subtrees rooted at the remaining children to be satisfied, we consider the same case as before,
where

childVal3 = childVal3 and (OOA[u3] or OOB[u3] or OOS[u3] or TBA[u3] or TBS[u3] or TBB[u3])

where childVal3 is “true” by default and u3 represents all children besides u1 and u2.

BBT [v] is “true” if either of the cases above are satisfied.

17

4.3 The Compound State ABT
To set ABT [v] to be true, there are two conditions for the children that must be met.

1. In the second family, there must be a child (or children) with a combined weight of 2

2. The remaining children must have a true state

We note that we cannot extend any subtree on a child of v in which the first and second basic states are
either A or S, since v will have a weight of 0 in both the first and second basic state. Determining ABT [v]
can be simplified to considering the following two cases:

1. A child u1 with a weight of 2 in the second family
Running over all possibilities for u1, we require that there is a “true” state for u1 in which the second
basic state is T . In particular,

childVal = BTS[u1] or BTB[u1] or BTA[u1]

We also require that the subtrees rooted at the remaining children are all valid. In particular,

childVal = childVal and (BTA[u2] or OOA[u2] or BTB[u2] or OOS[u2] or BTS[u2] or BOO[u2])

where childVal is set to true by default and u2 represents all vertices that are not u1.

2. Distinct children u1 and u2 both with a weight of 1 in the second family.
Running over all the possibilities of u1 and u2, we require that there is a “true” state for u1 in which
the second basic state is O. We also require that the second basic state for u2 to both be O for u2 to
contain a “true” state. In particular,

childVal1 = OOA[u1] or OOB[u1] or OOS[u1]
childVal2 = OOA[u2] or OOB[u2] or OOS[u2]

For all subtrees rooted at the remaining children, we consider the same case as before, where

childVal3 = childVal3 and (BTA[u3] or OOA[u3] or BTB[u3] or OOS[u3] or BTS[u3] or BOO[u3])

provided that childVal3 is set to “true” by default and that u3 represents all children besides u1 and
u2.

ABT [v] is “true” if either of the cases above are satisfied.

4.4 The Compound State AOO
For AOO[v] to be set to true, there are actually no weight conditions that are required of the children.
We simply require that the subtrees rooted at the children are valid. We note that in the compound state
AOO, fi(v) ̸= 2 for any i ∈ {1, 2, 3}. Knowing this, we can meet the requirement with the following condition:

Any Compound State for the children of v that do not contain A or S
After going through all of the Compound States, we know that there are two classes of Compound States
that do not contain the basic state A or S. In particular,

childVal = BBT [u] or BOO[u]

where u represents all children of v. So long as this condition is met, AOO[v] is “true”.

18

4.5 The Compound State SOO
To set SOO[v] to be true (for a parent vertex v), there are two conditions that must be met

1. First, there must be a child with a weight of at least 1 in the first family

2. The subtrees rooted at the remaining children must be valid

We also note that we cannot extend any subtree on a child of v from a compound state in which any basic
state is A. This is because the all of the basic states of BST will result with v having a weight of 0 or 1.
With this in mind, determining SOO[v] can be simplified to considering the following case:
A child u1 with a weight of at least 1 in the first family.
Running over the possibilities of states for u1, we require that there is a “true” state for u1 in which the first
basic state is T or O. In particular,

childVal = OOS[u1] or OOB[u1] or TBB[u1] or TBS[u1] or TSS[u1]

We also require that the subtrees rooted at the remaining children are all valid. In particular,

childVal = childVal and (BTS[u2] or BOO[u2] or SST [u2] or SOO[u2] or BBT [u2])

where childVal is set to true by default and u2 represents all vertices that are not u1. Then at the end,
SOO[v] is “true” if the case above is satisfied.

4.6 The Compound State SST
To set SST [v] to be “true”, there are 2 conditions that need to be met:

1. First, there must be two children that have a weight of at least one in the first and second family

2. The remaining children must have a true state

Similar to the compound state BST , the first and second basic states for the children of v must not be A
or S since the first two basic states of SST [v] will give a weight of 0 to v. There are a number of ways to
meet the requirements above. However, determining SST [v] can be simplified to considering the following
two cases:

1. A child u1 that contains a weight of 1 in both the first and second family
For this case, we only consider one child since it is possible for any vertex in a tree to have two O basic
states. Since the order of these states do not matter, we may consider one child with a weight of 1 in
the first and second basic states. By going through all possibilities for u1 we require that there is a
“true” state for u1 in which the first and second basic states are O. In particular,

childVal1 = OOA[u1] or OOB[u1] or OOS[u1]

We also require that the subtrees rooted at the remaining children are valid. In particular,

childVal2 = childVal2 and (OOA[u2] or OOB[u2] or OOS[u2] or TBA[u2] or TBS[u2] or TBB[u2])

where childVal2 is “true” by default and u2 represents all children besides u1.

2. Two distinct children u1 and u2 that each contain a weight of 2 in both the first and
second families.
We must now go through all possibilities of compound states for both u1 and u2. We require that there
is a “true” state for u1 in which the first basic state is T . The same condition is required for u2. In
particular,

childVal1 = TBA[u1] or TBS[u2] or TBB[u3]
childVal2 = BTA[u2] or BTS[u2] or BTB[u2]

19

For the subtrees rooted at the remaining children to be satisfied, we consider the same case as before,
where

childVal3 = childVal3 and (OOA[u3] or OOB[u3] or OOS[u3] or TBA[u3] or TBS[u3] or TBB[u3])

where childVal3 is “true” by default and u3 represents all children besides u1 and u2.
SST [v] is “true” if either of the cases above are satisfied.

4.7 The Compound State BOO
To set BOO[v] to be “true”, there are two conditions that need to be met:

1. First, there must be a child (or children) with a combined weight of 2 in the first family

2. The remaining children must have a true state
None of the basic states for the children of v can be A since all of the basic states of BOO[v] will give a
weight of 0 or 1 to v. There are a number of ways to meet the requirements above. However, BOO[v] can
be satisfied with the following two cases:

1. A child u1 with a weight of 2 in the first family.
By going through all possibilities for u1, we require that there is a “true” state for u1 in which the first
basic state is T . In particular,

childVal = TBB[u1] or TBS[u1] or TSS[u1]

We also require that the subtrees rooted at the remaining children of v are also valid. In particular,

childVal = childVal and (SBT [u2] or BOO[u2] or SST [u2] or SOO[u2] or BBT [u2])

where u2 represents all children besides u1.

2. Two distinct children u1 and u2 that each contain a weight of 1 in the first family.
We now go through all possibilities of compound states for both u1 and u2. We require that there is
a “true” state for u1 in which the first basic state is O. The same condition is required for u2. In
particular,

childVal1 = OOS[u1] or OOB[u1] or TBB[u1] or TBS[u1] or TSS[u1]
childVal2 = OOS[u2] or OOB[u2] or TBB[u2] or TBS[u2] or TSS[u2]

For the subtrees rooted at the remaining children to be satisfied, we consider the same case as before,
where

childVal3 = childVal3 and (SBT [u3] or BOO[u3] or SST [u3] or SOO[u3] or BBT [u3])

where childVal3 is “true” by default and u3 represents all children besides u1 and u2.
BOO[v] is “true” if either of the cases above are satisfied.

4.8 Algorithm Output
Once given an input for the number of vertices n for a tree, the algorithm would run and print each tree on
n vertices that did not have 3 Italian dominating functions in their respective Italian dominating families.
To distinguish which trees did not have 3 Italian dominating functions, we examined the values for the two
valid compound states at the root of the tree, BBT and BOO. In every other compound state, there is at
least 1 basic state that looks to a parent vertex in order to be dominated. This clearly cannot apply for the
root of a tree since the root has no parents. If there was no way to dominate the root r of a tree T with
3 Italian dominating functions that satisfies the Italain domatic number, then dI(T) = 2. In other words,
if BBT [r] = 0 and BOO[r] = 0, then dI(T) = 2. Refer to Figure 11 for a couple examples of outputs we
received from the algorithm for trees where dI(T) = 2.

20

Figure 10: A forbidden substructure in a tree if dI(T) = 3

(a) (b)

Figure 11: Algorithm Outputs

5 Results for Trees
In this section, our goal is to characterize the trees that have an Italian domatic number of 3 (and conse-
quently, those trees with an Italian domatic number of 2). There are only two ways in which a tree can
fail to have an Italian domatic number of 3. The first case is where it would be impossible to define three
distinct Italian dominating functions on the tree such that the combined weight of each vertex in the tree is
at most 2 throughout the Italian dominating family. The second way that a tree can fail to have an Italian
domatic number of 3 is if we can define three Italian dominating functions for the Italian dominating family
of the tree, but not in such a way that all three of these functions are distinct. First, we will consider trees
with three Italian dominating functions that satisfy

∑3
i=1 fi(v) ≤ 2 for all vertices v in the tree, regardless

of whether these functions are distinct. From this result, we will consider the second case and classify those
trees that have an Italian domatic number of 3.

5.1 Trees with a Family of 3 Italian Dominating Functions
In this subsection, we would like to show that for trees that have a family of three Italian dominating
functions, the tree does not contain the substructure in Figure 10. We will start by showing that this is a
necessary condition.

21

Lemma 19. If the removal of a vertex v ∈ V (T) results in a path on 2 vertices and an isolated vertex, then
dI(T) = 2.

Proof. Let G be a graph that contains the substructure in Figure 10. We will denote the vertices of the
substructure the same way that is shown in its figure. Clearly, the removal of vertex v leaves a path on two
vertices (the path formed between vertices w and x) and an isolate (vertex u) as components. Suppose, for
contradiction, that dI(G) = 3.

Suppose for contradiction that G has an Italian dominating family F = {f1, f2, f3}. Then, by definition,∑3
i=1 fi(v) ≤ 2 for all vertices v ∈ V (G). Consider the vertices w and x from Figure 10. We know that

fi(x) = 0 for some i ∈ {1, 2, 3}. WLOG, suppose that f1(x) = 0. Consequently, f1(w) = 2. This means for
the remaining families, f2(w) = f3(w) = 0. As a result, f2(x), f3(x) > 0, implying that f2(x) = f3(x) = 1.
This shows that for any leaf a and parent b, fi(a) = 0 and fi(b) = 2 for some i ∈ {1, 2, 3} and that fk(a) = 1
and fk(b) = 0 for k ̸= i. If we were to apply this to vertices x (leaf) and v (parent of x) from Figure 10, we
would find that v has a nonzero weight in only one of the three functions in the Italian dominating family.
Since vertex w also has a nonzero weight in only one of the three functions in the Italian dominating family,
it is required to be dominated by v in both of its remaining Italian dominating functions where w has a
weight of 0 since u only has a weight of 1 in these two functions for w. Since it is not possible for v to
have a nonzero weight in two Italian dominating functions, we cannot dominate w in at least one Italian
dominating function in the Italian dominating family for G. By contradiction, if the deletion of a vertex in
a graph G leaves a path on 2 vertices and an isolated vertex as components, dI(G) = 2

The method of proof above where we show the weights of leaves and their parents in a graph that has
an Italian domatic number of 3 will prove to be useful for several other proofs later in this paper. It will be
convenient to list this as its own result.

Observation 20. Let G be a graph with a leaf v (and parent u). Suppose dI(G) = 3 and that F = {f1, f2, f3}
is the corresponding Italian dominating family for this graph. Then there exists some i ∈ {1, 2, 3} such that

1. fi(v) = 0 and fi(u) = 2, and

2. fk(v) = 1 and fk(u) = 0 for all k ̸= i

To show that it is sufficient just to exclude the configuration in Figure 10, we will use induction on the
number vertices and the maximum degree of the tree. We want to assume that the maximum degree of the
tree is at least 3, so it is useful to consider paths separately. In [16], Volkmann handles the cases for paths
with the following theorem.

Theorem 21. If Pn is a path with n ≥ 6, the dI(Pn) = 3.

To conclude our discussion of paths, we should consider the cases when n < 6. For n = 3 and n = 5, we
have a star and 2-subdivided star, respectively. We can dominate each of these with 3 Italian dominating
functions; however, these functions will not be distinct. In particular, we can alternate labels between (1, 1,
0) and (0, 0, 2) between each adjacent vertex, starting at a leaf, and define f1, f2, and f3 so that each label
on a vertex v is of the form (f1(v), f2(v), f3(v)). The path P4, rooted at any interior vertex is the same
configuration as Figure 10, so by Lemma 19, P4 does not have a family of 3 Italian dominating functions.

For convenience, we introduce the following definition:

Definition 22. A tree T is said to be “bad” if the removal of some vertex v ∈ V (T) results in components
that are a path on two vertices and an isolated vertex. Any other tree that is not “bad” is considered “good.”

The definition above defines the type of tree referred to in the hypothesis of Lemma 19. It makes it easier
to state most of the rest of the theorems in this paper.

Theorem 23. If T is a “good” tree on three or more vertices, then T has an Italian dominating family
comprised of three Italian dominating functions.

22

Proof. We will proceed by induction. First, on the number of vertices, and then by the maximum degree.
For the base case, we can use the previous discussion of paths, specifically, the only path without a family
of three Italian dominating functions is P4, a “bad” tree.

Now consider a tree T . If T is a “bad” tree, then we may apply Lemma 19. Therefore, we may assume
T is a “good” tree, not a path so that it has a vertex of at least degree 3, and that any “good” subtree of T
on 3 or more vertices has a family of three Italian dominating functions.

Let the root of T be r such that r is a vertex of at least degree 3. We can label the subtrees formed by
removing r as T1, T2,...,Tm for m ≥ 3. Now we define three new trees T ′, T ′′, and T ′′′ as follows:

• T ′ is the subtree induced by {r} ∪ (V (T) − V (T1))

• T ′′ is the subtree induced by {r} ∪ (V (T) − V (T2))

• T ′′′ is the subtree induced by {r} ∪ (V (T) − V (T3))

We can now consider two cases based on the subtrees defined above. The case where all of the subtrees
are “good” trees, or the case where at least one of them is a “bad” tree.

We will first consider the case where all T ′, T ′′, and T ′′′ are “good” trees. Since T ′, T ′′, and T ′′′ are all
“good”, each of them must have Italian dominating families comprised of three Italian dominating functions.
In each of these families there are two cases for what may occur at the root r. Either r has a weight of 2
in one function and 0 in the other two, or r has a weight of 1 in two functions and a weight of 0 in the
remaining function. By the pigeonhole principle, two of the Italian dominating families for T ′, T ′′, and
T ′′′ must fall into the same case. WLOG, assume that the families for T ′ and T ′′ fall into the same case.
Now let {f ′

1, f ′
2, f ′

3} and {f ′′
1 , f ′′

2 , f ′′
3 } be the families of three Italian dominating functions for T ′ and T ′′,

respectively, and index the Italian dominating families so that they agree on the vertex r, i.e. f ′
1(r) = f ′′

1 (r),
f ′

2(r) = f ′′
2 (r), and f ′

3(r) = f ′′
3 (r). Now, we can define the following:

fi(v) =
{

f ′
i(v) v ∈ V (T ′)

f ′′
i (v) v ∈ V (T1)

For every vertex v ∈ V (T ′) (particularly r), fi satisfies all the requirements of an Italian dominating function
since fi is an Italian dominating function on T ′. Similarly, for every vertex v ∈ V (T1), fi satisfies the
requirements of an Italian dominating function. Since this can be done for i = 1, i = 2, or i = 3, T has an
Italian dominating family comprised of three Italian dominating functions.

We will now consider the case where at least one of the subtrees T ′, T ′′, or T ′′′ are “bad”. This case is
more complicated, and the goal will be to sufficiently restrict the trees in this case so that a simple algorithm
can be used to determine the Italian dominating functions f1, f2, and f3.

If removing T1, T2, or T3 creates a “bad” tree, it must be the case that r is adjacent to a leaf and has a
neighbor adjacent to a leaf. In fact, it must serve as vertex w from Figure 10 and must consequently have a
degree of exactly 3. If we cannot choose another vertex in V (T) to root T , then we may assume T has no
vertices of degree 4 or more and that every vertex of degree 3 in V (T) is adjacent to a leaf.

To further restrict the class of trees we need to consider, suppose it is possible to choose r so that one of
the components of T − {r} is a path Pk for k ≥ 3. We can then label the vertices of this path u1, u2,...,uk

such that u1 is the leaf of T .
If k ̸= 4, remove u1 and u2 from T and use induction to find the Italian dominating functions f1, f2,

and f3 for the resulting tree. We can extend these functions to the full tree (which includes u1 and u2) by
setting fk(u1) = fk(u3) and fk(u2) = 2 if fk(u1) = 0 and fk(u2) = 0 otherwise for k = 1, 2, 3.

This process can be repeated for k = 4, but we need to take caution in removing the vertices so we do
not create a “bad” tree. If k = 4, remove u1, u2, and u3 from T and again use induction to find the Italian
dominating functions for the resulting tree. These functions can again be extended to the full tree by setting
fk(u1) = fk(u3) = fk(u4) and fk(u2) = 2 if fk(u1) = 0 and fk(u2) = 0 otherwise for k = 1, 2, 3.

We are now ready to handle trees that do not fall into the first case and do not have any pendant paths
(or paths rooted at a child of r such that the child would be a leaf in the path) Pm for m ≥ 2. In other
words, the removal of any vertex of degree 3 from T should not leave a path Pm as a component. First,
choose any vertex in T , then find the farthest vertex of degree 3 and call this vertex r. Root T at r. We
note that r should be adjacent to two leaves as there are no pendant path components on this tree.

23

Leaves Non-leaves
Distance level k f1 f1 f1 f1 f1 f1

k ≡ 0 (mod 3) 1 1 0 0 2 0
k ≡ 1 (mod 3) 1 0 1 2 0 0
k ≡ 2 (mod 3) 0 1 1 0 0 2

Table 3: Labels for vertices in the second case of Theorem 23

Now we can partition all V (T) based on distance from r. We distribute weights based on the definition
for f1, f2, and f3 given in Table 3. We can verify that f1, f2, and f3 are Italian dominating functions of T
by considering all types of vertices at specific distance levels. For example, consider some v ∈ V (G) that is
distance k from r, where k ≡ 0 (mod 3).

• If v is a vertex of degree 3, then f1(v) = f3(v) = 0. If v has two children that are leaves, then both
leaves would have a weight of 1 for f1 and f3. Vertex r (the root) would fall into this category. If this
is not the case, v is not the root and has both a parent and child that are not leaves. The parent would
be assigned a weight of 2 in f3 and the child is assigned a weight of 2 in f1.

• If v is a vertex of degree 2, again f1(v) = f3(v) = 0. If v was adjacent to a leaf, then consider the
parent of v. The parent cannot be degree 3 as this would imply the parent was adjacent to a leaf and
has a neighbor adjacent to a leaf, implying T is a “bad” tree. The parent of v cannot be a vertex of
degree 2 as this would imply T contains a pendant path. Therefore, v can’t be adjacent to a leaf and
has one parent and one child that are non-leaves. Then the parent is assigned a weight of 2 in f3 and
the child is assigned a weight of 2 in f1.

• If v is a leaf, only f3(v) = 0, and the parent of v is a non-leaf such that f3(v) = 2.

Showing the cases for k ≡ 1 (mod 3) and k ≡ 2 (mod 3) would result similarly. This demonstrates that f1,
f2, and f3 form an Italian dominating family for T , thus completing the inductive proof.

Theorem 23 along with Lemma 19 imply that a tree T is “good” if and only if it has an Italian dominating
family comprised with three (not necessarily distinct) Italian dominating functions.

5.2 Trees with a Family of 3 Distinct Italian Dominating Functions
The second situation where a tree fails to have an Italian domatic number of 3 is when it is possible to define
3 Italian dominating functions on a tree T such that

∑3
i=1 fi(v) ≤ 2 for all vertices v ∈ V (T), but impossible

to do this in such a way where f1, f2, and f3 are all distinct. Figure 12 shows examples of trees that fall
into this category.

In this subsection, we will show that most trees that have families of 3 Italian dominating families actually
have families of 3 distinct Italian dominating families. The following lemma serves to be a very useful tool
for this goal.

Lemma 24. Suppose that a graph G has a cut edge e such that G′ and G′′ are the components after the
operation of G − e. If G′ and G′′ each have families of at least three (not necessarily distinct) Italian
dominating functions, then dI(G) ≥ 3.

Proof. Let G be a graph with a cut edge e and components G′ and G′′. Let the Italian dominating families
for G′ and G′′ be F ′ = {f ′

1, f ′
2, f ′

3} and F ′′ = {f ′′
1 , f ′′

2 , f ′′
3 }, respectively. If either of the families F ′ or F ′′

contain three distinct functions, then we may define an Italian dominating family for G as follows:

fi(v) =
{

f ′
i(v) v ∈ G′

f ′′
i (v) v ∈ G′′

However, if both families F ′ and F ′′ contain nondistinct functions, then one function in each family must
repeat itself. WLOG, we can rewrite the families for G′ and G′′ as F ′ = {f ′

1, f ′
1, f ′

2} and F ′′ = {f ′′
1 , f ′′

1 , f ′′
2 },

24

(a) (b)

Figure 12: Examples of Trees that are good where dI(T) = 2

respectively. We can still define a family of three Italian dominating functions for G using the following
functions below:

f1(v) =
{

f ′
1(v) v ∈ G′

f ′′
1 (v) v ∈ G′′

f2(v) =
{

f ′
1(v) v ∈ G′

f ′′
2 (v) v ∈ G′′

fi(v) =
{

f ′
2(v) v ∈ G′

f ′′
1 (v) v ∈ G′′

Each function above is an Italian dominating function, and each function is distinct.

Two important classes of trees are the star and 2-subdivided star. A star is the complete bipartite graph
K1,n, where n represents the number of children for the root of the tree. The 2-subdivided star, denoted
K2

1,n, is the star K1,n where each edge to a leaf has been subdivided once. Figure 12 shows K1,4 and K2
1,5

in parts (a) and (b) of the figure, respectively.
We can apply Lemma 24 to trees that have exactly one vertex of degree 3 or more. Trees with no vertices

of degree 3 or more (i.e., paths) are handled by Theorem 21 in [16].

Lemma 25. Let T be any “good” tree with exactly one vertex of degree 3. Then T is either a star, a
2-subdivided star, or dI(T) = 3.

Proof. Let r be the root of T . We will approach this proof by examining the structure of the trees rooted at
the children of r. Suppose r is removed from T , resulting in three or more subtrees rooted at the children
of r. We require that T is “good”, so it is impossible for both an isolated vertex and some graph of P2 to
be among these subtrees at the same time. Otherwise, the forbidden configuration from Figure 10 is formed
in T . Suppose the removal of r results in only isolates or only graphs of P2 as subtrees. In these scenarios,
T would either be a star or 2-subdivided star, respectively. These structures only have an Italian domatic
number of 2. For this reason, suppose that at least one of the subtrees rooted at the children of r is a path
of three vertices or more. Suppose there is a path Ps of at least length 3 rooted at a child of r such that
s ̸= 4. In this case, we can cut the edge between r and the child that is the root of Ps. The two components
remaining after this operation each have Italian dominating families of three functions, meaning that by
Lemma 24, dI(T) = 3.

In the case where P4 is the only type of path present among the trees rooted at the children of r (excluding
possible isolates or graphs of P2), then we cannot perform the same cut as before. P4 does not have an Italian
dominating family of three functions, so consider the cases where the subtrees rooted at the children of r
contain isolates and paths of length four, just paths of length four, or paths of length two and paths of length
four. In the first case and second case, an edge cut can still be made. Suppose that a child c is the vertex
that roots some P4 subtree. Instead of cutting the edge between r and c, we can simply cut the other edge
connected to c. The components formed by this include a star P3 and another tree component with either
isolates or P4 paths rooted at the children of r. Repeating the same initial edge cut we made for all P4 paths

25

rooted at the children of r will result with a number of P3 components and a star component. Using Lemma
24, we can inductively conclude that dI(T) = 3.

For the last case, no cut edge is present, but there is a way to dominate this. Suppose that we remove
all P4 subtrees such that a 2-subdivided star component and a number of P4 components remains. We will
now partition all vertices of T as follows:

1. r: the root of T

2. S1: set of all children of r among the 2-subdivided star component from above

3. S2: set of all leaves among the 2-subdivided star component

4. M1: set of all children of r that root a P4 component

5. M2: set of all children of all vertices in M1

6. M3: set of all children of all vertices in M2

7. M4: set of all children of all vertices in M3

Now consider Table 4 for the Italian dominating family for the tree described above.

r S1 S2 M1 M2 M3 M4

f1 1 0 1 1 1 0 1
f2 1 0 1 0 1 0 1
f3 0 2 0 1 0 2 0

Table 4: The Italian dominating family of the tree for the final case of the proof for Lemma 25.

Since the Italian dominating family above is composed of three distinct Italian dominating functions,
dI(T) = 3.

From all the cases above, if T is a “good” tree with exactly one vertex of degree 3, then either T is a
star, T is a 2-subdivided star, or dI(T) = 3.

Our method of proof for proving that the hypothesis from Lemma 25 holds for all “good” trees is
to examine the distance between degree 3 vertices. However, it is useful to consider the following case
separately:

Lemma 26. Any “good” tree T with two adjacent vertices, both adjacent to leaves, must satisfy dI(T) = 3

Proof. We know T is a tree with two adjacent vertices that are both adjacent to leaves. Let the two adjacent
vertices be u and v, adjacent to w and x, respectively. Since T is good, Theorem 23 implies that T has a
family of three Italian dominating functions. We can denote this family as F = {f1, f2, f3}. By Observation
20, each leaf must have a weight of 1 in two functions. So in at least one Italian dominating function, x and
w must agree. WLOG, say f1(x) = f1(w). So the remaining functions f2 and f3 either agree at w and x, or
they do not.

If they do not agree, then we may assume that f2(w) = 1 and f2(x) = 0, as well as f3(w) = 0 and
f3(x) = 1. This implies f1, f2, and f3 are all distinct, meaning dI(T) = 3.

If they do agree, we may assume f2(x) = f2(w) = 1 and f3(x) = f3(w) = 0. We note that this implies
f3(v) = f3(x) = 2 and fk(v) = fk(x) = 0 for k = 1, 2. Now consider the subtrees T1 and T2 induced by
cutting the edge (u, v) from T . Since f1, f2, and f3 agree at vertices u and v, restricting them to either T1 or
T2 would form families of three Italian dominating functions for each subtree. By Lemma 24, dI(T) = 3.

We are now ready to show the main result, that any “good” tree T that is not a star or 2-subdivided
star satisfies dI(T) = 3.

Theorem 27. Let T be any “good” tree on three or more vertices that is not a star or 2-subdivided star.
Then dI(T) = 3

26

Proof. To begin, we can use Theorem 21, which states dI(Pn) = 3 for n ≥ 6. We note that P5 is a 2-
subdivided star, P4 is “bad”, and that P3 is a star. Furthermore, we can use Lemma 25 for vertices with
exactly one vertex of degree three.

Therefore, consider a “good” tree T with at least two vertices of degree three, r and s, respectively.
Assume r and s are the “closest” degree 3 or more vertices, or that the path between these two degree 3 or
more vertices is the shortest path that can be formed between any two degree 3 or more vertices on T . We
will first consider exactly two vertices of degree 3, and then consider cases based on the distance between the
vertices of degree three or greater. In this context, distance refers to edges, and we will refer to the vertices
of degree 3 or greater simply as degree 3 vertices. The first two cases, where r and s are either close or far
apart, are the easiest to show.

1. Case 1: The vertices r and s are adjacent (distance of 1 apart).
Consider the components formed by removing the edge (r, s). Let the two components be T1, which
contains r, and T2, which contains s. Both r and s had degree 3 or more before this cut was made.
If a copy of the configuration from Figure 10 occurs in either of the components, then either r or s
would serve as vertex w from the figure and must be adjacent to a leaf. Furthermore, they would need
to be adjacent to vertex v from the figure. Vertex v would have to be degree 3 and be adjacent to a
leaf. Then T was a “good” tree with two adjacent vertices, each adjacent to leaves. By Lemma 26,
dI(T) = 3. Otherwise, T1 and T2 are “good” trees on three or more vertices. By Theorem 23 and
Lemma 24, dI(T) = 3.

2. Case 2: Vertices r and s are a distance of more than three apart.
In this case, let {t1, t2, ..., tk} be the path on k vertices between r and s for k ≥ 3. We can cut the edge
(r, t1) to form components T1 (containing r) and T2 (containing t1). Since r had degree 3 or more, it
would have to serve as the vertex w in Figure 10, which would imply that there are two closer degree
3 or more vertices in T (since v from the figure is at least degree 3). The vertex t1 would have degree
1 in T2, but is to far away from another degree 3 vertex to form the forbidden configuration in Figure
10. As a result, we may assume T1 and T2 are “good” components. By Theorem 23 and Lemma 24,
dI(T) = 3.

3. Case 3: Vertices r and s are a distance of three apart.
In this case, let the vertices between r and s be t1 (adjacent to r) and t2 (adjacent to s). We must
divide this case into subcases. First, let us assume that the removal of r or s does not leave a P2
component in T . This implies neither r nor s has a neighbor adjacent to a leaf. In this case, we can
cut the edge (t1, t2) to obtain subtrees T1 and T2 containing t1 and t2, respectively. Since r does not
have a neighbor adjacent to a leaf, this edge cut does not form a “bad” subtree for T1. The same
argument can be made for T2. The only way that either T1 or T2 would be “bad” is if the configuration
in Figure 10 was present in T , which cannot be true since we require T to be “good”. By Theorem 23
and Lemma 24, dI(T) = 3.
For the second subcase, let us assume that either the removal of r or the removal of s from T leaves a
P2 component. In this case, either r has a neighbor adjacent to a leaf or s has a neighbor adjacent to
a leaf. WLOG, assume s is adjacent to a copy of P2 and cut the edge (r, t1) to obtain two subrees T1
(containing neither t1 nor t2) and T2 (containing both t1 and t2). In T1, r has a degree of at least 2,
meaning that if the forbidden configuration from Figure 10 were to appear from this edge cut, r would
have to be adjacent to both an isolate and a copy of P2, implying that this configuration was present in
T . Since T is “good”, this cannot be the case. So T1 is “good”. For T2, we know s was already adjacent
to a copy of P2 before the edge cut. The edge cut now makes s adjacent to one additional copy of P2
in T2. Similar to before, if this cut were to cause the configuration from Figure 10 to occur, s would
have to be adjacent to an isolate, implying that the forbidden configuration would have been present
in T prior to the edge cut. Since T is “good”, this cannot be the case. This implies T2 is “good”. By
Theorem 23 and Lemma 24, dI(T) = 3.

4. Case 4: Vertices r and s are a distance of two apart.

27

Figure 13: A tree used for Case 4 in Theorem 27. Deleting any edge on the path between r and s creates a
copy of the configuration in Figure 10 rooted at r or at s.

In this case, let t be the vertex between them. It is helpful to divide this case into the subcases where
either r or s is not adjacent to a copy of P2 and the case where both r and s are adjacent to a copy of
P2.
For the first case, WLOG, suppose r is not adjacent to a copy of P2. In this case, cut the edge (t, s)
to form two subtrees T1 (containing r) and T2 (containing s). For T1 to contain a “bad” component
from this cut, r would have to be adjacent to a copy of P2 (since it is now adjacent to an isolate in
T1 from the edge cut), which cannot be true since it was stated at the start of this subcase that r is
not adjacent to a copy of P2. Any other copy of the “bad” configuration in T1 would imply that it is
present in T , which cannot be true as T is “good”. This implies T1 is “good”. The same holds true
for s in T2. If a “bad” configuration were to occur in T2 from the edge cut, then s would have to be
adjacent to an isolate and a copy of P2. Since s is adjacent to a copy of P2 and since T is “good”, it is
impossible for s to be adjacent to an isolate, as this would imply T has a “bad” configuration. So T2
is also “good”. By Theorem 23 and Lemma 24, dI(T) = 3.
For the final subcase, assume both r and s are adjacent to a copy of P2. This case is more difficult
to handle, as there is no edge cut that can be made on the path between r and s without leaving a
“bad” component in one of the two subtrees induced by the cut. This is shown in Figure 13. However,
removing the vertex t from T results in two subtrees T1 (containing r) and T2 (containing s). For
T1 or T2 to be “bad”, the removal of t must result in its neighbors becoming leaves for the forbidden
configuration in Figure 10. However, since r and s each have degree of at least 3 in T , neither will
become leaves in T1 or T2. Beyond this, if a “bad” component were to appear in T1 or T2, then they
would have to be present in T , which is impossible since T is “good”, so T1 and T2 are “good”. By
Theorem 23, we know that both T1 and T2 have Italian dominating families of 3 functions. Now to
extend these families for T1 an T2 back for T , we have to determine how to add t such that it is
dominated. Since r is adjacent to a copy of P2, it must be the case that in two of the three Italian
dominating functions for T1, r has a weight of 1. This is true as r has a neighbor of degree 2 that is
adjacent to a leaf. Call this neighbor u. By Observation 20, it must be the case that u has a weight of
0 in two Italian dominating functions and a weight of 2 in the remaining function. This would imply
that r needs to match the weight distribution of the leaf adjacent to u, as this leaf must have a weight
of 1 in two of its Italian dominating families by Observation 20. This leaf alone cannot dominate u
with weights of 1, so r must have a weight of 1 in two Italian dominating families. The same is true
for s in T2. Now let F ′ = {f ′

1, f ′
2, f ′

3} and F ′′ = {f ′′
1 , f ′′

2 , f ′′
3 } be the Italian dominating families for T1

and T2, respectively. With a convenient choice of indexing, say that f ′
1(r) = 1, f ′

2(r) = 1, f ′
3(r) = 0,

f ′′
1 (s) = 1, f ′′

2 (s) = 0, and f ′′
3 (s) = 1. Now we can extend the Italian dominating functions for T1 and

T2 to the entirety of T as follows: For each v ∈ V (T),

28

f1(v) =

 f ′
1(v) v ∈ T1

f ′′
1 (v) v ∈ T2

0 v = t

f2(v) =

 f ′
2(v) v ∈ T1

f ′′
2 (v) v ∈ T2

1 v = t

f3(v) =

 f ′
3(v) v ∈ T1

f ′′
3 (v) v ∈ T2

1 v = t

It is clear that the functions above are Italian dominating functions, and since no two tuples (f1(r),
f2(r), f3(r)), (f1(s), f2(s), f3(s)), and (f1(t), f2(t), f3(t)) remain the same, f1, f2, and f3 are all
distinct. This means that dI(T) = 3

Theorem 27 classifies the Italian domatic number for all trees, which is our main result for this section.
As a result of this theorem, we can show a separate result for the Italian domination number of trees that
follows directly from what we have shown above.

5.3 An Upper Bound for the Italian Domination Number for Trees
From our main result in Theorem 27, we can clearly see that an upper bound for the Italian domination
number γI of any “good” tree T can be no greater than the maximum average of weight distributions of all
vertices throughout all Italian dominating functions in the Italian dominating family for T , implying that
γI(T) ≤ ⌊ 2n

3 ⌋. This also follows directly from Theorem 2. However, this tells us nothing about the upper
bound for the Italian domination number of a “bad” tree. We would like to show that there does indeed
exist a reasonable upper bound for the Italian domination number of “bad” trees.

Theorem 28. Let T be a tree, then γI(T) ≤ ⌊ 2n
3 + n1

6 ⌋ for n1 equal to the number of leaves in T .

Proof. If T is “good,” then it has an Italian dominating family comprised of three Italian dominating func-
tions. By the discussion above, γI(T) ≤ ⌊ 2n

3 ⌋ ≤ ⌊ 2n
3 + n1

6 ⌋, so the bound holds for “good” trees. If T is
“bad” then there must exist at least one vertex v ∈ T such that the deletion of this vertex will leave at
least one isolate and at least one P2 graph as components. Let K be the set of all such vertices in T . For
each vertex v ∈ K, let m be the number of isolate components that would result from the removal of v and
n be the number of P2 components that would result from the removal of v. If m > n, remove all isolate
components that would result from the removal of v, but do not remove v. Unless the resulting tree from
this operation is P5 (which is a “good” tree), then v will not be a leaf nor will it be adjacent to a leaf, so this
operation does not introduce another “bad” configuration from Figure 10. If m ≤ n, remove all leaves from
the P2 components that would result from the removal of v, but do not remove v. It is easier to see that
since the degree of v does not change with this operation, we do not introduce another “bad” configuration.
Repeat this process for all v ∈ K. After doing this, we should have a “good” tree, say T ′. The maximum
number of leaves that could be removed from T to form T ′ is n1

2 , and this is only possible if m = n for all
v ∈ K. So we have that γI(T ′) ≤ ⌊ 2

3 (n − n1
2)⌋ = ⌊ 2n

3 − n1
3 ⌋. One way to reintroduce all of the leaves we

removed to form T ′ back to form an Italian dominating function for T is to give each removed leaf a weight
of 1. This means that γI(T) ≤ γI(T ′) + n1

2 = ⌊ 2n
3 − n1

3 ⌋ + n1
2 ≤ 2n

3 − n1
3 + n1

2 = 2n
3 + n1

6 . Since γI(T) must
be an integer, we can conclude that γI(T) ≤ ⌊ 2n

3 + n1
6 ⌋.

6 Discussion
For this research, one of the main results has been finding an upper bound for the Italian domination number
for any tree given Figure 10’s presence in the tree. This result is only one of many that find an upper bound
for the Italian domination number. For instance, in [3], Chellali et al. prove that γI(G) ≤ γR(G) for any

29

graph G, where γR(G) represents the Roman domination number of a graph. We will not go into specifics
about Roman domination here, but keep this bound in mind, as we know from [10] that γR(G) ≤ 2γ(G).
In this statement, γ(G) represents the domination number of a graph. This allows us to conclude that
γI(G) ≤ 2γ(G) for any graph G. We know from [7] that γ(T) ≤ n − n1 for any tree T with n1 leaves and
order n ≥ 3. With all of this in mind, we can conclude that γI(T) ≤ 2(n − n1) for any tree T . However, we
have a separate bound for γI(T) from Theorem 28 that states γI(T) ≤ ⌊ 2n

3 + n1
6 ⌋ for all trees T . We may

ease the restrictions of this bound by saying that γI(T) ≤ 2n
3 + n1

6 .
Now we would like to compare each of the two bounds for the Italian domination number of trees. It is

clear that both bounds rely on the number of vertices n and the number of leaves n1 present in a given tree.
It is also clear that n1 < n for all trees with n ≥ 3. As n1 approaches n, 2n

3 + n1
6 clearly increases while

2(n − n1) clearly decreases, implying that 2(n − n1) serves as a better upper bound in this case. However,
for trees with relatively small ratios of leaves to order, it appears that 2n

3 + n1
6 will be smaller that 2(n−n1),

implying that 2n
3 + n1

6 will be a better upper bound. This further implies that there must exist some ratio
of leaves to order of a tree where one bound is strictly better than the other. In other words, there must
exist some n1 in terms of n such that 2n

3 + n1
6 < 2(n − n1). Algebraically solving for n1 in terms of n yields

that n1 < 8n
13 . With this, we can conclude that if the proportion of leaves to order of a tree is less than 8

13 ,
then our bound 2n

3 + n1
6 from Theorem 28 will be more accurate than the bound 2(n − n1). Otherwise, if

the proportion of leaves to order is greater than 8
13 , the bound 2(n − n1) is more accurate. It is clear that

the bounds will be equal for n1 = 8n
13 .

Although the results in this research are plentiful, there are still conjectures, questions, and other state-
ments that we did not have the ability to answer or prove during this research. The conjecture and questions
may pave the way for future research in this field of mathematics. Some of the most prominent of these
conjectures and questions are listed below.

Conjecture 29. For any graph G, dI(G) ≥ δ(G)

In our research and previous research conducted on the Italian domatic number of a graph, no coun-
terexample has been found to the conjecture above. However, there has been no way to prove this statement
either. If this conjecture were true, it would imply that the Italian domatic number of any graph could
only be 3 possible values, δ(G), δ(G) + 1, and δ(G) + 2. The proof of this conjecture would also make the
bound presented in Corollary 7 obsolete, which is dI(G□H) ≥ max{dI(G), dI(H)}. For G and H with large
minimum degrees, dI(G) and dI(H) will not exceed δ(G□H).

Question 30. Can the algorithm for determining the number of Italian dominating functions present in a
tree be improved such that the algorithm can determine distinction or create the Italian dominating functions
for a tree?

The algorithm we developed to find the number of Italian dominating families a tree could hold was
pivotal for us classifying the Italian domatic number for all trees. However, the algorithm can clearly be
improved in a number of ways. One way is that it also generates the Italian dominating functions for a given
tree. With this, it will certainly be easier to find the Italian dominating functions that correspond to the
Italian dominating family of a tree, but it may also allow others to determine the Italian domination number
for some tree. This may lead to improvements on our upper bound for the Italian domination number of a
tree. With this in mind, it may also be convenient if the algorithm could determine distinction among the
Italian dominating functions in the Italian dominating family of a tree.

Question 31. Do our findings on the Italian domatic number for trees and Cartesian products of cycles
imply anything about the 2-rainbow domatic number of these same graph families?

It should be noted that 2-rainbow domination on a graph is very similar to Italian domination. Where
Italian domination assigns weights to each vertex of a graph, 2-rainbow domination assigns sets (empty set
or any set involving 1 and 2) to each vertex. To further emphasize this, it has even been shown in [1] that
the 2-rainbow domination number of a tree (γr2(T)) is equal to the Italian domination number of the same
tree γI(T). We were able to bound the Italian domination number for trees based on whether or not it
had a “bad” configuration from Figure 10 and subsequently, the tree’s Italian domatic number. For research
involving either the Italian domatic number or the 2-rainbow domatic number, it would be useful to know if

30

any of our results on the Italian domatic number for trees and Cartesian products of cycles would be useful
in finding the 2-rainbow domatic number for these same graph families.

Outside of the field of mathematics, graph theory can be used to model many different objects, structures,
or relations, including city blocks or districts, faculty office hour overlap at a university, and many other
examples. The Italian domatic number of a graph represents a set of Italian dominating functions with
relatively minimal weights in relation to one another. This is implied with Theorem 2, which states that
γI(G)dI(G) ≤ 2n for all graphs G with order n. So as the Italian domatic number increases, the Italian
domination number tends to decrease. In a case where minimally optimizing weight distributions on a
graph is necessary, such as the ancient Roman Empire example from the start of this research, a larger
Italian domatic number implies a set of these “minimally optimized” functions exist. For example, refer
to the faculty office hour example stated above and say a university wanted to create a number of faculty
committees with committee members and committee leaders such that everyone not on a specific committee
could meet with either one leader or two members who are on it. Let us also say that no faculty member
had the time to be leader of multiple committees or the time to participate as a member in more than two
committees. This would imply faculty members on and off the committee that could meet have an overlap
in office hours and that any committee formed would represent an Italian dominating function. In this case,
the Italian domatic number represents the number of committees that could be formed.

As seen above, minimally optimizing weight distributions across a graph could equate to minimizing
structures or objects over an area. This could be useful for trying to determine the minimum number of
emergency service buildings (fire station, police department, or hospital) to distribute over a populated city
such that specific criteria are met. Stationing legions of troops or soldiers over some country, as seen in the
ancient Roman Empire example, represent another such example related to optimizing weight distributions
over a graph. Based on the criteria required for the aforementioned weight distributions, the Italian domatic
number of a graph can be used to find a set of Italian dominating functions with relatively minimal weight.

31

7 Appendix

from sage.graphs.trees import TreeIterator
def setAOO(v,children,ABT,ATB,BAT,TAB,TBA,BTA,AOO,OAO,OOA,BBT,BTB,TBB,BST,BTS,SBT,STB,TBS,TSB,BOO,

↪→ OBO,OOB,SST,STS,TSS,SOO,OSO,OOS):
value = 1
childVal = 0
for w in children[v]:

childVal = (BBT[w] or BOO[w])
value = childVal and value

AOO[v] = value
OAO[v] = value
OOA[v] = value

def setABT(v,children,ABT,ATB,BAT,TAB,TBA,BTA,AOO,OAO,OOA,BBT,BTB,TBB,BST,BTS,SBT,STB,TBS,TSB,BOO,
↪→ OBO,OOB,SST,STS,TSS,SOO,OSO,OOS):

value = 0
value1 = 0
value2 = 0
childVal = 0
childVal1 = 0
childVal2 = 0
childVal3 = 1
for w in children[v]: #Handles when v is being dominated below by 1 child with weight 2

childVal1 = (BTS[w] or BTB[w] or BTA[w])
childVal3 = 1
for u in children[v]: #Vertex w has weight 2, this handles all other children of v

if w != u:
childVal3 = childVal3 and (BTA[u] or OOA[u] or BTB[u] or OOS[u] or BTS[u] or BOO[u])

value1 = value1 or (childVal1 and childVal3)
for x in children[v]: #Handles when v is being dominated below by 2 children with weight 1

for y in children[v]:
if x != y: #Vertices x and y are children with weight 1

childVal1 = OOA[x] or OOB[x] or OOS[x]
childVal2 = OOA[y] or OOB[y] or OOS[y]
childVal3 = 1
for z in children[v]: #All other vertices in children of v

if z != x and z != y:
childVal3 = childVal3 and (BTA[z] or OOA[z] or BTB[z] or OOS[z] or BTS[z] or

↪→ BOO[z])
value2 = value2 or (childVal1 and childVal2 and childVal3)

value = value1 or value2 #!!!Not sure how far to indent this
ABT[v] = value
ATB[v] = value
BAT[v] = value
BTA[v] = value
TBA[v] = value
TAB[v] = value

def setSOO(v,children,ABT,ATB,BAT,TAB,TBA,BTA,AOO,OAO,OOA,BBT,BTB,TBB,BST,BTS,SBT,STB,TBS,TSB,BOO,
↪→ OBO,OOB,SST,STS,TSS,SOO,OSO,OOS):

value = 0
childVal = 0
for w in children[v]: #Handles when v is being dominated below by 1 child with weight 1

childVal = (OOS[w] or OOB[w] or TBB[w] or TBS[w] or TSS[w])
for u in children[v]: #Vertex w has weight 1, this handles all other children of v

if w != u:
childVal = childVal and (BTS[u] or BOO[u] or SST[u] or SOO[u] or BBT[u])

32

value = value or childVal
SOO[v] = value
OSO[v] = value
OOS[v] = value

def setBOO(v,children,ABT,ATB,BAT,TAB,TBA,BTA,AOO,OAO,OOA,BBT,BTB,TBB,BST,BTS,SBT,STB,TBS,TSB,BOO,
↪→ OBO,OOB,SST,STS,TSS,SOO,OSO,OOS):

value = 0
value1 = 0
value2 = 0
childVal = 0
for w in children[v]: #Handles when v is being dominated below by 1 child with weight 2

childVal = (TBB[w] or TBS[w] or TSS[w])
for u in children[v]: #Vertex w has weight 1, this handles all other children of v

if w != u:
childVal = childVal and (SBT[u] or BOO[u] or SST[u] or SOO[u] or BBT[u])

value1 = value1 or childVal
for u in children[v]:

for w in children[v]:
if u != w:

childVal1 = OOS[w] or OOB[w] or TBB[w] or TBS[w] or TSS[w]
childVal2 = OOS[u] or OOB[u] or TBB[u] or TBS[u] or TSS[u]
childVal3 = 1
for z in children[v]: #All other vertices in children of v

if z != w and z != u:
childVal3 = childVal3 and (SBT[z] or BOO[z] or SST[z] or SOO[z] or BBT[z])

value2 = value2 or (childVal1 and childVal2 and childVal3)
value = value1 or value2
BOO[v] = value
OBO[v] = value
OOB[v] = value

def setBST(v,children,ABT,ATB,BAT,TAB,TBA,BTA,AOO,OAO,OOA,BBT,BTB,TBB,BST,BTS,SBT,STB,TBS,TSB,BOO,
↪→ OBO,OOB,SST,STS,TSS,SOO,OSO,OOS):

value = 0
value1 = 0
value2 = 0
childVal = 0
for u in children[v]: #Vertex u has weight 2 first

childVal1 = TBA[u] or TBB[u] or TBS[u]
for w in children[v]: #Vertex w has weight 1 in middle

if w != u:
childVal2 = BTA[w] or OOA[w] or BTB[w] or BTS[w] or OOB[w] or OOS[w]
childVal3 = 1
for x in children[v]: #Every other vertex

if x != w and x != u:
childVal3 = childVal3 and (BTA[x] or OOA[x] or BTB[x] or BTS[x] or OOB[x] or

↪→ OOS[x])
value1 = value1 or (childVal1 and childVal2 and childVal3)

for u in children[v]: #Handles when v is being dominated below by 2 children with weight 1
for w in children[v]:

if u != w: #Vertices x and y are children with weight 1
childVal1 = OOA[u] or OOB[u] or OOS[u]
childVal2 = OOA[w] or OOB[w] or OOS[w]
childVal3 = 1
for y in children[v]: #Every other vertex in children of v

childVal3 = childVal3 and (BTS[y] or OOA[y] or BTB[y] or BTS[y] or OOB[y] or OOS[
↪→ y])

value2 = value2 or (childVal1 and childVal2 and childVal3)

33

value = value1 or value2
BST[v] = value
BTS[v] = value
STB[v] = value
SBT[v] = value
TSB[v] = value
TBS[v] = value

def setBBT(v,children,ABT,ATB,BAT,TAB,TBA,BTA,AOO,OAO,OOA,BBT,BTB,TBB,BST,BTS,SBT,STB,TBS,TSB,BOO,
↪→ OBO,OOB,SST,STS,TSS,SOO,OSO,OOS):

value = 0
value1 = 0
value2 = 0
childVal = 0
#Start with 2 children with weight 2
for u in children[v]:

childVal1 = TBA[u] or TBS[u] or TBB[u]
for w in children[v]:

if u != w:
childVal2 = BTA[w] or BTS[w] or BTB[w]
childVal3 = 1
for z in children[v]: #All other vertices in children of v

if z != w and z != u:
childVal3 = childVal3 and (OOA[z] or OOB[z] or OOS[z] or TBA[z] or TBS[z] or

↪→ TBB[z])
value1 = value1 or (childVal1 and childVal2 and childVal3)

#2 children with weight 1
#Only consider OOA, OOB, and OOS compound states since the other states the other combinations

↪→ of compounds states with 2’s and 1’s end up falling under this category
for u in children[v]:

childVal1 = OOA[u] or OOB[u] or OOS[u]
for w in children[v]:

if u != w:
childVal2 = OOA[w] or OOB[w] or OOS[w]
childVal3 = 1
for z in children[v]: #All other vertices in children of v

if z != w and z != u:
childVal3 = childVal3 and (OOA[z] or OOB[z] or OOS[z] or TBA[z] or TBS[z] or

↪→ TBB[z])
value2 = value2 or (childVal1 and childVal2 and childVal3)

value = value1 or value2
BBT[v] = value
BTB[v] = value
TBB[v] = value

def setSST(v,children,ABT,ATB,BAT,TAB,TBA,BTA,AOO,OAO,OOA,BBT,BTB,TBB,BST,BTS,SBT,STB,TBS,TSB,BOO,
↪→ OBO,OOB,SST,STS,TSS,SOO,OSO,OOS):

value = 0
value1 = 0
value2 = 0
childVal = 0
#1 child with weight 1
for u in children[v]:

childVal1 = OOA[u] or OOB[u] or OOS[u]
childVal2 = 1
for z in children[v]: #All other vertices in children of v

if z != u:
childVal2 = childVal2 and (OOA[z] or OOB[z] or OOS[z] or TBA[z] or TBS[z] or TBB[z])

value1 = value1 or (childVal1 and childVal2)
#2 children with weight 2
for u in children[v]:

34

childVal1 = TBA[u] or TBS[u] or TBB[u]
for w in children[v]:

if u != w:
childVal2 = BTA[w] or BTS[w] or BTB[w]
childVal3 = 1
for z in children[v]: #All other vertices in children of v

if z != w and z != u:
childVal3 = childVal3 and (OOA[z] or OOB[z] or OOS[z] or TBA[z] or TBS[z] or

↪→ TBB[z])
value2 = value2 or (childVal1 and childVal2 and childVal3)

value = value1 or value2
SST[v] = value
STS[v] = value
TSS[v] = value

#following sets up tree iterator for trees with 9 vertices
#can be altered by changing input value
for G in TreeIterator(9):

#G = graphs.RandomTree(num_vertices)
G.is_tree()
num_vertices = G.order()
#G.show(layout=’tree’,tree_root=0,tree_orientation=’down’)
L = G.lex_BFS(reverse=True)

#Compound States sorted by Equivalence class
ABT = zero_vector(SR, num_vertices)
ATB = zero_vector(SR, num_vertices)
BAT = zero_vector(SR, num_vertices)
TAB = zero_vector(SR, num_vertices)
TBA = zero_vector(SR, num_vertices)
BTA = zero_vector(SR, num_vertices)

AOO = zero_vector(SR, num_vertices)
OAO = zero_vector(SR, num_vertices)
OOA = zero_vector(SR, num_vertices)

BBT = zero_vector(SR, num_vertices)
BTB = zero_vector(SR, num_vertices)
TBB = zero_vector(SR, num_vertices)

BST = zero_vector(SR, num_vertices)
BTS = zero_vector(SR, num_vertices)
SBT = zero_vector(SR, num_vertices)
STB = zero_vector(SR, num_vertices)
TBS = zero_vector(SR, num_vertices)
TSB = zero_vector(SR, num_vertices)

BOO = zero_vector(SR, num_vertices)
OBO = zero_vector(SR, num_vertices)
OOB = zero_vector(SR, num_vertices)

SST = zero_vector(SR, num_vertices)
STS = zero_vector(SR, num_vertices)
TSS = zero_vector(SR, num_vertices)

SOO = zero_vector(SR, num_vertices)
OSO = zero_vector(SR, num_vertices)
OOS = zero_vector(SR, num_vertices)

35

order=zero_vector(SR, num_vertices)
children = [[] for i in range(num_vertices)]
count=0
for v in G.lex_BFS(reverse=True):

#Records ordering in reverse breadth first search
count += 1
order[v] = count

#Sets children arrays
for v in G.lex_BFS(reverse=True):

for w in G.neighbors(v):
if order[w]<order[v]:

children[v].append(w)
for v in G.lex_BFS(reverse=True):

setABT(v,children,ABT,ATB,BAT,TAB,TBA,BTA,AOO,OAO,OOA,BBT,BTB,TBB,BST,BTS,SBT,STB,TBS,TSB,
↪→ BOO,OBO,OOB,SST,STS,TSS,SOO,OSO,OOS)

setAOO(v,children,ABT,ATB,BAT,TAB,TBA,BTA,AOO,OAO,OOA,BBT,BTB,TBB,BST,BTS,SBT,STB,TBS,TSB,
↪→ BOO,OBO,OOB,SST,STS,TSS,SOO,OSO,OOS)

setBBT(v,children,ABT,ATB,BAT,TAB,TBA,BTA,AOO,OAO,OOA,BBT,BTB,TBB,BST,BTS,SBT,STB,TBS,TSB,
↪→ BOO,OBO,OOB,SST,STS,TSS,SOO,OSO,OOS)

setBST(v,children,ABT,ATB,BAT,TAB,TBA,BTA,AOO,OAO,OOA,BBT,BTB,TBB,BST,BTS,SBT,STB,TBS,TSB,
↪→ BOO,OBO,OOB,SST,STS,TSS,SOO,OSO,OOS)

setBOO(v,children,ABT,ATB,BAT,TAB,TBA,BTA,AOO,OAO,OOA,BBT,BTB,TBB,BST,BTS,SBT,STB,TBS,TSB,
↪→ BOO,OBO,OOB,SST,STS,TSS,SOO,OSO,OOS)

setSST(v,children,ABT,ATB,BAT,TAB,TBA,BTA,AOO,OAO,OOA,BBT,BTB,TBB,BST,BTS,SBT,STB,TBS,TSB,
↪→ BOO,OBO,OOB,SST,STS,TSS,SOO,OSO,OOS)

setSOO(v,children,ABT,ATB,BAT,TAB,TBA,BTA,AOO,OAO,OOA,BBT,BTB,TBB,BST,BTS,SBT,STB,TBS,TSB,
↪→ BOO,OBO,OOB,SST,STS,TSS,SOO,OSO,OOS)

#first if statement shows trees with 3 (not necessarily distinct) Italian dominating families
↪→ while second shows trees with d_I = 2

#if (BBT[0] == 0 or BOO[0] == 1) and (BBT[0] == 1 or BOO[0] == 0):
if BBT[0] == 0 and BOO[0] == 0:

G.show(layout=’tree’,tree_root=0,tree_orientation=’down’)
print(0,":","AOO=", AOO[0], "ABT=", ABT[0], "SOO=", SOO[0], "BST=", BST[0], "BOO=", BOO[0],

↪→ "BBT=", BBT[0], "SST=", SST[0])

36

References
[1] Boštjan Brešar, Michael A. Henning, and Douglas F. Rall. “Rainbow domination in graphs”. In: Tai-

wanese J. Math. 12.1 (2008), pp. 213–225. issn: 1027-5487. doi: 10.11650/twjm/1500602498. url:
https://doi.org/10.11650/twjm/1500602498.

[2] Gerard J. Chang. “The domatic number problem”. In: vol. 125. 1-3. 13th British Combinatorial Con-
ference (Guildford, 1991). 1994, pp. 115–122. doi: 10.1016/0012-365X(94)90151-1. url: https:
//doi.org/10.1016/0012-365X(94)90151-1.

[3] Mustapha Chellali et al. “Roman {2}-domination”. In: Discrete Appl. Math. 204 (2016), pp. 22–28.
issn: 0166-218X. doi: 10.1016/j.dam.2015.11.013. url: https://doi.org/10.1016/j.dam.2015.
11.013.

[4] K. Choudhary, S. Margulies, and I.V. Hicks. “Integer domination of Cartesian product graphs”. In:
Discrete Mathematics 338.7 (2015), pp. 1239–1242. issn: 0012-365X. doi: https://doi.org/10.
1016/j.disc.2015.01.032. url: https://www.sciencedirect.com/science/article/pii/
S0012365X15000527.

[5] E. J. Cockayne and S. T. Hedetniemi. “Towards a theory of domination in graphs”. In: Networks 7.3
(1977), pp. 247–261. issn: 0028-3045. doi: 10.1002/net.3230070305. url: https://doi.org/10.
1002/net.3230070305.

[6] Ernie J. Cockayne et al. “Roman domination in graphs”. In: Discrete Math. 278.1-3 (2004), pp. 11–22.
issn: 0012-365X. doi: 10.1016/j.disc.2003.06.004. url: https://doi.org/10.1016/j.disc.
2003.06.004.

[7] Wyatt J. Desormeaux, Teresa W. Haynes, and Michael A. Henning. “Improved bounds on the dom-
ination number of a tree”. In: Discrete Appl. Math. 177 (2014), pp. 88–94. issn: 0166-218X. doi:
10.1016/j.dam.2014.05.037. url: https://doi.org/10.1016/j.dam.2014.05.037.

[8] Hong Gao et al. “More Results on Italian Domination in Cn□Cm”. In: Mathematics 8.4 (2020). issn:
2227-7390. doi: 10.3390/math8040465. url: https://www.mdpi.com/2227-7390/8/4/465.

[9] A. Giahtazeh, H. R. Maimani, and A. Iranmanesh. “On the Roman 2-domatic number of graphs”.
In: Discrete Mathematics, Algorithms and Applications 13.05 (2021), p. 2150052. doi: 10 . 1142 /
S179383092150052X. eprint: https : / / doi . org / 10 . 1142 / S179383092150052X. url: https : / /
doi.org/10.1142/S179383092150052X.

[10] Michael A. Henning and Stephen T. Hedetniemi. “Defending the Roman Empire—a new strategy”. In:
vol. 266. 1-3. The 18th British Combinatorial Conference (Brighton, 2001). 2003, pp. 239–251. doi:
10.1016/S0012-365X(02)00811-7. url: https://doi.org/10.1016/S0012-365X(02)00811-7.

[11] Michael A. Henning and William F. Klostermeyer. “Italian domination in trees”. In: Discrete Appl.
Math. 217.part 3 (2017), pp. 557–564. issn: 0166-218X. doi: 10.1016/j.dam.2016.09.035. url:
https://doi.org/10.1016/j.dam.2016.09.035.

[12] Zepeng Li, Zehui Shao, and Jin Xu. “Weak {2}-domination number of Cartesian products of cycles”.
In: J. Comb. Optim. 35.1 (2018), pp. 75–85. issn: 1382-6905. doi: 10.1007/s10878-017-0157-6. url:
https://doi.org/10.1007/s10878-017-0157-6.

[13] J. Nieminen. “Two bounds for the domination number of a graph”. In: J. Inst. Math. Appl. 14 (1974),
pp. 183–187. issn: 0020-2932.

[14] Zofia Stepień et al. “2-rainbow domination number of Cn□C5”. In: Discrete Appl. Math. 170 (2014),
pp. 113–116. issn: 0166-218X. doi: 10.1016/j.dam.2014.01.027. url: https://doi.org/10.1016/
j.dam.2014.01.027.

[15] Ian Stewart. “Defend the Roman Empire!” In: Scientific American 281.6 (Dec. 1999), pp. 136–138.
doi: 10.1038/scientificamerican1299-136.

[16] Lutz Volkmann. “The Roman {2}-domatic number of graphs”. In: Discrete Appl. Math. 258 (2019),
pp. 235–241. issn: 0166-218X. doi: 10.1016/j.dam.2018.11.027. url: https://doi.org/10.1016/
j.dam.2018.11.027.

37

