
Several vaccine candidates to protect against severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2) infection or coro-
navirus disease 2019 (COVID-19) have entered or will soon enter
large-scale, phase 3, placebo-controlled randomized clinical tri-
als. To facilitate harmonized evaluation and comparison of the
efficacy of these vaccines, a general set of clinical endpoints is
proposed, along with considerations to guide the selection of
the primary endpoints on the basis of clinical and statistical rea-

soning. The plausibility that vaccine protection against symptom-
atic COVID-19 could be accompanied by a shift toward more
SARS-CoV-2 infections that are asymptomatic is highlighted, as
well as the potential implications of such a shift.
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Widespread use of safe and durably effective vac-
cines for severe acute respiratory syndrome

SET OF CLINICAL ENDPOINTS TO FACILITATE

HARMONIZED VACCINE EFFICACY EVALUATION

AND COMPARISON
The interconnections and definitions of our pro-

posed set of study endpoints in COVID-19 vaccine effi-
cacy trials are described in Figure 1 (top and middle,
respectively). Two of the endpoints—virologically con-
firmed symptomatic SARS-CoV-2 infection regardless
of the severity of symptoms (COVID-19) and virologi-
cally confirmed SARS-CoV-2 infection with symptoms
classified as severe (severe COVID-19)—will likely be
universally used because they fit standard endpoints
used in virtually all vaccine efficacy trials (7). Coronavi-
rus disease 2019 is ascertained at presentation,
whereas severe COVID-19 is ascertained at presenta-
tion and through a fixed schedule of postdiagnosis
follow-up (Figure 1, bottom), which continues through
the resolution of all symptoms, ensuring that all severe
COVID-19 endpoints are distinguished from nonsevere
COVID-19 endpoints. For the COVID-19 endpoint, per
FDA guidance, outcomes can include fever or chills,
cough, shortness of breath or difficulty breathing, fa-
tigue, muscle or body aches, headache, new loss of
taste or smell, sore throat, congestion or runny nose,
nausea or vomiting, and diarrhea. Corresponding out-
comes for severe COVID-19 include clinical signs at
rest indicative of severe illness; respiratory failure; evi-
dence of shock (on the basis of specific blood pressure
thresholds); clinically significant acute renal, hepatic, or
neurologic dysfunction; admission to an intensive care
unit; and death. The FDA guidance acknowledges the
need for adaptation of symptom-based case definitions
for pediatric patients and for persons with respiratory
comorbid conditions.
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coronavirus 2 (SARS-CoV-2), especially in combination 
with multiple concomitant prevention strategies (1), 
would curtail the coronavirus disease 2019 (COVID-19) 
pandemic. Several vaccine candidates have entered or 
will soon enter phase 3 clinical trial testing (2– 4). Reg-
ulatory approval of a SARS-CoV-2 vaccine will require 
demonstration of safety and clinical benefit in a placebo-
controlled efficacy trial. Guidance from the U.S. Food and 
Drug Administration (FDA) recommends minimal phase 3 
success criteria for approval of a vaccine: an estimated 
reduction in the primary endpoint of at least 50% in the 
vaccine group versus the placebo group, with the 95% CI 
providing assurance of at least a 30% reduction (5)—a 
benchmark consistent with the World Health Organiza-
tion's Solidarity Vaccines Trial design (6). The FDA guid-
ance also indicates that acceptable primary endpoints for 
approval could include SARS-CoV-2 infection, symptom-
atic infection (COVID-19), severe COVID-19 (5), or some 
combination of these.

We address 4 salient issues on study endpoints in 
COVID-19 vaccine efficacy trials. First, we propose a gen-
eral set of clinical endpoints to facilitate a harmonized 
evaluation and comparison of the efficacy of vaccine can-
didates, overall and across relevant subgroups. Second, 
we consider the pros and cons of various endpoints for 
use as primary endpoints. Third, we recommend ade-
quate follow-up of all participants to enable enhanced 
sensitivity regarding effects on severe COVID-19 as 
well as assessment of the longer-term vaccine effect 
on the set of endpoints, including an assessment of 
durability of protection. Fourth, we recommend in-
cluding asymptomatic infection as a study endpoint, 
given that vaccine protection against COVID-19 
could be accompanied by a shift toward more 
asymptomatic SARS-CoV-2 infections, a plausible 
outcome if the vaccine does not confer sterilizing 
immunity.
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tion of this effect on each component endpoint. Simi-
larly, every COVID-19 endpoint is either a nonsevere or
severe COVID-19 endpoint, and a harmonized analysis
of these 3 endpoints can elucidate the proportion of
the vaccine effect on each component endpoint.

An additional endpoint includes all COVID-19
cases and quantitatively differentiates severe from non-
severe COVID-19, which we call the burden of disease
(BOD) endpoint (9). To understand the difference be-
tween the BOD and COVID-19 endpoints, consider that
vaccine efficacy is commonly expressed as a relative
reduction (vs. placebo) in the risk for becoming an end-
point “case.” This is mathematically equivalent to as-

Figure 1. Clinical endpoint relationships, definitions, and example sampling scheme for diagnosed COVID-19 cases.
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COVID-19 (symptomatic
infection)

Meeting a protocol-specified list of COVID-19 symptoms with
virologic confirmation of SARS-CoV-2 infection (symptom triggered)

Asymptomatic infection SARS-CoV-2 seroconversion* without prior diagnosis of the COVID-19 endpoint†

Severe COVID-19 COVID-19 endpoint with at least 1 protocol-specified severe disease event

COVID-19 endpoint with 0 protocol-specified severe disease events

Composite endpoint score of 0 for no COVID-19, 1 for nonsevere COVID-19, and 2
for severe COVID-19
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BOD = burden of disease; COVID-19 = coronavirus disease 2019; NAAT = nucleic acid amplification test; PCR = polymerase chain reaction;
SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2. Top. Structural relationships among study endpoints in a COVID-19 vaccine
efficacy trial. Middle. Study endpoint definitions. Bottom. Example schedule of disease severity monitoring and virologic sampling for COVID-19
cases, with data or sample collection beginning at COVID-19 diagnosis and extending past COVID-19 diagnosis, in a setting where frequent
follow-up of confirmed cases can be assured. Participants diagnosed with virologically confirmed, symptomatic SARS-CoV-2 infection (COVID-19)
enter a postdiagnosis sampling schedule to monitor viral load and COVID-19–related symptoms (types, severity levels, and durations). This
follow-up continues through resolution of all symptoms, enabling distinction of the nonsevere and severe COVID-19 endpoints.
* Seroconversion is assessed via a validated assay that distinguishes natural vs. vaccine-induced SARS-CoV-2 antibodies.
† Alternatively, the asymptomatic infection endpoint can also include an RNA PCR positive test result obtained through testing regardless of
symptoms (e.g., as a requirement for travel, return to school or work, or elective medical procedures) and follow-up to confirm that the participant
remains asymptomatic.
‡ Timed to be as close to day 28 after symptom onset as possible.

Serologic assays to accurately detect anti–SARS-
CoV-2 nucleocapsid antibodies, which would be elic-
ited by naturally acquired infection but not by SARS-
CoV-2 spike protein– based vaccination, have been 
developed and validated (8), providing the technology 
required to enable evaluation of efficacy against the 
infection endpoint. The nesting of endpoints and their 
partitioning into mutually exclusive and exhaustive cat-
egories aid in the interpretation of results (Figure 1, 
top). Every infection endpoint is either a COVID-19 
endpoint or an asymptomatic infection endpoint, and a 
harmonized analysis of these 3 endpoints can assess 
the overall vaccine effect on infection and the propor-



minus the relative risk (vaccine to placebo) of an end-
point, such that data analysis results (for example, Fig-
ure 2) can be equivalently reported as point estimates
and 95% CIs for the relative risk for each endpoint, with
evidence of vaccine harm deriving from an inference of
a relative risk greater than 1. Given the precedent that
vaccines can increase the risk for severe disease in
certain populations (22–25), analysis of the severe
COVID-19 endpoint is of particular interest. In addition
to the standard analysis that includes all randomly as-
signed participants and thus provides a valid answer
with high confidence, supportive analyses that com-
pare rates of the severe COVID-19 endpoint between
vaccine and placebo COVID-19 endpoint cases are
also recommended. These latter analyses compare
groups that were not randomly assigned and thus are
susceptible to potential postrandomization selection
bias (26); hence, the data analysis should adjust for
baseline prognostic factors of severe COVID-19 and in-
clude sensitivity analyses to assess the robustness of
results to potential postrandomization selection bias.

The BOD endpoint, which encodes severe disease
as being worse than nonsevere disease, may be viewed
by some as more informative than the COVID-19 end-
point. Moreover, it can provide increased statistical power
if the vaccine provides greater protection against severe
than nonsevere COVID-19. Table 1 shows this for a 2:1
(vaccine to placebo ratio) randomization trial design, with
147 cases required to ensure 90% power for rejecting a
null hypothesis of vaccine efficacy against COVID-19 be-
ing at most 30% assuming the true vaccine efficacy is at
least 60% and the simple conditional binomial method
described in the Supplement (available at Annals.org) is
used for analysis. (A corresponding 1:1 randomization de-
sign could also be considered, with 160 COVID-19 cases
required to ensure 90% power.) The results show that if
vaccine efficacy against COVID-19 and severe COVID-19
is at least 60%, then both the COVID-19 and BOD end-
points provide about 90% or better power to meet FDA
success criteria. However, if vaccine efficacy against
COVID-19 is slightly lower at 55%, power decreases to
74% for the COVID-19 endpoint, whereas power for the
BOD endpoint is between 75% and 92% if the vaccine
confers a 60% to 90% relative reduction in severe COVID-
19. Of note, if vaccine efficacy against severe COVID-19 is
at or below 30%, BOD will be notably less powerful than
COVID-19. A potential option is to use BOD and
COVID-19 as dual primary endpoints with a statistical
adjustment for associated multiple testing. Although
the power of this strategy can be about as good as or
notably better than that achieved with COVID-19 as the
sole primary endpoint across all of the scenarios in Ta-
ble 1, the clinical relevance of statistical success for a
vaccine associated with moderate protection against
nonsevere COVID-19 but poor protection against se-
vere COVID-19 is unclear. Statistical details on methods
used for the illustrative power calculations and for the
multiplicity adjustment that leverages the correlation
between the COVID-19 and BOD endpoints are pro-
vided in the Supplement.

signing a binary score to each trial participant based on 
their case status and expressing vaccine efficacy as the 
relative reduction in the mean endpoint score. The 
COVID-19 endpoint is scored as 0 for no disease and 1 
for disease. The BOD endpoint score extends this by 
using 0 for no COVID-19, 1 for nonsevere COVID-19, 
and 2 for severe COVID-19.

Given the anticipated heterogeneity among phase 
3 trial participants, consistent with established practices 
in clinical trials (10), it would be important to explore 
whether vaccine efficacy is generally consistent across 
subgroups with differing levels of pretrial risk for SARS-
CoV-2 infection or COVID-19. Accordingly, for each of 
the core endpoints described in Figure 1, we advocate 
reporting point estimates and 95% CIs for vaccine effi-
cacy for prespecified subgroups defined by factors that 
include sex assigned at birth; age; geographic location; 
race/ethnicity; and presence or absence of preexisting 
health problems, such as heart or lung conditions, se-
vere obesity, or diabetes. Because the phase 3 trial de-
signs are generally powered for assessing overall but 
not subgroup-specific vaccine efficacy, such summaries 
should be interpreted as hypothesis-generating rather 
than hypothesis-confirming. Moreover, for specific popu-
lation subgroups of interest, such as women who become 
pregnant while participating in a phase 3 trial, the number 
of endpoint cases will likely be too small to support reli-
able assessments of vaccine efficacy from a single trial; 
meta-analyses of relevant phase 3 trials and postapproval 
studies may be warranted.

PROS AND CONS OF DIFFERENT ENDPOINTS FOR

USE AS THE PRIMARY ENDPOINTS
From both a public health perspective and an indi-

vidual perspective, prevention of severe COVID-19 is 
perhaps the most important clinical benefit expected 
from an effective vaccine. There is precedent (for 
example, dengue [11], influenza [12–14], pertussis [15], 
pneumococcal bacteremia [16], rotavirus [17], and vari-
cella [18]) that many vaccines confer greater efficacy 
against severe disease than milder disease. However, 
severe COVID-19 constitutes a relatively small portion 
of COVID-19 cases, and incidence varies widely by age, 
underlying risk, and ethnicity (19 –21), implying that sta-
tistical power to demonstrate adequate vaccine efficacy 
against the severe COVID-19 endpoint may be lower 
than that for an endpoint that includes reduction in 
nonsevere COVID-19. For that reason, the broader-
encompassing endpoint of COVID-19 symptomatic dis-
ease is deemed an appropriate primary endpoint and 
has been selected as such for all 6 ongoing phase 3 
trials (4) and for the Solidarity Vaccines Trial. Moreover, 
there is consensus to assess severe COVID-19 as a key 
secondary endpoint.

Given that detection of safety problems with vac-
cines is critically important, the statistical analysis plans 
of the trials use 2-sided 95% CIs for vaccine efficacy for 
each study endpoint, so the data analyses can detect 
evidence for a higher rate of any endpoint in the vac-
cine versus the placebo group. Vaccine efficacy is 1
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We believe that the BOD endpoint adheres to regu-
latory guidelines for suitability as a primary or key second-
ary endpoint for phase 3 trials, including clinical relevance
in upweighting severe disease endpoints and sensitivity
to detect a meaningful intervention effect validly assessed
on the basis of the randomization principle (27). However,
the BOD endpoint has 3 potential limitations. First, unlike
for the COVID-19 endpoint, vaccine efficacy against BOD
cannot be expressed as a percentage reduction in the risk
for becoming an endpoint “case,” hampering interpret-
ability for some. Second, consensus is lacking about the
best way to score the degree of severity of COVID-19
events; specifically, there is a question about how each
unit increment in the score relates to the corresponding
increment in clinical significance. A third potential limi-
tation, shared with the severe COVID-19 endpoint, is
that follow-up after COVID-19 diagnosis is needed to
ascertain some severe COVID-19 endpoints, whereas
COVID-19 can be more rapidly and easily assessed, as
defined at presentation. Regardless of whether BOD is
used as a primary or key secondary endpoint, a sep-
arate efficacy evaluation for each of the COVID-19
incidence and severity components embedded in the
composite BOD endpoint is necessary for clinical in-
terpretability.

Given that asymptomatic infection is relatively com-
mon (28), infection cases would be expected to occur
at a notably higher frequency than symptomatic dis-
ease. However, although prevention from acquiring
SARS-CoV-2 infection (whether that means true steriliz-
ing immunity or absence of detectable antibodies to

Figure 2. Hypothetical example of results of a COVID-19 vaccine efficacy trial with 2:1 (vaccine–placebo ratio) randomization,
with the analysis done for 147 total COVID-19 cases.

Among the Infected Trial Participants, n (%)

Placebo

Vaccine

10 000

20 000

Uninfected,
n

Infected,
n (%)

9879

19 801

121 (1.21)

199 (1.00)

45 (37.2)

128 (64.3)

57 (47.1)

63 (31.7)

19 (15.7)

8 (4.0)

Endpoint Vaccine Efficacy (95% CI), %

SARS-CoV-2 infection

Asymptomatic infection

COVID-19 (symptomatic
   infection)

Nonsevere COVID-19

Severe COVID-19

BOD

17.8 (–4.0 to 34.7)

–42.2 (–104.5 to –0.5)

53.3 (34.6 to 66.7)

44.7 (19.5 to 62.0)

78.9 (49.6 to 92.0)

58.4 (41.2 to 70.2)

−100 −60 −40 −20 0 20 40 60 80 100−80

�

�

�

�

�

�

Group Participants,
n Asymptomatic

(No COVID-19)
Symptomatic
Nonsevere
COVID-19

Symptomatic
Severe COVID-19

BOD = burden of disease; COVID-19 = coronavirus disease 2019; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2. Top. Number of
uninfected and infected participants in each group, along with breakdown by endpoint for infected trial participants. Bottom. Vaccine efficacy point
estimates and 95% CIs against 6 clinical endpoints. The black, dashed vertical line in the forest plot marks the lower 95% confidence bound of 30%
given in guidance from the U.S. Food and Drug Administration.

Table 1. Comparison of Statistical Power for Different
Efficacy Endpoints*

Assumed VE, % Determined
VE for
Nonsevere
COVID-19, %†

Statistical Power, %

COVID-19 Severe
COVID-19

Severe
COVID-19

COVID-19 BOD

55 0 69 0 74 29
55 30 61 2 74 50
55 60 54 26 74 75
55 70 51 47 74 82
55 80 49 73 74 87
55 90 46 94 74 92
60 0 75 0 91 47
60 30 68 2 91 70
60 60 60 27 91 89
60 70 57 50 91 93
60 80 55 76 91 96
60 90 52 95 91 98

BOD = burden of disease; COVID-19 = coronavirus disease 2019; 
VE = vaccine efficacy.
* Simulated design with 2:1 (vaccine to placebo) randomization and 
analysis after 147 COVID-19 cases have occurred.
† Assuming that 20% of COVID-19 cases in the placebo group will be 
severe (21), VE(COVID-19) = 0.2 × VE(severe COVID-19) + 0.8 × VE(non-
severe COVID-19). Hence, if the first 2 VE values in this equation are fixed, 
the third one is determined after invoking the aforementioned assump-
tion. Power for a given efficacy endpoint is based on statistical success 
defined as a VE point estimate of at least 50%, with the lower bound of 
the corresponding 95% CI greater than 30% (5). Coronavirus disease 
2019 endpoint scoring is 0 = no  COVID-19 and 1 = COVID-19, and BOD 
endpoint scoring is 0 = no  COVID-19, 1 = nonsevere COVID-19, and 2 = 
severe COVID-19. Vaccine efficacy is the relative reduction (vs. placebo) 
in the mean endpoint score, which is equivalent to a relative reduction in 
incidence for the COVID-19 endpoint.



were the sole primary endpoint and would provide di-
rect clinical benefit to individual vaccine recipients, it
may have different population-level effects on the num-
ber of secondary transmissions (34). If vaccine recipi-
ents acquiring asymptomatic infection have low viral in-
fectivity and are weak transmitters, then the vaccine in
the aforementioned scenario would likely confer public
health benefit on transmission. However, viral shedding
data (35, 36) and epidemiologic and modeling studies
(37) suggest that unvaccinated asymptomatic persons
can transmit the virus (38, 39), raising questions about
the transmission potential of vaccine recipients who ac-
quire asymptomatic infection. A vaccine that essentially
converts symptomatic to asymptomatic infections, with-
out also decreasing viral shedding and transmission
potential, may paradoxically increase transmissions
given that viral testing and isolation are presumably
less likely in asymptomatic persons. Conversely, if the
vaccine decreases both symptomatic infections and
transmission potential, then the population benefits
may be magnified. Acknowledging the tenuous link in
extrapolating results from nonhuman primate studies
to humans, we note that challenge studies of rhesus
macaques vaccinated against SARS-CoV-2 (vs. unvacci-
nated controls) offer evidence that either possibility
may occur ([40] and [41], respectively). Designing
phase 3 trials to evaluate a vaccine effect on asymptom-
atic infections, which requires collecting blood from all
participants periodically for serology testing or swabs
for virology testing (along with incorporating symptom-
triggered testing for virologically confirmed SARS-
CoV-2 infection to ensure that any presymptomatic per-
sons who have no symptoms at the time of a positive
virologic test result, but eventually do develop symp-
toms, will be correctly classified as having a COVID-19
endpoint rather than an asymptomatic infection end-
point) will be an important way to carefully explore this
issue.

Figure 2 shows recommended forest plot report-
ing of vaccine efficacy results for the proposed core

Table 2. Interconnection Among VE Against SARS-CoV-2
Infection, Symptomatic SARS-CoV-2 Infection (COVID-19),
and Asymptomatic SARS-CoV-2 Infection

Assumed VE, % Determined VE
for Asymptomatic
SARS-CoV-2
Infection, %*

SARS-CoV-2
Infection

Symptomatic
SARS-CoV-2
Infection (COVID-19)

20 60 −40
20 70 −55
40 60 10
40 70 −5
60 60 60
60 70 45

COVID-19 = coronavirus disease 2019; SARS-CoV-2 = severe acute
respiratory syndrome coronavirus 2; VE = vaccine efficacy.
* Assuming that 40% of SARS-CoV-2 infections in the placebo group
will be asymptomatic (21), VE(infection) = 0.6 × VE(symptomatic infec-
tion) + 0.4 × VE(asymptomatic infection). Hence, if the first 2 VE values
are fixed, the third one is determined after invoking the aforemen-
tioned assumption. Negative VE implies a higher incidence of end-
point cases for vaccine vs. placebo.

the invading virus) has its advocates, this is considered a 
high bar to achieve (29, 30). A vaccine that protects 
against disease and confers limited protection against 
infection would still provide great clinical benefit and 
overall utility.

IMPORTANCE OF LONGER-TERM FOLLOW-UP OF

ALL PARTICIPANTS
We recommend longer-term follow-up of all partic-

ipants (that is, after occurrence of 147 COVID-19 end-
points for a 2:1 randomization trial design) in a double-
blind manner, if feasible, for at least a year after 
randomization or until deployment of a vaccine that has 
been proven effective in each participant's geographic 
region (6) for the following reasons. First, as described 
earlier, severe COVID-19 constitutes a relatively small 
portion of COVID-19 cases (19 –21), suggesting that an 
efficacy evaluation for severe COVID-19 will likely be 
underpowered in an analysis based on 147 COVID-19 
events. The data shown in Table 1 confirm this expec-
tation. Thus, longer-term follow-up would enhance the 
sensitivity of detection of vaccine effects on severe 
COVID-19. Second, if a candidate vaccine is proven to 
be safe and found to have efficacy against 1 or more 
clinical endpoints, effective planning of mass immuni-
zation campaigns and strategies will require knowl-
edge of the duration of such protection. Waning vac-
cine efficacy against a clinical endpoint has been 
documented in randomized controlled trials of several 
vaccines, including the RTS,S/AS01 malaria vaccine (31) 
and 2 similar killed whole-cell oral cholera vaccines (32). 
Waning vaccine efficacy against a clinical endpoint has 
also been suggested by observational case– control 
studies of several vaccines, including the influenza vac-cine 
(33). In addition to improving insights about durabil-ity of 
effects, extended follow-up provides needed in-sights 
about whether a vaccine could make COVID-19 more 
hazardous, referred to as disease enhancement. Thus, 
longer-term follow-up as defined earlier would also 
provide important information on duration of the vaccine 
effect on each of the endpoints defined in Figure 1.

INCLUSION OF ASYMPTOMATIC INFECTIONS AS A
STUDY ENDPOINT

Because each infection endpoint is also either an 
asymptomatic infection endpoint or a COVID-19 end-
point (Figure 1), vaccine efficacy levels for infection and 
for COVID-19, together with an assumption of the ex-
pected percentage of infections in the placebo group 
that will be asymptomatic, determine the vaccine effi-
cacy for asymptomatic infection. Table 2 shows this 
mathematical calculation if 40% of the infections in pla-
cebo recipients are expected to be asymptomatic (28). 
Under this expectation, if a vaccine reduces SARS-CoV-2 
infections by a modest amount, say 20%, but reduces 
symptomatic infections by an impressive 70%, the net 
result will be a 55% increase in asymptomatic infections. 
In such a scenario, although the vaccine would likely 
meet success criteria if COVID-19 (or BOD)



of community effect predicted by transmission models.
Duration of vaccine efficacy against the core set of
study endpoints will be a key parameter influencing the
community impact.

CONCLUSION
A primary endpoint should be clinically meaningful

(27), sensitive, and specific. A simple designation, such
as reducing COVID-19 disease severity, seems uncom-
plicated, but it masks potential interpretability and mis-
classification concerns. The COVID-19, severe COVID-
19, and BOD endpoints depend on sets of prescribed
symptoms, and myriad definitions could be used to
specify these sets. Although the FDA recommends defin-
ing the COVID-19 endpoint as virologically confirmed
SARS-CoV-2 infection accompanied by 1 or more of 11
symptoms (5), trialists have latitude to select particular
symptoms and severities needed to trigger virologic test-
ing. It is important to define a common COVID-19 end-
point that can be used consistently across trials, both for
interpretation of results and for facilitation of meta-
analyses of trials.

Because several candidate COVID-19 vaccines are
entering phase 3 testing, it is important to adopt a stan-
dard set of clinical endpoints for vaccine efficacy eval-
uation across all of the trials to provide uniform, com-
prehensive evaluations of benefit and risk and to
support pooling data for analyses of immunologic sur-
rogate endpoints. We have proposed a core set of pri-
mary and secondary clinical endpoints. The designa-
tion of endpoints as primary versus secondary may
differ by vaccine candidate because some may have a
greater preevaluation probability of blocking SARS-
CoV-2 acquisition, which could justify including infec-
tion as a primary endpoint. Regardless, we propose
that COVID-19 and severe COVID-19 should be impor-
tant standalone clinical endpoints to assess in every
vaccine efficacy trial, with adequate follow-up of all par-
ticipants to accumulate meaningful data for assessment
of longer-term protection against both endpoints, espe-
cially severe COVID-19, which needs greater endpoint
counts for a reliable quantification of vaccine efficacy.
Moreover, we have noted reasons for considering the
BOD endpoint as a (dual) primary or key secondary end-
point if the vaccine candidate is expected to work best
against severe COVID-19 and at an intermediate level
against nonsevere COVID-19. In such scenarios, the BOD
endpoint will provide improved power relative to
COVID-19, although this gain may be offset by a poten-
tial detriment in clinical interpretability associated with
this composite endpoint. Finally, given that a desired,
vaccine-induced decrease in the incidence of symp-
tomatic SARS-CoV-2 infections may be accompanied
by a shift toward more asymptomatic infections, we recom-
mend including the ability to evaluate vaccine efficacy
against the asymptomatic infection endpoint in trial designs.

From Biostatistics and Research Decision Sciences, Merck &
Co., North Wales, Pennsylvania (D.V.M., J.H.); Fred Hutchin-
son Cancer Research Center, Seattle, Washington (H.E.J.,

study endpoints for a hypothetical phase 3 clinical trial 
of a COVID-19 vaccine (see the Supplement for calcu-
lation details). Here, success criteria would be met if 
COVID-19, severe COVID-19, or BOD were the sole pri-
mary endpoint. Vaccine efficacy is low for preventing 
infection. The negative vaccine efficacy against asymp-
tomatic infection can be reasonably interpreted as the 
vaccine having shifted infections that would have been 
symptomatic without vaccination to asymptomatic in-
fections. Although an alternative interpretation that the 
vaccine at least partially caused more asymptomatic in-
fections that would not have occurred without vaccina-
tion cannot be ruled out, it would be deemed less bio-
logically plausible given the promising vaccine efficacy 
results for the COVID-19, severe COVID-19, and BOD 
endpoints.

The fact that a vaccine with low efficacy against ac-
quisition of SARS-CoV-2 infection and moderate to 
high efficacy against symptomatic infection could result 
in a net increase in asymptomatic infections highlights 
the need to understand the effect of asymptomatic in-
fections on transmission of COVID-19 (42). The contri-
bution of asymptomatic carriers to transmission dynam-
ics has been modeled for many infectious diseases, 
including influenza (43) and Bordetella pertussis (caus-
ative agent of whooping cough). For the latter, model-
ing analyses have considered the plausible situation 
where vaccination with the acellular B pertussis vaccine 
prevents symptomatic disease but does not prevent 
asymptomatic transmission, and concluded that such a 
scenario could explain the observed increase in B per-
tussis incidence during the past few decades (44). For 
SARS-CoV-2, modeling of the effect of a vaccine that 
reduces or prevents COVID-19 but increases asymp-
tomatic infections entails biological issues (for example, 
the relative rates of asymptomatic vs. symptomatic in-
fection, the relative transmissibility of asymptomatic vs. 
symptomatic infection, the relative vaccine effect on 
secondary transmission for asymptomatic vs. symptom-
atic infection, how this relative transmissibility differs in 
unvaccinated vs. previously vaccinated infected per-
sons, and how well this relative transmissibility can be 
measured by a viral load putative surrogate marker) 
and behavioral issues (for example, the rapidity and 
completeness of isolation after COVID-19 diagnosis, 
the coverage of SARS-CoV-2 testing in communities af-
ter vaccine approval, and the coverage of vaccination). 
Under very high rates of vaccine coverage, increased 
numbers of asymptomatic infections may be innocuous 
because any excess transmissions will tend to be to-
ward vaccinated persons who are well protected 
against severe disease. In contrast, in communities with 
low vaccination coverage, excess asymptomatic infec-
tions with transmission potential could increase the 
number of severe COVID-19 cases because the excess 
transmissions will tend to be to unvaccinated persons 
who are fully vulnerable to severe COVID-19. We antic-
ipate that recommendations about how a vaccine 
should be used in communities will likely be informed 
not only by the vaccine efficacy against infection or dis-
ease estimated in the clinical trials but also by estimates
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