
Article

The International Journal of
Robotics Research
2023, Vol. 42(10) 798–826
© The Author(s) 2023

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/02783649231165818
journals.sagepub.com/home/ijr

Toward certifiable optimal motion planning for
medical steerable needles

Mengyu Fu1, Kiril Solovey2, Oren Salzman3 and Ron Alterovitz1

Abstract
Medical steerable needles can follow 3D curvilinear trajectories to avoid anatomical obstacles and reach clinically
significant targets inside the human body. Automating steerable needle procedures can enable physicians and patients to
harness the full potential of steerable needles by maximally leveraging their steerability to safely and accurately reach
targets for medical procedures such as biopsies. For the automation of medical procedures to be clinically accepted, it is
critical from a patient care, safety, and regulatory perspective to certify the correctness and effectiveness of the planning
algorithms involved in procedure automation. In this paper, we take an important step toward creating a certifiable optimal
planner for steerable needles. We present an efficient, resolution-complete motion planner for steerable needles based on a
novel adaptation of multi-resolution planning. This is the first motion planner for steerable needles that guarantees to
compute in finite time an obstacle-avoiding plan (or notify the user that no such plan exists), under clinically appropriate
assumptions. Based on this planner, we then develop the first resolution-optimal motion planner for steerable needles that
further provides theoretical guarantees on the quality of the computed motion plan, that is, global optimality, in finite time.
Compared to state-of-the-art steerable needle motion planners, we demonstrate with clinically realistic simulations that
our planners not only provide theoretical guarantees but also have higher success rates, have lower computation times, and
result in higher quality plans.

Keywords
Motion planning, medical robot, formal guarantees

1. Introduction

Steerable needles are highly flexible medical devices able to
follow 3D curvilinear trajectories inside the human body,
reaching clinically significant targets while safely avoiding
critical anatomical structures (Alterovitz et al., 2005; Cowan
et al., 2011; Park et al., 2005; Webster et al., 2006).
Compared with traditional rigid medical instruments,
steerable needles can reduce a patient’s trauma, increase
safety, and provide minimally invasive access to previously
inaccessible targets. Steerable needles have been considered
for a wide range of diagnostic and treatment procedures
including biopsy, drug therapy delivery, and radioactive
seed implantation for cancer treatment (Abolhassani et al.,
2007).

Direct manual control of steerable needles can be un-
intuitive and impractical for human operators due to the
nonholonomic constraints on the needle’s 3D motion and
the cluttered nature of anatomical environments. Thus,
automation is critical to harnessing the full potential of these
needles and enabling physicians to maximally leverage their
steerability and ability to accurately and precisely reach
targets. To automate steerable needle procedures, physicians
first obtain a medical image (such as a computed tomog-
raphy (CT) or magnetic resonance imaging (MRI) scan) of

the relevant anatomy, from which we can segment (man-
ually or automatically) the relevant anatomy, including the
target to reach and obstacles to avoid. The next key in-
gredient to the automation of steerable needle procedures is
motion planning, which requires computing feasible mo-
tions to steer the needle safely around the anatomical ob-
stacles and to the target. Examples of scenarios of lung and
liver biopsies are shown in Figure 1 (top).

For the automation of medical procedures to be clinically
accepted, it is critical from a patient care, safety, and reg-
ulatory perspective to certify the correctness and effec-
tiveness of the algorithms involved in procedure
automation. To this end, a motion planner should first

1Department of Computer Science, University of North Carolina at Chapel
Hill, Chapel Hill, NC, USA
2Department of Electrical and Computer Engineering, Technion–Israel
Institute of Technology, Haifa, Israel
3Department of Computer Science, Technion–Israel Institute of
Technology, Haifa, Israel

Corresponding author:
Mengyu Fu, Department of Computer Science, University of North
Carolina at Chapel Hill, Sitterson Hall, 201 S. Columbia Street, Chapel
Hill, NC 27599, USA.
Email: mfu@cs.unc.edu

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/02783649231165818
https://journals.sagepub.com/home/ijr
https://orcid.org/0000-0002-5237-1220
https://orcid.org/0000-0003-0254-0572
https://orcid.org/0000-0002-4492-1384
mailto:mfu@cs.unc.edu

guarantee that it will compute a solution, when one exists, in
finite time, or notify the user that no solution exists.
Moreover, the computed solution should strive to maximize
patient safety, which can be quantified using metrics such as
minimizing trajectory length (Favaro et al., 2018), maxi-
mizing clearance from obstacles (Agarwal et al., 2018;
Kuntz et al., 2015; Strub and Gammell, 2021; Wein et al.,
2008), and minimizing damage to sensitive tissue (Bentley
et al., 2021; Fu et al., 2018). Thus, a motion planner for
steerable needles should be complete, that is, find a solution
plan in a finite number of steps, if one exists, and ideally
should be optimal, that is, ensure that the returned plan has a
cost (for a given cost metric) that is close to the global
optimum. Unfortunately, no previously developed motion
planner for steerable needles offers a formal guarantee on
completeness, let alone optimality.

Although various motion planners have been proposed
for steerable needles, those planners do not have theo-
retical guarantees for either returning a solution (Duindam
et al., 2010; Favaro et al., 2018; Hauser et al., 2009; Patil
et al., 2014; Pinzi et al., 2021; Seiler et al., 2012; Van Den
Berg et al., 2010; Xu et al., 2008) or returning a solution
that terminates within a clinically reasonable distance of
the target (Liu et al., 2016) when a solution exists. Some
prior motion planners for steerable needles do aim to

optimize motion plan cost but they lack global optimality
guarantees (Favaro et al., 2018; Favaro et al., 2021; Liu
et al., 2016; Pinzi et al., 2019). Some sampling-based
planners are known to be both complete and optimal,
albeit those properties are usually proven only for an
asymptotic regime where the number of samples tends to
infinity (Hauser and Zhou, 2016; Karaman and Frazzoli,
2011; Kleinbort et al., 2018, 2020; LaValle and Kuffner Jr,
2001; Li et al., 2016; Salzman and Halperin, 2015;
Solovey et al., 2020; Sun et al., 2015). Thus, it is unclear
what should be the number of samples necessary to
achieve those guarantees in practice. Recent work has
developed optimality guarantees for finite sampling, al-
though those results cannot be currently applied to
steerable needles as they deal with holonomic systems
(Dayan et al., 2021; Tsao et al., 2020).

Providing completeness and optimality guarantees for a
steerable needle motion planner is challenging in part be-
cause motion planning for steerable needles in 3D with
curvature constraints is at least NP-hard (Kirkpatrick et al.,
2011; Solovey, 2020). This challenge inspires us to consider
variants of completeness or optimality relevant to medical
applications. Some variants that only offer asymptotic
guarantees, such as probabilistic completeness and as-
ymptotic optimality (LaValle, 2006), are not useful for

Figure 1. Top left: A medical steerable needle (cyan) is used to reach a nodule (green) in the lung parenchyma for biopsy or cancer
treatment while avoiding critical anatomical structures such as the bronchial tubes (brown) and major blood vessels (red). Top right:A
medical steerable needle (cyan) is used to reach a nodule (green) in the liver tissue while avoiding major blood vessels (red). Bottom:
Our resolution-complete motion planner uses search trees built using different resolutions, illustrated here in 2D. Avalid motion plan goes
from the start configuration (blue dot) to the goal point (green dot), while avoiding obstacles (red) and satisfying kinematic constraints.
The left search tree uses a coarse resolution and fails to find a plan while the right one uses a finer resolution and successfully generates a
motion plan (yellow).

Fu et al. 799

needle steering since these guarantees only hold as com-
putation time increases to infinity, but medical applications
typically require guaranteeing the planner’s behavior within
a finite time.

In this paper, we focus on specific types of guarantees
relevant to real-world medical applications: resolution
completeness (LaValle, 2006) and resolution optimality
(Barraquand and Latombe, 1993; Pivtoraiko et al., 2009).
Generally speaking, a resolution characterizes the dis-
cretization of some space (e.g., state space, configuration
space, action space, and time). An algorithm is resolution
complete if there exists a fine-enough resolution with which
the algorithm finds a plan in finite time when a qualified
solution exists, and otherwise correctly returns that no such
plan exists. An algorithm is resolution optimal if it is
resolution complete and if, when it does return a motion
plan, the plan’s cost is guaranteed to be within a desired
approximation factor of the cost of a globally optimal
qualified motion plan. We illustrate at the bottom of Figure 1
an example showing searches with different resolutions for
needle steering.

1.1. Contribution

In this paper, we first present Resolution-Complete Search
(RCS), an efficient, resolution-complete motion planner for
steerable needles based on a novel adaptation of multi-
resolution planning. RCS is resolution complete, which
means that under some mild assumptions on the system
and the solution (detailed in Section 5), the planner, in finite
time, is guaranteed to find a motion plan as long as the
problem admits a qualified solution. We then describe an
extension of RCS, called RCS*, that achieves resolution
optimality. In particular, RCS* explores the needle’s state
space in an A*-like fashion, with cost-aware duplicate
pruning while incorporating motion plan cost tracking and a
heuristic function to improve efficiency.

Our overall contributions include (i) carefully defining
the motion primitives (Frazzoli et al., 2002) used by our
planners, which are specifically tailored to our domain of 3D
steerable needles (Section 4.1.1); (ii) introducing a set of
domain-specific optimizations that improve the efficiency
of the algorithm while maintaining resolution completeness
and resolution optimality (Section 4.3); and (iii) providing a
proof to show the resolution completeness and optimality of
our methods (Section 5).

We demonstrate the performance of our planners in two
clinically realistic scenarios where the needle should reach a
target while safely avoiding obstacles (e.g., blood vessels).
In the setting of (i) lung biopsy, the needle is deployed
through a bronchoscope and must steer through the lung
parenchyma (the tissue of the lung outside the bronchial
tubes) and in the setting of (ii) liver biopsy, the needle is
deployed into the liver through its anterior surface and must
steer through the liver tissue. We compare in simulation our
planner with several other steerable needle planners and
demonstrate experimentally that RCS and RCS* outperform

the state-of-the-art in terms of computation time, success
rate, and plan quality.

This work is the integration and extension of two con-
ference papers (Fu et al., 2021b, 2022) where we introduced
RCS and RCS*, respectively. The main changes in the
current version from the previous conference papers are
(i) full proofs for resolution optimality that were previously
given as sketches, (ii) new experiments for a liver biopsy
scenario, and (iii) an extended set of experimental results,
including an ablation study on the algorithms’ parameters.

2. Related work

Steerable needles have many different designs, including
bevel-tip flexible needles (Cowan et al., 2011; Webster
et al., 2006), symmetric-tip needles (DiMaio and
Salcudean, 2003), needles with curved stylet tips
(Okazawa et al., 2005), needles with tendon-actuated tips
(Qi et al., 2014), programmable bevel-tip needles (Ko et al.,
2011; Secoli and Rodriguez Y Baena, 2016), and fracture-
directed waterjet steerable needles (Babaiasl et al., 2020). In
this paper, we focus on bevel-tip flexible needles but our
approach can be easily applied to any mechanical design as
long as the major kinematic constraint to consider is the
curvature of the needle trajectory.

2.1. Motion planning for steerable needles

Early work studied planning and control for steerable
needles in the 2D plane (Alterovitz et al., 2007; Asadian
et al., 2011; Bernardes et al., 2012; Reed et al., 2011). To
fully utilize the capability of steerable needles, later work
began to focus more on needle steering in 3D environments.
Duindam et al. (2010) used inverse kinematics for planning
but the planner was tested only with simple geometrically
shaped obstacles and provides no theoretical guarantees.

Other planners built upon the probabilistic completeness
guarantees of sampling-based methods such as the Rapidly-
exploring Random Tree (RRT) (LaValle and Kuffner Jr,
2001). For example, Xu et al. (2008) used an RRT variant
for needle steering (although having slow running times
when compared to alternatives we will mention shortly) and
Patil et al. (2014) developed an RRT-based needle planner
that guides the tree expansion by sampling in the 3D
workspace (instead of the configuration space). Sampling in
a lower-dimension space and their customized distance
function made the planner work efficiently in many practical
cases, but this also invalidated the probabilistic-
completeness guarantee of RRT (Kleinbort et al., 2020;
LaValle and Kuffner Jr, 2001). Sun et al. (2015) proposed a
needle planner that builds multiple RRTs, which is as-
ymptotically optimal only when the number of trees tends to
infinity.

To avoid dealing with curvature constraints directly in
the RRT algorithms, there are also hybrid methods that
combine sampling and other techniques. Favaro et al.
(2018) proposed a method based on RRT* (Karaman and

800 The International Journal of Robotics Research 42(10)

Frazzoli, 2011) that builds a tree embedded in the 3D
workspace to generate candidate plans of low cost, followed
by a smoothing step to account for the curvature constraint.
This was later extended into another hybrid method that
combines sampling, optimization, and search (Favaro et al.,
2021). However, such a decoupling does not allow to
guarantee asymptotic optimality (Karaman and Frazzoli,
2011; Solovey et al., 2020).

Liu et al. (2016) proposed the Adaptive Fractal Tree
(AFT) for needle steering and used a Graphics Processing
Unit (GPU) to further speed up their algorithm. The method
uses a greedy approach for path refinement—it iteratively
uses the lowest-cost path in the previous iteration for plan
refinement. However, expanding the best path of a coarse
resolution does not necessarily lead to a best path of a finer
resolution. Furthermore, the authors use a cost function
consisting of three factors, only one of which is the distance
to the goal, also known as the targeting error. Thus, when
provided with a required targeting error, paths produced by
the method are not guaranteed to adhere to this constraint
since the targeting error may be sacrificed for a better cost
for the other two terms. Pinzi et al. (2019) later extended
AFT to account for goal orientation constraints.

Other methods focus on accounting for uncertainties
during needle insertion but do not account for completeness
(Hauser et al., 2009; Pinzi et al., 2021; Seiler et al., 2012;
Van Den Berg et al., 2010). To summarize, to the best of the
authors’ knowledge, none of the existing steerable needle
planners provide provable guarantees on the planner’s
completeness.

2.2. Resolution-complete motion planners

Generally speaking, an algorithm is resolution complete if it
generates a plan to the goal whenever a solution exists at the
maximal resolution and returns failure otherwise (Barraquand
and Latombe, 1991). This property guarantees that given a
predefined maximal resolution, the algorithm terminates in
finite time and provides a deterministic result.

Barraquand and Latombe (1993) proposed a planner for
single/multi-body mobile robots with nonholonomic con-
straints. They formally proved the planner is guaranteed to
generate a solution path when the discretization of the
search parameters is fine enough. This approach was later
extended by Lindemann and LaValle (2006) to suggest a
multi-resolution approach for 2D car-like robots. Both these
works (Barraquand and Latombe, 1993; Lindemann and
LaValle, 2006) serve as the algorithmic foundations of the
planner we present in this paper.

Sampling-based planners (such as RRT) typically ensure
probabilistic completeness (i.e., such a planner is guaran-
teed to find a solution, if one exists, with probability one
when given infinite time). However, they can also be used to
build resolution-complete planners given some mild as-
sumptions on the minimal motion that the system can
perform. Cheng and LaValle (2002) proposed a resolution-
complete version of RRT for systems that satisfy the

Lipschitz condition. Yershov and LaValle (2010) formally
analyzed the system conditions for the existence of
resolution-complete planners. Kleinbort et al. (2018) later
analyzed the assumptions for RRT’s probabilistic com-
pleteness in kinodynamic planning. However, their analysis
can be adapted to resolution-completeness guarantees.

2.3. Resolution-optimal motion planners

Resolution optimality earned little attention, possibly due to
being rather complex to analyze mathematically, particu-
larly for nonholonomic systems. Consequently, many
planners developed for nonholonomic systems focus on
asymptotic optimality instead (Gammell and Strub, 2021;
Hauser and Zhou, 2016; Li et al., 2016; Shome and Kavraki,
2021).

The previously mentioned method of Barraquand and
Latombe (1993) for resolution-complete planning with
nonholonomic constraints is optimal with respect to the
number of reverse maneuvers in the plan. Pivtoraiko et al.
(2009) proposed the idea of motion planning using state
lattices for field robots. Their state lattices planner is res-
olution optimal since the search is optimal for a graph of
some resolution and the discrete state grid approximates the
continuous space as resolution increases. Ljungqvist et al.
(2017) later extended Pivtoraiko et al. (2009) for a general
two-trailer system in 2D. They used a two-point boundary
value problem (2pBVP) solver to generate a set of motion
primitives connecting 2D grid points.

The aforementioned planners can be used to plan for 2D
nonholonomic robots, but none account explicitly for the
challenges of planning with curvature constraints in 3D.
(The latter case is particularly challenging not only because
of the higher dimensional search space but also because of
the absence of boundary-value solvers.) Additionally, these
planners are designed for large-scale workspaces (where the
minimum radius of curvature is relatively small compared to
the scale of the workspace), making them unsuitable for
tasks where a high level of precision is required, such as for
steerable needles.

3. Problem definition

In this work, we consider steerable needles that operate in a
3D workspace W2R

3, which is cluttered with obstacles
Wobs � W. We define the configuration space (or C-space)
of the steerable needle as X � SEð3Þ. Each configuration
x ¼ ðp, qÞ 2X uniquely defines the pose (i.e., position
p2R

3 and orientation q2SOð3Þ) of the needle tip. We
define a projection function Projð�Þ :X →W that projects
configurations to points in the workspace, that is, Proj(x) = p.
A configuration x is collision free if ProjðxÞÏWobs, and is in
collision otherwise. The union of all collision-free configu-
rations is denoted asX free. We make the common assumption
that the steerable needle is sufficiently flexible so the needle
shaft moves along the trajectory created by its tip while the
lateral motions are negligible. Thus, a motion plan of the
needle can be uniquely defined as a trajectory σ : ½0,l�→X,

Fu et al. 801

wherel is the length of the trajectory defined in the 3D
Euclidean distance space. Such a motion plan σ is collision
free if all configurations along the trajectory are collision-
free, namely, "s2 ½0,l�, σðsÞ 2X free.

We also need to consider the kinematics of the steerable
needle. We specifically consider steerable needles that are
highly flexible and have an asymmetric tip (e.g., a bevel)
(Alterovitz et al., 2005, Cowan et al., 2011, Park et al., 2005,
and Webster et al., 2006); the asymmetric tip exerts
asymmetric forces on the tissue in front of the needle tip,
and the high flexibility enables the needle to curve sub-
stantially at maximum curvature κmax as it moves through
the tissue. Furthermore, rotating the needle axially at its base
changes the direction of the needle’s asymmetric tip, en-
abling the needle to change its direction of steering. See
Figure 2 for an illustration.

We say a motion plan is (kinematically) feasible if it
never exceeds the maximum curvature κmax. A validmotion
plan for the needle is both collision-free and feasible. We
also assume there exists a resolution describing the smallest
interval or precision of the achievable motions, which may
be limited by the physical system’s hardware (e.g., motor,
encoders, and controller) and its interaction with the en-
vironment. For the steerable needle application in this paper,
we determine this finest resolution by considering the
hardware’s ability to measurably change the steerable
needle tip’s position and orientation in tissue, which in-
cludes parameters such as the minimum insertion distance
and rotational direction change per controller time step, as
defined in Section 4. Considering real-world effects such as
torsional wind-up of the needle shaft during actuation, the
control resolution of the needle tip is coarser than the control
resolution of the needle base where motors directly apply
controls. Thus, we are not using minimal motions of the
motors. Instead, we consider the minimal motions the tip of
the needle can perform. We assume there exists a lower-
level controller capable of controlling the tip to the desired
pose, as is common in needle-steering systems (Ertop et al.,
2020; Rucker et al., 2013).

We are now ready to state two different problems con-
sidered in this work. The first problem calls for computing a
valid motion plan for a given case while the second problem

is formulated as an optimization problem with respect to the
cost of a motion plan.

3.1. Steerable needle motion planning problem

Problem 1. A steerable needle motion planning problem
is defined as the tuple Δ ¼ ðX ,Wobs, xstart, pgoal,
τ,lmax, κmaxÞ, where Wobs is the obstacle set, xstart is the
start configuration, pgoal 2W is the goal point, τ > 0 is the
goal tolerance,lmax > 0 is the maximum insertion length,
and κmax > 0 is themaximum curvature. The problem calls
for computing a motion plan σ : ½0,l�→X subject to:

(i) σ is valid,
(ii) σ(0) = xstart,
(iii) trajectory lengthl≤lmax,
(iv) kProj(σ(l)) � pgoalk2 ≤ τ.

As we show in our discussion (Section 5), for any given
instance of Problem 1, under some mild assumptions, there
exists some fine-enough resolution Rmin = (δlmin, δθmin)
(corresponding to the needle’s insertion and axial rotation,
respectively) for which our proposed planner, RCS, is
guaranteed to find a solution in finite time (when one exists)
or to indicate that no solution exists.

3.2. Optimal steerable needle motion
planning problem

To evaluate the quality of a motion plan, we consider a
configuration-based cost function c :X →R. We require c
to be well behaved (formally defined in Section 5), which
includes being Lipschitz continuous and bounded within
[cmin, cmax]. We define the cost of a motion plan as the
integral of the configuration-based cost function along a
given trajectory σ, that is,

CðσÞ ¼
Z l

0

cðσðsÞÞds: (1)

If a cost function satisfies the above form, we say it is an
integrated cost function. This definition captures a variety
of cost functions, including trajectory length and integrating
over a cost map derived from medical images.

Problem 2.An optimal steerable needle motion planning
problem is defined as an optimization problem, denoted
by a tuple Δ* ¼ ðΔ, CÞ, where Δ is a steerable needle
motion planning problem defined in Problem 1 and C is
an integrated cost function. The current problem calls for
computing an optimal motion plan

σ* ¼ argminσCðσÞ,

subject to the same four conditions as in Problem 1.

Figure 2. The kinematics of a bevel-tip steerable needle. The
needle can be inserted (characterized byl) and axially rotated at
its base (characterized by θ).

802 The International Journal of Robotics Research 42(10)

Similarly, we will show in Section 5 that for any given
instance of Problem 2, under some mild assumptions, there
exists a fine-enough cutoff resolution Rmin = (δlmin, δθmin)
for which our proposed planner, RCS*, is guaranteed to
return a motion plan with a cost to be within a desired
approximation factor of a globally optimal qualified motion
plan in finite time (if any qualified motion plan exists), or
indicate that no qualified motion plan exists.

4. Method

In this section, we first describe the resolution-complete
needle planner RCS in Section 4.1. We then provide in
Section 4.2 a resolution-optimal extension called RCS*.
Finally in Section 4.3, we highlight a set of optimizations
that improve the efficiency of both RCS and RCS*.

4.1. Resolution Complete Search

Given our motion-planning problem, our needle planner
builds a search tree T ¼ ðV, EÞ embedded in the C-space
with xstart as its root. Each node v2V is associated with a
configuration xv 2X , and each edge e ¼ ðv, uÞ 2 E repre-
sents the transition from xv to xu. To expand a node v2V,
we construct new nodes (children of v) with motion
primitives (to be explained shortly in Section 4.1.1), which
are predefined feasible motions. A child node vchild is ac-
cepted and added to the search tree if the trajectory from v to
vchild is collision-free and vchild is valid (will be detailed in
Section 4.1.3). The search tree grows until there is some
node v with configuration xv whose tip is inside the
τ-neighborhood of pgoal (condition (ii) in Problem 1).

A key aspect of our search method (which is similar in
nature to other search-based planners like Lindemann and
LaValle (2006)) is to use a set of motion primitives defined
using multiple resolutions. Instead of expanding each node
in our search tree using the entire set of motion primitives,
we start with coarse motion primitives and use finer motion
primitives as the search progresses. Thus, we start (Section
4.1.1) by describing the parameters required to define a

motion primitive. After that, we continue (Section 4.1.2) to
detail a hierarchy of motion primitives together with an
ordering that will be used in our search algorithm. We then
describe our search algorithm in detail (Section 4.1.3) and
elaborate on the method we use to handle “similar” states,
also known as duplicate detection (Du et al., 2019)
(Section 4.1.4).

4.1.1. Motion primitives. Motion primitives, introduced by
Frazzoli et al. (2002), have been used in many motion
planners (Islam et al., 2019, 2020; Lindemann and LaValle,
2006; Ljungqvist et al., 2017; Pivtoraiko and Kelly, 2011).
In our setting, the motion primitives are a set of predefined
kinematically feasible local motions. Roughly speaking, a
motion primitive defines with what curvature the needle
curves, how far the needle steers, and in which direction (see
Figure 3). Since for each motion primitive, the curvature κ is
explicitly defined, a motion primitive is guaranteed to be
kinematically feasible as long as κ ≤ κmax.

More formally, to steer from configuration xv, a motion
primitive is defined as a three-tuple M ¼ ðκ, δl, δθÞ, where
κ 2 [0, κmax] is the curvature, δl> 0 is the length of the
circular arc, and δθ2 ½0; 2πÞ is the angle between the
curving plane and the XZ-plane of xv (see Figure 3). Thus,
the action space (or motion space) can be defined as
A � R

3, which is the set of all motion primitives. We use
xu ¼ xvÅM to denote the operation of extending xv with
motion primitive M and obtaining the resultant configu-
ration xu. See Figure 3 for a step-by-step determination of
xu. In the context of a search tree, by a slight abuse of
notation, u ¼ vÅM denotes the resultant node u, obtained
by extending node v with the motion primitive M. We call
M the extending primitive of node u.

Using motion primitives allows pre-computing inter-
mediate configurations and thus saving computation ef-
forts during planning by transforming these configurations
to the frame defined by xv. Since the trajectory produced
with one motion primitive is a circular arc, it is possible to
densely interpolate the trajectory for collision-checking
purposes.

Figure 3. A motion primitive is a circular arc defined as M ¼ ðκ, δl, δθÞ. The circular arc (dark green) lies in the curving plane (light
green) that contains the Z-axis (blue) at the start configuration xv. κ is the curvature of the arc, δθ is the angle between the curving plane
and the XZ-plane, and δlis the length of the arc. The figures show step-by-step how the child configuration xu ¼ xvÅM is generated.

Fu et al. 803

In the following sections, we show how δland δθ are
gradually refined by the algorithm. In contrast, we keep a
fixed set of curvatures, {0, κmax}, for all motion primitives.
As we will see (Section 5), this does not hinder the
guarantees provided by our approach. Moreover, as we
demonstrate in our experiments (Section 6), these primi-
tives, coupled with our planners, allow us to efficiently
compute paths for non-trivial instances where other
planners fail.

4.1.2. Motion primitive hierarchy. Our algorithm uses a
sequence of motion primitives, whose resolution
changes from coarse to fine. The coarsest motion
primitives are defined by parameters δlmax and δθmax. In
our implementation and examples (e.g., Figure 4), we
have that δθmax = π/2 and δlmax > 0 is a user-given
parameter.

Since δθ2 ½0; 2πÞ and δθmax = π/2, there exist four
orientations (δθ 2 {0, π/2, π, 3π/2}) that have the coarsest
orientation (see Figure 4). There exists only one coarsest
length, which is δlmax, since path length is accumulated
when we expand a node. To characterize how fine the
resolution of a motion primitive M ¼ ðκ, δl, δθÞ is, we
define the notions of length level lland angle level lθ. More
formally,

llðMÞ ¼ min
�
l 2Z

�� l ≥ 0,MOD
�
δl, 2�l � δlmax

�
¼ 0

�
,

lθðMÞ ¼ min
�
l2Z

�� l ≥ 0,MOD
�
δθ, 2�l � δθmax

�
¼ 0

�
,

where MOD(�) is the modulo operation.

For a motion primitive M ¼ ðκ, δl, δθÞ, we refine the
resolution of both the insertion δland the orientation δθ.
The new motion primitives constructed by refining δlare:

Ml± ¼
�
κ, δl± 2�ðllðMÞþ1Þ � δlmax, δθ

�
: (2)

Similarly, the motion primitives constructed by refining δθ
are:

Mθ± ¼
�
κ, δl, δθ ± 2�ðlθðMÞþ1Þ � δθmax

�
: (3)

It is straightforward to see that the refined motion primitives
Ml� and Mlþ both have a length level of llðMÞ þ 1 and
the refined motion primitives Mθ� and Mθþ both have an
angle level of lθðMÞ þ 1 (see Figure 4).

Note that when refining a motion primitive with llðMÞ ¼
0 (resp. lθðMÞ ¼ 0), we ignore Mlþ (resp. Mθ�) as they
both exceed the range of exploration.

Similar to Lindemann and LaValle (2006), our search
algorithm expands nodes according to a node’s rank. Rank
captures both the depth of a node in the search tree and the
fineness of resolution along the branch connecting the node
from the root. We define the rank of the root node to be zero,
the rank of any other node v is recursively defined as:

RankðvÞ ¼ Rankðv:parentÞ þ llðMvÞ þ lθðMvÞ þ 1: (4)

For a visualization, see Figures 4 and 5.

4.1.3. Algorithm description. We run an A*-like search (Hart
et al., 1968) where nodes are ordered according to their rank
(equation (4)). A distinctive feature from (vanilla) A* is that

Figure 4. Visualization of length and angle levels. Left: Visualization of length levels. Smaller node sizes correspond to higher length
levels. The first length level (ll= 0) corresponds to motion primitives of maximal length (δlmax). As llincreases, the resolution of length
becomes higher. The gray spheres show the lengths at corresponding length levels while the white spheres show the lengths that have
been explored at a smaller level. The gray arrows illustrate how motion primitives with the first 4 length levels are generated during
refinement. Right: Visualization of angle levels. Nodes with angle levels 0, 1, and 2 are shown in red, yellow, and blue, respectively.
The first angle level (lθ = 0) corresponds to motion primitives of δθ = {0, π/2, π, 3π/2}. As lθ increases, the resolution of orientation
becomes higher. The circular arrows illustrate how nodes with the first three angle levels are generated during refinement. Middle: 3D
visualization of length and angle levels.

804 The International Journal of Robotics Research 42(10)

when we expand a node, we also increase the resolution of the
motion primitives used to expand its parent and add nodes using
these finer motion primitives to the search’s priority queue. The
rest of this section formalizes this idea.

Alg. 1 shows the pseudocode of our RCS needle planner.
We first initialize the coarsest orientations and the curvature
set (Alg. 1, line 1), and then initialize the OPEN list and
CLOSED set (Alg. 1, line 3). The search algorithm then
iteratively extracts nodes from the OPEN list (Alg. 1, line 5),
where nodes are ordered in a monotonically non-decreasing
order according to their rank.

Algorithm 1 ResolutionCompleteSearch (RCS)

Only at this point (Alg. 1, line 6) the extracted node is validated.
This is also known as lazy validation (Hauser, 2015; Mandalika
et al., 2019). Validation of node v involves ensuring that:

(i) the circular-arc trajectory connecting v.parent and v
should be collision-free;

(ii) the trajectory from the root to v is not identical to
another node that only needs equal or coarser motion
primitives to get to; and

(iii) the accumulated trajectory length should not exceed
the maximum insertion lengthlmax.

An invalid node will be rejected and discarded. For a
valid node v, we further check if there exists any similar
configuration in the CLOSED set in order to avoid con-
sidering equivalent or highly similar configurations
(Section 4.1.4). A valid node without a similar configu-
ration is accepted, expanded, and added to the CLOSED
set (Alg. 1, lines 10–12). The search terminates if the
associated configuration of the accepted node satisfies the
goal tolerance.

In our search algorithm, only the coarsest child nodes are
added to the OPEN list during the initial expansion of a node
(Alg. 1, lines 10–11). But additional child nodes, created
with finer motion primitives, are added when the coarse
child nodes are extracted from the OPEN list (Alg. 1, line
16). More specifically, when node v is extracted, we refine
its extending motion primitive Mv following equations (2)
and (3) (Alg. 1, line 14), and use the refined motion
primitives Ml± and Mθ± to expand v.parent.

As specified in Section 3, for a physical needle-steering
robot, there exists some smallest interval or precision of the
achievable motions, which induces the minimal insertion and
axial rotation δlmin and δθmin, respectively. We term Rmin =
(δlmin, δθmin) as the cutoff resolution and stop adding refined
nodes when the extending motion primitive M satisfies
2�llðMÞ � δlmax < δlmin or 2�lθðMÞ � δθmax < δθmin (Alg. 1, line
15). Since we simultaneously refine δland δθ, we also make

Figure 5. Nodes of the first four ranks. We use motion primitives with κ = 0 (straight lines) and κ = κmax (arcs with maximum curvature).

Fu et al. 805

sure onemotion primitive is applied only once to a node (Alg.
1, line 15).

Algorithm 2 RCS*

4.1.4. Duplicate detection. To avoid re-expanding nodes
with the same or highly similar configurations multiple times,
search-based planners often employ duplicate detection (Du
et al., 2019) that prunes so-called “duplicate” nodes. To prune
duplicate nodes and enable the planner to rapidly explore the
entire C-space, we reject a node if there already exists a
similar configuration in the search tree (Alg. 1, line 7). More
formally, we reject node v with configuration xv if
∃u2V, ρðxu, xvÞ< dsim, where dsim > 0 is a parameter we use
to identify similar configurations. Here, ρ(�) is a distance
metric defined on X which in our work is defined as

ρðxu, xvÞ ¼ kpu � pvk2 þ α � dist£ðqu, qvÞ, (5)

where α > 0 is a weighting parameter and dist£() is the
angular distance between two orientations. Note that to
guarantee resolution completeness, the value of dsim de-
pends on other system parameters detailed in Section 5.

4.2. A resolution-optimal version of RCS (RCS*)

Since RCS* can be seen as an extended version of RCS, they
share many basic components, as can be seen from the pseu-
docode of RCS* shown in Alg. 2. In this section, we focus on
explaining the differences between RCS* and RCS.

Similar to RCS, RCS* builds a search tree with motion
primitives of multiple resolutions (as defined in Sections
4.1.1 and 4.1.2).

We first introduce the essential differences that guarantee
the resolution optimality of RCS*.

4.2.1. Termination criteria. In RCS, the first motion plan
obtained is returned directly. In a multi-resolution search,
optimality of the first plan is not guaranteed. So RCS*

terminates when the OPEN list is exhausted (Alg. 2, line 4),
and the best plan is returned (if any is found). Resolution-
Complete Search* is guaranteed to terminate in finite time
due to the cutoff resolution.

4.2.2. Cost-aware duplicate detection. Similar to RCS,
RCS* avoids expanding nodes with highly similar config-
urations by performing duplicate detection (Alg. 2, line 9). In
RCS*, we additionally consider the node’s cost CðvÞ when
determining whether the node is a duplicate. More specifi-
cally, a node v is determined as a duplicate if there exists a
node u in the CLOSED list that satisfies (i’) ρ(xu, xv) < dsim
and (ii’) CðuÞ ≤ CðvÞ, where ρ is the distance function defined
in Section 4.1.4. Condition (i’) is shared between RCS and
RCS*, while condition (ii”) is important for keeping RCS*
resolution optimal as it prevents nodes with lower cost from
being pruned away by nodes with higher cost.

In Section 5, we determine the value of dsim. Note that in
RCS*, we need to specify this value correctly not only to
ensure that the solution is valid but also to satisfy a desired
approximation factor for trajectory cost.

4.2.3. Cost-aware node ordering. As is mentioned above,
RCS* does not terminate until the search is exhausted,
indicating it will, in the worst case, spend time on checking
almost all possible solutions. Thus, from the perspective of
computation efficiency, it is critical to find low-cost solu-
tions early and then prune the non-promising branches in the
following search. We now introduce these differences.

In each iteration of RCS*, an expansion of existing nodes
is performed in an A*-like fashion. In particular, nodes are
iteratively extracted from the OPEN list (Alg. 2, line 5),
wherein nodes are ordered according to their rank (as de-
fined in Section 4.1.2) and a secondary metric f(�). The
secondary metric f ðvÞ ¼ CðvÞ þ hðvÞ has CðvÞ denoting the
cost of the trajectory from the root of T to vwith respect to C
and h(v) being a heuristic function estimating the cost of the
trajectory from the node v to the goal point. For example, in
the case where C is trajectory length, we have h(v) be the
length of the Dubins curve (LaValle, 2006) on the plane
spanned by xv and pgoal. Unlike in RCS, where nodes with
lower rank are always extracted first, RCS* relaxes this
ordering by introducing a lookahead parameter denoted as
nla 2N (similar to the idea in Lindemann and LaValle
(2006) and Mandalika et al. (2018)). At any time during
the search, we denote the minimum rank of nodes in the
OPEN list as ropen. Then we order all nodes with rank r ≤
ropen + nla according to a secondary metric f(�). This is done
to prioritize searching nodes from a coarser resolution,
which speeds up finding an initial motion plan (this is
similar in nature to using a focal list (Pearl and Kim, 1982)
in A*-like algorithms).

4.2.4. Node pruning. In addition to the node validation
conditions in RCS (Section 4.1.3), RCS* checks that the
cost CðvÞ is smaller than the cost of the best plan reaching

806 The International Journal of Robotics Research 42(10)

the goal region found so far. If the heuristic function h(�) is
admissible, we use f(v) instead of CðvÞ for node pruning, as
f(�) provides a better estimate of the node cost and hence
allows to prune more nodes.

4.2.5. Open node skipping. Since f(�) is only the secondary
metric for ordering nodes in the OPEN list, it is possible that a
node with a higher f(�) value is processed before a node with a
lower f(�). Thus, when a node is extracted from the OPEN list,
we first check whether the parent node still leads to a better
motion plan (Alg. 2, line 6). Denote by C* the cost of the best
plan found so far. Any node v in the search tree is not
promising if CðvÞ ≥C* (or f(v) ≥ C* in case that h(�) is ad-
missible). Then for a node v extracted from the OPEN list, we
discard it directly if v.parent is not promising (Alg. 2, line 7).

4.3. Domain-specific optimizations

We now describe several optimizations used to further speed
up the planners.

4.3.1. Early pruning by testing for goal reachability. We
can prune away nodes that, due to curvature constraints,
cannot be part of a path that reaches the goal (see Figure 6
for a 2D illustration). The curvature constraint defines so-
called “unreachable regions” of a node and testing if the
goal pgoal belongs to a node’s unreachable region can be

done efficiently (see Figure 6). Such nodes are pruned away
and are not expanded.

However, recall that we allow some goal tolerance τ.
Thus, instead of requiring the goal point to be inside a
node’s reachable region, we only require that the distance
between pgoal and the boundary of the reachable region is
smaller than τ.

Note that in our setting, the needle tip cannot (physically)
turn more than 90° as the needle might buckle and shear
through the tissue, so we discard such motions. Thus, we do
not need to account for a needle entering the unreachable
region due to a “U-turn.”

4.3.2. Direct goal connection. For each node v that is
added to the search tree with corresponding configuration
xv, we attempt to connect xv to the goal point pgoal directly
(a similar technique is used in the RRT-based needle
planner in Patil et al. (2014)). Such a direct-connection
trajectory lies in the plane determined by the tangent
vector of xv and pgoal. We consider two different types of
trajectories to perform the direct connection. The first one
is to use a circular arc following the idea in Patil et al.
(2014). The second one is to use Dubins curve that starts
with a maximum curvature arc and then follows a straight
trajectory. Both types of trajectories can be determinis-
tically computed according to the relative position of xv
and pgoal. In our implementation, circular arcs are used by

Figure 6. (a) An illustration of reachable and unreachable regions in 2D. The case in 3D is similar. The unreachable region can be
generated by rotating the circles around the Z-axis (blue vector), which creates a donut-like shape in 3D that is unreachable. It also
visualizes how we check goal reachability when considering tolerance τ. We reject a configuration if the relative position of pgoal falls in
the inner region (darker orange). (b) The algorithm creates a direct connection to the goal when pgoal is outside but still close to the
boundary of the reachable region. We use a circular arc with curvature κmax to steer toward pgoal and the arc stops at the closest point to
pgoal. (c) An example of valid nodes with rank 0–3 after checking goal reachability.

Fu et al. 807

default; we only use Dubins curve for RCS*, which aims
to optimize the trajectory cost.

If pgoal lies outside the reachable region of xv but the
distance between pgoal and the boundary of the reachable
region is no larger than τ, we steer the needle in the plane
following a circular arc of curvature κmax to the point closest
to pgoal. When the circular arc is collision-free, a solution
has been found and we terminate the search. This approach
can often dramatically speed up the search.

4.3.3. Inevitable collision avoidance. We try to account for
inevitable collisions (LaValle, 2006) to eliminate potential
nodes that are bound to lead to collisions as they are ex-
panded. In particular, for a given vertex v and the goal point,
a “region-growing” process is performed from xv within an
approximation of the reachable workspace, while consid-
ering the existence of obstacles. This region is defined as the
intersection of the kinematically forward-reachable work-
space and the olive-shaped feasible workspace defined by
xv, pgoal, and tolerance τ (see Figure 7).

We mention that due to (i) maximum curvature con-
straint, (ii) maximum turning angle constraint (the needle
would shear or buckle when turning over π/2), and (iii)
maximum insertion length constraint, the kinematically
forward-reachable workspace for a given needle configu-
ration is a trumpet-shaped volume rooted at the current
needle position (see Figure 7, left).

Additionally, a position in the workspace is potentially
feasible only when there exists some orientation with which
the goal region is forward reachable while the start point is
backward reachable, considering the maximum curvature
constraint. This defines the olive-shaped feasible workspace
(see Figure 7, middle) since for any position outside the
region, there is no orientation that is valid.

In the case that the goal is not reached by the grown
region, v is considered to have an inevitable collision and
thus to be invalid. Several examples are provided in
Figure 8. Inevitable collision check allows us to efficiently
identify and discard invalid branches. However, compared
to previously mentioned optimizations, such inevitable
collision checks can be computationally expensive and is an
underestimation of the real inevitable collision. Thus, we
only perform inevitable collision check when a direct goal

connection fails, indicating there exist obstacles blocking
the way toward the goal region. We also keep a record of
states that successfully passed the inevitable collision check
and skip the check when a nearby node has already passed
the check, allowing us to sparsely check for inevitable
collisions.

4.4. Parallelism

Our algorithms can be easily parallelized. One of the most
time-consuming tasks in our search algorithm is pro-
cessing a node after it is extracted from the OPEN list
(namely, evaluating whether the path to this node is
collision-free, and computing the relevant motion prim-
itives for its parent node and the corresponding new
nodes). To this end, we implemented a multi-threaded
version of the algorithm where each thread is tasked with
processing a node extracted from the OPEN list. This
enables processing nodes in parallel while maintaining
the correctness of the algorithm by adding standard
locking mechanisms to the shared data structures
(i.e., OPEN list and CLOSED set).

To distinguish between different variants of the planners,
we use the notations in Table 1 in the following discussions,
where “S” stands for “single-threaded,” “B” stands for
“basic,” and “D” stands for “duplicates” (indicating we
allow similar configurations by not doing duplicate
detection).

5. Theoretical guarantees

We study the theoretical properties of our proposed algo-
rithms, namely, RCS and RCS*, and provide a proof for
RCS and RCS* both being resolution completewhile RCS*
is additionally resolution optimal. We start with some
general definitions pertaining to the notion of resolution
completeness adapted from LaValle (2006) in Section 5.1.
Unfortunately, their generality requires masking important
problem-related details such as, “is planning defined in the
C-space or in the control space?” or “what are the specific
assumptions on the system?” This is also the reason that
existing proofs (e.g., Barraquand and Latombe (1991),
Appendix A) and (Cheng and LaValle, 2002, Thm. 5.2))

Figure 7. A 2D illustration of the approximated reachable workspace. The kinematically forward-reachable workspace is shaded red (a
3D version can be obtained by rotating the region around the tangent vector at xv, which results in a trumpet shape). The feasible
workspace is shaded blue. The diameter of the circular arcs is d = max(2/κmax, τ + kProj(xv)� pgoalk2). The final approximated reachable
workspace is shaded in purple.

808 The International Journal of Robotics Research 42(10)

cannot be used as is. Thus, in Section 5.2, we quickly move
to the specific setting of motion planning for steerable
needles which requires specifying the exact problem-related
details and definitions. We also explain in this section where
we rely on the aforementioned proofs and where we are
required to account for our specific domain and planner.

5.1. General resolution-related definitions

We now introduce some general definitions of resolution,
resolution completeness, and resolution optimality. These
general definitions will help in understanding later dis-
cussions specific to RCS and RCS*.

Definition 1. Resolution. Resolution is a finite set of
parameters R = (r0, …, rn), where each ri 2 R charac-
terizes the discretization of some dimension in some
space (e.g., state space, configuration space, action
space, and time), and a smaller number indicates a finer
resolution on that dimension. We say that resolution
R1 ¼ ðr10,…, r1nÞ is finer than R2 ¼ ðr20,…, r2nÞ if
"i, r1i ≤ r2i and ∃j s.t. r1j < r2j .

1

Definition 2. Resolution completeness. For a general
motion planning problem Δ, a planner is resolution
complete if when a so-called qualified solution to Δ
exists, there exists some resolution Rmin such that run-
ning P with resolution Rmin on Δ finds a solution in
finite time.

Definition 3. Resolution optimality. For a general
motion planning problem Δ, a planner P is resolution
optimal if when at least one so-called qualified solu-
tion to Δ exists and the solution with optimal cost
(considering a cost function C) among all so-called
qualified solutions is σ*, there exists some resolution
Rmin such that running P with resolution Rmin on Δ
finds a suboptimal solution, σ, in finite time. More
specifically,P guarantees CðσÞ ≤ ð1þ εÞ � Cðσ*Þ, where
ε is a predefined approximation parameter.

Clearly, the above definitions are more general in-
tuitions than specific definitions for the needle-steering
problem. We need to define what a “qualified solution”
is and what “running P with resolution Rmin on Δ”
means.

Figure 8. 2D illustration of example cases for inevitable collision check. The connected region is shaded yellow, obstacle voxels are
shaded pink. This is an underestimation of inevitable collisions so even if the goal is determined as reachable in the check, it is not
guaranteed that a valid motion plan to the goal exists.

Table 1. Different variants of RCS and RCS*.

Name Duplicate detection Domain-specific optimizations Parallelism

RCS(*) Y Y Y
RCS(*)_S Y Y N
RCS(*)_B Y N N
RCS(*)_D N N N

Fu et al. 809

5.2. Resolution completeness of RCS and
resolution optimality of RCS*

When narrowed down to the specific case for our steerable
needle planners, the notion of resolution completeness and
resolution optimality can be informally stated as follows:

(i) Resolution completeness implies that RCS and RCS*
are guaranteed to find a plan as long as there exists a
qualified motion plan σ, assuming that the cutoff
resolution Rmin = (δlmin, δθmin) is fine enough, both in
terms of δland δθ.

(ii) Resolution optimality implies that RCS* is guaranteed
to find a plan whose cost is as close as desired to the
cost of the globally optimal qualified motion plan σ*,
assuming that the cutoff resolution Rmin = (δlmin,
δθmin) is fine enough, both in terms of δland δθ.

Thm. 1 and Thm. 2 given below state our main the-
oretical contribution relating to resolution completeness
and resolution optimality, respectively. Before stating the
main theorems, we introduce some definitions that are
essential to state the assumptions in the theorems. Recall
that A is the action space, which is the set of all valid
motion primitives and that ρ(�) is a distance metric defined
on X (equation (5)). In the following discussions, for
some sequence of motion primitivesM, we will use xÅM
to denote the resultant trajectory obtained by sequentially
applying elements in M to x.

First, we provide a formal definition of Lipschitz con-
tinuity of the steerable needle system, which is used in (C1)
and (C1’). We define Lipschitz continuity in our primitive-
based setting, which is based on the following primitive-
based metric.

Definition 4. Primitive-based metric ρA. We define a
distance metric over the action space A as the two-way
Hausdorff distance between two resultant trajectories
xÅfM0g and xÅfM1g, for some configuration x and
actions M0,M1 2A. Formally, we have

ρAðM0,M1Þ ¼ max

�
max
t2½0,l1�

�
min
s2½0,l0�

ρðσ0ðsÞ, σ1ðtÞÞ
�
,

max
s2½0,l0�

�
min
t2½0,l1�

ρðσ0ðsÞ, σ1ðtÞÞ
��

,

where σ0 ¼ xÅfM0g, σ1 ¼ xÅfM1g, andl0,l1 are the
trajectory lengths of σ0, σ1, respectively.
In the above definition, note that changing the initial

configuration x does not change the relative position be-
tween the two trajectories. Thus, without loss of generality,
we have x = (p, q) where p = (0, 0, 0) and q = (1, 0, 0, 0).

Definition 5. Lipschitz continuous. The system is Lip-
schitz continuous if there exists some constant Ls >
0 such that for any x0, x1 2X ,M0,M1 2A, the fol-
lowing inequality holds:

ρðx0ÅM0, x1ÅM1Þ ≤ Lsðρðx0, x1Þ þ ρAðM0,M1ÞÞ:

We then introduce the notions of robust and decom-
posable trajectories, as well as a well-behaved cost, which
will be used to state the necessary conditions on the ap-
proximated motion plan σ and cost function C required to
prove our results. The crux of the problem is that it may not
be possible to approximate some plan σ using motion plans
with a finite number of transitions without additional (re-
alistic) constraints on σ and C.

We provide two definitions that are used to characterize
motion plans that our algorithms can approximate. The first
definition is concerned with trajectories that are induced by
a finite set of motion primitives (not necessarily the ones
used by RCS and RCS*). The second definition is con-
cerned with so-called robust trajectories that admit some
clearance from the obstacles and the boundary of the goal
region. A motion plan is then considered qualified if it
satisfies both definitions.

Definition 6. Decomposable trajectory. Let σ : ½0,l�→X
be some trajectory. We say that σ is decomposable if it
can be decomposed into a finite sequence of motion
primitives. Namely, there exists Mσ ¼ ðM1,…,
MnÞ � A, where n is finite, such that σ = σ(0) Å Mσ.

Definition 7. Robust trajectory. A trajectory
σ : ½0, l�→X is γ-robust, for some γ > 0, if

(i) it has γ clearance from obstacles, that is,
min

s2½0, l�, x2X obs

ρðσðsÞ, xÞ> γ,
(ii) its endpoint is within a distance of τ � γ to the goal
point, namely, kProj(σ(l)) � pgoalk2 < τ � γ.

Here, X obs ¼ clðX ∖X freeÞ and cl(�) is the closure of a set.
Note that we implicitly assume here that the goal tolerance
satisfies τ > γ.

We then define the notion of a well-behaved cost which
states that close-by configurations have similar costs and
that there are bounds on the values that the cost can attain.

Definition 8. Well-behaved cost. A configuration-based
cost function c is well-behaved if

(i) it is Lipschitz continuous, that is, "x0, x1 2X free, |
c(x0) � c(x1)| ≤ Lc � ρ(x0, x1) for some constant Lc > 0,
(ii) "x2X free, cðxÞ 2 ½cmin, cmax� � ð0,∞Þ.

In such a case, we also say that the trajectory-based cost
function CðσÞ ¼

Rl
0 cðσðsÞÞds is well-behaved.

We are now ready to state our main theoretical results
concerning resolution completeness and resolution
optimality.

Theorem 1. Resolution completeness. Let Δ ¼ ðX ,
Wobs, xstart , pgoal , τ,lmax, κmaxÞ be a steerable needle

810 The International Journal of Robotics Research 42(10)

motion planning problem. Also, suppose that the fol-
lowing conditions are satisfied:

(C1) The steerable needle system is Lipschitz continuous
and characterized with Ls.
(C2) There exists a solution trajectory σ that is de-
composable and γ-robust with γ = τ/2.
(C3) The radius dsim used to reject similar nodes satisfies

dsim <min

�
dmin,

γðLs � 1Þ
2
�
LH
s � 1

�
�
,

where dmin ¼
2

κmax
sin

κmaxδlmin

2
,H ¼

	
lmax

δlmin

:

Then RCS is resolution complete, that is, for a fine-
enough cutoff resolution Rmin = (δlmin, δθmin), RCS will
find a motion plan in finite time.

The following is a stronger property that is concerned not
only with finding a solution but also with finding a “good” one.

Theorem 2. Resolution optimality. Let Δ ¼ ðX ,
Wobs, xstart , pgoal, τ,lmax, κmaxÞ be a steerable needle
motion planning problem, Δ* ¼ ðΔ, CÞ be an optimal
steerable needle motion planning problem, and εcost 2
(0, ∞) be an approximation factor. Also, suppose that the
following conditions are satisfied:

(C1’) The steerable needle system is Lipschitz continuous
and characterized with Ls.
(C2’)The cost function C is well-behaved and charac-
terized with Lc, cmin, cmax. Denote k = (Lc + cmax)/cmin.
(C3’) The optimal solution trajectory σ* is decompos-
able and γ-robust with γ = min{εcost/k, τ/2}.
(C4’) The radius dsim used to reject similar nodes satisfies

dsim <min

�
dmin,

γðLs � 1Þ
2
�
LH
s � 1

�
�
,

where dmin ¼
2

κmax
sin

κmaxδlmin

2
,H ¼

	
lmax

δlmin

:

Then RCS* is resolution optimal, that is, for a fine-
enough cutoff resolution Rmin = (δlmin, δθmin), RCS* will
find a motion plan that satisfies CðσÞ ≤ ð1þ εcostÞ � Cðσ*Þ.

Remark 1. The above theorems can be generalized to
approximate general solution trajectories that are not
necessarily decomposable. In particular, since any so-
lution trajectory has bounded curvature, it can be ap-
proximated in terms of spatial proximity and solution
quality to any desired level of accuracy using a sequence
of circular arcs. The latter sequence yields by definition a
decomposable trajectory. Such an approximation of
bounded-curvature trajectories using circular arcs (also
known as biarcs) has been extensively studied in 2D
(Hoschek, 1992; Meek and Walton, 1995; Sabitov and
Slovesnov, 2010). Extending this argument to the 3D

case is rather technical and therefore deferred to
future work.
In the following sections, we provide proofs for Thm.

1 and Thm. 2. Both proofs follow two main steps. We first
show that a decomposable trajectory σ can be approxi-
mated by another plan σε that is composed solely of the
motion primitives used by RCS and RCS*. Then, we show
that even though RCS might not be able to exactly find σε
due to pruning, it will find another solution ~σ due to the
robustness of σ and the choice of dsim, which closely
follows σε. Similarly, RCS* will be able to recover another
plan ~σ* whose cost is similar to that of σ*ε (and σ*).

5.3. Approximation of
decomposable trajectories

We temporarily set aside the study of our algorithms’ be-
havior and prove the following basic result showing that any
decomposable trajectory can be approximated to any de-
sirable degree by a finite sequence of motion primitives with
fixed curvatures (discussed in Section 5.3.1) and fixed
resolution (discussed in Section 5.3.2).

Before stating the theorem, we introduce notions related to
trajectory approximations. We provide a formal definition of
the notion of piece-wise strict ε-approximation. We first define
this notion for a single local “piece” in the following definition,
and then extend it to trajectories consisting of several pieces.

Definition 9. Local strict approximation. For two tra-
jectories σ : ½0,l�→X and ~σ : ½0,~l�→X , and a value ε >
0, we say ~σ is a local strict ε-approximation of σ if

(i) ~l≤ð1þ εÞ �l,
(ii)"s2 ½0,minðl,~lÞÞ, ρðσðsÞ, ~σðsÞÞ ≤ ε,
(iii) "s2 ½minðl,~lÞ,~l�, ρðσðlÞ, ~σðsÞÞ ≤ ε.

Definition 10. Piece-wise strict approximation. For two
trajectories σ : ½0,l�→X and ~σ : ½0,~l�→X , and a value
ε > 0, we say ~σ is a piece-wise strict ε-approximation of σ
if there exist two sequences s0 < s1 < … < sn and
~s0 <~s1 <… <~sn such that

(i) s0 ¼ 0,~s0 ¼ 0,

(ii)sn ¼l,~sn ¼ ~l,

(iii) "i 2 [0, n � 1], the sub-trajectory ~σð~si,~siþ1Þ is a
local strict ε-approximation of σ(si, si+1).

Additionally, it will be convenient to introduce the notion
of a finest set of motion primitives.

Definition 11. Finest set of motion primitives. Given a
resolution R = (rl, rθ), and a set of curvaturesK, we define
the finest set of motion primitives as

MfsðR,KÞ ¼
�
ðκ, rl, nrθÞ jκ2K, n2

�
0,

�
2π
rθ

�
� Z

�
:

Fu et al. 811

We now state the following theorem about trajectory
approximation.

Theorem 3. Let σ be a decomposable trajectory and let
ε > 0 be some real value. If the system is Lipschitz
continuous, there exists a fine resolution R(σ, ε) = (rl, rθ)
and a finite sequence of motion primitives MR(σ,ε) 4
Mfs(R(σ, ε), {0, κmax}) such that σεdσ(0) Å MR(σ,ε) is a
piece-wise strict ε-approximation of σ. Moreover, when
we also consider a cost function, if c is a well-behaved
cost (characterized with Lc, cmin, cmax), then the tra-
jectory cost satisfies CðσεÞ ≤ ð1þ k � εÞ � CðσÞ, where k =
(Lc + cmax)/cmin.

We break the proof of this result into the following steps.
In the following discussions, we refer to the parameters of
M ¼ ðκ, δl, δθÞ as M:κ, M:δl, and M:δθ, respectively.

5.3.1. Approximating arbitrary curvatures using
duty-cycling. As a first step, we show that any decom-
posable trajectory σ can be approximated arbitrarily well by
a finite sequence of motion primitives whose curvature is
either 0 or κmax. We provide a justification of this property
below.

When a bevel-tip needle is inserted without rotations,
it follows a trajectory with curvature κmax. When the
needle is inserted while applying axial rotational ve-
locity that is relatively larger than the insertion velocity,
it follows a straight line (i.e., of curvature zero). Minhas
et al. (2007) introduced the notion of duty-cycling to
approximate any curvature for bevel-tip steerable nee-
dles. Roughly speaking, combining periods of needle
spinning (i.e., zero-curvature trajectories) with periods
of non-spinning (i.e., maximal-curvature trajectories)
enables the needle to achieve any curvature up to the
maximum needle curvature. This idea is formalized in
the following lemma.

Lemma 1. Approximating arbitrary curvatures using
duty-cycling. Let σ be a decomposable trajectory and
let εd > 0 be some real value. There exists a finite
sequence of motion primitives MD in which every el-
ement has curvature κ 2 {0, κmax} such that the tra-
jectory σ(0) Å MD is a piece-wise strict εd-
approximation of σ.

Proof. Here, to explicitly show how the approximation
factor εd is used and to provide a more general discussion,
we provide a proof from a geometric perspective (and not
control-based as in the original work in Minhas et al.
(2007)).

As the trajectory σ is decomposable, there exists a se-
quence of motion primitivesMσ ¼ fM1,…,Mng such that
σ = σ(0) Å Mσ and each motion primitive Mi has arbitrary
curvature κi 2 [0, κmax]. To approximateMi, we construct a
sequence of motion primitivesMi ¼ fMð1Þ

i ,…,MðniÞ
i g that

satisfies

Mð1Þ
i :δθ ¼ Mi:δθ,

"j2 ½2, ni�,MðjÞ
i :δθ ¼ 0,

"j2 ½1, ni�,MðjÞ
i :κ2f0, κmaxg:

Namely, the first motion primitiveMð1Þ
i ensures that both

trajectories use the same curving plane and the rest of the
sequence stays within this curving plane and approximates
the (arbitrary) curvature κi.

We then decompose Mi into small equal-length seg-
ments of lengthli where the specific value ofli is chosen
according to the value of εd andMi’s curvature κi. We then
use three motion primitives to approximate each of these
segments as illustrated in Figure 9. Denote the j-th segment
along Mi as Mij and the corresponding sequence of three
primitives approximating Mij as Mij ¼ fM0

ij,M1
ij,M2

ijg.
Note that (i) the start and end configurations ofMij andMij

are identical, (ii) the two-way Hausdorff distance between
Mij and Mij is less than εi ifli is carefully chosen, and (iii)
for each segment with lengthli, the length of the three-
segment approximation is less than (1 + εi) �li ifli is
carefully chosen. The point-wise distance is then bounded
by εi(1 +li) + ακli/2 (recall that α is the weighting parameter
in the distance metric equation (5)). See Figure 9 for details.
Thus, by carefully choosing εi, we can make sure the three-
segment approximationMij is a local strict εd-approximation
of the original segment Mij, where εi(1 +li) + ακli/2 ≤ εd.

Let M εd
σ ¼ M1 �M2 �… �Mn be this sequence of all the

newly constructed motion primitives. By definition,
σð0ÞÅM εd

σ is a piece-wise strict εd-approximation of σ. □

5.3.2. Approximating curves using fixed-resolution
primitives. After the previous step, a decomposable tra-
jectory can be approximated by another decomposable
trajectory with only 0 or κmax curvature, although the ap-
proximation might require different resolutions. Next, we
further show that a decomposable trajectory can be ap-
proximated by fixed-resolution primitives.

Lemma 2. Approximating curves using fixed-resolution
primitives. Let σ be a decomposable trajectory and let
εr > 0 be some real value. If the system is Lipschitz
continuous (Def. 5), there exists a fine resolution R(σ,
εr) = (rl, rθ) and a finite sequence of motion primitives
MRðσ, εrÞ such that σð0ÞÅMRðσ, εrÞ is a piece-wise strict εr-
approximation of σ. Moreover, MRðσ, εrÞ4Mfs

ðRðσ, εrÞ,KσÞ, where Kσ is the set of curvatures that
appear along σ.

Proof. 2 The trajectory σ is decomposable; thus, there
exists a finite sequence of motion primitives
Mσ ¼ fM1,…,Mng such that σ = σ(0) Å Mσ. Set Kσ ¼
[iMi:κ to be the set of all curvatures that appear in Mσ.

To approximate each motion primitive Mi using
primitives from the finest set of motion primitives
MfsðRðσ, εrÞ,KσÞ (Def. 11), we construct a sequence mo-
tion primitive Mi ¼ fMð1Þ

i ,…MðniÞ
i g, where

812 The International Journal of Robotics Research 42(10)

Mð1Þ
i :δθ ¼ ki � rθ,

"j2 ½2, ni�,MðjÞ
i :δθ ¼ 0,

"j2 ½1, ni�,MðjÞ
i :κ ¼ Mi:κ,M

ðjÞ
i :δl¼ rl:

Here, the first motion primitive Mð1Þ
i accounts for the

curving plane (though here it can only be approximated) and
the rest of the sequence stays within this curving plane and
accounts for the length of the circular arc the trajectory
follows in this plane. Applying the sequence Mi is equiv-
alent to applying one motion primitive ~Mi ¼
ðMi:κ, ni � rl, ki � rθÞ. Thus, by carefully choosing rland rθ,
the distance between Mi and ~Mi (see Def. 4) can be ar-
bitrarily small.

This is done for every motion primitive Mi. As Mσ is a
finite sequence of size n, for any ξ > 0, we can always find a
fine-enough resolution (rl, rθ) that ensures that

ρA
�
Mi, ~Mi

�
< ξ,"i2 ½1, n�:

This is because given that both motion primitives have
equal curvature, ρAðM1,M2Þ< jδ θ1 � δθ2j �min fδl1, δl2g
þjδl1 � δl2j þ αðjδθ1 � δθ2j þ jδl1 � δl2j=Mi:κÞ, where
δli ¼ Mi:δland δθi ¼ Mi:δθ. The above upper bound for

the action-space distance accounts for both position and
orientation. See Figure 10 for illustration.

Since the system is Lipschitz continuous,

ρ
�
σð0ÞÅM1…ÅMn, σð0ÞÅ ~M1…Å ~Mn

�

≤Lsðρ
�
σð0ÞÅM1…ÅMn�1, σð0ÞÅ ~M1…Å ~Mn�1

�

þ ρA
�
Mn, ~Mn

�

≤Ln
s � ρðσð0Þ, σð0ÞÞ þ

Xn

i¼1

Ln�iþ1
s � ρA

�
Mi, ~Mi

�

< ξ �
Ls

�
Ln
s � 1

�
Ls � 1

:

Thus, to ensure that σð0ÞÅf ~M1,…, ~Mng is a piece-wise
strict εr-approximation of σ, we only need to ensure that
ξ ≤ εrðLs � 1Þ=ðLsðLns � 1Þ). As both n and Ls are fixed, we
can choose ξ to be as small as needed. Thus, the desired fine
resolution exists which concludes the proof. □

Having established Lem. 2, we can finalize the first
part of Thm. 3. Namely, we carefully set εd and εr, so that the
final result is a piece-wise strict ε-approximation.

Figure 9. Illustration of approximating arbitrary curvatures using duty-cycling. Left: Decompose Mi into multiple segments with
lengthli. Right: Use three segments to approximate one segment of Mi, where the segments have a curvature of 0, κmax and 0,
respectively. The two-way Hausdorff distance (the positional part marked as εi in the figure) depends onli. For a given κmax, to
approximateMi (with curvature κ), the shorterli is, the smaller εi is. This is because εi < r � (1/cos(0.5η)� 1), where r = 1/κ is the radius
of curvature and η =li/r is the central angle. Since the maximum orientation difference along the trajectory is bounded by 0.5η, the
two-way Hausdorff distance in configuration space is also bounded. Also, the trajectory length of the original segment isli = r � η, and
the length of the three-segment trajectory islapprox ≤ 2r � tan(0.5η). Since limη→02 tan(0.5η)/η = 1, the trajectory length ratio approaches
1 when η approaches 0. This means the trajectory length can be approximated arbitrarily well. Furthermore, the point-wise distance
is bounded by εi(1 +li) + αli/(2r), when we have a small enoughli thatlapprox ≤ (1 + εi)li. As is shown in the figure, A and B are points
intersecting with a straight line originating from the center of curvature, and C is A’s corresponding point alongMi. Then kA� Bk ≤ εi
and the length of curve BC ≤ εili, and thus kA� Ck ≤ εi(1 +li). Additionally, the orientation difference between A and C is bounded
by 0.5η =li/(2r).

Fu et al. 813

Set εd ¼ εr ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ ε

p
� 1. According to Lem. 1, there

exists a finite sequence of motion primitivesMD in which every
element has curvature κ 2 {0, κmax} such that the trajectory σd =
σ(0) Å MD is a piece-wise strict εd-approximation of σ.

Note that by construction σd is decomposable. Thus,
according to Lem. 2, there exists a fine resolution R(σ,
εr) = (rl, rθ) and a finite sequence of motion primitives
MRðσ, εrÞ such that σr ¼ σð0ÞÅMRðσ, εrÞ is a piece-wise strict
εr-approximation of σd. Moreover, MRðσ, εrÞ4Mfs

ðRðσ, εrÞ, f0, κmaxgÞ as the construction in the proof of
Lem. 2 does not add new curvatures.

Finally, as εd ¼ εr ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ ε

p
� 1, the trajectory σr is a

piece-wise strict ε-approximation of σ. This is because for
every step above, we use segments of shorter lengths for the
approximation; thus, segments along σr and σ satisfy con-
ditions (ii) and (iii) in Def. 9 with a distance upper bound of
(εd + εr). So we only need to take care of the first condition in
Def. 9. Having εd ¼ εr ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ ε

p
� 1 would provide us with

(1 + εd)(1 + εr) = 1 + ε; thus, the trajectory length is also
bounded, making segments in σr local strict ε-approximations
of the corresponding segments in σ. By definition, σr is a
piece-wise strict ε-approximation of σ.

5.3.3. Similar cost for piece-wise strict approximations. To
finish the proof of Thm. 3, we finally show that the ap-
proximation of σ also achieves a desirable cost.

Lemma 3. Similar cost for local strict approximations.
If a trajectory ~σ is a local strict ε-approximation of
another trajectory σ, and the cost function C is well-
behaved (characterized with Lc, cmin, cmax), then we
have Cð~σÞ ≤ ð1þ k � εÞ � CðσÞ, where k = (Lc + cmax)/
cmin.

Proof. We have

C
�
~σ
�
¼

Z l0

0

c
�
~σðsÞ

�
ds

¼
Z l

0

c
�
~σðsÞ

�
dsþ

Z l0

l

c
�
~σðsÞ

�
ds

≤
Z l

0

ðcðσðsÞÞ þ Lc � εÞ dsþ ε � l � cmax

¼
Z l

0

ðcðσðsÞÞ þ Lc � εþ cmax � εÞ ds

¼
Z l

0

�
1þ εðLc þ cmaxÞ

cðσðsÞÞ

�
� cðσðsÞÞds

≤
Z l

0

�
1þ εðLc þ cmaxÞ

cmin

�
� cðσðsÞÞds

¼
�
1þ εðLc þ cmaxÞ

cmin

�
�
Z l

0

cðσðsÞÞds

¼
�
1þ εðLc þ cmaxÞ

cmin

�
� CðσÞ: □

To conclude, if every piece of the sub-trajectory is bounded,
the sum of costs of all pieces is then also bounded. Thus, if a
trajectory ~σ is a piece-wise strict ε-approximation of σ, then for
a well-behaved cost, we also have Cð~σÞ ≤ ð1þ k � εÞ � CðσÞ.

5.4. Proof of Thm. 1 and Thm. 2

We are in a position to complete the proof of Thm. 1 and
Thm. 2. Since the proof for Thm. 2 follows a similar idea as
the proof for Thm. 1, we first prove Thm. 1 and then add the
essential part that is unique to Thm. 2.

Figure 10. Illustration of the action distance between two motion primitives with the same curvature. Here, the shorter motion primitive
lies in curving plane 1; thus, min{δl1, δl2} = OAcurv and |δl1 � δl2| = OCcurv � OAcurv = BCcurv. Meanwhile, the orientation difference
between A and C satisfies dist£(A, C) ≤ dist£(A, B) + dist£(B, C).

814 The International Journal of Robotics Research 42(10)

To prove Thm. 1, we first consider a simplified version of
RCS, termed RCS_D, which does not use node pruning as
part of duplicate detection (Alg. 1, line 7) and later extend it
to RCS. For simplicity, we assume that both RCS_D and
RCS do not use the additional optimizations described in
Section 4.3 or ,4.4 which do not affect the validity of ar-
guments used below.

5.4.1. Resolution completeness of RCS_D. We show that
Thm. 1 holds for RCS_D. Since duplicate detection is not
applied, (C3) is not considered.

Let σ be a valid solution to problem Δ that is decom-
posable and γ-robust. Following Thm. 3, there exists a fine
resolution R(σ, ε) = (rl, rθ) and a finite sequence of motion
primitivesMR(σ,ε)4Mfs(R(σ, ε), {0, κmax}) such that σ(0)Å
MR(σ,ε) is a piece-wise strict ε-approximation of σ. In our
algorithm, the resolutions are divided by half as the length
level lland angle level lθ increase. Thus, there exists a fine-
enough resolution ~R ¼ ð2�ll � δlmax, 2�lθ � δθmaxÞ that sat-
isfies 2�kl � δlmax < rl, 2�kθ � δθmax < rθ. Setting the cutoff
resolution Rmin to be finer (both with respect to the insertion
as well as rotation) than ~R ensures that MR(σ,ε) can be ap-
proximated arbitrarily well.3

The search tree built with RCS_D is a subtree of a dense
tree in which each node is expanded with every element in
Mfsð~R, f0, κmaxgÞ. This is because every coarse motion
primitive used in RCS_D can be decomposed into a se-
quence of motion primitives inMfsð~R, f0, κmaxgÞ. Since the
dense tree encodes all possible trajectories that can be
decomposed with Mfsð~R, f0, κmaxgÞ, a piece-wise strict
ε-approximation of σ, denoted as σε, will be encoded in the
dense tree.

Next, we take ε = γ/2 and show that σε is collision-free
and satisfies the desired goal tolerance, which implies that
RCS_D will be able to find it. According to condition (C2),
σ is γ-robust. This implies that σε is at least (γ � ε)-robust.
Given that ε = γ/2, we further have σε is γ/2-robust. Thus, for
a cutoff resolution Rmin that is fine enough, σε will be
explored by the search tree constructed by RCS_D.

5.4.2. Accounting for pruning in RCS. Since RCS_D ter-
minates in finite time, RCS also terminates in finite time
since more nodes are rejected. We now prove that RCS can
find a solution plan if conditions (C1)-(C3) in Thm. 1 are
satisfied.4

Since σ : ½0,l�→X is a valid solution, there exists some
fine resolution R(σ, ε) that can be used by RCS as the cutoff
resolution (as discussed above), with which we can con-
struct a piece-wise strict ε-approximation of σ. Denote the
decomposable approximation as σε, and the sequence of
motion primitives to compose it as Mσε ¼ fM1,…,Mng.
When Mσε is sequentially applied to xstart, we obtain a se-
quence of configurations {x0, x1, …, xn}, where
x0 ¼ xstart, xi ¼ xi�1ÅMi, i2 ½1, n�. For the rest of the
proof, we use Mσε½i, j� ¼ fMi,…,Mjg to denote a sub-
sequence of Mσε. We also use xþMσε½i, j� to denote the

configuration after sequentially applying fMi,…,Mjg
to x.

If we run RCS_D, every xiwill be explored and σεwill be
constructed when the search terminates. However, if we run
RCS, we prune nodes using duplicate detection (Section
4.1.4). Thus, we need to show that even with pruning, RCS
will still find a plan. This will be done by showing that the
same sequence of motion primitives can be applied to
configurations that are “similar” to x0…xn and the resultant
plan ~σ exists using the fact that ~σ is “similar” to σε (thus
“similar” to σ) and that σ is γ-robust. The rest of this proof
formalizes this idea.

Recall that (C3) defines dmin, which is the minimum
positional difference between a node and its successor. The
condition dsim < dmin in (C3) guarantees that any successor
node is not pruned by its parent node, which keeps the tree
expanding. Now, let xi be the first configuration that is pruned
because of a similar configuration (see Alg. 1, line 7).We will
say that xi is replaced by a similar configuration x

0
i. As i ≥ 1,

in the worst case, we have i = 1.We then applyMσε½2, n� to x
0

1.
According to (C1), the maximal error accumulated to x

0

n ¼
x

0

1 þMσε½2, n� is ξ1 ¼ ρðx0

n, xnÞ ¼ Ln�1
s � dsim. Similarly,

when x
0
2 is replaced by x

00
2, we apply Mσε½3, n� to x

00
2 and for

x
00
n ¼ x

00
2 þMσε½3, n�, the accumulated error is

ξ2 ¼ ρðx00
n, x

0
nÞ ¼ Ln�2

s � dres. The same analysis applies for
{x3, …, xn}. According to (C3), the total accumulated error
then becomes:

ξ ¼ ρ
�
xðnÞn , xn

�
≤ ρ

�
x0n, xn

�
þ…þ ρ

�
xðnÞn , xðn�1Þ

n

�

¼ ξ1 þ…þ ξn ¼
Ln
s � 1

Ls � 1
� dsim <

γ
2
� L

n
s � 1

LH
s � 1

≤
γ
2
:

Next, we show that even in the worst case, the final state of ~σ
(i.e., xðnÞn) satisfies goal tolerance τ. Recall σε is a piece-wise
strict ε-approximation of σ. According to (C2), σ is γ-robust.
So when we have ε ≤ γ/2, the ε-approximation σε is γ/2-
robust. Thus,��Proj�xðnÞn

�
� pgoal

��
2

≤
��Proj�xðnÞn

�
� ProjðxnÞ

��
2
þ
��ProjðxnÞ � pgoal

��
2

<
γ
2
þ τ � γ

2
¼ τ:

This implies that even in the worst case where all
possible replacements happen, the final configuration xðnÞn

still satisfies the required goal tolerance (see Figure 11).
Additionally, we prove that when pruning happens for

xðiÞi , the motion plan constructed with Mσε½i, n� is still
collision-free. Denote by σε(xi�1, xi) the trajectory segment
from xi�1 and xi along σε. Similarly define ~σðxði�1Þ

i�1 , xðiÞi Þ. We
now show that ~σðxði�1Þ

i�1 , xðiÞi Þ is a local εi-strict approxi-
mation of σε(xi�1, xi) for εi ¼ ðLis � 1Þ=ðLs � 1Þ � dsim. To
see that, first note that both trajectory segments use the same
motion primitive and have the same length. Additionally,
ρðxðiÞi , xiÞ ≤ ðLis � 1Þ=ðLs � 1Þ � dsim. Finally, an intermedi-
ate state x0 along the edge is also close to the corresponding

Fu et al. 815

state x along the original edge (on σε), since they can be
obtained by applying a motion primitive of a shorter length,
and Lipschitz continuity of the system guarantees
ρðx0

, xÞ ≤ ðLis � 1Þ=ðLs � 1Þ � dsim < γ=2. Since σε is γ/2-ro-
bust (with ε ≤ γ/2), we guarantee that the motion plan ~σ is
collision free.

To summarize, as long as the required conditions are
satisfied, RCS finds a motion plan.

5.4.3. Resolution optimality of RCS*_D. Similarly to the
proof of RCS, we first consider a simplified version of
RCS*, termed RCS*_D, which does not use node pruning
as part of duplicate detection (Alg. 2, line 9) and later extend
it to RCS*. For simplicity, we assume that both RCS*_D
and RCS* do not use the additional optimizations described
in Section 4.3 or ,4.4 and do not use CðbestPlanÞ for early
pruning, which does not affect the validity of arguments
used below.

First, following the discussion in Section 5.4.1,
RCS*_D terminates in finite time. Then, to show that
Thm. 2 holds for RCS*_D, we consider a reference tra-
jectory σ* and assume that conditions (C1’)-(C3’) are
satisfied. According to (C1’), (C2’), and Thm 3, as σ* is
decomposable, for some ε > 0, there exists a fine resolution
R(σ*, ε) with which a piece-wise strict ε-approximation of
σ* can be constructed. We denote such piece-wise strict
ε-approximation as σ*ε . Moreover, it holds that
Cðσ*ε Þ ≤ ð1þ k � εÞ � Cðσ*Þ, where k = (Lc + cmax)/cmin is as
defined in (C2’). Furthermore, we mention that the precise
value of ε will be assigned later on and for now we only
assume that ε2 ð0, γ=2�.

Similar to the discussion in Section 5.4.1, σ*ε is at least
γ/2-robust given ε ≤ γ/2. Thus, for a cutoff resolution Rmin

that is fine enough, σ*ε will be explored by the search tree
constructed by RCS*_D.

5.4.4. Accounting for pruning in RCS*. The proof for this
theorem follows the same idea as Section 5.4.2, so we only
focus on cost approximation. Since the optimal trajectory σ*
is curvature bounded, there exists some fine resolution R(σ*,
ε) that can be explored by RCS*, with which we can
construct a piece-wise strict ε-approximation of σ*. We
denote the approximation as σ*ε and the result found by
RCS* as ~σ*.

Similar to Section 5.4.2, we denote the sequence of motion
primitives that composes σ*ε as M

σ*ε
¼ fM1,…,Mng, and

the sequence of configurations along σ*ε as {x0, x1, …, xn},
where x0 ¼ xstart, xi ¼ xi�1ÅMi, i2 ½1, n�. Following the
notion in Section 5.4.2, xðjÞi , j ≤ i denotes the configuration
xðjÞj þM

σ*ε
½jþ 1, i�, where xðjÞj is the configuration along ~σ*

that replaces xðj�1Þ
j .

We now consider the cost of ~σ*. Note that in RCS* we
only allow xðiÞi to replace xði�1Þ

i when CðxðiÞi Þ ≤ Cðxði�1Þ
i Þ.

Here, CðxÞ denotes the cost of a node associated with x in
the search tree. Thus, for the final configuration along ~σ*,
we have

C
�
xðnÞn

�
≤C

�
xðn�1Þ
n�1

�
þ C

�
xðn�1Þ
n�1 , xðnÞn

�

≤
Xn

i¼1

C
�
xði�1Þ
i�1 , xðiÞi

�
:

It remains to bound the expression Cðxði�1Þ
i�1 , xðiÞi Þ for any

1 ≤ i ≤ n. Following the proof of Thm. 1, ~σ*ðxði�1Þ
i�1 , xðiÞi Þ is a

local εn-strict approximation of σ*ε ðxi�1, xiÞ for
εn ¼ ðLns � 1Þ=ðLs � 1Þ � dsim < γ=2. According to the
similar-cost property of local strict approximation, we have
that

C
�
xði�1Þ
i�1 , xðiÞi

�
≤ ð1þ kεnÞ � Cðxi�1, xiÞ:

Figure 11. A 2D illustration of configuration pruning. σε is shown as black nodes, the plan after x
0

1 prunes x1 is shown as red nodes, the
plan after x

00

2 prunes x
0

2 is shown as green nodes, the plan after x
ð3Þ
3 prunes x

00

3 is shown as yellow nodes, the plan after xð4Þ4 prunes xð3Þ4 is
shown as blue nodes, and the pruning configuration xð5Þ5 is shown as a purple node. The solid circular arrows represent elements inMσε,
and the dashed circular arrows represent connections to predecessors of the pruning configurations. In this particular example, as long as
we guarantee that kProj(x5) � pgoalk2 ≤ τ � γ/2 (σε is γ/2-robust) and that ξ ¼

P5
i¼1ξ ≤ γ=2, the resultant plan which ended at x

ð5Þ
5 still

satisfies the required goal tolerance.

816 The International Journal of Robotics Research 42(10)

where k is as defined in (C2’). To summarize, the accu-
mulated cost of ~σ* is as follows:

C
�
xðnÞn

�
≤
Xn

i¼1

C
�
xði�1Þ
i�1 , xðiÞi

�
:

It remains to determine the value of ε to achieve a desired
approximation factor of 1 + εcost. So far we required ε ≤ γ/2. To
further guarantee that CðxðnÞn Þ ≤ ð1þ εcostÞ � Cðσ*Þ holds, we
require that ε ≤ (2εcost� k � γ)/(k(2 + k � γ)). Thus, we take ε =
min{γ/2, (2εcost� k � γ)/(k(2 + k � γ))}. According to condition
(C3’), it follows that γ ≤ εcost/k, so we always have ε > 0.

To summarize, as long as the required conditions are
satisfied, RCS* still finds a valid motion plan σ that satisfies
CðσÞ ≤ ð1þ εcostÞ � Cðσ*Þ.

6. Experiments

We evaluate our new motion planners for steerable needles
using scenarios based on the medical tasks of lung biopsy
and liver biopsy:

(i) Lung biopsy: Lung cancer is the deadliest form of
cancer in the United States, killing over
130,000 Americans each year according to American
Cancer Society (2022). Early diagnosis is critical for
patient survival, and biopsy of suspicious nodules is
required for diagnosis. Steerable needles deployed
from bronchoscopes have the potential to safely and
accurately reach nodules throughout the lung for bi-
opsy and localized treatment (Kuntz et al., 2016;
Swaney et al., 2017). In this procedure, the steerable
needle is deployed from a bronchoscope inside the
lung and must steer from the start pose just outside a
bronchial tube (the furthest pose reachable by the
bronchoscope) to the nodule while avoiding anatom-
ical obstacles that include the large blood vessels, the
bronchial tubes, and the lung boundary.

(ii) Liver biopsy: Liver cancer accounts for roughly
840,000 new cancer cases and 780,000 cancer-related
deaths each year worldwide. It is more prevalent in
countries in sub-Saharan Africa and Southeast Asia
than in the US and is one of the few cancers whose
death rates are still on the rise (Bray et al., 2018).
Similar to lung cancer, early diagnosis is key with one
tool being biopsy of suspicious nodules. In liver biopsy
procedures, the steerable needle is deployed through
the surface of the liver and must steer from the start
pose near the liver surface to the nodule while avoiding
anatomical obstacles including large blood vessels.

The CT scans used in both experiments are from The
Cancer Imaging Archive (TCIA) (Clark et al., 2013), a
public medical image repository for cancer studies. The
chest CT scan for lung biopsy scenario is from the Lung
Image Database Consortium and Image Database Resource
Initiative (LIDC-IDRI) image collection (Armato et al.,

2011, 2015), while the abdomen CT scan for liver biopsy
scenario is from the CT volumes with multiple organ
segmentations (CT-ORG) dataset (Rister et al., 2019) We
illustrate in Figure 1 (top) volumetric models of the relevant
anatomy segmented from a CT scan. For the lung seg-
mentation, we follow the method described in Fu et al.
(2018). For the liver segmentation, we use the segmentation
labels from the CT-ORG dataset for the liver region. The
major blood vessels are also segmented using the method
described in Fu et al. (2018).

6.1. Test case generation

To create test cases for planning, we randomly sample
50 collision-free start configurations for each scenario, and
for each start configuration, we sample 10 collision-free
goal points uniformly inside the kinematically forward-
reachable workspace of the needle. Since we consider
two different values for κmax (see Section 6.2), for each start
configuration, two different sets of goal points are sampled.
This is because with a larger κmax, the kinematically
forward-reachable workspace would also be larger. Thus,
each scenario has 1000 test cases in total, including
500 cases for each needle design.

More specifically, in the lung biopsy scenario, start
configurations are sampled along the bronchial tube walls
(i.e., points reachable by the bronchoscope from which the
steerable needle can be deployed), and the goal points are
sampled in the lung parenchyma (i.e., points in the tissue of
the lung outside the bronchial tubes in which nodules re-
quiring biopsy may occur). In the liver biopsy scenario, start
configurations are sampled near the anterior surface of the
liver (i.e., points where the liver is close to the abdomen skin
from which the steerable needle can be deployed), and the
goal points are sampled in the liver tissue (i.e., points in the
tissue of the liver in which nodules requiring biopsy may
occur). See Figure 12 for the scenarios and representative
plans computed by RCS.

To avoid skewing the data with trivial test cases, we
discarded test cases where the start configuration can be
connected directly to the goal point with a collision-free arc.
Additionally, we use inevitable collision check (mentioned
in Section 4.3) to disallow cases where the start configu-
ration has an inevitable collision deeming the problem
unsolvable. Finally, note that it is not guaranteed that a valid
plan exists for a test case.

6.2. Setups

We consider a steerable needle with two different maximum
curvatures κmax = (100 mm)�1 and (50 mm)�1, both with a
device diameter of 2 mm and maximum insertion length of
80 mm. The simulated workspace was reconstructed from
preoperative CT scans where Wobs is a point cloud repre-
senting the anatomical obstacles described above. We use a
collision-checking resolution of 0.5 mm and a goal toler-
ance of τ = 1.0 mm.

Fu et al. 817

We compare in simulation RCS and RCS* with several
other steerable needle planners:

(i) RRT: The RRT-based needle planner (Kuntz et al.,
2015; Patil et al., 2014) with 5% goal biasing and
100% goal-connecting ratio.

(ii) AO-RRT: AO-RRT (Hauser and Zhou, 2016;
Kleinbort et al., 2020) adapted for steerable needles,
with maximum rotation control of 2π and a maximum
insertion control of 16 mm. We follow the guidelines
in Kleinbort et al. (2020) for cost sampling and dis-
tance weighting between the configuration space and
cost space. For a fair comparison, we use the same
goal-connecting method as RRT.

(iii) AFT: The AFT-based needle planner (Liu et al., 2016;
Pinzi et al., 2019), with setup following Pinzi et al.
(2019). Adaptive Fractal Tree internally uses a hybrid
cost function to choose the plan to optimize in the next
iteration; we use
ChybridðσÞ ¼ ω � CðσÞ þ

���σðlÞ � pgoal
���
2
=τ, where ω is

a weighting parameter depending on the scale of C.
Note that Chybrid is only used internally in AFTwhile C
is always used for performance comparison across
different planners.

For our proposed planners RCS and RCS*, we have
δlmax = 16 mm and the system cutoff resolution is computed
for control frequency 40 Hz, which corresponds to a time
interval of 0.025s: δlmin = 5(mm/s) � 0.025s = 0.125 mm,
δθmin = 2π(rad/s) � 0.025s ≈ 0.157 rad. The value of insertion
and rotation velocities is taken from Rucker et al. (2013) and
the control frequency is the measurement rate of the NDI
Aurora tracking system (Northern Digital, 2022). Additionally
for RCS*, we use a lookahead value of nla = 3, and for all cost
functions, we set the approximation parameter to be εcost = 0.1.
Other system constants (e.g., Ls) are empirically determined.

We also ran a search-based planner denoted as SIN-
GLE_RES that includes all optimizations of RCS men-
tioned in Section 4.3 or 4.4 but that uses only the finest
resolution (with no multiple resolutions).

Figure 12. Visualization of the anatomical environments and 10 representative plans for each scenario computed by RCS (cyan). Top
and bottom figures depict three views of the lung environment and the liver environment, respectively. In all figures, the needle steers to
targets (green) while avoiding anatomical obstacles including major blood vessels (red) and the lung or liver boundary (gray). In the top
figure, bronchial tubes are depicted in brown.

818 The International Journal of Robotics Research 42(10)

All experiments were run on a dual 2.1 GHz 16-core Intel
Xeon Silver 4216 CPU and 100 GB of RAM. All paral-
lelizations were implemented with Motion Planning Tem-
plates (MPT) (Ichnowski and Alterovitz, 2019). All
parallelized versions (including RRT and AO-RRT) use
60 threads. Code for our proposed planners is available on
GitHub (Fu et al., 2021a).

6.3. Success rate comparison

We now present results pertaining to the success rate of the
different algorithms. In our setting, the success rate is the
ratio of solved cases among the set of 500 test cases. All
planners other than AFT were allowed 100 s. As for AFT,
while the original AFT algorithm is GPU accelerated, here
we present results for our CPU-based implementation and
only focus on the feasibility of the method and not on the
computation times (we let AFT run until it finishes three
iterations as suggested in Liu et al. (2016)). For planners that
require a cost function C as input (i.e., AO-RRT, AFT, and
RCS*), we used trajectory length as the cost function when
comparing success rate. Since the hybrid cost function in
AFT does not necessarily favor paths with minimal goal
tolerance and thus may affect its success rate, we set the
weighting parameter ω = 0 for success rate analysis. In
RCS*, the plan obtained keeps being updated (Alg. 2 line
11) and only the minimal-cost plan is returned. To fairly
compare success rate, the ability to find any valid (not
necessarily optimal) plan, we consider RCS* to succeed as
long as it finds a plan (bestPlan ≠ NULL).

The results are shown in Figure 13. First, among RCS
variants, RCS_S performed much better than RCS_B (see
Table 1 for details about these variants), indicating the three
domain-specific optimizations introduced in Section
4.3 dramatically improved the efficiency of the algorithm.
Furthermore, except for the slight overhead affecting the
early stage of the planner ð< 50msÞ, RCS achieved even
better performance than RCS_S. Moreover, RCS* showed
similar performance as RCS. The single-resolution planner,
SINGLE_RES, achieved low success rates ð< 40%Þ, sug-
gesting that the multi-resolution approach in RCS variants is
necessary for high performance. Second, the single-
threaded RCS_S achieved better performance than the
single-threaded RRT_S, comparable to and often with
higher performance than the multi-threaded RRT, and al-
ways with higher performance than the multi-threaded AO-
RRT. AO-RRT, although outperforming RRT in the early
stage ð< 0:1sÞ, showed slow convergence in the later stages
of the search. From the perspective of computation time,
RCS and RCS* in general solved over 75% of the test cases
within a second and were over 100× faster in reaching
RRT’s final success rate (at 100 s). When looking at each
test case, RCS and RCS* on average took only 42.2% of the
computation time spent by RRT, indicating they were
roughly 2.4× faster than RRT. Similarly, RCS and RCS*
were on average 1.5× faster than AO-RRT on a per-case
perspective. Adaptive Fractal Tree achieved a success rate

of between 55% and 75%, which was significantly lower
than that of RCS and RCS*, with many of the failures due to
the computed trajectories not satisfying the maximum-
allowed targeting error of τ = 1 mm. From the perspec-
tive of the final success rates, RCS and RCS* were on
average 5.4% higher than RRT, 7.2% higher than AO-RRT,
and 23.1% higher than AFT.

6.4. Plan quality comparison

We continue to compare plan qualities, considering three
different well-behaved cost functions:

(i) Trajectory length: "x2X , cðxÞ ¼ 1. This cost
function is by nature well-behaved given cmin = cmax =
1, Lc = 0.

(ii) Cost map: this cost function is informed by a cost
map derived from medical images (Fu et al., 2018),
where each voxel in the 3D cost map is associated
with a cost value that represents tissue damage. We
forced cmin = 0.01 and then used trilinear interpolation
to smooth out the voxelized cost map to make it well-
behaved.

(iii) Obstacle clearance: Cost function
Rl
0 clðσðsÞÞ

-1ds,
where cl(�) is the clearance from obstacles, has been
widely used (Agarwal et al., 2018; Kuntz et al., 2015;
Strub and Gammell, 2021; Wein et al., 2008) since it
captures both trajectory length and clearance from
obstacles. Here, we modify the point-based cost to be
c(x) = min{cl(x)-1, cmax}, forcing the cost not to
exceed cmax = (0.1 mm)�1 to make it well-behaved.

For the lung biopsy scenario, we considered the cost
functions of trajectory length and cost map (i.e., costs (i) and
(ii), above). In contrast, for the liver biopsy scenario, we
considered the cost functions of trajectory length and ob-
stacle clearance (i.e., costs (i) and (iii), above). This is
because the method for constructing a cost map in Fu et al.
(2018) was designed specifically for the lung anatomy
where plenty of small blood vessels exist. For liver anatomy,
the cost map constructed using the same method is far less
informative.

For this set of experiments, we only evaluated RCS*,
RCS, RRT, AO-RRT, and AFT. All four planners except
AFT were parallelized and were allowed 10 s, while we
allowed AFT to finish three iterations. To compare how plan
quality is improved as more computation time is given, we
kept track of the best plan found by each planner at each
time stamp.

For all cost functions, the cost of a plan may vary sig-
nificantly between test cases. For example, trajectory length
is affected by how far away the target lies relative to the start
pose and cost map values are much higher when the needle
is steering in a vessel-cluttered region. Instead of averaging
across different test cases directly, for each test case, we
compute the relative cost using the RCS* as a reference.
More specifically, for a given time step, the relative cost is

Fu et al. 819

valid if both the target planner and RCS* have successfully
found a plan and the value of the relative cost is computed
by Crelative ¼ Ctarget=CRCS*. We then averaged across all test
cases with a valid relative cost for each time step.

The results are shown in Figure 14. We start our analysis
by considering the trajectory length. For all four corre-
sponding plots (for both the lung and liver and for both
needle curvatures), the relative costs mostly lie between a
factor of 1.01× and 1.04× the cost obtained via RCS*, with
RCS* outperforming all other planners. Additionally, the
relative cost is flatter for κmax = (100 mm)�1 compared to
(50 mm)�1, indicating that the more flexible the needle is,
the greater room for improvement there is. Thus, as needles
that are more flexible would be developed, the relative
advantage of our method would increase. To understand
why the improvement here is relatively low, consider any
bounded-curvature trajectory that is 80 mm long (the
maximum insertion length). Here, the theoretically mini-
mum Euclidean distance between the two ends is 77.88 mm
and 71.74 mm for a radius of curvature κmax = (100 mm)�1

and (50 mm)�1, respectively. Thus, the upper bounds for the
relative cost are 1.027 and 1.115, respectively.

We continue our analysis by considering the cost map
(representing tissue damage) evaluated in the lung scenario.
Here, RCS* and RCS showed a larger advantage over RRT
and AO-RRT, achieving between 4.5% and 25% lower cost
on average. Interestingly, RCS quickly achieved a relative
cost that is only slightly higher than 1.0, indicating that its
cost is comparable to the cost of RCS*. We also see that
RRTwas able to improve its path quality but since this is not
optimized directly by the algorithm, the relative cost was not
improved further. Finally, for AO-RRT, although being
asymptotically optimal, its convergence rate was relatively
slow and achieved a final cost (at 10s) which was higher
than RRT’s.

We finish this part of the analysis by considering the
obstacle clearance, evaluated on the liver scenario. Here,
RCS and RCS* still outperform RRT and AO-RRT.
However, in the early stage of the search (i.e., for < 1s),

RCS achieved better costs than RCS* (relative cost being
less than 1.0). A possible explanation is that RCS can better
explore different plans with different cost values in the early
stage of the search because of its less-strict duplicate de-
tection. As more running time was given, RCS*, with its
resolution optimality and with the help of its heuristic (see
Strub and Gammell (2021)), was able to improve the cost of
paths and the twomethods achieved comparable cost at 10 s.
Here, we also see that RRT and AO-RRT achieve relatively
low costs, compared to other cost metrics. This could be
because the cost function is dominated by points that get
very close to the obstacles. Thus, a planner achieves a low
cost as long as it is able to find a plan with these “good”
dominating points.

We notice that RCS and RCS* achieved comparable
costs, indicating that RCS, even without optimality guar-
antees, was performing well in practice for our highly
constrained test scenarios. On the other hand, for RCS* to
guarantee resolution optimality, it needed to be much more
conservative, considering the cost metric properties for
worst cases and exploring all potentially better branches in
the search tree. From the accumulative distribution function
(CDF) plot in Figure 14, we see that RCS* achieved equal
or better costs (at 10s) than RCS for 90% of the cost map
cases and for 70% of the obstacle clearance cases.

Finally, we also report the final relative cost for AFT in
Figure 14. Since AFT’s design addresses both finding a path
and optimizing a given cost via one hybrid cost function Chybrid,
it treats the targeting error as a part of Chybrid and may sacrifice
the cost function C for a lower targeting error. Thus, we can see
that AFT had the highest relative cost among all planners.

6.5. Heuristic balancing in RCS and RCS*

In this section, we depict how our algorithms are affected by
different parameter choices. We start by evaluating how our
definition of rank (equation (4)) affects the behavior of RCS
and then continue to evaluate the effect that the lookahead
has on the behavior of RCS*.

Figure 13. Success rate as a function of computation time. All plots use logarithmic time axes.

820 The International Journal of Robotics Research 42(10)

6.5.1. Evaluating the effect of rank on RCS. Recall that the
rank of a node (equation (4)) allows RCS and RCS* to
balance between refining the resolution used in a parent
node and expanding a node. Roughly speaking, the for-
mer corresponds to creating finer motions that make small
progress toward the goal but create higher quality paths or
better avoid obstacles while the latter corresponds to
using coarser motions to make bigger steps toward
the goal.

To depict this tradeoff, we consider the cost map metric
for lung biopsy and evaluate RCS for a refined rank function
using two new parameters a and b:

RankðvÞ ¼ Rankðv:parentÞ þ aðllðMvÞ þ lθðMvÞÞ þ b:

Results, depicted in Figure 15, demonstrate that if res-
olution refinement is not penalized (a = 0), all resolutions
are treated equally without prioritizing the coarse resolution,
and both the success rate and plan quality are negatively

Figure 15. Comparing the performance of RCS for different rank definitions (i.e., parameter values a and b) on the lung biopsy scenario
with the cost map metric.

Figure 14. Plan quality comparisons. Without specification, a plot shows the relative cost (vertical axis) as a function of computation
time (horizontal axis), where the time axis is logarithmic, solid lines show the average relative cost when compared to RCS*, and
shaded regions show the corresponding standard deviation. The final costs for AFT (shown relative to RCS*) are provided in the table.
We also include a detailed comparison of RCS and RCS* for the cost metrics that are not trajectory length (i.e., cost map for lung scenario
and obstacle clearance for the liver scenario), shown as a cumulative distribution function (CDF).

Fu et al. 821

affected. This suggests that using multiple resolutions is
important and we should prioritize coarse resolutions.

6.5.2. Evaluating the effect of the lookahead on
RCS*. Recall that in RCS*, a secondary heuristic f(�) is
used to guide the search, and the lookahead parameter nla is
used to balance between a node’s rank and f(�). Having a
large nla value allows RCS* to prioritize nodes with po-
tentially lower cost, but as the rank plays a less important
role, the benefits of the multi-resolution framework are
weakened and it may take longer to find solutions (although
with higher quality).

To depict this tradeoff, we consider again the cost map
metric for lung biopsy and evaluate RCS* for different
lookahead values (Figure 16). We see that when nla is in-
creased from 0 to 3, the success rate hardly changed.
However, when nla = 10, RCS* achieved lower success rate
between 0.05 and 5 s. When pushing this to the limit and
taking a value of nla = 100, RCS* struggled to improve the
success rate after 0.1 s, indicating that after solving the easy-
to-solve scenarios, RCS* cannot efficiently find solutions
for a harder problem using this lookahead. This is because
the larger nla is, the more similar RCS* is to a basic A*
search that heavily relies on f(�).

When it comes to plan quality, we see that RCS* with a
lookahead value of nla = 10 achieved higher cost values in
the early stages of the search but was able to converge
quickly to match the other variants. However, when taking
this to the extreme and using larger lookahead values (nla =
100), the slowdown is too big and RCS* was not able to
efficiently find low-cost solutions.

To summarize, this experiment shows, from another
perspective, that the multi-resolution framework is

important both for efficiency and as a general heuristic
without considering a specific cost function. As a general
guideline, we need to keep nla not too large to retain the
benefits of prioritizing coarse resolutions. In our settings, we
choose nla = 3 which proved to adequately balance the
success rate and the ability to improve the overall plan
quality.

7. Conclusion

In this paper, we took an important step toward creating a
certifiable optimal motion planner for steerable needles.
Specifically, we introduced a resolution complete motion
planner for steerable needles, RCS, and an extended ver-
sion, RCS*, that is also resolution optimal. We provided
formal proof to show that, under some mild assumptions on
the system and the solution, RCS is guaranteed to find in
finite time a plan as long as the problem admits a qualified
motion plan. RCS* is guaranteed to find in finite time a plan
whose cost can be as close as desired to the globally optimal
qualified motion plan. We also showed that our proposed
planners outperform state-of-the-art needle planners in
clinically realistic simulations considering clinically rele-
vant cost functions by achieving higher success rates, lower
computation times, and higher plan qualities.

We view this work as an algorithmic foundation required
to obtain certifiable optimal motion planning for steerable
needles. Our planner is the first planner for steerable needles
that guarantees resolution completeness and resolution
optimality, but more work remains.

(i) Our analysis showed that, under some mild as-
sumptions, when a qualified solution exists, if the

Figure 16. Comparing the performance of RCS* for lookahead parameters on the lung biopsy scenario with the cost map metric.

822 The International Journal of Robotics Research 42(10)

cutoff resolution is fine enough and the plan is robust
to some degree (i.e., has some clearance from the
obstacles and the goal region boundary), the algo-
rithms will find it. However, it would be valuable for
medical applications to provide the precise relation
between the system’s controls and this cutoff reso-
lution. Subsequently, we need to provide the precise
relation between this cutoff resolution (i.e., what
does it mean to be “fine enough”) and the clearance
of plans (i.e., what should “some clearance” be?). In
the ideal case, when a desired clearance is given
(e.g., say we do not consider plans that get overly
close to obstacles as a reference plan to approxi-
mate), we should be able to provide a cutoff reso-
lution, in an explicit form, that guarantees resolution
completeness and resolution optimality. Future work
will use this foundation to compute the relation
between the aforementioned parameters in order to
give physicians certifiable software for motion
planning for steerable needles.

(ii) Although our proposed steerable needle planners
showed good efficiency in experiments, the worst-
case computation time can be long. We will also
investigate techniques to further speed up the planners
(e.g., GPU acceleration or additional optimizations for
effective early pruning).

(iii) We have started experimentally evaluating the planner
with steerable needles in ex-vivo animal tissues. We
also will explore how these certifiable guarantees can
help gain the trust of physicians for autonomous
medical robots.

Declaration of conflicting interests

The author(s) declared the following potential conflicts of interest
with respect to the research, authorship, and/or publication of this
article: RA is an inventor on university-owned patents on medical
robotic devices incorporating steerable instruments that have been
licensed to industry.

Funding

The authors disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article:
This research was supported in part by the United States
National Institutes of Health (NIH) [grant number
R01EB024864]; the United States National Science Founda-
tion (NSF) [grant numbers 2008475, 2038855]; the Israeli
Ministry of Science, Technology and Space (MOST) [grant
numbers 3-16079, 3-17385]; the United States-Israel Bina-
tional Science Foundation (BSF) [grant number 2019703]; and
the Ravitz Foundation.

ORCID iDs

Mengyu Fu https://orcid.org/0000-0002-5237-1220
Kiril Solovey https://orcid.org/0000-0003-0254-0572
Ron Alterovitz https://orcid.org/0000-0002-4492-1384

Notes

1. Our definition of a finer resolution is identical to the notion of
dominance in the study of multi-objective optimization (see,
e.g., Hernández et al. (2023)).

2. Adapted from Barraquand and Latombe (1991, Appendix A).
3. To be more precise, one needs to account for the cases where

R(σ, εr) is not in the sequence of resolutions considered by the
algorithm and we may introduce additional error when ap-
proximating R(σ, εr) with ~R. However, this can be easily ac-
counted for by using a finer resolution to approximate the target
resolution R(σ*, ε), similarly to Lem. 2.

4. The proof is adapted from Cheng and LaValle (2002, Thm. 5.2),
which considers a finite set of inputs. Here, we further consider
the approximation of an arbitrary decomposable trajectory
without assuming it is discretized.

References

Abolhassani N, Patel R and Moallem M (2007) Needle insertion
into soft tissue: A survey. Medical Engineering & Physics
29(4): 413–431.

Agarwal PK, Fox K and Salzman O (2018) An efficient algorithm
for computing high-quality paths amid polygonal obstacles.
ACM Transactions on Algorithms (TALG) 14(4): 1–21.

Alterovitz R, Goldberg K and Okamura A (2005) Planning for
steerable bevel-tip needle insertion through 2D soft tissue
with obstacles. In: 2005 IEEE Int. Conf. Robotics and Au-
tomation (ICRA), Barcelona, Spain, 18–22 April, 2005,
pp. 1640–1645. IEEE.

Alterovitz R, Siméon T and Goldberg K (2007) The stochastic
motion roadmap: A sampling framework for planning with
markov motion uncertainty. In: Robotics: Science and Sys-
tems (RSS), Atlanta, Georgia, USA, 27–30 June, 2007,

American Cancer Society (2022) Cancer Facts & Figures.
Technical report. American Cancer Society.

Armato SG III, McLennan G, Bidaut L, et al. (2011) The lung
image database consortium (LIDC) and image database re-
source initiative (IDRI): A completed reference database of
lung nodules on CT scans. Medical Physics 38(2): 915–931.

Armato SG III, McLennan G, Bidaut L, et al. (2015) Data from
LIDC-IDRI. The Cancer Imaging Archive.

Asadian A, Kermani MR and Patel RV (2011) Robot-assisted
needle steering using a control theoretic approach. Journal of
Intelligent & Robotic Systems 62(3): 397–418.

Babaiasl M, Yang F, Boccelli S, et al. (2020) Fracture-directed
waterjet needle steering: Design, modeling, and path plan-
ning. In: 2020 8th IEEE RAS/EMBS International Confer-
ence for Biomedical Robotics and Biomechatronics
(BioRob), New York, NY, USA, 29 November–01 December
2020, pp. 1166–1173.

Barraquand J and Latombe JC (1991) Robot motion planning: A
distributed representation approach. The International
Journal of Robotics Research 10(6): 628–649.

Barraquand J and Latombe JC (1993) Nonholonomic multibody
mobile robots: Controllability and motion planning in the
presence of obstacles. Algorithmica 10(2): 121–155.

Fu et al. 823

https://orcid.org/0000-0002-5237-1220
https://orcid.org/0000-0002-5237-1220
https://orcid.org/0000-0003-0254-0572
https://orcid.org/0000-0003-0254-0572
https://orcid.org/0000-0002-4492-1384
https://orcid.org/0000-0002-4492-1384

Bentley M, Rucker C, Reddy C, et al. (2021) A novel shaft-to-
tissue force model for safer motion planning of steerable
needles. Computing Research Repository (CoRR) abs/
2101.02246.

Bernardes MC, Adorno BV, Poignet P, et al. (2012) Semi-
automatic needle steering system with robotic manipulator.
In: 2012 IEEE International Conference on Robotics and
Automation, Saint Paul, MN, USA, 14–18 May 2012,
pp. 1595–1600. IEEE.

Bray F, Ferlay J, Soerjomataram I, et al. (2018) Global cancer
statistics 2018: Globocan estimates of incidence andmortality
worldwide for 36 cancers in 185 countries. CA: A Cancer
Journal for Clinicians 68(6): 394–424.

Cheng P and LaValle SM (2002) Resolution complete rapidly-
exploring random trees. In: IEEE Int. Conf. Robotics and
Automation (ICRA), volume 1,Washington, DC, USA, 2002,
pp. 267–272. IEEE.

Clark K, Vendt B, Smith K, et al. (2013) The cancer imaging
archive (TCIA): maintaining and operating a public infor-
mation repository. Journal of Digital Imaging 26(6):
1045–1057.

Cowan NJ, Goldberg K, Chirikjian GS, et al. (2011) Robotic
needle steering: design, modeling, planning, and image
guidance. In: J Rosen, B Hannaford and RM Satava (eds),
Surgical Robotics: System Applications and Visions. Chapter
23. New York: Springer, 557–582.

Dayan D, Solovey K, Pavone M, et al. (2021) Near-optimal multi-
robot motion planning with finite sampling. In: 2021 IEEE
International Conference on Robotics and Automation
(ICRA), Xi’an, China, 30 May–05 June 2021,
pp. 9190–9196.

DiMaio SP and Salcudean SE (2003) Needle insertion modeling
and simulation. IEEE Transactions on Robotics and Auto-
mation 19(5): 864–875.

DuW, Kim SK, Salzman O, et al. (2019) Escaping local minima in
search-based planning using soft duplicate detection. In:
2019 IEEE/RSJ International Conference on Intelligent Ro-
bots and Systems (IROS), Macau, China, 03-08 November
2019, pp. 2365–2371. IEEE.

Duindam V, Xu J, Alterovitz R, et al. (2010) Three-dimensional
motion planning algorithms for steerable needles using in-
verse kinematics. The International Journal of Robotics
Research 29(7): 789–800.

Ertop TE, Emerson M, Rox M, et al. (2020) Steerable needle tra-
jectory following in the lung: Torsional deadband compen-
sation and full pose estimation with 5dof feedback for needles
passing through flexible endoscopes. In:Dynamic Systems and
Control Conference, Volume 84270. New York, NY: American
Society of Mechanical Engineers, V001T05A003.

Favaro A, Cerri L, Galvan S, et al. (2018) Automatic optimized 3D
path planner for steerable catheters with heuristic search and
uncertainty tolerance. In: 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), Brisbane, QLD,
Australia, 21–25 May 2018, pp. 9–16. IEEE.

Favaro A, Segato A, Muretti F, et al. (2021) An evolutionary-
optimized surgical path planner for a programmable bevel-tip
needle. IEEE Transactions on Robotics 37(4): 1039–1050.

Frazzoli E, Dahleh MA and Feron E (2002) Real-time motion
planning for agile autonomous vehicles. Journal of Guidance,
Control, and Dynamics 25(1): 116–129.

Fu M, Kuntz A, Webster RJ III, et al. (2018) Safe motion planning
for steerable needles using cost maps automatically extracted
from pulmonary images. In: 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
Madrid, Spain, 01–05 October 2018, pp. 4942–4949. IEEE.

Fu M, Salzman O and Alterovitz R (2021a) steerable-needle-
planner. https://github.com/UNC-Robotics/steerable-needle-
planner (accessed 15 February 2022).

Fu M, Salzman O and Alterovitz R (2021b) Toward certifiable
motion planning for medical steerable needles. In: Pro-
ceedings of Robotics: Science and Systems. Virtual.

Fu M, Solovey K, Salzman O, et al. (2022) Resolution-optimal
motion planning for steerable needles. In: 2022 International
Conference on Robotics and Automation (ICRA), Phila-
delphia, PA, USA, 23–27 May 2022, pp. 9652–9659. IEEE.

Gammell JD and Strub MP (2021) Asymptotically optimal
sampling-based motion planning methods. Annual Review of
Control, Robotics, and Autonomous Systems 4: 295–318.

Hart PE, Nilsson NJ and Raphael B (1968) A formal basis for the
heuristic determination of minimum cost paths. IEEE Trans-
actions on Systems, Science, and Cybernetics 4(2): 100–107.

Hauser K (2015) Lazy collision checking in asymptotically-
optimal motion planning. In: 2015 IEEE International Con-
ference on Robotics and Automation (ICRA), Seattle, WA,
USA, 26–30 May 2015, pp. 2951–2957.

Hauser K, Alterovitz R, Chentanez N, et al. (2009) Feedback
control for steering needles through 3D deformable tissue
using helical paths. In: Robotics: Science and Systems (RSS),
Seattle, USA, 2009.

Hauser K and Zhou Y (2016) Asymptotically optimal planning by
feasible kinodynamic planning in a state–cost space. IEEE
Transactions on Robotics 32(6): 1431–1443.

Hernández C, Yeoh W, Baier JA, et al. (2023) Simple and efficient
bi-objective search algorithms via fast dominance checks.
Artificial Intelligence 314: 103807.

Hoschek J (1992) Circular splines. Computer-Aided Design
24(11): 611–618.

Ichnowski J and Alterovitz R (2019)Motion planning templates: A
motion planning framework for robots with low-power CPUs.
In: 2019 International Conference on Robotics and Auto-
mation (ICRA), Montreal, QC, Canada, 20–24 May 2019,
pp. 612–618. IEEE.

Islam F, Salzman O and Likhachev M (2019) Provable indefinite-
horizon real-time planning for repetitive tasks. Proceedings of
the International Conference on Automated Planning and
Scheduling 29: 716–724.

Islam F, Vemula A, Kim SK, et al. (2020) Planning, learning and
reasoning framework for robot truck unloading. In:
2020 IEEE International Conference on Robotics and Au-
tomation (ICRA), Paris, France, 31 May–31 August 2020,
pp. 5011–5017. IEEE.

Karaman S and Frazzoli E (2011) Sampling-based algorithms for
optimal motion planning. The International Journal of Ro-
botics Research 30(7): 846–894.

824 The International Journal of Robotics Research 42(10)

https://github.com/UNC-Robotics/steerable-needle-planner
https://github.com/UNC-Robotics/steerable-needle-planner

Kirkpatrick DG, Kostitsyna I and Polishchuk V (2011) Hardness
results for two-dimensional curvature-constrained motion
planning. In: Proceedings of the 23rd Annual Canadian
Conference on Computational Geometry, Toronto, Ontario,
Canada, 10–12 August, 2011.

Kleinbort M, Granados E, Solovey K, et al. (2020) Refined
analysis of asymptotically-optimal kinodynamic planning in
the state-cost space. In: 2020 IEEE International Conference
on Robotics and Automation (ICRA), Paris, France, 31 May–
31 August 2020, pp. 6344–6350. IEEE.

Kleinbort M, Solovey K, Littlefield Z, et al. (2018) Probabilistic
completeness of RRT for geometric and kinodynamic plan-
ning with forward propagation. IEEE Robotics and Auto-
mation Letters 4(2): x–xvi.

Ko SY, Frasson L and Rodriguez y Baena F (2011) Closed-loop
planar motion control of a steerable probe with a “pro-
grammable bevel” inspired by nature. IEEE Transactions on
Robotics 27(5): 970–983.

Kuntz A, Swaney PJ, Mahoney A, et al. (2016) Toward transoral
peripheral lung access: Steering bronchoscope-deployed
needles through porcine lung tissue. In: Hamlyn Sympo-
sium on Medical Robotics, London, UK, 2016, pp. 9–10.

Kuntz A, Torres LG, Feins RH, et al. (2015) Motion planning for a
three-stage multilumen transoral lung access system. In:
2006 IEEE International Conference on Robotics and Au-
tomation (ICRA), Orlando, FL, USA, 15–19 May 2006,
pp. 139–144. IEEE.

LaValle SM (2006) Planning Algorithms. Cambridge: Cambridge
University Press.

LaValle SM and Kuffner JJ Jr (2001) Randomized kinodynamic
planning. The International Journal of Robotics Research
20(5): 378–400.

Li Y, Littlefield Z and Bekris KE (2016) Asymptotically optimal
sampling-based kinodynamic planning. The International
Journal of Robotics Research 35(5): 528–564.

Lindemann SR and LaValle SM (2006) Multiresolution approach
for motion planning under differential constraints. In:
2006 IEEE International Conference on Robotics and Au-
tomation (ICRA), Orlando, FL, USA, 15–19 May 2006,
pp. 139–144. IEEE.

Liu F, Garriga-Casanovas A, Secoli R, et al. (2016) Fast and
adaptive fractal tree-based path planning for programmable
bevel tip steerable needles. IEEE Robotics and Automation
Letters 1(2): 601–608.

Ljungqvist O, Evestedt N, Cirillo M, et al. (2017) Lattice-based
motion planning for a general 2-trailer system. In: 2017 IEEE
Intelligent Vehicles Symposium (IV), Los Angeles, CA,
USA, 11–14 June 2017, pp. 819–824, IEEE.

Mandalika A, Choudhury S, Salzman O, et al. (2019) Generalized
lazy search for robot motion planning: Interleaving search and
edge evaluation via event-based toggles. In: International
Conference on Automated Planning and Scheduling
(ICAPS), Berkeley, CA, USA, 2019, pp. 745–753.

Mandalika A, Salzman O and Srinivasa SS (2018) Lazy receding
horizon A* for efficient path planning in graphs with
expensive-to-evaluate edges. In: International Conference on

Automated Planning and Scheduling (ICAPS), Delft, the
Netherlands, 2018, pp. 476–484.

Meek DS and Walton DJ (1995) Approximating smooth planar
curves by arc splines. Journal of Computational and Applied
Mathematics 59(2): 221–231.

Minhas DS, Engh JA, Fenske MM, et al. (2007) Modeling of
needle steering via duty-cycled spinning. In: Annual Inter-
national Conference on the IEEE Engineering in Medicine
and Biology Society (EMBC), Lyon, France, 23–26 August,
2007, pp. 2756–2759, IEEE.

Northern Digital (2022) Aurora - NDI. https://www.ndigital.com/
products/aurora/ (accessed 31 January 2022).

Okazawa S, Ebrahimi R, Chuang J, et al. (2005) Hand-held
steerable needle device. IEEE/ASME Transactions on Me-
chatronics 10(3): 285–296.

Park W, Kim JS, Zhou Y, et al. (2005) Diffusion-based motion
planning for a nonholonomic flexible needle model. In:
2005 IEEE International Conference on Robotics and Au-
tomation (ICRA), Barcelona, Spain, 18–22 April 2005,
pp. 4611–4616.

Patil S, Burgner J, Webster RJ III, et al. (2014) Needle steering in
3D via rapid replanning. IEEE Transactions on Robotics: A
Publication of the IEEE Robotics and Automation Society
30(4): 853–864.

Pearl J and Kim JH (1982) Studies in semi-admissible heuristics.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 4(4): 392–399.

Pinzi M, Galvan S and Rodriguez Y Baena F (2019) The adaptive
hermite fractal tree (AHFT): a novel surgical 3D path
planning approach with curvature and heading constraints.
International Journal of Computer Assisted Radiology and
Surgery 14(4): 659–670.

Pinzi M, Watts T, Secoli R, et al. (2021) Path replanning for
orientation-constrained needle steering. IEEE Transactions
on Bio-Medical Engineering 68(5): 1459–1466.

Pivtoraiko M and Kelly A (2011) Kinodynamic motion planning
with state lattice motion primitives. In: 2011 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems,
San Francisco, CA, USA, 25–30 September 2011,
pp. 2172–2179, IEEE.

Pivtoraiko M, Knepper RA and Kelly A (2009) Differentially
constrained mobile robot motion planning in state lattices.
Journal of Field Robotics 26(3): 308–333.

Qi P, Liu H, Seneviratne L, et al. (2014) Towards kinematic
modeling of a multi-DOF tendon driven robotic catheter. In:
2014 36th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, Chicago, IL,
USA, 26–30 August 2014, pp. 3009–3012, IEEE.

Reed KB, Majewicz A, Kallem V, et al. (2011) Robot-assisted
needle steering. IEEE Robotics & Automation Magazine
18(4): 35–46.

Rister B, Shivakumar K, Nobashi T, et al. (2019) CT-ORG: CT
Volumes with Multiple Organ Segmentations. The Cancer
Imaging Archive.

Rucker DC, Das J, Gilbert HB, et al. (2013) Sliding mode control
of steerable needles. IEEE Transactions on Robotics: A

Fu et al. 825

https://www.ndigital.com/products/aurora/
https://www.ndigital.com/products/aurora/

Publication of the IEEE Robotics and Automation Society
29(5): 1289–1299.

Sabitov IK and Slovesnov AV (2010) Approximation of plane
curves by circular arcs. Computational Mathematics and
Mathematical Physics 50(8): 1279–1288.

Salzman O and Halperin D (2015) Asymptotically-optimal motion
planning using lower bounds on cost. In: 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
Seattle, WA, USA, 26–30 May 2015, pp. 4167–4172.

Secoli R and Rodriguez Y Baena F (2016) Adaptive path-
following control for bio-inspired steerable needles. In:
2016 IEEE International Conference on Biomedical Robotics
and Biomechatronics (BioRob), Singapore, 26–29 June 2016,
pp. 87–93, IEEE.

Seiler KM, Singh SP, Sukkarieh S, et al. (2012) Using Lie group
symmetries for fast corrective motion planning. The Inter-
national Journal of Robotics Research 31(2): 151–166.

Shome R and Kavraki LE (2021) Asymptotically optimal kino-
dynamic planning using bundles of edges. In: 2021 IEEE
International Conference on Robotics and Automation
(ICRA), Xi’an, China, 30 May–05 June 2021,
pp. 9988–9994.

Solovey K (2020) Complexity of Planning. arXiv preprint arXiv:
2003.03632v2 [cs.RO].

Solovey K, Janson L, Schmerling E, et al. (2020) Revisiting the
asymptotic optimality of RRT*. In: 2020 IEEE International
Conference on Robotics and Automation (ICRA), Paris,
France, 31 May–31 August 2020. pp. 2189–2195.

Strub MP and Gammell JD (2021) Admissible Heuristics for
Obstacle Clearance Optimization Objectives. arXiv preprint
arXiv:2104.02298v2 [cs.RO].

Sun W, Patil S and Alterovitz R (2015) High-frequency replanning
under uncertainty using parallel sampling-based motion

planning. IEEE Transactions on Robotics: A Publication of
the IEEE Robotics and Automation Society 31(1): 104–116.

Swaney PJ, Mahoney AW, Hartley BI, et al. (2017) Toward
transoral peripheral lung access: Combining continuum ro-
bots and steerable needles. Journal of Medical Robotics
Research 2(01): 1750001.

Tsao M, Solovey K and Pavone M (2020) Sample complexity of
probabilistic roadmaps via ϵ-nets. In: 2020 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
Paris, France, 31 May–31 August 2020, pp. 2196–2202,
IEEE.

Van Den Berg J, Patil S, Alterovitz R, et al. (2010) LQG-based
planning, sensing, and control of steerable needles. In:
Workshop on the Algorithmic Foundations of Robotics
(WAFR), Singapore, 13–15 December, 2010, pp. 373–389.
Springer.

Webster RJ III, Kim JS, Cowan NJ, et al. (2006) Nonholonomic
modeling of needle steering. The International Journal of
Robotics Research 25(5–6): 509–525.

Wein R, Van Den Berg J and Halperin D (2008) Planning high-
quality paths and corridors amidst obstacles. The Interna-
tional Journal of Robotics Research 27(11–12): 1213–1231.

Xu J, Duindam V, Alterovitz R, et al. (2008) Motion planning for
steerable needles in 3D environments with obstacles using
rapidly-exploring random trees and backchaining. In:
2008 IEEE International Conference on Automation Science
and Engineering, Arlington, VA, USA, 23–26 August 2008,
pp. 41–46, IEEE.

Yershov DS and LaValle SM (2010) Sufficient conditions for the
existence of resolution complete planning algorithms. In:
Workshop on the Algorithmic Foundations of Robotics
(WAFR), Singapore, 13–15 December, 2010, pp. 303–320.
Springer.

826 The International Journal of Robotics Research 42(10)

	Toward certifiable optimal motion planning for medical steerable needles
	1. Introduction
	1.1. Contribution

	2. Related work
	2.1. Motion planning for steerable needles
	2.2. Resolution
	2.3. Resolution

	3. Problem definition
	3.1. Steerable needle motion planning problem
	3.2. Optimal steerable needle motion planning problem

	4. Method
	4.1. Resolution Complete Search
	4.1.1. Motion primitives
	4.1.2. Motion primitive hierarchy
	4.1.3. Algorithm description
	4.1.4. Duplicate detection

	4.2. A resolution
	4.2.1. Termination criteria
	4.2.2. Cost
	4.2.3. Cost
	4.2.4. Node pruning
	4.2.5. Open node skipping

	4.3. Domain-specific optimizations
	4.3.1. Early pruning by testing for goal reachability
	4.3.2. Direct goal connection
	4.3.3. Inevitable collision avoidance

	4.4. Parallelism

	5. Theoretical guarantees
	5.1. General resolution-related definitions
	5.2. Resolution completeness of RCS and resolution optimality of RCS*
	5.3. Approximation of decomposable trajectories
	5.3.1. Approximating arbitrary curvatures using duty
	5.3.2. Approximating curves using fixed-resolution primitives
	5.3.3. Similar cost for piece

	5.4. Proof of Thm. 1 and Thm. 2
	5.4.1. Resolution completeness of RCS_D
	5.4.2. Accounting for pruning in RCS
	5.4.3. Resolution optimality of RCS*_D
	5.4.4. Accounting for pruning in RCS*

	6. Experiments
	6.1. Test case generation
	6.2. Setups
	6.3. Success rate comparison
	6.4. Plan quality comparison
	6.5. Heuristic balancing in RCS and RCS*
	6.5.1. Evaluating the effect of rank on RCS
	6.5.2. Evaluating the effect of the lookahead on RCS*

	7. Conclusion
	Declaration of conflicting interests
	Funding
	ORCID iDs
	Notes
	References

