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Background.  The identification of recent human immunodeficiency virus (HIV) 1 infections among people with new HIV diag-
noses is important to both tailoring and assessing the impact of HIV-1 prevention strategies.

Methods.  We developed a multiplexed Primer ID–next-generation sequencing approach to identify recent infections by meas-
uring the intrahost viral diversity over multiple regions of the HIV-1 genome, in addition to detecting drug resistance mutations 
(DRMs) and phylogenetically linked clusters. We summarize the field implementation of this all-in-one platform among persons 
with newly diagnosed HIV-1 by the North Carolina State Laboratory of Public Health in 2018.

Results.  Overall, recent infection was identified in 94 (35%) of 268 patients with new HIV diagnoses. People <30 years old, and 
people who inject drugs were more likely to have diagnoses of recent infection. The reverse-transcriptase region K103N was the most 
commonly detected DRM (prevalence, approximately 15%). We found a total of 28 clusters, and persons with recent infection were 
more likely to be cluster members than were those with chronic infections (P = .03).

Conclusions.  We demonstrate the rapid identification of recent infection and pretreatment DRMs coupled with cluster anal-
ysis that will allow prioritization of linkage to care, treatment, and prevention interventions to those at highest risk of onward 
transmission.
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The human immunodeficiency virus (HIV) 1 epidemic con-
tinues to be a significant threat to public health worldwide. 
In the United States, the Centers for Disease Control and 
Prevention estimates that 1.1 million people are currently living 
with HIV-1, with >38 000 cases newly diagnosed in 2017. This 
number has not declined since 2013, suggesting that novel 
methods are needed to interrupt onward transmission [1]. In 
particular, southern states have a disproportionately higher 
burden of HIV-1, higher than all other regions in the United 
States combined [2, 3], partially owing to the opioid crisis in 
this area in recent years [4, 5].

A key component of strategies to limit new infections (in-
cluding in the context of the End the HIV Epidemic initiative 
[6]) is to identify recent (incident) HIV-1 infections among 
persons with new diagnoses, as they represent ongoing trans-
mission events that may be linked in active transmission clus-
ters where a real-time intervention could block further spread 
locally. However, to achieve this goal, tools are needed that can 
rapidly and efficiently identify recency and that can be deployed 
in near real time. A method that provides clinically useful in-
formation and identifies transmission clusters in addition to an 
assessment of recency would amplify the utility of these tools.

We have described a next-generation sequencing (NGS) 
approach to identify recent HIV-1 infections based on se-
quence diversity in the reverse-transcriptase (RT) and 
env V1–V3 regions of the viral genome [7]. To accomplish 
this, we used a state-of-art multiplexed Primer ID (MPID) 
sequencing approach to reveal the true genome sampling 
depth of the viral population in each serum sample, to greatly 
reduce methodological errors in polymerase chain reaction 
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(PCR) sequencing, and to reconstruct true haplotypes, which 
is critical for accurately determining sequence diversity [8, 
9]. The combination of the variable V1–V3 region of env and 
the more conserved RT region of pol gave the most accurate 
estimate of recency. 

Based on this approach we established a pilot phylodynamics 
platform to identify recent HIV-1 infections; document the 
presence of transmitted drug resistance mutations (DRMs), 
by including additional amplicons covering the protease (PR) 
and integrase (IN) coding regions; and define transmission net-
works from a single NGS reaction using HIV-positive diagnostic 
specimens. This novel near real-time platform could serve as a 
key component for monitoring and intervention in individual 
HIV-1 outbreaks. In this article, we discuss the details of the 
platform and summarize the data from diagnostic specimens 
collected across North Carolina for the calendar year 2018.

MATERIALS AND METHODS

HIV-1 Diagnostic Specimens

The North Carolina State Laboratory of Public Health 
(NC-SLPH), conducts HIV-1 screening assays for public health 
agencies and for designated counseling and testing sites across 
the state. Approximately one-third of all new HIV diagnoses in 
North Carolina are identified by the NC-SLPH [10]. All HIV-
positive serum specimens are routinely stored at the NC-SLPH. 
After confirmation of test results and starting with samples col-
lected in 2018, aliquots of remnant HIV-positive serum were 
shipped to the University of North Carolina, Chapel Hill, for 
downstream sequencing and analysis. Individuals were con-
sidered new diagnoses and antiretroviral therapy naive if there 
was ≤30 days between the date of HIV-1 diagnosis recorded by 
the North Carolina Division of Public Health (NC-DPH) and 
the date of sample collection for HIV-1 testing by the NC-SLPH. 
This study was approved by institutional review boards at 
University of North Carolina, Chapel Hill, and the NC-DPH.

MPID Library Preparation and NGS

We used a MPID protocol for the sequencing HIV-1 in the di-
agnostic specimens. Viral particles were first pelleted followed 
by extraction of viral RNA (Qiagen). Viral RNA was used as 
template for complementary DNA (cDNA) synthesis, with a 
mixture of 4 primers, each with a block of random nucleotides 
(the Primer ID) [8, 9] and a gene-specific region targeting dif-
ferent sites in the HIV-1 genome, and the Superscript III system 
for reverse-transcription (Thermo Fisher Scientific). All of the 
bead-purified cDNA (Beckman Coulter) was included to start 
2 rounds of PCR amplification. In the first-round PCR we used 
a mixture of forward primers containing gene-specific regions 
and a universal reverse primer, and in the second-round PCR 
we introduced MiSeq adaptors and barcodes. We pooled up to 
24 libraries for a single MiSeq 300-base paired-end sequencing 
run (Illumina). Supplementary Table 1 shows the primer 

sequences, and Supplementary Figure 1 shows the workflow of 
MPID library preparation.

This protocol allowed us to amplify multiple regions of the 
HIV-1 genome in a single cDNA synthesis reaction/PCR ampli-
fication. We sequenced regions covering the HIV-1 PR (HXB2 
nos. 2164–2593), RT (HXB2 nos. 2648–2914 and 3001–3257, 
with the 2 sequence fragments linked), IN (HXB2 nos. 4384–
4751), and the env V1–V3 region (HXB2 nos. 6585–7208, with 
a small segment of the C2 region missing); a total of approxi-
mately 1.8 kb of the 9-kb HIV-1 genome was sequenced in each 
multiplexed reaction for each sample.

Bioinformatics Analysis

MiSeq data were initially processed using Illumina bcl2fastq 
pipeline software. TCS pipeline software, version 1.3.8, was 
used to sort the reads from the different regions of the ge-
nome and construct a template consensus sequence (TCS) for 
all the reads with the same Primer ID and filter out off-target 
sequences based on the targeted HXB2 coordinates. The depth 
of sampling of the viral population was equal to the number 
of different TCSs, each representing a different viral genome 
sequenced. We used the parameters identified in our previous 
work to estimate recent HIV-1 infection based on the sequence 
diversity (π) and the first quintile of the pairwise comparison  
[7]. Specimens were classified as recent HIV infection (within 
9 months of transmission), chronic infection, or indeterminate 
(based on criteria in the supplementary text and the algorithm 
flowchart in Supplementary Figure 2).

We first filtered TCSs for stop codons and APOBEC3G/F 
hypermutations and generated a cutoff for minority variants 
using a Poisson model for each sequenced region of each indi-
vidual specimen. There was no arbitrary cutoff for the minority 
variants; rather, we generated cutoffs for each individual specimen 
and region based on the number of TCS to distinguish potential 
residual methodological errors from true mutations using on a 
Poisson distribution model [8]. We selected the HIV-1 surveil-
lance DRMs from the Stanford HIV drug resistance database for 
the PR and RT region mutations, and we used the list of DRMs in 
the IN region from the International Antiviral Society–USA [11, 
12]. We calculated the prevalence and 95% confidence interval 
(CI) for each mutation. We used the following numbers of TCSs
as thresholds to be included in the analysis of the detection of
minor variants, based on the upper 95% confidence limits for the
binomial proportion when no mutation has been observed, given
the number of TCSs: 10 TCS (30% detection limit sensitivity), 34
(10%), 350 (1%), and 1208 (0.3%).

We identified close transmission clusters among the individ-
uals with new diagnoses by first making a consensus sequence 
from the TCS of the RT region to look for transmission clusters 
among people with newly diagnosed HIV. We used MUSCLE soft-
ware version 3.8.1 to alignment the sequences [13, 14], and then 
used FastTree software version 2.1 [15, 16] to make approximately 
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maximum likelihood phylogenetic trees. Putative transmission 
clusters were defined as clades with ≤1% genetic difference be-
tween sequences.

Statistical Analysis

Demographic characteristics that are routinely collected during 
HIV-1 surveillance by the NC-DPH were evaluated using de-
scriptive statistics. We fit multivariable logistic regression to 
identify characteristics associated with diagnosis during recent 
HIV-1 infection. Adjusted odds ratios (ORs) were calculated, 
with 95% CIs reported as measures of precision. We calculated 
the Clopper-Pearson binomial proportion CIs for DRMs iden-
tified in each specimen. The detection sensitivity of DRMs was 
based on the upper 95% confidence limits for the binomial pro-
portion when no mutation has been observed, given the number 
of TCSs. We used R software, version 3.5.0, for the analysis.

RESULTS

Summary of Samples and Sequencing

We used MPID-NGS to sequence HIV-positive serum speci-
mens from a total of 294 patients with new HIV diagnoses who 
had specimens submitted to the NC-SLPH for HIV-1 diagnostic 
testing during the calendar year of 2018; 268 (91%) were suc-
cessfully sequenced (defined as obtaining ≥10 TCSs in ≥2 ge-
nomic regions). The frequency of sequencing success decreased 
as a function of time since diagnosis, rising to >60% failure 
if specimen collection was >1  year after recorded diagnosis 
(Supplementary Table 2). In a sample of specimens from people 
with HIV diagnosed >1 year before specimen collection, we de-
tected the presence of antiviral drugs in 80% of the specimens 
that failed to sequence, suggesting that they were obtained from 
persons receiving suppressive therapy (Supplementary Table 3).

Characteristics of Persons With Newly Diagnosed HIV-1

We examined the demographic characteristics among the 
268 individuals whose serum specimens were successfully 
sequenced. Overall, based on the genetic diversity at the HIV-1 
RT and V1–V3 regions by MPID-NGS assay, we found 94 
(35.1%) of the specimens were from individuals who were re-
cently infected (estimated within 9 months from transmission), 
131 (48.9%) were from people infected for >9 months, and 43 
(16%) were indeterminate. Table  1 shows the demographic 
characteristics of individual with new HIV diagnoses stratified 
by the sequence-based inference of recency. Overall, most in-
dividuals were male (84%) and black/African American (72%); 
the median age at diagnosis was 27.6 years (interquartile range, 
23.7–36.5 years). Most of the individuals (63.4%) identified as 
men who have sex with men.

Indeterminate Samples
We identified a total of 43 indeterminate samples (16%) that 
represented either chronic infections with borderline diversity 

or multivariant infection (either recent dual infection or super-
infection). In phylogenetic analysis, we found 7 individuals with 
≥2 discrete homogenous intrahost viral lineages, indicating re-
cent multivariant infection (phylogenetic trees of these subjects 
shown in Supplementary Figure 3).

Recent Versus Chronic Infection
We used bivariable and multivariable logistic regression anal-
ysis to explore factors associated with recent HIV-1 infection at 
diagnosis. For this analysis, we excluded the 43 individuals with 
specimens of indeterminate chronicity. We found that younger 
people (<30 years old) were more likely to have recent HIV-1 
infection diagnosed (adjusted OR, 2.17; 95% CI, 1.21–3.98; 
P = .01), as were people who inject drugs (PWID) (5.31; 1.18–
37.59; P = .047) (Table 2).

Sequence Sampling Depth to Validate Sequence Data

Figure  1 shows the distribution of TCS numbers at 4 regions 
of all individuals with newly diagnosed HIV. These represent 
the number of viral genomes that were actually sequenced, 
validating the sampling depth of the viral sequence population 
and thus defining the sensitivity of detection of minor variants 
in the population. Overall, we obtained a median of 145, 162, 
165, and 81 TCSs for the PR, RT, IN and env V1–V3 regions, re-
spectively. Samples from individuals with recent infections had 
more TCSs than samples from those with chronic infection, 
consistent with higher viremia early after infection.

Identification of DRMs

The sampling depth of the viral sequence population defines 
the sensitivity for the detection of DRMs that are not fixed (ie, 
at 100%). Therefore, it is essential to group the specimens based 
on the sequence sampling depth, and thus the levels of sensi-
tivity of detection of minor variants. We pooled the results from 
samples that had TCS counts of at least 10, 34, 350, and 1208 
TCSs, which provided sampling depth to detect mutations as 
low as 30%, 10%, 1%, and 0.3% abundance, respectively, with 
95% confidence of detection. At a detection sensitivity of 30% 
abundance, we identified DRMs in 2.4% of the specimens (6 
of 254)  in PR, in 18.8% (49 of 260)  in RT, and in 3.6% (9 of 
252) in the IN region. At the sensitivity level of 10% abundance, 
we found similar percentages of 2.3%, 21.7%, and 4.6% of the
specimens had any PR, RT, or IN region DRMs, respectively.
However, at the sensitivity level of 1% abundance, 24.4%, 27.7% 
and 3.3% of the specimens had any PR, RT or IN region DRMs,
respectively, a significant increase in PR. Finally, at the sensi-
tivity level of 0.3% abundance, 60.5%, 51.5% and 2.3% of the
individuals had any PR, RT, or IN region DRMs, respectively
(Supplementary Table 4).

In the PR region, M46I/L was the most frequently identified 
DRM. In the RT region the nonnucleoside RT inhibitor (NNRTI) 
mutation K103N mutation was a major mutation in a similar 
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percentage of samples (approximately 15%) at all levels of detec-
tion sensitivity, indicating its presence at high abundance in the 
viral population within an individual when detected. In the IN 
region, the accessory mutation T97A was the most frequently seen 
mutation, found in approximately 3% of samples at all levels of 
detection sensitivity. By contrast, the clinically important DRMs, 
including RT region K65R and M184V and IN region major mu-
tations, were rarely seen. We compared the detection of DRMs in 
individuals with recent or chronic infections, based on the NGS 
recency assay, and we found that recently infected individuals were 
more likely to have RT region DRMs at the detection sensitivity of 
30%, with a borderline significant trend (23.7% vs 13.7%; P = .07), 
driven by both nucleoside RT inhibitor and NNRTI mutations 
(Supplementary Table 5).

Figure 2 shows the percentage of individuals identified with 
the presence of a panel of the most frequently identified DRMs 
at the different levels of detection sensitivity. We found that there 
were 2 distinct types of DRMs. The prevalence of RT K103N and 
IN T97A were similar across all levels of detection sensitivity. In 

contrast, the prevalence of PR region mutations M46L/I, D30N, 
V82A, and RT region mutations M41L, D67N, G190E, T215F/
I/C/ D/V/E increased greatly (up to 10-fold), with an increase in 
detection sensitivity from 30% to 0.3%. This demonstrates the 
frequent presence of these mutations in the viral populations at 
low abundance, but with their detection strongly dependent on 
an adequate depth of sampling of the individual viral popula-
tions. Identification of X4 viruses and non–subtype B viruses is 
included in the Supplementary Materials.

Identification of Genetic Clusters

We identified a total of 28 clusters among the individuals with 
newly diagnosed HIV, with clusters of 2–4 individuals. The 
maximum genetic distance between any 2 members of the 
cluster was within 1%. Persons with recent infection were more 
likely to be cluster members compared than with chronic infec-
tions (32% vs 18% in clusters; P = .03). Figure 3 shows the ML 
phylogenetic tree of the RT specimen consensus sequences with 
the transmission clusters highlighted.

Table 1.  Demographic Characteristics in Persons With New Human Immunodeficiency Virus 1 Diagnoses, Stratified by Recency of Infection According 
to Next-Generation Sequencinga

Persons With New HIV-1 Diagnoses by Recency of Infection, No. (%)

Characteristic Chronic (n = 131; [48.9]) Recent (n = 94 [35.1%]) Indeterminate (n = 43 [16.0%]) Total (n = 268)

Sex

  Female 17 (13.0) 20 (21.3) 6 (14.0) 43 (16.0)

  Male 114 (87.0) 74 (78.7) 37 (86.0) 225 (84.0)

Race

Black, non-Hispanic 94 (71.8) 68 (72.3) 30 (69.8) 192 (71.6)

  Hispanic 13 (9.9) 6 (6.4) 6 (14.0) 25 (9.3)

White, non-Hispanic 21 (16.0) 18 (19.1) 6 (14.0) 45 (16.8)

  Other 3 (2.3) 2 (2.1) 1 (2.3) 6 (2.2)

Age category, y

>44 22 (16.8) 12 (12.8) 7 (16.3) 41 (15.3)

18–24 31 (23.7) 34 (36.2) 12 (27.9) 77 (28.7)

25–34 60 (45.8) 38 (40.4) 15 (34.9) 113 (42.2)

35–44 18 (13.7) 10 (10.6) 9 (20.9) 37 (13.8)

Transmission risk factor  

  MSM 87 (66.4) 62 (66.0) 31 (72.1) 180 (67.2)

Heterosexual transmission

    Men 21 (16.0) 4 (4.3) 4 (9.3) 29 (10.8)

   Women 10 (7.6) 16 (17.0) 4 (9.3) 30 (11.2)

  PWID

    Men 0 (0) 4 (4.3) 1 (2.3) 5 (1.9)

   Women 2 (1.5) 3 (3.2) 0 (0) 5 (1.9)

    Other/unknown 11 (8.4) 5 (5.3) 3 (7.0) 19 (7.1)

STI coinfection

  No 94 (71.8) 64 (68.1) 25 (58.1) 183 (68.3)

  Yes 37 (28.2) 30 (31.9) 18 (41.9) 85 (31.7)

County of residence

  Urban 103 (78.6) 68 (72.3) 33 (76.7) 204 (76.1)

  Rural 16 (12.2) 15 (16.0) 8 (18.6) 39 (14.6)

  Missing 12 (9.2) 11 (11.7) 2 (4.7) 25 (9.3)

Abbreviations: HIV, human immunodeficiency virus; MSM, men who have sex with men; PWID, people who inject drugs; STI, sexually transmitted infection. 
aNew diagnoses were defined as those made ≤30 days before specimen collection. 
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DISCUSSION

In the current study, we developed a near real-time 
phylodynamics platform to detect recent HIV-1 infections, the 
presence of high and low abundance DRMs, and close transmis-
sion clusters, using diagnostic specimens sent to a centralized 
state testing laboratory. Among persons with new diagnoses, we 

estimate that >35% had recent infection (within 9  months of 
specimen collection), and that the most significant DRM was 
the NNRTI mutation K103N, seen in about 15% of the speci-
mens tested. We also found that diagnosis during recent infec-
tion was associated with younger age and PWID status, and that 
persons with recent infections were more likely than those with 
chronic infections to be identified in a cluster . Overall, this 
approach provides near real-time information about features 
of the ongoing HIV-1 epidemic that could be integrated into 
public health efforts to reduce transmission.

Several approaches have been used to estimate recency in the 
setting of HIV-1 testing and diagnosis. Serology-based assays 
have been developed to predict recency but their accuracy usu-
ally varies by geographic location and HIV-1 subtypes. Sanger 
(bulk) sequencing has been used previously to estimate re-
cency by counting sequence ambiguities or mixtures, but this 
approach has limited sensitivity and is also susceptible to back-
ground noise in the sequencing chromatogram [17]. More re-
cently, NGS has also been used [18–20]. A key limitation in the 
typical use of deep sequencing is that the number of sequence 
reads or distinct haplotypes is used as an indirect measure of 
the unknown number of viral genomes actually sequenced, 
leading to significant errors in the inferences that can be drawn. 
By contrast, the use of unique molecular identifiers, in this case 

Table 2.  Demographic Characteristics Associated With Diagnosis of Recent Human Immunodeficiency Virus 1 Infectiona

Characteristic

Patients, No. (%) OR (95% CI) [P Value]

Chronic Infection Recent Infection Univariable Multivariable

Sex

  Male 114 (60.6) 74 (39.4) … …

  Female 17 (45.9) 20 (54.1) 1.81 (.89–3.72) [.10] 1.91 (.89–4.14) [.10]

Black race

  No 37 (58.7) 26 (41.3) … …

  Yes 94 (58.0) 68 (42.0) 1.03 (.57–1.87) [.92] …

Age <30 y

  No 58 (66.7) 29 (33.3) … …

  Yes 73 (52.9) 65 (47.1) 1.78 (1.03–3.13) [.04] 2.17 (1.21–3.98) [.01]

MSM

  No 44 (57.9) 32 (42.1) … …

  Yes 87 (58.4) 62 (41.6) 0.98 (.56–1.72) [ .94] …

PWID

  No 129 (59.7) 87 (40.3) … …

  Yes 2 (22.2) 7 (77.8) 5.19 (1.22–35.39) [.04] 5.31 (1.18–37.59) [.047]

Unknown risk

  No 120 (57.4) 89 (42.6) … …

  Yes 11 (68.8) 5 (31.2) 0.61 (.19–1.75) [.38] -

STI coinfection

  No 94 (59.5) 64 (40.5) … …

  Yes 37 (55.2) 30 (44.8) 1.19 (.67–2.12) [.55] …

County of residence

  Urban 103 (60.2) 68 (39.8) … …

  Rural 16 (51.6) 15 (48.4) 1.42 (.65–3.07) [.37] …

Abbreviations: CI, confidence interval; MSM, men who have sex with men; OR, odds ratio; PWID, people who inject drugs; STI, sexually transmitted infection.
aRecent defined as within 9 months of transmission.
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called Primer ID, to add a unique sequence tag to each starting 
genome (via its cDNA primer) allows an exact quantification 
of the number of genomes that have been sequenced with en-
hanced accuracy. This has allowed us to use the increase in 
pairwise diversity of the viral population over time as a molec-
ular clock to infer the time since infection.

Recency is an important concept in monitoring the HIV-1 
epidemic, as opposed to less informative “new diagnoses.” 
Being able to identify incident infections would allow a focus 
of prevention efforts where transmission events have recently 
occurred and may be ongoing. In the public health setting, 
knowing recency over a longer time frame than acute HIV-1 
infection is more useful, because this approach will capture 
more transmission events beyond just the few with distinctive 
biological features that are present only over a short period of 
time (eg, antibody negative and/or high viremia). In the cur-
rent study, we found that younger people (aged <30 years) were 
more likely than older people to have HIV diagnosed within 
this 9-month window. We did not find significant differences 
in recency of diagnosis by sex or known risk factor, apart from 
PWID status. Although a small number of samples were tested 
from PWID, and therefore the OR had a very large CI, such 
data could be used as a justification to increase monitoring 
and focus prevention efforts. Our platform confirmed a focal 

outbreak of HIV among PWID that was previously intensely 
investigated by the NC-DPH [21].

Recent infections in transmission clusters are highly rele-
vant to public health in terms of targeted prevention [22]. We 
were able to define transmission clusters with recent infections, 
identifying significantly more recent infections in the clusters 
than the chronic infections. A previous study using a large set 
of pol sequences showed that people with acute or recent infec-
tions were more likely than those with chronic infections to be 
clustered together [23]. Although our sequenced regions were 
relatively short, the 1.2–kilobase pair pol sequence can still be 
integrated with pol gene databases collected for drug resistance 
testing [24] to study clusters on a much larger background, 
with annotated recency information provided by the MPID ap-
proach [2, 25, 26].

Transmitted DRMs has been extensively studied owing to 
clinical resistance testing done by bulk sequencing (ie, Sanger 
sequencing) to guide antiretroviral drug use when initiating 
therapy. DRMs are commonly acquired during treatment 
failure, and rates of transmitted drug resistance have been 
increasing over the years [27–30]. Deep sequencing has the po-
tential to detect minor variants in the viral population within an 
individual, with the sensitivity of detection limited by the depth 
of sampling of viral genomes sequenced, which unfortunately 
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is an uncontrolled variable in most sequencing applications. 
Efforts have been made in the past decade to study transmitted 
drug resistance, especially NGS analysis of minority mutations, 
but effects on treatment outcomes are still not fully understood 
[27, 31–36]. 

As noted above, an important advantage of the Primer ID 
approach is that it can be used to define the depth of sam-
pling of the viral population. Using this approach, we found 
2 distinct classes of DRMs. One class, with K103N in RT as 
an example, was present in a similar number of specimens re-
gardless of the genome sampling depth (in approximately 15% 
of all specimens tested). This indicates that, when present, 
these mutations are at high abundance and are likely rela-
tively stable over time. In contrast, there were more DRMs 
present at low abundance, such that the perception of how 
often they are present is strongly determined by the depth of 
sampling of the viral populations in the specimens. Thus, a 
group of mutations appear to be present in ≤1% of specimens 
when the sampling depth of the viral population is poor but 
can be detected in 10 times as many specimens when the true 
sampling depth allows detection of minor variants present at 
an abundance of 0.3%–1%. Of note, some of the APOBEC3g/
f-related mutations, such as PR D30N, M46I, and RT G190E
[37], are among those in this group.

The current study had several limitations and possible 
sources of bias. The NC-SLPH diagnoses only about one-third 
of new HIV cases in North Carolina, which might result in 
sampling bias of the population. Compared with the data on 

new diagnoses reported by North Carolina in 2018, the speci-
mens tested in the state laboratory were more likely to be from 
African American/black individuals (72% vs 63%) and slightly 
less likely to be from women (16% vs 19%) [10]. Another cur-
rent limitation of our approach is that some specimens (16%) 
yielded an indeterminate interpretation. Further bioinformatics 
algorithms need to be developed to make full use of the in-
formation in these indeterminate specimens.

In summary, our NGS/phylodynamics platform is a novel 
application to monitor the key HIV-1 epidemic components of 
recency, DRMs, and transmission clustering, all from a single 
sequencing reaction. This monitoring system is particularly im-
portant for high-burden countries, to monitor the percentage of 
recent infection in patients with newly diagnosed HIV over the 
years as an assessment of HIV control efforts.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
are the sole responsibility of the authors, so questions or com-
ments should be addressed to the corresponding author.
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