
 

 

 

 

A TRAFFIC CELLULAR AUTOMATON MODEL 

CONSIDERING SPONTANEOUS BRAKING AND 

DRIVER SCOPE AWARENESS PARAMETERS 

 

 

 

 

 

 

 

 

 

 

 

 

September 2013 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Department of Science and Advanced Technology 

Graduate School of Science and Engineering 

Saga University 

 

 

 

STEVEN RAY SENTINUWO 
  



 

 

 

A TRAFFIC CELLULAR AUTOMATON MODEL CONSIDERING 

SPONTANEOUS BRAKING AND DRIVER SCOPE AWARENESS 

PARAMETERS 

 

 
A dissertation submitted to the Department of Science and Advanced Technology, 

Graduate School of Science and Engineering, Saga University in partial fulfillment 
for the requirements of a Doctorate degree in Information Science 

 

 

by 

 

STEVEN RAY SENTINUWO 

 

 

Nationality : Indonesia 

Previous Degrees : Bachelor of Engineering 

  Sam Ratulangi University  

  Indonesia 

 

  Master of Information Technology 

  University of Indonesia 

  Indonesia 

 

 

 

 

 

 

 

 

 

 

 

Department of Science and Advanced Technology 

Graduate School of Science and Engineering 

Saga University 

JAPAN 

 

September 2013 

  



 

 

APPROVAL 

 

Graduate School of Science and Engineering 

Saga University 

1 - Honjomachi, Saga 840-8502, Japan 

 

 

CERTIFICATE OF APPROVAL 

____________________________ 

 

Dr. Eng. Dissertation 

____________________________ 

 

This is to certify that the Dr. Eng. Dissertation of 
 

STEVEN RAY SENTINUWO 

 

has been approved by the Examining Committee for the 

Dissertation requirements for the Doctor of Engineering 

Degree in Information Science in September 2013. 
 

 

 

Dissertation Committee : 

Supervisor, Prof. Kohei Arai 

Department of Science and Advanced Technology 

 

 

 

 

Member, Prof. Shinichi Tadaki 

Department of Science and Advanced Technology 

 

 

 

 

Member, Associate Prof. Hiroshi Okumura 

Department of Science and Advanced Technology 

 

 

 

 

Member, Associate Prof. Koichi Nakayama 

Department of Science and Advanced Technology 

  



 

DEDICATION 
 
 
 
 

I want to dedicate this work to my family: Pegy, Cassie, and Chelsea. They have given 

me the strength to endure hard times and the peace to enjoy the good moments. 

I also dedicate this work to my parents. The made the foundations of what I am today. 

  



i 

 

ABSTRACT 

 

Recently, the field of traffic model and simulation has received growing 

interest over the last decades. This is due to some reasons: the growing of traffic 

demand that easily create traffic jam and congestion, the complexity of traffic 

feature that make them hard to analyze, control, and optimize, and the growing 

area of potential applications (plan, design, assessing, and provide the alternative 

layout to optimize transportation system). Traffic systems are inherently dynamic 

in nature, so that, the number of units in the system varies according to the time 

and with a considerable amount of randomness. This system formed not only from 

the interaction between drivers and physical environment, but also much 

influenced by the interaction between the drivers. The laws of interaction are 

approximate in nature, so the observations and reactions of drivers are governed 

by human perception. Since the process of participating in a traffic flow is heavily 

based on the behavioral aspects associated with human drivers, it would seem 

important to include these human factors into the modeling equations. Simulation 

can help to capture some parts of this human behavior that exist in the real traffic 

situation and converted into the mathematical modeling through the application of 

computer software. The main issue is to reduce the features complexity that 

makes a mathematical formulation possible. On the other hand, it also need to 

capture the characteristic of driver to reproduce the major phenomena that can be 

observed in real traffic situation. 

This dissertation aim to define, investigate, and validate a model for the 

simulation of spontaneous braking behavior and investigate the effect of driver 

scope awareness when making a lane changing decision in the traffic flow. In the 

proposed model, the parameter of spontaneous braking and driver scope of 

awareness has been introduced. A traffic cellular automata model (TCA) has been 

enhanced to better capture the behavior of spontaneous braking and scope 

awareness of the driver. A set of TCA rules are proposed to represent those 

behaviors. In order to describe their effect in the traffic then the fundamental 

diagrams have been created: flow-density, speed-density, and space-time 

diagrams. 
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Moreover, to evaluate the simulation model and result, simulations for 

realistic scenarios are performed and compared to the actual data from 

observations. The actual traffic data have been recorded and analyzed as the 

comparison data. In the evaluation, the Nagel model for two lane traffic also used 

as the comparison model. Evaluations results show that the proposed model 

giving 83.9% accuracy value compare to the actual traffic flow data. While using 

Nagel and Rickert model, their accuracy is around 75.9% compare to the actual 

traffic flow data. 
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CHAPTER 1.  
INTRODUCTION 

 

This chapter presents an overview of the topics dealt with in this 

dissertation. It describes the intention, scope, and limitations of the simulation 

models for traffic flow analysis and roughly outlines the contents of the 

succeeding chapters. 

Contents 

1.1 BACKGROUND RESEARCH .............................................................................. 1 

1.2 PROBLEM STATEMENT AND MOTIVATION .................................................... 3 

1.3 CONTRIBUTION OF THE THESIS ...................................................................... 5 

1.4 SCOPE ............................................................................................................... 5 

1.5 THESIS OUTLINE .............................................................................................. 5 

 

1.1 Background Research 

The field of traffic model and simulation has received growing interest over 

the last decades. This is a due to several reasons: 

1. Growing traffic demand: car is the one of the most important form of 

locomotion when the distance covered is concerned. Since the number 

of cars has been growing in every day and the capacity of the road is 

not enough to coup the car number then it is probably time-intensive 

form of mobility if waiting and queuing are taken into account. In 

other words, in densely populated areas the capacity of the road 

network is often at its limits and frequent traffic jams and congestion 

cause a significant economic damage. To make things even worse, the 

traffic demand is still growing. For this reason, reliable traffic 

information systems and traffic management concepts are needed. 

2. Feature complexity: the efficient movement of people and goods 

through physical road and street networks is a fascinating problem. 

Traffic systems are characterized by a number of features that make 

them hard to analyze, control, and optimize. Road traffic flow are 

composed of drivers associated with individual vehicles, each of them 
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having their own characteristics. The system often cover wide physical 

areas, the number of active participants is high, the goals and 

objectives of the participants are not necessarily parallel with each 

other or with those of the system operator (system optimum vs user 

optimum), and there are many system inputs that are outside the 

control of the operator and the participants (the weather condition, the 

number of users, etc.).    

3. In case of an emergency situation, the people and vehicles has to be 

evacuated within a short time span under stress conditions. Simulations 

help to analyze traffic condition related to the driver psychology and 

optimizing the evacuation performance. 

4. Numerous traffic phenomena can be observed by simulation. Can they 

be explained by simple rules and assumptions? To identify those basic 

principles increases the understanding of traffic dynamics.   

5. Growing area of potential applications. Simulation research of road 

traffic has a connection to several other fields, like driver psychology, 

safety science, and traffic engineering. This field becomes an 

important also because it can study models to better help plan, design, 

and operate transportation system. Deepening this connection might 

lead to fruitful results and new insight to the development of 

Intelligent Transport Technologies and Applications. 

For these reasons, simulation can help to capture some parts of the real 

traffic situation and converted into the mathematical modeling through the 

application of computer software in order to achieve the better plan, design, 

assessing alternative layouts, and procedure of transportation systems. Simulation 

in traffic system is important because it can study the complicated models for 

analytical or numerical treatment, can be used for experimental studies, can study 

detailed relations that might be lost in analytical or numerical treatment and can 

produce attractive visual demonstrations of present and future scenarios[1]. 

Traffic systems are inherently dynamic in nature, so that, the number of 

units in the system varies according to the time and with a considerable amount of 

randomness. This system combine man-machine interaction, this mean, there are 
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the interaction between drivers and driver-physical environment. The laws of 

interaction are approximate in nature, so the observations and reactions of drivers 

are governed by human perception[1]. Therefore, driver behavior is one of the 

parameters that affect the road traffic phenomena. 

This thesis addresses the challenge of modeling the situation of urban 

roadway, in particular to capture the spontaneous braking behavior and scope of 

awareness of the driver into the simulation model. In summary, the aims of this 

dissertation are the following: 

1. Compilation of the basic principles, the aim, and the scope of 

computer simulations for traffic flow modeling (chapter 2); 

2. Developing a traffic model that take into account driver behavior, 

in particular on spontaneous braking (chapter 3) and driver scope 

awareness when making a lane changing maneuver (chapter 4); 

3. Implementing this model into a simulation and evaluate this 

model by comparing to the actual traffic condition. 

Because the process of participating in a traffic flow is heavily based on the 

behavioral aspects associated with human drivers[2][3], it would seem important 

to include these human factors into the modeling equations 

1.2 Problem Statement and Motivation 

Due to the rapid development of computer technology then research about 

traffic simulation and modeling has increasingly grown. Computer simulation in 

traffic model has developed from a research tool of experts to a widely used 

technology for practitioners and researchers in the research, planning, 

demonstration, and development of traffic systems. The research about traffic 

modeling can be divided into two categories: microscopic model and macroscopic 

model. Microscopic model described traffic behavior as resulting from discrete 

interaction between vehicles as entities. While the macroscopic models concern to 

describe the aggregate traffic behavior phenomena by considering the 

fundamental relationships between vehicles speed, flow, and density.  

Most microscopic models (e.g., the car-following model) use the assumption 

the all the vehicles have a uniform driving behavior. These microscopic models 

use deterministic approach and, therefore difficult to capture inherent stochastic 
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nature of real traffic. On the other hand, a major limitation of macroscopic models 

is their aggregate nature. The macroscopic models concern the traffic flow as 

continuous system, then these models cannot capture the discrete dynamic aspects 

that arise from vehicles interaction[4]. 

The interaction between vehicles has strong relationship with the driver 

behavior. Some research studies have shown that the driver behavior play an 

important role for the traffic events. One cause of those traffic events is due to the 

observations and reactions of drivers are governed by human perception. The 

emotional aspect of the driver contributes to the many situations in traffic such as 

car crashes and congestion[5]. Another study also shown that the driver behavior 

is a fundamental factor and a key source of complexity in predicting traffic 

network states unfolding over time[6]. 

The recent research from Nagel et.al.[7], discusses two lane traffic and lane 

changing rules based on a cellular automata model. However, these models just 

appropriate to be applied into freeway traffic condition and  have not considered 

about spontaneous braking and also drivers’ visibility and speed estimation of the 

vehicles within the monitoring area which may have important influence on 

human’ hazard perception and lane changing decision. 

This thesis presents the results of computer simulation study conducted to 

investigate how the behaviors of driver influence the traffic flow and how these 

behaviors are related to each other in the traffic flow phenomena. There is a 

common knowledge that there are differences on the way of braking character of 

each driver. In the urban roadway traffic situations, vehicle would make a braking 

as the response to avoid collision with another vehicle or avoid some obstacle like 

potholes, snow, or pedestrian that crosses the road unexpectedly. In many 

countries, the reckless driving behaviors such as sudden-stop by public-buses, 

motorcycle which changing lane too quickly, or tailgating make the probability of 

braking getting increase.  

The new aspect of this thesis is developing the traffic simulation that takes 

into account the spontaneous braking behavior and scope awareness of the driver 

and presents the new Cellular Automata model for describing these 
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characteristics. This model is expected to reflect a more realistic the urban 

roadway traffic behavior. 

1.3 Contribution of the Thesis 

We introduce a stochastic discrete cellular automata model to simulate the 

dynamic braking of the driver, in particular for the spontaneous braking behavior, 

as is observed in urban roadway traffic. Furthermore, we also introduce and 

present the analysis study about the effect of driver scope awareness in lane 

changing maneuver. Compare to the real traffic flow data, this proposed model 

given better accuracy to show traffic flow behavior compare to the previous traffic 

model. 

In the future, this proposed model could be elaborated to improve the 

development of intelligent transport technologies and applications. 

1.4 Scope 

Many researches have been proposed the traffic flow model and simulation. 

The research study, in this thesis, focuses only on the 2-lane urban road traffic 

model from a cellular automaton point of view in order to describe and analyze 

the spontaneous braking and scope awareness of driver. 

This research will focus on: 

1. The fundamental diagram of 2-lane urban roadway traffic simulation. 

2. The enhancement of traffic cellular automata model to better capture the 

spontaneous braking and scope awareness of driver. 

3. The evaluation and validation the simulation model to the real traffic 

data. 

1.5 Thesis Outline 

This dissertation is organized as follow. Chapter-1 provides an introduction 

to the research work. Several related issues as the background research are 

introduced. Problem statement, motivation, contribution, and scope of this study 

are stated and discussed as well. 

Chapter-2 discusses the theoretical background of the traffic simulation and 

modeling. In this chapter, the previous studies and works for modeling the traffic 
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phenomena by using cellular automata have been reviewed. This chapter has also 

discussed about driver behavior in the traffic performance. 

The description of the proposed model dealing with spontaneous braking 

behavior is given in Chapter-3. IT consists of model overview, description, and 

the implementation of the model in simulation. The simulation result of the 

probability condition of each parameter has been shown in the last part of this 

chapter. 

Chapter-4 describes the parameter of driver scope awareness and the effect 

to the traffic flow. Brief overview and the description of this parameter is 

discussed. The results derived from the simulation work are shown in this chapter. 

The evaluation and comparison study between the proposed model to the actual 

traffic data and the previous traffic model is also discussed in this chapter. 

Chapter-5 draws the conclusion of the overall work in this thesis. 
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CHAPTER 2.  
LITERATURE REVIEW 

 

This chapter contains basic remarks on how to model the traffic flow. It 

therefore deals with the methodology rather than a specific model in detail. The 

problem setting, as introduce in the previous chapter, is introduced includes the 

description and definition of traffic model, and the aspects of traffic flow 

measurement. Different model classes that comply with the theory will be 

introduced and briefly described. This is the first step providing the basis for 

empirical studies, model development, and finally the implementation in the 

simulation. 

Contents 

2.1 TRAFFIC MODELING AND ANALYSIS ............................................................. 7 

2.1.1 Traffic Characteristics .............................................................................. 8 

2.2 TRAFFIC CELLULAR AUTOMATA MODELS FOR THE MICRO TRAFFIC FLOW

 12 

2.2.1 Overview and physical setup ................................................................. 13 

2.2.2 Wolfram’s rule 184 (CA-184) ................................................................ 19 

2.2.3 Deterministic Fukui-Ishibashi TCA (DFI-TCA) ................................. 23 

2.2.4 Nagel-Schreckenberg model (NaSch) ................................................... 26 

2.2.5 Stochastic Fukui-Ishibashi TCA (SFI-TCA) ........................................ 29 

2.3 DRIVER BEHAVIOR........................................................................................ 31 

2.3.1 Driving task .............................................................................................. 31 

2.3.2 Braking behavior and response ............................................................. 32 

2.3.3 Acceleration Performance ..................................................................... 32 

2.3.4 Gap Acceptance ....................................................................................... 33 

2.3.5 Lane changing ......................................................................................... 33 

2.3.6 Aggressive driver..................................................................................... 34 

 

 

2.1 Traffic Modeling and Analysis 

During its more than forty years long history computer simulation in traffic 

analysis has developed from a research tool of limited group of experts to a 

widely used technology in the research, planning, demonstration and development 

of traffic systems. The five driving forces behind this development are the 

advances in traffic theory, in computer hardware technology and in programming 

tools, the development of the general information infrastructure, and the society's 
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demand for more detailed analysis of the consequences of traffic measures and 

plans. The basic application areas of simulation have mainly remained the same, 

but the applications have grown in size and complexity. In the 1990's demand 

analysis through simulation has emerged as a new application area. New 

programming techniques and environments, like object-oriented programming and 

virtual reality tools are coming to common use. Integrated use of several programs 

and the applications of parallel computing and GIS databases are some of the 

latest trends in traffic systems simulation. New ideas, like cellular automata and 

rule-based simulation with discrete variables have also proven their strength. 

2.1.1 Traffic Characteristics 

Road traffic flows are the combination of drivers associated with individual 

vehicles, each of them having their own characteristics. These characteristics are 

called microscopic when a traffic flow is considered as being composed of such a 

stream of vehicles[3]. Through the interactions between the drivers of the 

vehicles, then formed the dynamical aspects of these traffic flows. These dynamic 

conditions are largely determined by the behavior of each driver, as well as the 

physical characteristics of the vehicles. 

Since the process of participating in a traffic flow is heavily based on the 

behavioral aspects associated with human drivers[2], it would seem important to 

include these human factors into the modeling equations. However, this leads to a 

severe increase in complexity, which is not always a desired artifact[3]. 

2.1.1.1 Variables related with vehicle 

Referring to Maerivoet[8], the following is expressed some variables related 

with vehicle. Let considering individual vehicles, each vehicle i in a lane of a 

traffic stream have the following informational variables: 

 a length, denoted by   ; 

 a longitudinal position, denoted by   ; 

 a speed, denoted by    
   

  
 ; 

 an acceleration, denoted by    
   

  
 

    

    . 
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Note that the position    of a vehicle is typically taken to be the position of its rear 

bumper. In this approach, a vehicle’s other spatial characteristics (i.e., its width, 

height, and lane number) are neglected. 

2.1.1.2 Characteristics of traffic flow 

We quote from Gartner[2] and Maerivoet[3], they explained that, we can 

consider two consecutive vehicles in the same lane in a traffic stream: a follower i 

and its leader i + 1. Referring to Figure 2-1, it can be seen that vehicle i has a 

certain space headway    
 to its predecessor (it is expressed in meters), composed 

of a distance (called a space gap)    
 to this leader and its own length   : 

   
    

    Eq.2-1 

  

 

Figure 2-1. Two consecutive vehicles 

 

In the context of the space headway, by taking the rear bumper as the 

vehicle’s position then the space headway    
        . The space gap is thus 

measured from the follower vehicle’s front bumper to its leader rear bumper. 

Maerivoet also stated that analogously to Eq.2-1, each vehicle has a time headway 

   
 (expressed in seconds) which is consist of a time gap    

 and an occupancy 

time   : 

   
    

    Eq. 2-2 
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By using a time-space diagram, the space and time headways can be 

visualized. Figure 2-2 presents a time-space diagram showing two vehicles 

trajetories i and i+1, as well as the space and time headway    
 and    

 of vehicle 

i. Both headways are composed of a space gap    
 and the vehicle length   , and 

the time gap    
 and the occupancy time   , respectively. The time headway can 

be seen as the difference in time instants between the passing of both vehicles, 

respectively at      and   , (diagram based on [3]). In other words, Figure 2-2 

also informs that the position of both vehicles can be plotted with respect to time, 

tracing out two vehicle trajetories. Time direction has drawn horizontal and space 

direction in vertical way, then the vehicles’ respective speeds can be derived by 

taking the tangents of the trajectories (for simplicity, we have assumed that both 

vehicles travel at the same con- stant speed, resulting in parallel linear 

trajectories). Accelerating vehicles have steep inclining trajectories, whe- reas 

those of stopped vehicles are horizontal. 

 

 

Figure 2-2 A time-space diagram shows two vehicle trajectories i and i + 1. 

 

When the vehicle’s speed is constant, the time gap is the amount of time 

necessary to reach the current position of the leader when travelling at the current 

speed (i.e., it is the elapsed time an observer at a fixed location would measure 

between the passing of two consecutive vehicles). In single-lane traffic, vehicles 
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always keep their relative order, a principle sometimes called first-in, first-out 

(FIFO). For multi-lane traffic however, this principle is no longer obeyed due to 

overtaking maneuvers, resulting in vehicle trajectories that cross each other. If the 

same time-space diagram were to be drawn for only one lane (in multi-lane 

traffic), then some vehicles’ trajectories would suddenly appear or vanish at the 

point where a lane change occurred[3]. 

2.1.1.3 Density, Flow, and Speed 

Discussing the traffic flow to a more aggregate macroscopic level (traffic 

streams are regarded as a fluid) then there are three important macroscopic traffic 

flow characteristics: density, flow rates, and mean speed. 

A synonym of density is concentration. However, refer to Hall et.al., there is 

difference between them. The former is a measure of concentration over space, 

while the latter measures a concentration over time of the same vehicle stream. 

Density can be measured only along a length. If only point measurements are 

available, density needs to be calculated either from occupancy or from speed and 

flow. This density value allows us to get an idea of how crowded a certain section 

of a road is. It is typically expressed in number of vehicles per kilometer (or mile). 

Note that the concept of density totally ignores the effects of traffic composition 

and vehicle lengths, as it only considers the abstract quantity ‘number of 

vehicles’[3]. When density cannot be exactly measured or computed, or when 

density measurements are faulty, it has to be estimated. To this end, several 

available techniques exist e.g., based on explicit simulation using a traffic flow 

propagation model[9], based on a vehicle re-identification system[10], based on a 

complete traffic state estimator using an extended Kalman filter[11], or based on a 

non-linear adaptive observer[12]. 

Using the spatial region   , the density k for single-lane traffic is defined as: 

  
 

 
 

Eq. 2-3 

with N the number of vehicles present on the road segment. If we consider multi-

lane traffic, we have to sum the partial densities    of each of the L lanes as 

follow[3]: 
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Eq. 2-4 

2.2 Traffic Cellular Automata Models for the Micro Traffic Flow  

Cellular automaton (CA), at the basis of the model presented in this 

dissertation, is a discrete model studied in computability theory, mathematics, 

physics, complexity science, theoretical biology and microstructure modeling. 

Currently, various fields have been using CA models to model the phenomena of 

their system, such as vehicular traffic flow, pedestrian behavior, escape and panic 

dynamic, collective behavior, and self-organization. CA model uses a simple 

approach for modeling and simulation of complex dynamical systems. The 

behavior of complex systems can be described by considering at the local 

interactions between their elementary parts. CA decomposes a complex 

phenomenon into a finite number of elementary processes. 

The CA model consists of two components, a cellular space and a set of 

state. A set of rules specify the time and space evolution of the system, which is 

discrete in both variables. The state of a cell is completely determined by its 

nearest neighborhood cells. All neighborhood cells have the same size in the 

lattice. Each cell can either be empty, or is occupied by exactly one node. There is 

a set of local transition rule that is applied to each cell from one discrete time step 

to another (i.e., iteration of the system). This parallel updating from local simple 

interaction leads to the emergence of global complex behavior. All vehicles have 

the same length li=1 cell, with traffic considered as homogeneous, so all vehicles‘ 

characteristics are assumed to be the same[13]. 

By using illustrative time-space diagrams, each Traffic Cellular Automata 

(TCA) models can shows its qualitative behavioral characteristics; these diagrams 

can represent all traffic operations that occur in the system. The paths of all the 

vehicles’ movements are traced, resulting in a set of trajectories (the space 

direction is vertical, the time direction is horizontal); each vehicle is represented 

by a pixel. In the trajectories, congestion waves clearly appear as they move 

upstream with time: vehicles entering such a wave reduce their speed (nearly 

horizontal trajectories) for a while, until they can accelerate again (steep 
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ascending trajectories). The time axis direction starts from left to right, while the 

space axis direction is upward, so vehicles drive diagonally upwards to the right 

and congestion waves propagate diagonally downwards to the right. 

Many studies of TCA models have been performed by scientists/researchers, 

some of them are [14], [15], [16], [17], [18], [19]. In this overview of the TCA 

models, we refer to Maerivoet and De Moor[13] 

 

2.2.1 Overview and physical setup 

This section describes the overview of the historic origins of cellular 

automata (CA), as they were conceived around 1950. The origin of CA 

consists four main ingredients constitute a cellular automaton: the physical 

environment, the cells’ states, their neighborhoods, and finally a local transition 

rule. Subsequently, there is a general description on how cellular automata are 

applied to vehicular road traffic, discussing their physical environment and the 

accompanying rule set that describes the vehicles’ physical propagation. In this 

overview of the cellular automata (CA), we refer to the study from Maerivoet and 

De Moor[13]. 

2.2.1.1 Origin of cellular automata 

The mathematical concepts of cellular automata (CA) models can be traced 

back as far as 1948, when Johann Louis von Neumann introduced them to study 

(living) biological systems[20]. Von Neumann’s work, was the notion of self-

reproduction and theoretical machines (called kinematons) that could accomplish 

this. As his work progressed, von Neumann started to cooperate with Stanislaw 

Marcin Ulam, who introduced him to the concept of cellular spaces. These 

described the physical structure of a cellular automaton, i.e., a grid of cells which 

can be either ‘on’ or ‘off’ [21]. Interestingly, Alan Mathison Turing proposed in 

1952 a model that illustrated reaction–diffusion in the context of morphogenesis 

(e.g., to explain the patterns of spots on giraffes, of stripes on zebras, etc). His 

model can be seen as a type of continuous CA, in which the cells have a direct 

analogy with a simplified biological organism. 
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In the 1970s, CA models found their way to one of the most popular 

applications called ‘simulation games’, of which John Horton Conway’s “Game 

of Life”[22] is probably the most famous. The game found its widespread fame 

due to Martin Gardner who, at that time, devoted a Scientific American column, 

called “Mathematical Games”, to it. Life, as it is called for short, is traditionally 

‘played’ on an infinitely large grid of cells. Each cell can either be ‘alive’ or 

‘dead’. The game evolves by considering a cell’s all surrounding neighbors, 

deciding whether or not the cell should live or die, leading to phenomenon called 

‘birth’, ‘survival’, and ‘overcrowding’ (or ‘loneliness’). 

The widespread popularization of CA models was achieved in the 1980s 

through the work of Stephen Wolfram. Based on empirical experiments using 

computers, he gave an extensive classification of CA models as mathematical 

models for self-organizing statistical systems[21]. Wolfram’s work culminated in 

his mammoth monograph, called A New Kind of Science[23]. In this book, 

Wolfram related cellular automata to all disciplines of science (e.g., sociology, 

biology, physics, mathematics, etc.). 

2.2.1.2 Ingredients of a cellular automaton 

From a theoretical point of view, four main ingredients play an important 

role in cellular automata models: 

A. The physical environment 

This defines the universe on which the CA is computed. This underlying 

structure consists of a discrete lattice of cells with a rectangular, hexagonal, or 

other topology, the examples shown by Figure 2-3. Typically, these cells are all 

equal in size; the lattice itself can be finite or infinite in size, and its 

dimensionality can be a linear string of cells called an elementary cellular 

automaton or ECA, or a grid, or even higher dimensional. In most cases, a 

common—but often neglected—assumption, is that the CAs lattice is embedded 

in a Euclidean space. 
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Figure 2-3. Some examples of different Euclidean lattice topologies for a cellular 
automaton in two dimensions 

B. The cells’ states 

Each cell can be in a certain state, where typically an integer represents the 

number of distinct states a cell can be in, e.g., a binary state. Note that a cell’s 

state is not restricted to such an integer domain (e.g.,  ), as a continuous range of 

values is also possible (e.g.,  ), in which case we are dealing with coupled map 

lattices (CML). We call the states of all cells collectively a CAs global 

configuration. This convention asserts that states are local and refer to cells, while 

a configuration is global and refers to the whole lattice. 

 

C. The cells’ neighborhoods 

For each cell, we define a neighborhood that locally determines the 

evolution of the cell. The size of neighborhood is the same for each cell in the 

lattice. In the simplest case, i.e., a one-dimensional lattice, the neighborhood 

consists of the cell itself plus its adjacent cells. In a two-dimensional rectangular 

lattice, there are several possibilities, e.g., with a radius of 1 there are, besides the 

cell itself, the four north, east, south, and west adjacent cells (von Neumann 

neighborhood), or the previous five cells as well as the four north–east, south–east, 

south–west, and north–west diagonal cells (Moore neighborhood); see Figure 2-4 

for an example of both types of neighborhoods. Figure 2-4 shows the von 

Neumann neighborhood (left) consisting of the central cell itself plus 4 adjacent 

cells, and the Moore neighborhood (right) where there are 8 adjacent cells. Note 

that for one-dimensional CA’s, both types of neighborhoods are the same Note 

that as the dimensionality of the lattice increases, the number of direct neighbors 

of a cell increases exponentially. 
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Figure 2-4. Two commonly used two-dimensional CA neighbourhoods with a radius 
of 1 (figure source:[13]). 

 

C. A local transition rule 

This rule (also called function) acts upon a cell and its direct neighborhood, 

such that the cell’s state changes from one discrete time step to another (i.e., the 

system’s iterations). The CA evolves in time and space as the rule is subsequently 

applied to all the cells in parallel. Typically, the same rule is used for all the cells 

(if the converse is true, then the term hybrid CA is used). When there are no 

stochastic components present in this rule, we call the model a deterministic CA, 

as opposed to a stochastic (also called probabilistic) CA. 

As the local transition rule is applied to all the cells in the CAs lattice, the 

global configuration of the CA changes. This is also called the CAs global map, 

which transforms one global configuration into another. Sometimes, the CAs 

evolution can be reversed by computing past states out of future states. By 

evolving the CA backwards in time in this manner, the CAs inverse global map is 

computed. If this is possible, the CA is called reversible, but if there are states for 

which no precursive state exists, these states are called Garden of Eden (GoE) 

states and the CA is said to be irreversible. 

Finally, when the local transition rule is applied to all cells, its global map is 

computed. In the context of the theory of dynamical systems, this phenomenon of 

local simple interactions that lead to a global complex behavior (i.e., the 

spontaneous development of order in a system due to internal interactions), is 
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termed self-organization or emergence. Whereas the previous parts discussed the 

classic approach to CA models, the following parts will focus on vehicular traffic 

flows, leading to traffic cellular automata (TCA) models. 

2.2.1.3 Road layout and the physical environment 

When applying the cellular automaton analogy to vehicular road traffic 

flows, the physical environment of the system represents the road on which the 

vehicles are driving. In a classic single-lane setup for traffic cellular automata, this 

layout consists of a one-dimensional lattice that is composed of individual cells 

(our description here thus focuses on unidirectional, single-lane traffic). Each cell 

can either be empty, or is occupied by exactly one vehicle; we use the term single-

cell models to describe these systems. Another possibility is to allow a vehicle to 

span several consecutive cells, resulting in what we call multi-cell models. 

Because vehicles move from one cell to another, TCA models are also called 

particle–hopping models[16]. 

An example of the tempo-spatial dynamics of such a system is depicted in 

Figure 2-5, where two consecutive vehicles i and j are driving on a one-

dimensional lattice. A typical discretization scheme assumes        and   

    , corresponding to speed increments of              . The spatial 

discretisation corresponds to the average length a conventional vehicle occupies in 

a closely jam packed (and as such, its width is neglected), whereas the temporal 

discretization is based on a typical driver’s reaction time and we implicitly assume 

that a driver does not react to events between two consecutive time steps[24]. 

With respect to the layout of the system, we can distinguish two main cases: 

closed versus open systems. They correspond to periodic (or cyclic) versus open 

boundary conditions. The former is usually implemented as a closed ring of cells, 

sometimes called the Indianapolis scenario, while the latter considers an open 

road. This last type of system is also called the bottleneck scenario. The name is 

derived from the fact that this situation can be seen as the outflow from a jam, 

where vehicles are placed at the left boundary whenever there is a vacant spot. 

Note that, in closed systems, the number of vehicles is always conserved, leading 

to the description of number conserving cellular automata (NCCA)[13]. 
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Figure 2-5. Schematic diagram of the operation of a single-lane traffic cellular 
automaton (TCA) 

 

2.2.1.4 Vehicle movements and the rule set 

The propagation of the individual vehicles in a traffic stream, is described 

by means of a rule set that reflects the car-following and lane-changing behavior 

of a traffic cellular automaton evolving in time and space. The TCAs local 

transition rule actually comprises this set of rules. They are consecutively applied 

to all vehicles in parallel (called a parallel update). So in a classic setup, the 

system’s state is changed through synchronous position updates of all the 

vehicles: for each vehicle, the new speed is computed, after which its position is 

updated according to this speed and a possible lane-change maneuver. Note that 

there are other ways to perform this update procedure, e.g., a random sequential 

update. Because time is discretized in units of    seconds, an implicit reaction 

time is assumed in TCA models. It is furthermore assumed that a driver does not 

react to events between consecutive time steps. 

For single-lane traffic, we assume that vehicles act as anisotropic particles, 

i.e., they only respond to frontal stimuli. So typically, the car-following part of a 

rule set only considers the direct frontal neighborhood of the vehicle to which the 

rules are applied. The radius of this neighborhood should be taken large enough 

such that vehicles are able to drive collision-free. Typically, this radius is equal to 

the maximum speed a vehicle can achieve, expressed in cells per time step. 

From a microscopic point of view, the process of a vehicle following its 

predecessor is typically expressed using a stimulus–response relation[8]. 

Typically, this response is the speed or the acceleration of a vehicle; in TCA 

models, a vehicle’s stimulus is mainly composed of its speed and the distance to 
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its leader, with the response directly being a new (adjusted) speed of the vehicle. 

In a strict sense, this only leads to the avoidance of accidents. Some models 

however, incorporate more detailed stimuli, such as anticipation terms. These 

forms of ‘anticipation’ only take leaders’ reactions into account, without 

predicting them. When these effects are taken into account together with a safety 

distance, strong accelerations and abrupt braking can be avoided. Hence, as the 

speed variance is decreased, this results in a more stable traffic stream[25][26][27]. 

Interestingly, a TCA model can also be derived from a so-called Gipps car-

following model. All speeds in this Gipps model are directly computed from one 

discrete time step to another[13]. If now the spatial dimension is also discretized 

(a procedure called coarse graining), then this will result in a TCA model. 

2.2.2 Wolfram’s rule 184 (CA-184) 

One of the deterministic models is one-dimensional TCA model with binary 

state introduced by Stephen Wolfram[21]. As using one dimensional then this 

model is called an elementary cellular automaton (ECA). Assuming a local 

neighborhood of three cells wide in the radius of 1, then there are    
     

different rules possible. Around1983, Stephen Wolfram classified all these 256 

binary ECAs. One of these is called rule 184, its name is derived from Wolfram’s 

naming scheme.. Wolfram’s scheme is based on the representation of how a cell’s 

state evolves in time, depending on its local neighborhood. Figure 2-6, presents a 

convenient visualization for the evolution of the state in a binary ECA. This figure 

shows the state       of a central cell i at time step t, together with the state 

        and         of its two direct neighbors i – 1 and i + 1, respectively. All 

three of them constitute the local neighborhood       of radius 1. Because states 

are binary, we can indicate them with a color (e.g., state         in Figure 2-6), 

whereas an empty (white) square represents a state of 0. According to the local 

transition rule       , the local neighborhood       is then mapped from t to t + 1 

onto a new state        . The graphical representation in Figure 2-6, thus 

provides us with an illustrative method to indicate the evolution of 

{                     }             
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Figure 2-6. Evolution of cell's state in time, based on its local neighborhood 

 

Considering the transition depicted in Figure 2-6, we can see that a complete 

neighborhood contains three cells, each of which can be in a 0 (white) or 1 (black) 

state. So in total, there are      possible configurations for such a local 

neighborhood. Wolfram’s naming scheme for the binary ECAs is now based on 

an integer coding of this neighborhood. Indeed, the local transition rule  (i, t) is 

given by a table lookup containing eight entries, one for each of the possible local 

neighborhoods. If we binary sort these eight configurations in the descending 

order (1 1 1), (1 1 0), (1 0 1), (1 0 0), (0 1 1), . . ., then we obtain a graphic scheme 

such as the one in Figure 2-7. As can be seen, for each of the local configurations, 

a resulting 0 or 1 state is returned for cell i at time step t + 1. Collecting all 

resulting states, and writing them in base 2, results in the number 

                  . This has the physical meaning that a particle (black-square) 

moves to the right if its neighboring cell is empty. Converting this code to base 

10, we obtain the number 184. Wolfram now coded all 256 possible binary ECAs 

by a unique number in the range from 0 to 255, resulting in 256 rules for these 

CAs. 

 

 

Figure 2-7. A graphical representation of Wolfra ’  rule   4 

 

Rule 184 (abbreviate as CA-184) is an asymmetrical rule because 

                                 . It is also called a quiescent rule because 
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                (so all zero-initial conditions remain zero). As an example of 

the rule’s evolution, Figure 2-7 shows that the local neighborhood        gets 

mapped onto a state of 1. If we consider these 1 states as particles (i.e., vehicles), 

and the 0 state as holes, then rule 184 dictates that all particles move one cell to 

the right, on the condition that this right neighbor cell is empty. Equivalently, all 

holes have the tendency to move to the left for each particle that moves to the 

right, a phenomenon which is termed the particle-hole symmetry.  

For a TCA model, we can rewrite the previous actions as a set of rules that 

are consecutively applied to all vehicles in the lattice. For the CA-184, we have 

the following two rules: 

 

(R1) acceleration and braking 

         {   
       } Eq. 2-5 

(R2) vehicle movement  

                     Eq. 2-6 

 

  Rule R1, Eq. 2-5, sets the speed of the ith vehicle, for the current updated 

configuration of the system; it states that a vehicle always strives to drive at a 

speed of 1 cell/time step, unless it’s impeded by its direct leader, in which case 

   
        and the vehicle consequently stops in order to avoid a collision. 

The second rule R2, Eq. 2-6, is not actually a ‘real’ rule; it just allows the vehicles 

to advance in the system.   

  Figure 2-8 have applied these rules to a lattice consisting of 300 cells 

(closed loop), showing the evolution over a period of 580 time steps. The time and 

space axes are oriented from left to right, and bottom to top, respectively. The left 

part, shows a free-flow regime with a global density k = 0.2 vehicles/cell, and the 

right part has a congested regime with k = 0.75 vehicles/cell. Each vehicle is 

represented as a single colored dot; as time advances, vehicles move to the upper 

right corner, whereas congestion waves move to the lower right corner, i.e., 

backwards in space. From both parts of Figure 2-8, we can see that the CA-184 
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TCA model constitutes a fully deterministic system that continuously repeats 

itself. A characteristic of the encountered congestion waves is that they have an 

eternal life time in the system. 

 

 

                                       Time                                           Time 

Figure 2-8. Typical time–space diagrams of the CA-184 TCA model 

 

  Figure 2-9 plots both the     ̅   and       diagrams. As can be seen 

from the left part, the global space-mean speed remains constant at  ̅    

cell/time step, until the critical density        is reached, at which point  ̅  will 

start to diminish towards zero where the critical density      is reached. 

Similarly, the global flow first increases and the decreases linearly with the 

density, below and respectively above, the critical density. Here, the capacity flow 

         vehicles/time step is reached. The transition from the free-flowing to 

the congested regime is characterized by a first-order phase transition. As is 

evidenced by the isosceles triangular shape of the CA-184’s resulting       

fundamental diagram, there are only two possible kinematic wave speeds, i.e.,    

and    cell/time step. Both speeds are also clearly visible in the left, respectively 

right, time-space diagrams of Fig. 2.7. 

 

S
p
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Figure 2-9. Fundamental diagrams for the CA-184 

 

2.2.3 Deterministic Fukui-Ishibashi TCA (DFI-TCA) 

In 1996, Fukui and Ishibashi constructed a generalization of the prototypical 

CA-184 TCA model[28]. Although their model is essentially a stochastic one, but 

we also discussed its deterministic one. Fukui and Ishibashi’s idea was two-fold: 

on the one hand, the maximum speed was increased from 1 to      cell/time step, 

and on the other hand, vehicles would accelerate instantaneously to the highest 

possible speed. Corresponding to the definitions of the rule set of a TCA model, 

the CA-184’s rule R1, Eq. 2-5, changes as follows: 

 

(R1) acceleration and braking  

          {   
          } Eq. 2-7 

Just as before, a vehicle will now avoid a collision by taking into account the size 

of its space gap. To this end, it will apply an instantaneous deceleration: for 

example, a fast-moving vehicle might have to come to a complete stop when 

nearing the end of a jam, thereby abruptly dropping its speed from      to 0 in 

one time step. 

Due to the strictly deterministic behavior of the system, the time-space 

diagrams of the DFI-TCA do not differ much from those of the CA-184. The only 

difference is the speed of the vehicles in the free-flow regime, leading to steeper 

trajectories. It is however interesting to study the     ̅   and       diagrams in 
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Figure 2-10. The left-diagram      ̅  shows several plots for the deterministic 

DFI-TCA each for a different      {       }. Similarly to the CA-184, the 

global space-mean speed remains constant, until the critical density is reached, at 

which point   ̅  will start to diminish towards zero. While in the right-diagram 

      shows that each plots having a triangular shape, with the slope of the 

congestion branch invariant for the different     . Here we can see that 

increasing the maximum speed      creates-as expected-a steeper free-flow 

branch in the       diagram. Interestingly, the slope of the congested branch does 

not change, logically implying that the kinematic wave speed for jams remains 

constant, i.e.,    cell/time step. This can be confirmed with an analytical 

kinematic wave analysis, as explained by Nagel[17]. 

 

 

Figure 2-10. Fundamental diagrams for the DFI-TCA model 

 

Based on the behavior of the vehicles near the critical density, we can 

analytically compute the capacity flow as follows: in the free-flow regime, all 

vehicles move with a constant speed of       cells/time-step. When the critical 

density is reached, all vehicles drive collision-free at this maximum speed, which 

implies that    
       cells. The space headway    

          (because 

     for single-cell models). Consequently, the value for the critical density 

as[3]: 
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 ̅  

  
 

       
 Eq. 2-8 

 

The capacity flow is now computed by means of the fundamental relation, i.e., 

             :  

 

       
    

       
 Eq. 2-9 

Applying Eq. 2-8 and Eq. 2-9, for e.g.,        cell/time step, result in    

      vehicles/cell and           vehicles/time step. If we furthermore assume 

         and       , then both values correspond to 22 vehicles/km and 

3000 vehicles/h, respectively.  

 As opposed to the instantaneous acceleration in rule R1, Eq. 2-7, we can also 

assume a gradual acceleration of one cell per time step (the braking remains 

instantaneous):   

 

(R1) acceleration and braking 

         {             
          } Eq. 2-10 

However, experimental observations have indicated that there is no difference 

in global system dynamics, with respect to either adopting gradual or 

instantaneous vehicle accelerations[13]. 

   There exist a strong relation between the previously discussed deterministic 

TCA models, and the macroscopic first-order LWR model with a triangular       

fundamental diagram[8]. Some of finer results in this case, are the work of Nagel 

who extensively discusses some analytical result of both deterministic and 

stochastic TCA models[16], and the work of Daganzo who explicitly proves an 

equivalency between two TCA models and the kinematic wave model with a 

triangular       fundamental diagram[29].  

As can be seen in Figure 2-11, for the limiting case when       , the 

congested branches in both     ̅   and       diagrams grow, at the cost of the 
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free-flow branches which disappear. In such a simplified system, the critical 

density     , with a capacity flow       . 

 

 

Figure 2-11. Fundamental diagrams for the deterministic CA-184 using        

 

2.2.4 Nagel-Schreckenberg model (NaSch) 

The Nagel-Schreckenberg (NaSch) model is one of the theoretical CA 

models for the simulation of freeway traffic[24]. In 1992, Nagel and 

Schreckenberg proposed a TCA model that was able to reproduce several 

characteristics of real-life traffic flows. Their model is called the NaSch TCA, but 

is more commonly known as the stochastic traffic cellular automaton (STCA) 

This model is essentially a simple cellular automaton model for road traffic flow 

that can reproduce the spontaneous emergence of traffic jams, i.e., show a 

slowdown in average car speed when the road is crowded due to the high density 

of cars. This model shows how traffic jam can be thought of as an emergent or 

collective phenomenon due to interactions between cars on the road, then when 

the density of cars is high and so cars are close to each on average. 

The NaSch model also known as stochastic traffic cellular automaton 

(STCA) because it included a stochastic term in one of its rules. Like in 

deterministic traffic CA models (e.g., CA-184 or DFI-TCA), this NaSch model 

contains a rule that reflect vehicle increasing speed and braking to avoid collision. 

However, the stochasticity term also introduced in the system by its additional 

rule. In one of its rules, at each time-step t, a random number ξ(t)   [0,1] is 
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generated from a uniform distribution. This random number is then compared 

with a stochastic noise parameter p   [0,1], this is called the slowdown 

probability. For it is based on this probability p then a vehicle will slow down to 

       cells/time-step. According to Nagel and Schreckenberg, the 

randomization rule captures natural speed fluctuations due to human behavior or 

varying external conditions[13]. 

In this NaSch model, a road is divided into cells. The original model uses 

cells that aligned in a single row whose ends are connected so that all cells make 

up a circle. This condition is called periodic boundary conditions. Each cell is 

either empty road or contains a single car. This means one car can occupy exactly 

one cell at any time. Each car is assigned a velocity which is an integer between 0 

and a maximum velocity. Nagel and Schreckenberg uses maximum velocity vmax = 

5 in their original work. In this model, a cell represents a car length and the 

maximum velocity as being the speed limit on the road. However, the model can 

also be thought as just a way to understand or to model features of traffic jams by 

showing how interactions between nearby cars cause the cars to slow down. One 

time step of this model is equal to 1 second in the real traffic situation. In each 

time step, the procedure is as follows[24]. 

In each step, the following four actions are conducted in order from first to 

last, and all are applied to all cars. For an arbitrary configuration, one update of 

the system consists of the following four consecutive steps, which are performed 

in parallel for all vehicles: 

1. Acceleration: if the velocity   of a vehicle is lower than  max and if the 

distance to the next car ahead is larger than v + 1 the speed is advanced by 

one [     ]. 

2. Slowing down (due to other cars): if the vehicle at site i sees the next 

vehicle at site i + j (with    ), it reduces its speed to            . 

3. Randomization: with probability p, the velocity of each vehicle (if greater 

than zero) is decreased by one        . 

4. Car motion: each vehicle is advanced   sites. 

Through the steps one to four very general properties of single lane traffic 

are modeled on the basis of integer valued probabilistic cellular automaton rules. 



28 

 

Already this simple model shows nontrivial and realistic behavior. Step 3 is 

essential in simulating realistic traffic flow since otherwise the dynamics is 

completely deterministic. It takes into account natural velocity fluctuations due to 

human behavior or due to varying external conditions. Without this randomness, 

every initial configuration of vehicles and corresponding velocities reaches very 

quickly a stationary pattern which is shifted backwards (i.e. opposite the vehicle 

motion) one site per time step. This step introduces overreactions of drivers when 

braking, providing the key to the formation of the spontaneously emerging jams. 

This STCA model is called a minimal model, in the sense that all these rules are a 

necessity for mimicking the basic features of real-life traffic flow. Although the 

rationale of step 3 is widely agreed upon, much critism was however expressed 

due to this second rule. For example, Brilon and Wu [30] believe that this rule has 

no theoretical background and is in fact introduced quite heuristically[13]. 

Figure 2-12 shows an intuitive feeling for the STCA’s system dynamics. 

Both diagrams show the evolution for a global density of k = 0.2 vehicles/cell, but 

with p set to 0.1 for the left diagram, and p =0.5 for the right diagram. As can be 

seen in both diagrams, the randomization in the model gives rise to many unstable 

artificial phantom mini-jams. The downstream fronts of these jams smear out, 

forming unstable interfaces[17]. 

 

 

                                 Time                                          Time 

Figure 2-12. Typical time-space diagram of the STCA model 

 

This is a direct result of the fact that the intrinsic noise (as embodied by p) in 

the STCA model is too strong: a jam can always form at any density, meaning that 

breakdown can (and will) occur, even in the free-flow traffic regime. For low 

enough densities however, these jams can vanish as they are absorbed by vehicles 
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with sufficient space headways, or by new jams in the system. It has been 

experimentally shown that below the critical density, these jams have finite life 

times with a cut-off that is about         time steps and independent of the lattice 

size. When the critical density is crossed, these long-lived jams evolve into jams 

with an infinite life time, i.e., they will survive for an infinitely long time[31][32]. 

 

2.2.5 Stochastic Fukui-Ishibashi TCA (SFI-TCA) 

In chapter 2.2.2, we have discussed the deterministic FI-TCA (DFI-TCA) 

which is a generalization of the CA-184 TCA model. From their original 

formulation, Fukui and Ishibashi later introduced stochasticity, but now only for 

vehicles driving at the highest possible speed of      cells/time step[28].  

Before we continue the discussion of SFI-TCA, it should be better to know 

the main difference between DFI-TCA models and SFI-TCA models. The DFI-

TCA models have stated that there can be no spontaneous formation of jam 

structures. All congested conditions produced in those models, essentially come 

from the assumed initial conditions. Whereas the SFI-TCA models (i.e. these 

mean probabilistic CA) allow for the spontaneous emergence of phantom jams. 

All these models explicitly incorporate a stochastic term in their equations, in 

order to the TCA models is more realistic reflected to the real-life behavior[33]. 

We can express the rules of this model, by considering step-3 and step-4 of 

the NaSch model for randomization and vehicle movement, respectively, but now 

complemented with the DFI-TCA’s rule R1 for instantaneous accelerations, i.e., 

Eq. 2-7 of chapter 2.2.2, and an extra rule R0, as introduced by Nagel and 

Pazcuski[34], so the complete rules of SFI-TCA are: 

 

(R0) determine stochastic noise  

                  

                  
Eq. 2-11 

 (R1) acceleration and braking  

          {   
          } Eq. 2-12 
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(R2) randomization 

                {         } Eq. 2-13 

(R3) vehicle movement 

                    Eq. 2-14 

 With now p replaced by       in the randomization rule R2. It can be seen 

that for       , the SFI-TCA and STCA models are the same. Furthermore, for 

    the SFI-TCA becomes fully deterministic, and in contrast to the STCA’s 

zero-flow behavior, the SFI-TCA’s     case corresponds to the STCA with 

    and       . 

The rationale behind the specific randomization in the SFI-TCA model is 

that drivers who are moving at a high speed, are not able to focus their attention 

indefinitely. As a consequence, there will be fluctuations at these high speeds. 

There will be no capacity drop, but the effect on the     ̅   diagram is that its 

free-flow branch will become slightly downward curving, starting at  ̅       

  for    . 

To conclude, we mention the related work of Wang et al. who studied the 

SFI-TCA both analytically and numerically, providing an exact result for    , 

and a close approximation for the model with         . Based on the SFI-TCA, 

Wang et al. developed a model that is subtly different. They assumed that drivers 

do not suffer from concentration lapses at high speeds, but are instead only 

subjected to the random deceleration when they are driving close enough to their 

direct frontal leaders     . And finally, we mention the work of Lee et al. who 

incorporate anticipation with respect to a vehicle’s changing space gap    as its 

leader is driving away. This results in a higher capacity flow, as well as the 

appearance of a synchronized-traffic regime, in which vehicles have a lower speed, 

but are all moving[79]. 

The other study of traffic flow model using the SFI-TCA has been 

performed by Wang, B.H., et al.[35], both analytically and numerically. They 

have obtained an exact result for p =0, and a close approximation for the model 

with p ≠ 0. They developed traffic flow model related with the SFI-TCA, their 
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model is subtly different. Through the other study, Wang, L.,et al., assumed that 

drivers do not suffer from concentration lapses at high speeds, but are instead only 

subjected to the random deceleration when they are driving close enough to their 

direct frontal leaders[36]. The SFI-TCA is also used by Lee, K., et al.[37], related 

with anticipation of movement of the car ahead. They have considered 

anticipation with respect to a vehicle changing space gap   when its leader is 

driving away. This results in a higher capacity flow, as well as the appearance of a 

synchronized-traffic regime, in which vehicles have a lower speed, but are all 

moving. 

2.3 Driver Behavior 

Road traffic flows are the combination of drivers associated with individual 

vehicles, each of them having their own characteristics. These characteristics are 

called microscopic when a traffic flow is considered as being composed of such a 

stream of vehicles[3]. Through the interactions between the drivers of the 

vehicles, then formed the dynamical aspects of these traffic flows. These dynamic 

conditions are largely determined by the behavior of each driver, as well as the 

physical characteristics of the vehicles. 

Since the process of participating in a traffic flow is heavily based on the 

behavioral aspects associated with human drivers[2], it would seem important to 

include these human factors into the modeling equations. However, this leads to a 

severe increase in complexity, which is not always a desired artifact[3]. 

2.3.1 Driving task 

The driving task had been considered by Lunenfeld[38] to be a hierarchical 

process, with three levels: (1) Control, (2) Guidance, and (3) Navigation. Most  

control  activities,  it  is  pointed  out,  are  performed  "automatically,"  with  little 

conscious  effort.  In  short,  the  control  level  of  performance  is  skill  based,  

in  the approach to human performance and errors set forth by Jens Rasmussen as 

presented in Human Error[39]. For the guidance level, Lunenfeld  also  said  that  

guidance  level  inputs  to the  system  are  dynamic  speed  and path responses to 

roadway  geometrics, hazards,  traffic, and the physical  environment. Information  

presented  to  the  driver-vehicle  system  is  from  traffic  control  devices, 
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delineation,  traffic  and  other  features  of  the  environment;  continually  

influence  the driver  response  to  change  his  performance  depends  on  the  

situation  that  they experienced. 

The  third  level,  in  which  the  driver  acts  as  a  supervisor  apart,  is  

navigation.  One example the characteristic of the navigation level is route 

planning and guidance while reroute, for example, correlating directions from a 

map with guide signage in a corridor. This level is called knowledge-based 

behavior. Knowledge based behavior will become increasingly more important to 

traffic flow theorists as Intelligent Transportation Systems (ITS) mature. 

2.3.2 Braking behavior and response 

The speed limit for detection of oncoming collision or pull-away has been 

studied in collision-avoidance research. The study has estimated  that  drivers  can  

detect  a  change  in  distance  between  the  vehicle  they  are driving and the one 

in front when it has varied by  approximately 12 percent. If a driver were 

following a car ahead at a distance of 30 m, at a change of 3.7 m the driver would 

become aware that distance is decreasing or increasing, i.e. a change in relative 

velocity[40]. 

This would suggest that a change of distance of 12 percent in 5.6 seconds or 

less would trigger a perception of approach or pulling away.  Mortimer concludes 

that "...unless the relative velocity between two vehicles becomes quite high, the 

drivers will respond to changes in their headway, or the change in angular size of 

the vehicle ahead, and use that as a cue to determine the speed that they should 

adopt when following another vehicle."[40]. 

2.3.3 Acceleration Performance 

The characteristics of the driver are the boundary on how fast the driver can 

accelerate his vehicle.  The  actual  acceleration  rates  in  a  traffic  stream  are  

typically  much  lower than the performance capabilities of the vehicle, 

particularly a passenger car. Refer to a data from American Association of State 

Highway and Transportation Officials (AASHTO, 1990), a nominal range for 

"comfortable" acceleration at speeds of 48 km/h and above is about        e   to  

        e  . The other nominal acceleration rate, many drivers prefer to use 
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under "unhurried" circumstances at approximately 65 percent of maximum 

acceleration for the vehicle, it is around      e  [41]. When the driver removes 

his foot from the accelerator pedal (or equivalent control input), then the 

deceleration will occur at about the same level as "unhurried" acceleration, 

approximately      e   at speeds of 100 km/h or higher. In contrast to operation 

of a passenger car, light truck, or  heavy  truck;  their  acceleration  change  are  

much  more  limited  by  the  performance capabilities of the vehicle. 

2.3.4 Gap Acceptance 

When  the  driver  want  to  enter  or  cross  a  traffic  stream,  he  has  to  

evaluate  the  space between a nearest vehicle with him in the traffic stream that 

he wants and himself, then  make  a  decision  whether  to  cross  or  enter  or  not.  

The  time  between  the  arrivals  of successive  vehicles  at  a  point  is  the  time  

gap,  and the  critical  time  gap  is  the  least amount of successive vehicle arrival 

time in which  a driver will attempt a merging or crossing maneuver. There are 

five different gap acceptance situations. These are[40]: 

 left turn across opposing traffic, no traffic control, 

 left turn across opposing traffic, with traffic control (permissive 

green), 

 left turn onto two-way facility from stop or yield controlled 

intersection, 

 crossing two-way facility from stop or yield controlled intersection, 

 turning  right  onto  two-way  facility  from  stop  or  yield  

controlled  intersection. 

2.3.5 Lane changing 

In real traffic, most highways consist two or more lanes. Regarding this road 

condition, there are a few analytical models for multi-lane traffic. Nagatani was 

one of the first researchers that introduced a CA model for two lane traffic[42]. 

His model used deterministic approach and the maximum velocity       . 

Then, building on Nagatani’s model, Rickert et.al.[43], considered a model with 

      . Rickert proposed a symmetric rule set where the vehicle changes lanes 

if the following criteria are fulfilled: 
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         Eq. 2-15 

           Eq. 2-16 

                     Eq. 2-17 

Meanwhile, Nagel et.al.[7] also discussed two lane traffic and lane 

changing rules based on a cellular automata model. Furthermore, we enhanced the 

original NaSch model by introduced the spontaneous braking parameter as a 

driver behavior that periodically affect the traffic flow and lane changing 

decision[44]. However, these models have not considered about drivers’ visibility 

and speed estimation of the vehicles within the monitoring area which may have 

important influence on human’ hazard perception and lane changing decision. 

Toledo, T., et. al.[45], develop, implements, and tests a framework for 

driving behavior modeling that integrates the various decisions, such as 

acceleration, lane changing and gap acceptance (they give the name: integrated 

driving behavior model). The proposed framework is based on the concepts of 

short-term goal and short-term plan. Drivers are assumed  to  conceive  and  

perform  short-term  plans  in order  to  accomplish  short-term goals. This 

behavioral framework supports a more realistic representation of the driving task, 

since it captures drivers’ planning capabilities and allows decisions to be based on 

anticipated future conditions. 

The model captures both lane changing and acceleration behaviors. The 

driver’s short-term goal is defined by the target lane.  Before change lanes, a 

driver  selects  a short-term plan to perform the desired lane change. Short-term 

plans are defined by the various  gaps  in  traffic  in  the  target  lane.  Drivers 

adapt  their  acceleration  behavior  to facilitate  the  lane  change  using  the  

target  gap.  Inter-dependencies between lane changing and acceleration behaviors 

are obtained by the model. 

2.3.6 Aggressive driver 

Many  study  have  been  performed  related  with  the  driving  behaviors,  

one  of  them  is about aggressive behavior. In the vehicle-driver systems, vehicle 
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behavior is influenced by the driver behaviors, e.g. aggressive behavior.  Vehicle  

enters  the  network  at certain  entry  points  and  tries  to  reach  his  destination  

by  calculating  the shortest  path,  in  which  vehicle  behavior  is  determined  by:  

car  following;  lane changing; and gap acceptance[5]. 

In  the  aggressive  driving, Shinar[46]  proposed  that  the  classical 

frustration-aggression  hypothesis  provides  a  useful tool  for  understanding  

driver aggression.  He  had  stated  that  driver  aggression  is caused  by  

frustration  because  of traffic congestion and delays. In the other study performed 

by Lajunen, T., et al.[47], have stated about the relationships between exposure to 

congestion (rush-hour driving) and  aggressive  violations  (DBQ)  were  

investigated  in  Great  Britain,  Finland  and  the Netherlands. Partial correlations 

showed that the frequency of rush-hour driving did not correlate statistically 

significantly with driver aggression. Correlations between driving during rush-

hour and aggression did not differ in magnitude from those between driving on 

country roads and aggressive violations. In addition, correlations between 

exposure to congestion and aggressive violations in countries with large number 

of vehicles per road  kilometer  (UK,  Netherlands)  were  not  higher  than  those  

in  a  sparsely  populated country (Finland). These results from three countries 

suggest that congestion does not increase driver aggression as directly as 

suggested by Shinar[46]. 
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CHAPTER 3.  
SPONTANEOUS BRAKING AND LANE CHANGING 

EFFECTS ON TRAFFIC CONGESTION 

 

In the real traffic situations, vehicle would make a braking as the response to 

avoid collision with another vehicle or avoid some obstacle like potholes, snow, 

or pedestrian that crosses the road unexpectedly. However, in some cases the 

spontaneous-braking may occur even though there are no obstacles in front of the 

vehicle. In some country, the reckless driving behaviors such as sudden-stop by 

public-buses, motorcycle which changing lane too quickly, or tailgating make the 

probability of braking getting increase. The new aspect of this research is the 

simulation of braking behavior of the driver and presents the new Cellular 

Automata model for describing this characteristic. Moreover, this research also 

examines the impact of lane-changing maneuvers to reduce the number of traffic 

congestion that caused by spontaneous-braking behavior of the vehicles. 
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3.1 OVERVIEW ..................................................................................................... 36 
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3.3 THE IMPLEMENTATION OF THE MODEL INTO A SIMULATION ................... 41 
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3.1 Overview 

The study of traffic flow has received a lot of attention for the past couple of 

decades. The simulations of traffic congestion become the most important aspect 

in the field of traffic analysis and modeling. Traffic congestion can be defined as 

the saturation condition of road network that occurs as increased traffic volume or 

interruption on the road, and is characterized by slower speed, longer trip times, 

and increased vehicular queuing. The investigated situations in the real traffic 

condition are those of traffic congestion caused by some main reason, such as 

insufficient road capacity, incidents, work zones (e.g., road maintenance or 

constructions near the road that requires space), weather events (e.g., in the case 

of rain or snow) which can hampers visibility therefore a driver have to slow-
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down its vehicle to compensate, or emergencies situations (e.g., hurricanes or 

severe snowstorms). However, in this research, we concern to investigate the 

effect of individual braking behavior of the driver on traffic congestion. 

In more detail, this research interests to describe and reproduce the 

characteristic of spontaneous-braking probability and its effects to the traffic 

behavior. In the real traffic situations, vehicle would make a braking as the 

response to avoid collision with another vehicle or avoid some obstacle like 

potholes, snow, or pedestrian that crosses the road unexpectedly. However, in 

some cases the spontaneous-braking may occur even if there are static obstacles in 

front of the vehicle. In some country, the reckless driving behaviors such as 

sudden-stop by public-buses, motorcycle which changing lane too quickly, or 

tailgating make the probability of braking getting increase.  

This research presents a new Cellular Automata model for describing the 

phenomena of spontaneous-braking behavior and lane-changing character in 

traffic flow. In this model, the effect of spontaneous-braking probability and lane-

changing maneuver in two-lane highway with one-way traffic character are 

investigated. This proposed model extends the NaSch[24] model that first 

introduced CA for traffic simulation. The set of rules in NaSch model are 

modified to better capture and describe the behavior of the driver while making 

spontaneous-braking and lane-changing maneuver in traffic flow. The base 

deceleration rule of NaSch[24] model is applicable only to stationary vehicles, 

which is vehicles that are blocked by the leading vehicle in the previous time step. 

This rule is not applicable to two conditions, in the condition of those vehicles 

which are stopped due to spontaneous-braking behavior, and in the two-lane 

highway that allows vehicle to make lane-changing maneuvers. Compared with 

the original NaSch model, this proposed model exhibits spontaneous-braking 

probabilities effect combined with acceleration, deceleration, and lane-changing 

maneuvers effects. Though it is well known that spontaneous-braking is extremely 

reducing the local speed of vehicles, the impact on the global system has not been 

studied. 

This research uses a two-lane highway character with a periodic boundary 

condition. The periodic boundary approach has been used to conserve the number 
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of vehicles and the stability of the model. The goal of this research is to analyze 

the phenomena of spontaneous-braking behavior in traffic flow then propose a 

new cellular automata model to describing this phenomena. Moreover, this paper 

also investigates the impact of lane-changing maneuvers towards traffic 

congestion that is caused by spontaneous-braking behavior. 

3.2 Model Description 

As mentioned before, research extends a probabilistic CA model that 

introduced by Nagel-Schrekenberg (NaSch)[24] for the description of single-lane 

highway traffic. While the original NaSch model uses a single lane that is 

represented by a one-dimensional array of L sites (cells), this research considers 

two-lane highway with unidirectional traffic character in periodic boundaries 

condition. The two-lane model is needed to describe the more realistic traffic 

condition which has several types of vehicles with multiple desired velocities. In 

single-lane model, the vehicles with multiple desired velocities just resulting in 

the platooning effect with slow vehicle being followed by faster ones and the 

average velocity reduced to the free-flow velocity of the slowest vehicle[43]. 

The simulation model in this research presents two additional elements. The 

first additional element is spontaneous-braking parameter. This element is needed 

to illustrate the probability of spontaneous-braking behavior of the vehicle that 

occur in the real traffic situation. The concept of spontaneous-braking probability 

is introduced for the description of the spontaneous reaction of the drivers while 

making a vehicle-braking behavior. This reaction can be caused by several things 

e.g., as the response to avoid collision with another vehicles, the reckless driving 

behaviors such as sudden-stop by public-buses, motorcycle which changing lane 

too quickly, or tailgating. Those behaviors make the probability of braking getting 

increase.  

In original NaSch model[24], there is no rule accommodate the 

spontaneous-braking behavior. NaSch model introduced a stochastic noise 

parameter         that can make a slowdown vehicle to        cells/time-

step. However, in real traffic situations this rule is difficult to describe the nature 

of the braking, especially on spontaneous-braking behavior of the vehicle. In our 
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opinion, the value of braking is a variable number and the spontaneous-braking 

represent the extreme value of a braking behavior. Thus, the slow-down rule of 

vehicle     –   cells/time-step cannot describe the characteristic of spontaneous-

braking. This paper introduces a new additional rule to represent the behavior of 

spontaneous-braking by using a spontaneous-braking probability          

      . Here  is the braking parameter, denotes the characteristic of driver 

while make a braking. The value of    is equal or less than the current speed     . 

This rule takes into account the dynamic characteristic of the driver while make a 

braking of its car. Already mentioned before, a two-lane unidirectional highway 

model with periodic boundary system is used in this computational model. Refer 

to the discrete NaSch model, a one-dimensional chain of L cells of length 7.5 m 

represents each lane. There are just two possibility states of each cell. Each cell 

can only be empty or containing by just one vehicle. The speed of each vehicle is 

integer value between                 . In this model, all vehicles are 

considered as homogeneous then have the same maximum speed vmax. In order 

to investigate the effect of spontaneous-braking behavior then the state of a road 

cell at the next time-step, from   to     is dependent on the states of the direct 

frontal neighborhood cell of the vehicle and the core cell itself of the vehicle. The 

state of the road cells can be obtained by applying the following rules to all cells 

(vehicles) by parallel updated: 

R(1) Acceleration 

                      Eq. 3-1 

R(2) Deceleration 

                      Eq. 3-2 

R(3) Spontaneous braking probability 

                Eq. 3-3 

R(4) Driving 

                Eq. 3-4 
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As this simulation model try to investigate the effect of spontaneous-braking 

behavior on traffic flow then this model deliberately eliminates the randomization 

rule of original NaSch:      –   cells/time-step). Here for the reason to avoid the 

speed reduction of vehicles caused by this rule that could influence our simulation 

results. The variable        indicates the distance between a vehicle      and its 

predecessor       . While      represents the maximum speed of the vehicle. 

The second additional element is lane-changing parameter. By using two-

lane highway model and applying multiple desired velocity types, then this 

research also accommodates the lane-changing maneuvers of vehicles. In the real 

traffic situation, driver tends to make a lane-changing maneuver while encounter 

traffic congestion along its lane. This research also intends to evaluate the impact 

of lane-changing maneuvers towards the traffic congestion that caused by 

spontaneous-braking behavior of the driver. In this model, the lane-changing 

maneuver is analogous as the movement of liquid. There is a different from the 

lane-changing model of Ricket et, al[43]. In this model, a vehicle would consider 

changing its lane only if the vehicles “see” another vehicle on its cell ahead and 

do so if possible. It means, as long as there is a cell free ahead on their lane then 

the vehicles would still remain on their lane. This lane-changing model will 

preserve the deceleration rule in our model that is showed in Eq. 3-5. 

The lane-changing rule is applied to vehicles to change from right lane to 

left lane and conversely. Vehicles are only move sideways and they do not 

advance. Figure 3-1 shows the schematic diagram of lane-changing operation. A 

vehicle changes to the next lane if all of the following conditions are fulfilled: 

            Eq. 3-5 

             Eq. 3-6 

                         
            

Eq. 3-7 

Cellnext, Celltarget, and Cellback are the parameters that inform the state of one 

cell ahead, state of next cell, and state of cells behind on the other lane, 

respectively. If one cell is unoccupied or free-cell then its state is 0. In the real 
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traffic situation, a driver also has to look back on the other lane and estimate the 

velocity of another cars-behind to avoid a collision. Therefore, Eq. 3-7 

accommodates the driver behavior to estimate the velocity of vehicles before 

change its lane. 

 

 

Figure 3-1. Schematic diagram of a lane-changing operation. 

 

3.3 The Implementation of the Model into a Simulation 

The simulation starts with an initial configuration of   vehicles, with 

random distributions of positions on both lanes. This simulation use the same 

initial velocity for all vehicle vmin = 0 and the maximum vehicle speed has been 

set to vmax = 5 cell/time-step. Each time-step has been setup to       and 

      , then corresponding to speed increments of              . 

Therefore, a vehicle’s speed in this simulation model has a minimum value vmin = 

0 km/h and maximum value vmax = 135 km/h, corresponded to the value of real 

traffic condition. A one-lane loop consists of 100 cells. Many simulations 

performed with different density  . The density   can be defined as number of 

cars   along the highway over number of cells on the highway  . During one 

simulation, the total number of cars on the highway cannot change. Vehicles go 

from left to right. If a vehicle arrives on the right boundary then it moves to the 

left boundary. Figure 3-2 illustrates an environment, which exhibits a certain 

configuration. 

 

 

Figure 3-2. An environment with a certain configuration 
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This research divides the analysis into two stages. The first stage 

investigates the effect of spontaneous-braking on the traffic flow. In this 

simulation stage, we analyze the traffic flow for the spontaneous-braking 

probability Pb = 0; 0.3; and 0.7. The simulation was running 1000 time steps to 

let the system reaches its stable condition. The system automatically increase the 

vehicles density from minimum density ρ = 0 until maximum density ρ = 100 

percent. Once the transient dies out, then the data extraction was started. The data 

was analyzed using fundamental diagrams, which plot the velocity of vehicle vs 

vehicle flow vs global density. To show the system dynamics then the graph had 

written the last ten steps for each density before the end of simulation. Figure 3-3 

and Figure 3-4 present the fundamental diagrams of this model. Figure 3-3 shows 

the measurement of the average velocity v (t ) over all vehicles at each density. 

The red color, black color, and blue color of scatter graph present the average 

velocity in the condition with spontaneous-braking probability Pb = 0, Pb = 0.3, 

and Pb = 0.7, respectively. One can be observed that in the traffic without 

spontaneous braking probability, the maximum velocity 5 unit of distance per unit 

of time could be achieved in the density ρ ≤ 0.12. When the probability of 

spontaneous-braking increased then the critical density point that maximum 

velocity can be achieved became lower than normal condition. For the 

spontaneous-braking probability Pb = 0.3, the critical point of maximum velocity 

vmax = 5 is around ρ = 0.04. While in the situation that spontaneous-braking 

probability Pb = 0.7, the vehicles were very difficult to reach their maximum 

speed vmax = 5. 
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Figure 3-3. Average velocity (cell/time-step) vs density (cars/highway site). 

 

 
Figure 3-4. Traffic flow (cars/time step) vs density (cars/highway site). 

 

In the phase after the critical density point of maximum velocity was 

reached, the vehicles reduced their velocity to synchronize with the gap between 

them and the vehicle ahead. However, in the transition phase after the critical 

density point of maximum velocity, the vehicles still maintained their velocity. 

Regarding this average velocity graph, the traffic jam obviously appeared when 

the average velocity v < 1 cell/time. 
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Figure 3-4 illustrates the traffic flow over vehicles density for the 

spontaneous-braking probability Pb = 0, Pb = 0.3, and Pb = 0.7, respectively. The 

traffic flow indicates the number of moving vehicles per unit of time. While the 

density parameter means the number of vehicles per unit area of the highway. As 

can be seen from the graph, there is a reduction in traffic flow in the presence of 

spontaneous-braking parameter. We also consider the critical density kc that 

appeared in each traffic flow. Here, the critical density means a maximum density 

achievable under free flow. In the traffic flow with Pb = 0, the critical density kc 

situated at the density ρ = 0.18.  

The critical density kc was getting lower when the spontaneous-braking 

parameter increased. Below the critical density kc, all vehicles can make a 

movement. However, in the density after the critical density point, not every 

vehicle can move at each time step. This critical density point also indicates when 

the traffic congestion started to happen. To get an intuitive feel for the dynamics, 

we provide a set of space-time diagrams in Figure 3-5, Figure 3-6, and Figure 3-7 

for various density values. 

 

 
  

Figure 3-5. Space-   e d a ra  for de    y ρ        a d Pb = 0 (a), Pb = 0.3 (b), and 
Pb = 0.7 (c); without lane-changing maneuvers. 

 

The horizontal axis represents space and vertical axis represents the time. In order 

to get data to analyze, we simulate this model for density ρ = 0.25; 0.50; and 0.75 

that represent light traffic, moderate traffic, and heavy traffic situations. For 

density ρ = 0.25, it can be seen that the spontaneous-braking behavior has given a 
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significant impact to produce traffic congestion (Figure 3-5). The single vertical 

line which is shown in these time-space diagrams represents a stationary vehicle 

that is making a spontaneous-braking behavior. In the traffic with density value ρ 

= 0.50, there is a moderate impact of the spontaneous-braking behavior on the 

traffic congestion. 

 

 

 
 

 

Figure 3-6. Space-   e d a ra  for de    y ρ        a d Pb = 0 (a), Pb = 0.3 (b), and 
Pb = 0.7 (c); without lane-changing maneuvers. 

 

   
Figure 3-7. Space-   e d a ra  for de    y ρ        a d Pb = 0 (a), Pb = 0.3 (b), and 

Pb = 0.7 (c); without lane-changing maneuvers. 

 

It can be seen that before the spontaneous-braking parameter was applied, 

the congestion already occurred on the traffic (Figure 3-6). While in Figure 3-7, 

the effect of spontaneous-braking on traffic congestion just a slightly impact is 

shown. That because in density value ρ = 0.75, the traffic congestion already 

appeared although in the condition without spontaneous-braking behavior. 
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Figure 3-8. Space-   e d a ra  for de    y ρ        a d Pb = 0 (a), Pb = 0.3 (b), and 

Pb = 0.7 (c); with lane-changing maneuvers. 

 

The lane-changing effect on traffic congestion is discussed from here. As 

shown before that the spontaneous-braking behavior can contribute to the traffic 

congestion. 

Therefore, in this section we evaluate the effect of lane-changing to reduce 

the congestion level. This lane-changing model was applying the Eq. 3-5, Eq. 3-6, 

and Eq. 3-7. In this simulation, the vehicles can look back and estimate the 

situation along 5 cells behind on the other lane before make a lane-changing. We 

provide a set of space-time diagrams in Figure 3-8, Figure 3-9, and Figure 3-10 

for the density values ρ = 0.25; 0.50; and 0.75. 
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Figure 3-9. Space-   e d a ra  for de    y ρ        a d Pb = 0 (a), Pb = 0.3 (b), and 

Pb = 0.7 (c); with lane-changing maneuvers. 

 

The comparative graph shows that for the traffic density ρ < 0.75, the lane-

changing maneuvers have given a good impact to reduce the congestion level. 

However, in all spontaneous-braking parameter value condition, the result shows 

that there is no significant impact that is contributed by lane-changing maneuver. 

3.4 Discussion 

In this work, we simulate the braking behavior of the driver and present the 

new Cellular Automata model for describing this characteristic. The original 

NaSch model has been modified to accommodate the parameter of spontaneous-

braking probability. This spontaneous-braking probability rule captures the 

natural of braking behavior due to human behavior. This simulation shows that 

the traffic congestion can be caused by the braking behavior of drivers. Moreover, 

we also evaluate the effect of lane-changing to reduce the congestion that is 

caused by the parameter of spontaneous-braking probability. 
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Figure 3-10. Space-   e d a ra  for de    y ρ        a d Pb = 0 (a), Pb = 0.3 (b), 

and Pb = 0.7 (c); with lane-changing maneuvers. 
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CHAPTER 4.  
EFFECT OF DRIVER SCOPE AWARENESS FOR THE 

LANE CHANGING MANEUVERS 

 

This research investigated the effect of drivers’ visibility and their 

perception (e.g., to estimate the speed and arrival time of another vehicle) on the 

lane changing maneuver. The term of scope awareness was used to describe the 

visibility required by the driver to make a perception about road condition and the 

speed of vehicle that exist in that road. A computer simulation model was 

conducted to show this driver awareness behavior. This studying attempt to 

precisely catching the lane changing behavior and illustrate the scope awareness 

parameter that reflects driver behavior. This research proposes a simple cellular 

automata model for studying driver visibility effects of lane changing maneuver 

and driver perception of estimated speed. Different values of scope awareness 

were examined to capture its effect on the traffic flow. Simulation results show 

the ability of this model to capture the important features of lane changing 

maneuver and revealed the appearance of the short-thin solid line jam and the 

wide solid line jam in the traffic flow as the consequences of lane changing 

maneuver. 
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4.1 Overview 

The simulation model that can express the real traffic condition becomes the 

most important aspect in the field of traffic analysis and modeling. Study of traffic 

flow tries to capture and analyze the movement of individual vehicles between 
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two points and the interactions between them. Traffic systems are characterized 

by a number of entities and features that make them hard to capture, analyze, 

control, and modify. The real traffic systems are formed by a combination of 

human interaction, that is interaction between driver entities, and human-

environment interaction, such as driver interaction with the vehicle, with traffic 

information, and with the physical road condition. Studies about traffic and 

transportation have shown that driver behavior is one of the main contributors to 

some traffic event or phenomena. Our recent simulation study about the traffic 

flow showed that the traffic congestion can be influenced not only by the road 

capacity condition, but also by the driver behavior[44]. 

The other studies also found the strong relationship between the driver’ 

speed behavior and accidents[48][49][50][51]. Safe driving is a very important 

element for all the people on the road at any given time. Study of traffic accidents 

shows that human factors are a sole or a primary contributory factor in road traffic 

accidents[52]. There are two separate components that affect human factors in 

driving, driving skills and driving style[53]. Driving style has a direct relationship 

to the individual driving behavior. The U.S. Department of Transportation 

recently reported that driver behavior leading to lane-change crashes and near-

crashes[54]. In some countries, the reckless driving behaviors such as sudden-stop 

by public-buses, tailgating, or vehicles which changing lane too quickly also 

could give an impact to the traffic flow. The lane changing maneuver is one of the 

phenomena in the highway. A Lane changing is defined as a driving maneuver 

that moves a vehicle laterally from one lane into another where both lanes have 

the same direction of travel. Lane changing maneuvers are occasionally 

performed in order to avoid hazards, obstacles, vehicle collision, or pass through 

the slow vehicle ahead. Changing lanes requires high attention and visual demand 

compared to normal highway of freeway driving due to the need to continually 

monitor areas around the subject vehicle[46]. However, in the real traffic 

situations there are some reckless drivers that changing lanes at the moment they 

signal or who make last minutes decision on the road. Frequent lane changing in 

roadway could affect traffic flow and even lead to accidents. The lane changing 

behaviors can be vary depend on the characteristic of the driver[55]. Some crashes 
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accidents typically referred to as Look-But-Fail-To-See errors because drivers 

involved in these accidents frequently report that they failed to notice the 

conflicting vehicle in spite of looking in the appropriate direction, commonly 

occur when drivers change lanes[56]. This mean the driver typically use their 

perception in order to estimate the speed and the arrival time of the other vehicles 

before making a maneuver, e.g., lane changing maneuver. A psychology study has 

shown the accuracy level of this perception may contribute to both failures to 

detect the collision and to judge the crash risk (e.g., time-to-contact). From a 

certain distance, a short fixation may be enough to identify an approaching 

vehicle. Duration of gaze interpreted as the amount of time devoted to processing 

a stimulus, longer and shorter gazes reflect difficult and simple processing, 

respectively. Inaccuracy of the gazes duration are likely to reflect a failure to 

process these stimuli[57]. 

This research was interested to investigate the effect of drivers’ visibility 

and their perception (e.g., to estimate the speed and arrival time of another 

vehicle) on the lane changing maneuver. In the real traffic situations, this 

parameter of scope awareness has a strong relationship with human perception in 

order to make a lane changing maneuver decisions. One purpose of this study was 

to examine how different driver visibility and scope awareness might affect traffic 

flow. We consider that the driver decision to make a lane changing is influenced 

by the condition of both its current and target lane. The estimation about the gap 

with ahead and backward vehicle in target lane, includes their speed, will affect 

the human perception to make a safety lane changing. This chapter introduces one 

of the driver behavior parameter; that is scope awareness parameter. The term of 

scope awareness was used to describe the visibility required by the driver to make 

a perception of road condition and the speed of vehicle that exist in that road. 

Since there are various types of driving skill and style of the drivers that exist in 

the roadway then the value of scope awareness probabilities could be vary. This 

studying attempt to precisely catching the lane changing behavior and illustrate 

the scope awareness parameter that reflects driver behavior. A computer 

simulation model was conducted to show this scope awareness behavior. In this 

simulation model, the scope awareness parameter reflected as the length of the 
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road at the adjacent lane that is considered as safely area by the subject driver 

before making a lane changing. 

The Cellular Automata model of Nagel and Schreckenberg[24] was 

improved to better capture the effect of scope awareness that reflect drivers’ 

behavior when making a lane changing. This NaSch model has been modified to 

describe more realistic movement of individual vehicle when make a lane 

changing maneuver. Moreover, the recent study of spontaneous braking 

behavior[44] has been enhanced through the investigation of its relationship with 

the driver’s scope awareness behavior.  

4.2 Related Research Works 

Due to the rapid development of computer technology then research about 

traffic simulation and modeling has increasingly grown. Computer simulation in 

traffic model has developed from a research tool of experts to a widely used 

technology for practitioners and researchers in the research, planning, 

demonstration, and development of traffic systems. The increasing of 

computational speed and power make the scope of research of traffic simulation 

have been growing. Since the early 1950’s, the research simulation have evolved 

from local road analysis into more complex systems where several type of 

parameters are integrated in one system. The research about traffic modeling can 

be divided into two categories: microscopic model and macroscopic model. 

Microscopic model described traffic behavior as resulting from discrete 

interaction between vehicles as entities. This microscopic model range from 

simple analytical models to more detailed analytical models. While the 

macroscopic models concern to describe the aggregate traffic behavior 

phenomena by considering the fundamental relationships between vehicles speed, 

flow, and density.  

Most microscopic models (e.g., the car-following model) use the assumption 

that all the vehicles have a uniform driving behavior. These microscopic models 

use deterministic approach and, therefore difficult to capture inherent stochastic 

nature of real traffic. On the other hand, a major limitation of macroscopic models 

is their aggregate nature. The macroscopic models concern the traffic flow as 
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continuous system, then these models cannot capture the discrete dynamic aspects 

that arise from vehicles interaction[4]. 

On the other side, the interaction between vehicles has strong relationship 

with the driver behavior. Some research studies have shown that the driver 

behavior play an important role for the traffic events. One cause of those traffic 

events is due to the observations and reactions of drivers are governed by human 

perception and not by technology based sensor and monitoring systems. The 

emotional aspect of the driver contributes to the many situations in traffic such as 

car crashes and congestion[5]. Another study also shown that the driver behavior 

is a fundamental factor and a key source of complexity in predicting traffic 

network states unfolding over time[6]. 

In real traffic, most highways consist two or more lanes. Regarding this road 

condition, there are a few analytical models for multi-lane traffic. Nagatani was 

one of the first researchers that introduced a CA model for two lane traffic[42]. 

His model used deterministic approach and the maximum velocity       . 

Then, building on Nagatani’s model, Rickert et.al.[43], considered a model with 

      . Rickert proposed a symmetric rule set where the vehicle changes lanes 

if the following criteria are fulfilled: 

         Eq. 4-1 

           Eq. 4-2 

                     Eq. 4-3 

Meanwhile, Nagel et.al.[7] also discussed two lane traffic and lane changing 

rules based on a cellular automata model. Furthermore, we enhanced the original 

NaSch model by introduced the spontaneous braking parameter as a driver 

behavior that periodically affect the traffic flow and lane changing decision[44]. 

However, these models have not considered about drivers’ visibility and speed 

estimation of the vehicles within the monitoring area which may have important 

influence on human’ hazard perception and lane changing decision. 
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4.3 Model Description 

This proposed model uses two-lane highway with unidirectional traffic 

character in periodic boundaries condition. Two-lane model is necessary in order 

to accommodate the lane changing behavior in the real traffic condition. A one-

dimensional chain of L cells of length 7.5 m represents each lane. This value is 

considered as the length of vehicle plus the distance between vehicles in a stopped 

position. Each time-step has been setup to        and       , then 

corresponding to speed increments of              . Therefore, a vehicle’s 

speed in this simulation model has a minimum value vmin = 0 km/h and maximum 

value vmax = 135 km/h, corresponded to the value of real traffic condition. A one-

lane loop consists of 100 cells. There are just two possibility states of each cell. 

Each cell can only be empty or containing by just one vehicle. The speed of each 

vehicle is integer value between                 . In this model, all vehicles are 

considered as homogeneous then have the same maximum speed       . The 

speed value number corresponds to the number of cell that the vehicle proceeds at 

one time step. The state of a road cell at the next time step, form   to     is 

dependent on the states of the direct frontal neighborhood cell of the vehicle and 

the core cell itself of the vehicle. 

Rickert et al.[43], among others, have discussed about criteria of safety by 

introduced the parameters which decide how far the vehicle looks ahead on 

current lane, looks ahead on desired lane, and looks back on desired lane. Those 

criteria have to be fulfilled before a vehicle makes a lane changing. However, in 

real traffic condition, these criteria of safety rules by Rickert are not sufficient to 

describe driver’s behaviors in highway traffic. This paper introduces a new 

additional parameter to accommodate the driver behavior when making a lane 

changing. In addition to considering the gap of cell between vehicles, we also 

consider about the speed parameter of the other vehicles that situated in the 

desired lane.  This research discusses in more detail the parameter of scope 

awareness    that reflects the various characters of drivers. This scope awareness 

parameter takes into account the dynamic characteristic of the drivers while 

decide to make a lane changing. Here, the smaller    value reflects the degree of 
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driver aggressiveness and awareness.  Figure 4-1 describes the scope awareness 

definition from the perspective of vehicle-1.  

 

 

Figure 4-1. Schematic definition diagram of scope awareness Sa from the 
perspective of vehicle (1) in its current speed and position v(1); x(1). 

 

The updating rule for lane changing maneuver is done according to a set of 

rules. The set of rules of the lane changing maneuver is analogous as the liquid 

movement. Compare to the lane changing model of Nagel and Rickert[43], there 

are two basic differences rules in our model. The first one, as the result of traffic 

conditions ahead of subject driver (Eq. 4-4), the subject vehicle would consider 

changing its lane not only due to the comparison value between number of gap 

and condition which decide how far the vehicle look ahead in current lane (Eq. 

4-1), but also depending on the current speed of the subject vehicle that can be 

vary based on traffic situation. Another difference is the scope awareness value 

(  ). The subject vehicle would consider the velocity of every vehicle that 

situated along its scope awareness area then decide whether possible or not to 

change the lane (Eq. 4-8).  

At the beginning of each iteration, the subject driver checks whether a lane 

changing is desirable or not. The subject driver looks ahead to check if the 

existing gap in the current lane can accommodate his current speed. If not, then 

due to the randomness number of percentage ratio, the subject driver decides 

whether he will maintain or decelerate the vehicle speed due to the existing gap 

number or change his lane. When the subject driver chooses to change lanes, then 

he looks sideways at the other lane to check whether the cell next to the subject 

vehicle is empty and the forward gap on the other lane is equal or longer than his 

current lane. If one cell is unoccupied or free-cell then its state is 0. Moreover, the 

subject driver also looks back at the other lane to check road condition. In the real 
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traffic situation, a subject driver also has to look back on the other lane in order to 

estimate the velocity of the following vehicle to avoid a collision. Eq. 4-8 

accommodates the driver behavior that estimate the velocity of vehicle at the 

moment before making a lane changing.  

As mentioned before, this paper uses the parameter of scope awareness    

which decide how far the coverage area on the desired lane that is considered as 

the scope of awareness by the driver. If there is another vehicle within the area of 

scope awareness then the subject driver estimates the speed of the vehicle in order 

to avoid collision during the lane changing maneuver. The subject driver will 

make a lane changing maneuver if the speed of the vehicle that located within the 

area of scope awareness is less than the existing gap. The lane changing rules can 

be summarized as follows: 

                 Eq. 4-4 

           Eq. 4-5 

               Eq. 4-6 

                  Eq. 4-7 

                                          Eq. 4-8 

The lane changing rules are applied to vehicle that change from right lane to left 

lane and conversely. Vehicle is only move sideways and it does not advance. 

Once all the lane changing maneuvers are made then the updating rules from a 

single lane model are applied independently to each lane. Figure 4-2 shows the 

schematic diagram of lane changing operation. In this Figure 4-2, the subject 

vehicle            is assumed that have current speed   
    cells per time step 

and the parameter of scope awareness Sa = 4 cells. 

In order to avoid the introduction of any unrealistic artifacts in the 

simulation then this proposed model uses Eq. 4-7 to express the more realistic 

lane changing decision. According to Eq. 4-7, the driver must consider that the 

forward gap in the desired lane is more than the gap in the current lane. This 
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consideration is important because this proposed model uses the different desired 

velocities into the vehicles. 

 

 

Figure 4-2. Schematic diagram of a lane changing operation. 

 

Once the lane changing maneuvers are made to all possibility vehicles then 

the updating rules from a single lane model are applied independently to each lane. 

Together with a set of lane changing rules, the road state can be obtained by 

applying the following rules to all by parallel updated: 

 

Acceleration : 

                  
Eq. 4-9 

Deceleration : 

                      
Eq. 4-10 

Driving : 

         
Eq. 4-11 

4.4 Simulation Result – Analysis and Discussion 

The simulation starts with an initial configuration of N vehicles, with fixed 

distributions of positions on both lanes. This simulation uses the same initial 

velocity for all vehicle        and the maximum vehicle speed has been set to 

       cell/time-step. The velocity corresponds to the number of cells that a 

vehicle advances in one iteration. Many simulations performed with different 

density ρ. The density ρ can be defined as number of vehicles N along the 

highway over number of cells on the highway L. This traffic model uses close 

(periodic) boundary conditions. This means that during one simulation, the total 
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number of vehicles on the highway cannot change. Vehicles go from left to right. 

If a vehicle arrives on the right boundary then it moves to the left boundary. Since 

this model assumes symmetry character of the both lanes then the traffic flow 

characteristics on both lanes are identical. 

4.4.1 Traffic Flow 

In order to examine the effect of scope awareness on the traffic flow then the 

model was simulated over 1000 iterations on 10
2
 cells in 2-dimensional lane, for 

all possibility density level. The flow indicates the number of number of moving 

vehicles per unit of time. Along with the study of this proposed model, this paper 

also conducted a comparison study for the case of traffic without using scope 

awareness parameter. Results from the simulation are summarized in Figure 4-3. 

After 1000 time step, when the system reaches a stationary velocity state then the 

flow was computed. The whole process then repeated over 50 times for both each 

density level and each scope awareness value to make statistics and the flow-

density diagram was obtained. 

 

 

Figure 4-3. The average flow-density diagram of the proposed model (left) is 
compared to a two-lane traffic system without using scope awareness parameter 

(right). 

 

A number of interesting observations can be made: 

 The proposed model reproduces a recognizable diagram of flow towards 

density relationship. Flow is linearly increasing together with the increases 

in density level. A maximum flow level is achieved at density level ρ=0.5 



59 

 

for each value of Sa. After reaches the critical point of flow at ρ=0.5, the 

flow at each level of Sa becomes linearly decreasing in density. In other 

words, the laminar flow turn into back travelling start-stop waves after 

density level ρ=0.5. Another thing that also interest is in the scope 

awareness value Sa=3, Sa=4, and Sa=5, this simulation produced almost 

the same flow level at all density levels. Scope awareness value Sa=1 

reached the highest number of flow. This may happen because in the 

Sa=1, the driver can be described as the most aggressive driver, who 

makes a lane changing maneuver with only consider the empty area beside 

him. This behavior also confirms the result on Figure 4-4 that compared 

the number of lane changing for each value of scope awareness. 

 Compared to the model without scope awareness consideration (Figure 

4-3-right diagram), the usage of Sa parameter produced a better flow of 

vehicles, especially above density ρ=0.4. This Sa parameter maintained the 

traffic to keep flowing by carefully calculate the appropriate time to make 

a lane changing decision, thus the lane changing maneuver does not 

disturb the traffic in the target lane. 

 Since the parameter of scope awareness has a strong relationship with the 

lane changing decision then Figure 4-4 shown the ratio of lane changing 

number over density. The results of each Sa value are not surprising. If the 

distance of scope awareness becomes longer then the lane changing 

number becomes lower. However, the surprise thing is the behavior of the 

lane changing variance. For each changes of Sa value into the higher one, 

the critical point of maximum lane changing decreases almost half than 

before. The critical point of maximum lane changing for each Sa value is 

same at ρ=0.2, except for Sa=5 at ρ=0.3. This is due to the fact that the 

chances of the vehicles to change the lane become fewer caused by density 

increases. 
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Figure 4-4. The ratio of lane changing number over density. 

 

4.4.2 Space Time Diagram 

In order to explore more clearly the effect of scope awareness on the traffic 

flow then the space-time diagram was reproduced. The space-time diagram 

represents the location of the vehicles at the certain time. This research conducted 

the space-time diagram for density       ,      , and       . These three 

values of density assumed as the light traffic, moderate traffic, and heavy traffic in 

the real traffic condition, respectively. Figure 4-5, Figure 4-6, and Figure 4-7 

show the result for each density at the all values of scope awareness. To make the 

comparison fairly then this simulation used initial fixed distributions of positions 

of the vehicles. The horizontal axis represents space and the vertical axis 

represents the time. Vehicles go from left to right (space axis) and from top to 

bottom (time axis). 
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In the light traffic condition ρ=0.25 (Figure 4-5), it can be seen that the 

increases of scope awareness distance affect the vehicles flow. Free flow phase 

showed in Sa=1 diagram (Figure 4-5-a), which are drawn as light area and have a 

more shallow negative inclination. However, when the Sa value was increased 

then some solid area starting appear. This solid area with steep positive inclination 

reflects the traffic jam. One can observed from Figure 4-5, there are many regions 

that show the high frequency of short vehicle life lines appearing and disappearing 

that indicate the great number of lane changing at this traffic density ρ=0.25. Once 

the scope awareness increases then this frequency of short vehicle life lines 

become smaller than before (Figure 4-5-f). 

 

 

Figure 4-5. Space-   e d a ra  for l      raff    o d   o   de    y ρ     %   La e 
changing probability 100%. (a) for Scope awareness Sa=1 ; (b) for Scope awareness 
Sa=2 ; (c) for Scope awareness Sa=3 ; (d) for Scope awareness Sa=4 ; (e) for Scope 

awareness Sa=5 ; (f) for Scope awareness Sa=6. 

 

In the moderate traffic ρ=0.5 (Figure 4-6), the phenomena that showed in 

the Figure 4-5 also appear in this density. The diagram of Sa=1 (Figure 4-6-a) 

shows the appearance of slight traffic jam distributed in the whole simulation 

area. In this density level, a solid moving jam appears since Sa=2 (Figure 4-6-b). 

Along with a wide solid line, there are also some short-thin solid lines appear in 

the diagram of Sa=2. While in the diagram of Sa=6 (Figure 4-6-f), some of these 
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short-thin solid lines disappeared. Refer to the Figure 4-4, at the certain density 

value, once the Sa value was increased then the number of lane changing 

decreased. One can be observed that the short-thin solid line caused by the lane 

changing maneuver of another vehicle from adjacent lane, which resulted the 

subject vehicle has to make a spontaneous braking in order to avoid collision. As 

the result of this spontaneous braking causing another following vehicles has to 

adjust or decrease their speed with the vehicle ahead. This phenomenon produces 

a short traffic jam. On the other hand, the wide solid line appeared as a result of 

deceleration into the minimum speed of the vehicle as the consequence of the 

reduced opportunities for lane changing maneuver.  

 

 

Figure 4-6. Space-time diagram for moderate  raff    o d   o   de    y ρ   50%). 
Lane changing probability 100%. (a) for Scope awareness SA=1 ; (b) for Scope 

awareness SA=2 ; (c) for Scope awareness SA=3 ; (d) for Scope awareness SA=4 ; 
(e) for Scope awareness SA=5 ; (f) for Scope awareness SA=6. 

 

However, in the heavy traffic condition (Figure 4-7), this model showed that the 

differences value of scope awareness did not affect the traffic condition. In this 

traffic condition, the opportunity to make a lane changing is very small. This 

result imply that in the heavy traffic condition, the driver characters that related to 

lane changing style have no influence to the traffic condition. 
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Figure 4-7. Space-time diagram for heavy traff    o d   o   de    y ρ     %). Lane 
changing probability 100%. (a) for Scope awareness SA=1 ; (b) for Scope awareness 
SA=2 ; (c) for Scope awareness SA=3 ; (d) for Scope awareness SA=4 ; (e) for Scope 

awareness SA=5 ; (f) for Scope awareness SA=6. 

 

4.4.3 Lane Changing and Spontaneous Braking 

The analysis of space-time diagram shown by Figure 4-5, Figure 4-6, and 

Figure 4-7, revealed an effect of spontaneous braking that appears in the traffic 

flow. Therefore, to complete the analysis of this paper then we computed the 

number of spontaneous braking that arise during the simulation. In this simulation, 

we defined the spontaneous braking as the braking action by the vehicle as 

influenced by lane changing maneuver of another vehicle. Once the vehicle has 

done a lane changing and occupied a certain cell that is previously targeted by 

another vehicle in the current lane then a spontaneous braking will be counted. 

Table 4-1 and Table 4-2 present the ratio of spontaneous braking number 

over lane changing by using scope awareness parameter and without using the 

scope awareness parameter, respectively. The “0” (zero) value explain that the 

spontaneous braking did not happen, although the lane changing maneuver still 

occur in this certain traffic condition. The description of “N/A” means that the 

lane changing maneuver did not occur at all in this traffic condition. 
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Table 4-1. Percentage ratio of spontaneous braking over lane changing by using 
scope awareness parameter 

DENSITY 

(%) 

SA-1 (%) SA-2 (%) SA-3 (%) SA-4 (%) SA-5(%) SA-6 (%) 

10 56 40 23 24 20 0 

20 82 74 63 38 18 3 

30 81 60 12 0 0 0 

40 82 35 3 0 0 0 

50 92 11 0 0 0 0 

60 83 8 0 0 0 0 

70 85 9 0 0 0 0 

80 80 0 0 0 0 0 

90 88 0 0 0 0 0 

 

Table 4-2. Percentage ratio of spontaneous braking over lane changing without 
using scope awareness parameter (without vehicle speed estimation) 

DENSITY 

(%) 

SA-1 (%) SA-2 (%) SA-3 (%) SA-4 (%) SA-5 (%) SA-6 (%) 

10 53 45 36 48 13 0 

20 82 83 80 63 17 6 

30 71 64 55 9 0 0 

40 74 63 6 0 0 N/A 

50 85 33 0 0 N/A N/A 

60 89 14 0 N/A N/A N/A 

70 91 20 0 N/A N/A N/A 

80 100 0 0 N/A N/A N/A 

90 100 N/A N/A N/A N/A N/A 

 

4.4.4 Vehicle Speed Estimation Error  

As mentioned before, the scope awareness parameter in this proposed model 

has a strong relationship with the capability to estimate the vehicle speed within 

the certain scope awareness value. In this section, we explored what occurs when 

we change the value of speed estimation error. The higher value of the speed 

estimation error means the higher chance of the driver to make an inaccuracy 

perception that may contribute to both wrong decision to make a lane changing 

and failures to detect the collision. 

Figure 4-8 shows the effect of speed estimation error to the lane changing 

(left) and to the spontaneous braking action (right) in the light traffic ρ=0.25, 
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moderate traffic ρ=0.5, and heavy traffic ρ=0.75, whereas Figure 4-9 illustrates 

the ratio of spontaneous braking over lane changing for the case Sa=6. 

 

 

Figure 4-8. Effect of speed estimation error to the lane changing maneuver (left) and 
to the spontaneous braking number (right). Both diagrams was simulated for the 

case Sa=6. 

 

In order to examine more clearly the effect of speed estimation error on the 

traffic flow then the space-time diagram was reproduced. The space time diagram 

of light traffic, moderate traffic, and heavy traffic are shown by Figure 4-10, 

Figure 4-11, and Figure 4-12, respectively. 

 

 

Figure 4-9. Ratio of spontaneous braking over lane changing number for the case of 
Sa=6. 
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Figure 4-10. Vehicle speed estimation error for light traffic. 

 

The phenomena of short-thin solid lines and wide solid lines also appear in these 

values of traffic density. The appearance of short-thin solid lines and the 

disappearance of wide solid line confirmed the conclusion that the short-thin solid 

line caused by the lane changing maneuver of another vehicle from adjacent lane 

so the subject vehicle has to make a spontaneous braking in order to avoid 

collision, and the wide solid line appeared as a result of deceleration into the 

minimum speed of the vehicle as the consequence of the reduced opportunities for 

lane changing maneuver. 

 

 

Figure 4-11. Vehicle speed estimation error for moderate traffic. 
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Figure 4-12. Vehicle speed estimation error for heavy traffic. 

 

4.5 Discussion 

This research has presented a simple model of the traffic cellular automata 

to describe a driver behavior in a two lane highway model. The term of scope 

awareness introduced to reflect the visibility required by the driver to make a 

perception of a road condition and the speed of vehicle that exist within the 

certain area of the road before making a lane changing maneuver. The relation 

between flow-density and space-time has been investigated in order to examine 

the effect of scope awareness parameter in the traffic flow. Some conclusions can 

be observed from this study: 

 This model describes the realistic traffic situation, in particular capture the 

situation when driver make a lane changing maneuver. Compared to the 

conventional approach, the usage of scope awareness model approach 

produce a better flow of vehicles. 

 The various value of the scope awareness may represent the characteristic 

and the experience level of the drivers. The increases of the scope 

awareness value means the driver become more aware to estimate the road 

condition in order to make a lane changing maneuver. 
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 This proposed model has revealed the phenomena of the short-thin solid 

line jam and the wide solid line jam in the traffic flow. This study found 

that the short-thin solid line caused by the lane changing maneuver of 

another vehicle from adjacent lane which resulted the subject vehicle has 

to make a spontaneous braking in order to avoid collision. As the result of 

this spontaneous braking causing another following vehicles has to adjust 

or decrease their speed with the vehicle ahead. This phenomenon then 

produces a short queue of vehicles. On the other hand, a wide solid line 

appeared as a result of deceleration into the minimum speed of the vehicle 

as the consequence of the reduced opportunities to make a lane changing 

maneuver. 

 This simulation results showed that lane changing maneuvers with taking 

into account another vehicle speed could reduce the level of traffic 

congestion. However, in the heavy traffic (high dense) situation, the 

opportunity to make a lane changing is small, so that the congestion will 

always exist. 

 

By taking into consideration the scope awareness parameter, the traffic 

cellular automata model proposed here can reflect certain characteristics of lane 

changing maneuver in the real traffic situation. This simulation result can serve as 

a reference for transportation planning, evaluation, and control. Moreover, this 

result will pave the way for accurate simulation of a more complex traffic system. 

Based on the result of this paper, the effect of road shape towards the vehicle 

deceleration will be studied hereafter. 
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CHAPTER 5.  
VALIDITY OF SPONTANEOUS BRAKING AND LANE 

CHANGING WITH SCOPE OF AWARENESS BY USING 

MEASURED TRAFFIC FLOW 

 

This chapter presents the validation method and its evaluation of the 

spontaneous braking and lane changing with scope awareness parameter. By using 

the real traffic flow data, the traffic cellular automaton model that accommodate 

these two driver behaviors, e.g., spontaneous braking and driver scope awareness 

has been compared and evaluated. The real traffic flow data have been observed 

via video-recording captured from real traffic situation. The validation results 

shown that by accommodate spontaneous braking and scope awareness 

parameters, this model can produced traffic flow’s accuracy value 83.9% 

compared to the real traffic flow data. 

Contents 
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5.1 Overview 

Validation is one of the important processes in the field of simulation and 

modeling. The validation process is concerned with determining whether the 

conceptual simulation model is an accurate representation of the system under 

study. However, the validation process cannot be defined to result a perfect 

model, since the perfect one would be the real system itself [58]. Naturally, any 

model is the simplification of the real world. On the other hand, simulation uses a 

model to develop conclusion providing insight on the behavior of the real world 

elements being studied. In the field of computer simulation, this term enhanced as 

the uses of computer programming to capture the real world situation. The origin 

of computer simulation and modeling is in the desire to forecast future behavior 

due to current phenomena. In the discipline of traffic engineering and 
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transportation planning, computer simulation and modeling is needed because it 

can study models of traffic and its phenomena for analytical or numerical 

treatment, can be used for experimental studies to describe detail evolution of the 

system over time, and produce the picture of current reality, as well as future 

estimation. 

On the other words, the increasing trend of traffic congestion in most cities 

becomes the important issue in transportation system. Since travel demand 

increases at a rate often greater than the addition of road capacity, the situation 

will continue to deteriorate unless better traffic management strategies are 

implemented. To coup this problem, traffic simulation models are becoming as 

one of the important tool for traffic control. These simulation models is needed to 

asses, generate scenarios, optimize control, and estimate the future behavior of the 

system at the operational level. Through simulation the overall picture of traffic 

system can be pictured as well as the ability to assess current problems and the 

possible solutions immediately. Simulation and model can be a good tool to show 

some characteristics of complex traffic system, e.g., stable and unstable states, 

deterministic, chaotic or even stochastic behavior with phase transitions, fractal 

dimension and self-organized criticality. However, since the advance of 

technologies and application of transportation system in urban network and road 

way were not envisioned when many simulation models were developed, the 

existing models may not be directly applicable to such of this road system [59]. 

This chapter evaluates the simulation model that accommodates the driver 

behavior rules of spontaneous braking probability and lane changing scope 

awareness, by compare their simulation results to the real traffic data. 

5.2 Validation Method 

Validation is used to determine the real world system being studied is 

accurately represented by the simulation model. Referring to ISO standard, the 

following steps in validation are listed [60]: 

1. Component testing: checking of software subcomponent (the model) 

2. Functional validation: checking of model capabilities and inherent 

assumptions. 
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3. Qualitative verification: comparison of predicted traffic behavior with 

informed expectations. 

4. Quantitative verification: comparison of model predictions with reliable 

experimental data. 

The first two of these items are usually based on simple test cases and do not 

require empirical data. The third is based on comparison with observation, and the 

last on comparison with quantitative and experiment data. 

Often, the test has to be done in several times to obtain the best result of 

validity. By a thorough analysis of the simulation’s output data then the best result 

would be taken. If the model’s output data closely represents the expected values 

for the system’s real-world data, then validity is more likely.  

When a model has been developed for an existing system, a validity test 

becomes a statistical comparison. Data collected from the situation of real system 

can be used as theoretical comparator [61]. However, when the system does not 

yet exist, validity becomes harder to prove. In many cases, validity cannot be 

definitely proven until some point in the future when the system being modeled 

has been deployed and running. 

5.3 Real Data Gathering 

Empirical data is used in validation of simulation results. The data used in 

this validation is based on video analysis. The usual approach towards data 

recording is observation and counting. The analysis is done manually, i.e., there 

was no automatic device that extracted the information from video. The 

evaluation of the data presented below is based on the following assumptions and 

methods. Since we interest to evaluate the effect of spontaneous braking behavior 

in the traffic flow then their number through video recording have been counted. 

A field observation using micro scenario where the actual traffic condition 

were captured by a 30 minutes video recorded. The parameter that was counted is 

traffic flow and the number of spontaneous braking. The actual data were taken 

from two-lane urban roadway with a length approximately 500m. The video 

camera was placed on the pedestrian bridge. Figure 5-1 shows the observation 

location. Among the location, there are two traffic signal at the end of lane, then 

to distinguish between the normal braking and the spontaneous braking of vehicle, 
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we use an assumption. For the vehicle that stop due to traffic signal would be 

categorized as normal braking, other than that would be categorized as 

spontaneous braking. Figure xxx presents show the example images captured 

from video data. 

 

 

Figure 5-1. The location of observation 

Through the video recording, the number of traffic flow and spontaneous 

braking has been counted for each of the recorded video data. The observation 

data were taken from 16 different real urban road traffic video data. These data 

were taken in the morning and afternoon as being assumed as peak traffic time. 

Figure 5-3 and Figure 5-4 show the example images of spontaneous braking type 

that captured from video data. The red rectangles show the examples of 

spontaneous braking type that had been counted. 

 

Figure 5-2. Example image captured from real condition 
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Figure 5-3. The example-1 of spontaneous braking type captured from video data 

 

 

Figure 5-4. The example-2 of spontaneous braking type captured from video data 

 

Since we interest to evaluate the accurate value of the propose model to 

reproduce real traffic flow condition then the numbers of traffic parameters 

provided by video recording, i.e., spontaneous braking events, flow number, cars 

density value, and average speed of the cars, have been evaluated.  Table 5-1 

shows the average density values of the observation results. In traffic data 

analysis, there are three related types of data: speed, flow, and density. Speed v 

(km/hr) is defined as the distance covered per unit time. Since the speed of every 

vehicle is almost impossible to track on the roadway, therefore, in practice, 
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average speed is based on the sampling of vehicles over a period of time or area 

and is calculated and used in formulae. Some sensing systems can directly 

measure it. Flow q is the rate in which vehicles arrive at a particular point on a 

roadway and described in terms of vehicles per hour (cars/hr). Traffic sensing 

systems usually record the traffic volume, which is the actual number of vehicles 

to arrive during a sampling period (e.g., 30 seconds). Thus, volume can be 

converted to a flow rate by multiplying the recorded volume by the number of 

sampling periods in an hour. Density k is defined as the number of vehicles per 

unit area of the roadway. The density value is described in terms of vehicle per 

unit area (cars/km). By measure flow and speed, the density is calculated by 

dividing the flow rate by the speed. 

 

Table 5-1. The average values of the observation results. 

 

 

Since the real traffic data was recorded in 30 minutes video then based on 

this traffic flow counter, then we estimated the traffic flow for 1 hour. The 

average speed of vehicles was obtained by field experiment, e.g., driving a car 

along the observation area then calculated the average speed among such area. 

Once the flow q and speed values v were obtained then the density value k in the 

observation area was calculated by using the equation: 

  
         ⁄  

        ⁄
 Eq. 5-1 

In the traffic cellular automaton model, most of the typical models use a 

consideration that one cell of the simulation model equal to the 7.5m length of the 

real system. This value is considered as the length of vehicle plus the distance 

AVG. 

SPEED 

(km/hr)

DENSITY 

(cars/km)

DENSITY 

(%/km)

SP. 

Braking 

(%)

Real Data 

FLOW 

(cars/hr)

50 18.28 7 4 914

50 20.18 8 4 1009

40 24.3 9 4 972

40 25.8 10 5 1032

40 28.75 11 3 1150
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between vehicles in a stopped position. Referring to this assumption then for 1 km 

road length there must be 133 vehicles that equal to maximum density among the 

road lane. Table 5-1 shows the summarized data. Data from the sequences video 

that have same density value have been calculated and retrieved their average 

value. 

5.4 Comparison and Analysis 

In this observation, we evaluated the number of traffic parameters provided 

by video recording, i.e., spontaneous braking events, flow number, cars density 

value, and average speed of the cars. There were several types of vehicle exist in 

this observation, e.g., motorbike, bus, passenger car, and bicycle. However, in the 

data analyzing, we just considered for the car types, include truck and bus. After 

those traffic parameters had been calculated then through the simulation model 

those real traffic data has been compared. We compared the number of traffic 

flow resulting from real traffic data and the proposed model. This evaluation used 

spontaneous braking number and density level from real traffic data. By using 

those parameters as input value, we obtained the traffic flow results of simulation 

model. 

The comparison result of traffic flow is shown by Figure 5-5. Referring to 

the video observation, in the simulation model we used the probability of lane 

changing 0.1. In this evaluation, we also compared the traffic flow result by using 

Nagel-Schreckenberg model [24]. The comparison result shows the model that 

accommodates spontaneous braking and driver scope awareness produced the 

better result of traffic flow rather than the original Nagel-Schreckenberg model 

[24]. The accuracy values between real data flow and our model are presented in 

Table 5-2, as well as Nagel-Schreckenberg model. 
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Figure 5-5. Comparison results of real data vs proposed model vs NaSch model. 

Table 5-2. Traffic flow acurration values 

 

 

It can be seen from the comparison results (Figure 5-5), there is a 

discrepancy between real data and simulation results. The simulation model 

produced .25 higher cars flow than real traffic flow. Therefore, in this work, we 

also tried to compare the real traffic data flow to various values of spontaneous 

braking probability and scope awareness. Figure 5-6 presents the scatter graph of 

comparison between real data flow and several spontaneous braking probability 

values. While Figure 5-7 presents the comparison result between real traffic flow 

data and several value of driver scope awareness parameter, i.e., scope awareness 

3 cells and scope awareness 6 cells, respectively. 

 

Data Source
Accuration 

(%)

Real Data 100

NaSch Model 75.9

Proposed Model 83.9
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Figure 5-6. Comparison of real data to several spontaneous braking values. 

 

 

Figure 5-7. Comparison of real data to several Scope Awareness values 

 

5.4.1 Traffic Flow and Average Speed Estimation 

In addition, this paper also evaluated and made estimation for traffic flow 

and average speed on every density values. Referring to the Figure 5-6, it can be 

seen that by using spontaneous braking probability value       , the simulation 

can produces a similar flow behavior to the real traffic flow data. Thus, in order to 
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predict the future traffic behavior, the simulation model used spontaneous braking 

probability       . Figure 5-8 and Figure 5-9 present the traffic flow and speed 

estimation for all density values, respectively. The horizontal axis represents the 

percentage of car’s density levels on the roadway-length. While vertical axis in 

Figure 5-8 represents the percentage of the cars that can move at one time step in 

simulation. In Figure 5-9, the vertical axis describes the maximum speed that can 

be reached by the car at the specific density level. 

 

 

Figure 5-8. Traffic flow estimation for all density values. 
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Figure 5-9. Average speed estimation for all density values. 
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CHAPTER 6.  
CONCLUSIONS 

 

This thesis simulates the spontaneous braking behavior of the driver and 

introduces the new Cellular Automata model for describing this characteristic. 

This research has presented a simple model of the traffic cellular automata to 

describe a driver behavior in a two lane highway model. Moreover, the effect of 

driver scope awareness in lane changing maneuver also has been investigated. The 

traffic cellular automata model has been modified to accommodate the parameter 

of spontaneous-braking probability and scope of awareness.  

The spontaneous-braking probability rule captures the natural of braking 

behavior due to driver characteristic. This simulation shows that in the specific 

density value, the traffic congestion can be caused by the spontaneous braking 

behavior of drivers. We also evaluate the effect of lane-changing to reduce the 

congestion that is caused by the parameter of spontaneous-braking probability. 

This thesis investigated the effect of drivers’ visibility and their perception (e.g., 

to estimate the speed and arrival time of another vehicle) on the lane changing 

maneuver. Driver scope awareness parameter was introduced to reflect the 

characteristic of drivers. 

The term of scope awareness introduced to reflect the visibility required by 

the driver to make a perception of a road condition and the speed of vehicle that 

exist within the certain area of the road before making a lane changing maneuver. 

The relation between flow-density and space-time has been investigated in order 

to examine the effect of scope awareness parameter in the traffic flow. By taking 

into consideration the scope awareness parameter, the traffic cellular automata 

model proposed here can reflect certain characteristics of lane changing maneuver 

in the real traffic situation. 

A validation of spontaneous braking and scope awareness model using 

measured real traffic flow has been introduced. The real traffic data support the 

simulation model in particular for spontaneous braking and driver scope 

awareness behavior. This validation shows that the traffic cellular automaton 

model that accommodate the probability of spontaneous braking and scope 

awareness have given more accurate description about traffic flow situation.  
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  APPENDIX-A.

TRAFFIC DATA MEASUREMENT METHODS 
 

The purpose of this appendix is to provide a brief overview for the traffic 

data measurement methods. This section presents a description of traditional and 

emerging methods. The term of traffic measurement here refers to a traffic count 

that is a count of traffic along a particular road, either done electronically or by 

people counting by the side of the road. Generally, traffic count technologies can 

be split into two categories[62]: the intrusive and non-intrusive methods. The 

intrusive methods basically consist of a data recorder and a sensor placing on or in 

the road. While non-intrusive methods are based on remote observations.  

 

A.1 Intrusive technologies 

The intrusive methods basically consist of a data recorder and a sensor 

placing on or in the road. The most important ones are briefly described as follow: 

 Inductive detector loops (IDL) (Figure A-1(3)): this type of technique 

consisting of coated wire coils buried in grooves cut in the road surface, 

sealed over with bituminous filler. A cable buried with the loop sends data 

to a roadside processing unit. The zone of detection for inductive loop 

sensors depends on the cut shape of the loop slots. The zones depending on 

the overall sensitivity of system not correspond precisely to the slot 

dimensions. IDLs are a cheap and mature technology. They are installed on 

both major roads and within urban areas, forming the backbone detector 

network for most traffic control systems. This type of detector is a very 

cheap technology. However, the weaknesses are the loop easy damaged by 

utility and street maintenance activities or penetration of water, IDLs with 

low sensitivity fail to detect vehicles with speed below a certain threshold, 

and miscount vehicles with complex or unusual chassis configurations, or 

vehicles with relatively low metal content (e.g. motorcycles), and some 

radio interference occurs between loops in close proximity with each other. 
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 Pneumatic road tubes (Figure A-1(2)): this method uses a rubber tubes 

that are placed across the road lanes that uses pressure changes to record 

the number of axle movements in a counter placed on the side of the road. 

This pressure changes are produced when a vehicle’s tires pass over the 

tube. The pressure pulse closes an air switch, producing an electrical signal 

that is transmitted to a counter or analysis software. The main drawback of 

this technology is that it has limited lane coverage and its efficiency is 

subject to weather, temperature and traffic conditions. This system may 

also not be efficient in measuring low speed flows or when the vehicle 

volumes are high. While the advantages of toad tube sensors are quick 

installation for permanent and temporary recording of data and low power 

usage. Road tube sensors are usually low cost and simple to maintain. 

Sensor manufacturers often supply software packages to assist with data 

analysis. 

 Piezoelectric sensors: the sensors are placed in a groove along roadway 

surface of the lane(s) monitored. The principle is to convert mechanical 

energy into electrical energy. Indeed, mechanical deformation of the 

piezoelectric material modifies the surface charge density of the material so 

that a potential difference appears between the electrodes. The amplitude 

and frequency of the signal is directly proportional to the degree of 

deformation. This system can be used to measure weight and speed. 

 Magnetic loops (Figure A-1(1)): it is the most conventional technology 

used to collect traffic data. The loops are embedded in roadways in a 

square formation that generates a magnetic field. The information is then 

transmitted to a counting device placed on the side of the road. This has a 

generally short life expectancy because it can be damaged by heavy 

vehicles, but is not affected by bad weather conditions. This technology has 

been widely deployed in Europe (and elsewhere) over the last decades. 

However, the implementation and maintenance costs can be expensive. 
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Figure A-1 Typical intrusive detector configurations [62]. (1) Magnetic loops; (2) 
Pneumatic road tubes; (3) Inductive detector loops 

 

A.2 Non-Intrusive technologies 

Non-intrusive methods are based on remote observations. Non-intrusive 

techniques include manual counts, video data collection, passive or active infrared 

detectors, microwave radar detectors, ultrasonic detectors, passive acoustic 

detectors, laser detectors and aerial photography. All these technologies represent 

emergent fields that are expanding rapidly with continuing advances in signal 

processing[63]. At present time such technologies are used to provide 

supplemental information for selected locations or for specific applications (e.g., 

queue detection at traffic signals). Most non-intrusive systems are operationally 

and somewhat visually similar, consisting of small electronics unit mounted in a 

weatherproof housing placed in various locations (Figure A-2).  

 

 

Figure A-2 Typical non-intrusive technology configurations [63]. (1) Roadside; (2) 
Bridge underside; (3) Cross-fire 
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The examples of this kind of technique are briefly described hereafter [64]: 

 Manual counts: it is the most traditional method. In this case trained 

observers gather traffic data that cannot be efficiently obtained through 

automated counts e.g. vehicle occupancy rate, pedestrians and vehicle 

classifications. The most common equipments used are tally sheet, 

mechanical count boards and electronic count board systems. 

 Passive and active infra-red: the presence, speed and type of vehicles are 

detected based on the infrared energy radiating from the detection area. The 

main drawbacks are the performance during bad weather, and limited lane 

coverage. 

 Passive magnetic: magnetic sensors are fixed under or on top of the 

roadbed. They count the number of vehicles, their type and speed. 

However, in operating conditions the sensors have difficulty differentiating 

between closely spaced vehicles. 

 Microwave radar: this technology can detect moving vehicles and speed 

(Doppler radar). It records count data, speed and simple vehicle 

classification and is not affected by weather conditions. 

 Ultrasonic and passive acoustic: these devices emit sound waves to detect 

vehicles by measuring the time for the signal to return to the device. The 

ultrasonic sensors are placed over the lane and can be affected by 

temperature or bad weather. The passive acoustic devices are placed 

alongside the road and can collect vehicle counts, speed and classification 

data. They can also be affected by bad weather conditions (e.g. low 

temperatures, snow). 

 Video image detection: video cameras record vehicle numbers, type and 

speed by means of different video techniques e.g. trip line and tracking. 

The system can be sensitive to meteorological conditions. 

 

A.3 The Floating Car Data (FCD) 

Beside the intrusive and non-intrusive technologies, then the next order 

automated traffic data technology is floating car data (FCD). FCD is an alternative 

or rather complement source of high quality data to existing technologies. They 
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will help improve safety, efficiency and reliability of the transportation system. 

They are becoming crucial in the development of new Intelligent Transportation 

Systems (ITS). The principle of FCD is to collect real-time traffic data by locating 

the vehicle via mobile phones or GPS over the entire road network. This basically 

means that every vehicle is equipped with mobile phone or GPS which acts as a 

sensor for the road network. Data such as car location, speed and direction of 

travel are sent anonymously to a central processing center. After being collected 

and extracted, useful information (e.g. status of traffic, alternative routes) can be 

redistributed to the drivers on the road. 

Basically, there are two main types of FCD, namely GPS and cellular-based 

systems[64]: 

 GPS-based FCD: using this technique, the vehicle location precision is 

relatively high, typically less than 30m. Generally, traffic data obtained 

from private vehicles or trucks are more suitable for motorways and rural 

areas. Currently, GPS probe data are widely used as a source of real-time 

information by many service providers but it suffers from a limited number 

of vehicles equipped and high equipment costs compared to floating 

cellular data. 

 FCD based on cellular phones: The mobile phone positioning is regularly 

transmitted to the network usually by means of triangulation or by other 

techniques (e.g. handover) and then travel times and further data can be 

estimated over a series of road segments before being converted into useful 

information by traffic center. This approach is particularly well adapted to 

deliver relatively accurate information in urban areas (where traffic data are 

most needed) due to the lower distance between antennas. Contrary to 

stationary traffic detectors and GPS-based systems, no special 

device/hardware is necessary in cars and no specific infrastructure is to be 

built along the road. It is therefore less expensive than conventional 

detectors and offers larger coverage capabilities. Traffic data are obtained 

continuously instead of isolated point data. It is faster to set up, easier to 

install, and needs less maintenance. Note however that sophisticated 

algorithms are required to extract and treat high-quality data before sending 
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them back to end-users. Even if the location precision is generally low 

(typically 300m), this weakness is partially compensated by the large 

number of devices. Note that more accurate data should be obtained from 

the UMTS technology (3G). 

 


