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A covariate-adjusted estimate of an exposure-outcome association may be biased if the exposure variable
suffers measurement error. We propose an approach to correct for exposure measurement error in a covariate-
adjusted estimate of the association between a continuous exposure variable and outcome of interest. Our
proposed approach requires data for a reference population in which the exposure was a priori set to some
known level (e.g., 0, and is therefore unexposed); however, our approach does not require an exposure validation
study or replicate measures of exposure, which are typically needed when addressing bias due to exposure
measurement error. A key condition for this method, which we refer to as “partial population exchangeability,”
requires that the association between a measured covariate and outcome in the reference population equals the
association between that covariate and outcome in the target population in the absence of exposure. We illustrate
the approach using simulations and an example.

bias; cohort studies; epidemiologic methods; regression analysis

Abbreviations: CI, confidence interval; IV, instrumental variable.

Exposures are often difficult to accuratelyquantify. There-
fore, exposure measurement error is a limitation of most
epidemiologic studies. In the context of linear (1) and gener-
alized linear (2) regression models, it is well known that if
a continuous exposure suffers classical measurement error
(i.e., its measured values are distributed around the true
exposure with independent error), then an estimate of the
exposure-outcome association may be attenuated (3, 4),
although attenuation may not occur in other settings (5).
Despite the prevalence of such problems, it remains rare for
epidemiologic analyses to employ quantitative approaches
to address exposure measurement error (5). One reason may
be that many approaches require prior knowledge about
the structure and magnitude of measurement error, data
from an exposure validation study, or replicate exposure
measurements.

In a prior paper, it was shown that a marginal estimator
of an exposure-outcome association (i.e., one that handles

confounders through a model-based approach to direct
standardization) may suffer less bias due to classical
measurement error than a covariate-conditional estimator
of association (6, 7); however, to fully correct for bias
due to exposure measurement error, the approach required
information derived from replicate measurements or an
exposure validation study with a gold standard (6). Here,
we propose a method to correct for bias due to exposure
measurement error in a covariate-adjusted estimate of an
exposure-outcome association, and the proposed approach
does not require such validation data. Instead, our proposed
approach requires data for an external reference population
that satisfies certain partial exchangeability conditions.

We describe the proposed method in the context of both
linear and log-linear outcome models where an exposure
variable of primary interest suffers measurement error. The
proposed method, which builds upon our prior work using an
instrument variable-like analysis (8), may be used to correct



for classical measurement error as well as some types of
nonclassical measurement error. The method is illustrated
with simulations as well as an example.

METHODS

We focused on the setting of an epidemiologic study
with an exposure variable of primary interest, A, an out-
come, Y , and confounders measured with negligible error, Z
(Figure 1). Our interest is in the effect of A on Y adjusted for
Z. We assumed that in the target population, A is not deter-
ministically assigned (e.g., as a function of Z), such that,
prior to being exposed, each person had a non-negligible
opportunity to receive any value of A (including 0).

Suppose that the outcome of interest, Y , follows either a
linear additive model of the form,

E[Y|A, Z] = α0 + α1A + α2Z, (1)

or a log-linear model of the form,

E[Y|A, Z] = exp (β0 + β1A + β2Z) . (2)

Unfortunately, we do not observe A. Rather, we observe
a mismeasured version of A, denoted A∗, prone to measure-
ment error of the form,

A∗ = A + U, (3)

Figure 1. Illustration of relationship between exposure, A, outcome,
Y, covariate, Z, and error-prone exposure measure, A∗.

recently (e.g., a new flame retardant) then information prior
to introduction of a new exposure may serve this purpose.
In other settings, an unexposed reference population may
arise from spatial or physical considerations that define the
external intervention preventing exposure. For example, in
an occupational setting, if the exposure is localized to a
defined work area or department, then information for those
employed in “clean” work areas or departments at a defined
facility (i.e., locations at which the occupational exposure of
interest was not present) may serve this purpose.

Let R = 1 denote the reference population while R = 0
denotes the target population of individuals all of whom
a priori had an opportunity for exposure. In the reference
population, covariates Z and outcome Y are observed. Note
that, as will be formalized below, we do not a priori assume
that the target and reference populations are necessarily
random samples from a common underlying population.
Rather, the target and reference populations may differ with
respect to distributions of measured and unmeasured covari-
ates. However, as will be formalized below, we will require
that certain key population characteristics remain invariant
across reference and target populations.

Prognostic score. Let F(Z) denote the expected value of
Y conditional on Z among individuals in the reference pop-
ulation, E[Y |Z, R = 1]. This type of function is sometimes
referred to as a prognostic score or disease risk score. Here,
we focused on the setting in which F(Z) is estimated using an
external sample, or historical reference sample, that a priori
lacked the opportunity for exposure to A and is therefore
unexposed, an approach discussed by Hansen and Desai et
al. (9, 10) in the context of estimation of prognostic scores.
An important distinction can be made between a prognos-
tic score that captures the relationship between covariates
and outcome among the subset of persons who happened
to be unexposed (and is therefore an estimate of the Z-Y
association conditional on exposure equal to zero), and (as
in our setting) a prognostic score that represents the Z-Y
association in a reference population in which the exposure
is set to zero for the entire reference population. Note that
by virtue of treatment exclusion in the reference population,
one has that F(Z) = E[Y(a=0)|Z, R = 1], where Ya denotes a
potential outcome that would be observed if exposed to treat-
ment value a. An estimate of F(Z) may be obtained by fitting
a regression of Y on Z to data for the reference population,
and, using the estimated regression model coefficients and
information on Z in the target population, we can compute
F̂(Z) for all individuals in our study.

where E(U|A, Z) = 0. This measurement error model 
accommodates classical measurement error (i.e., where U ∼
N

(
0, σ2

U

)
) but also allows us to relax some of the assump-

tions of that model—for example, allowing that the vari-
ance of U increases proportional to the true exposure, A, 
or varies depending upon the outcome variable, Y (see 
Web Appendix 1, available at https://doi.org/10.1093/aje/
kwac133). Our measurement error model (equation 3) may 
apply to binary exposure variables; however, for binary A 
and A∗ we note that the condition E(U|A, Z) = 0 holds under 
only limited circumstances (see Web Appendix 1).

If we fitted a regression model for Y on A∗, adjusted for Z, 
similar to equation 1 or 2 but with the mismeasured surrogate 
A∗ rather than A, we would obtain an estimate that suffered 
bias due to exposure measurement error.

Proposed method

Reference population. The proposed method requires 
availability of a reference population in which exposure or 
treatment is set, as a result of a possibly hypothetical external 
intervention, to a constant value for the whole population. 
Here we will focus on the setting in which the reference 
population lacked the opportunity for exposure to A, and  
therefore A is set to 0 for the entire reference population.

An unexposed reference population may be based on 
observations prior to the exposure becoming available, in 
which case the external intervention preventing the opportu-
nity for exposure is calendar time. For example, in environ-
mental epidemiology, if the exposure of interest has emerged
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Bespoke instrumental variable. Let Ỹ denote an F̂(Z)-
centered version of the outcome variable, which on the
additive scale implies Ỹ = Y − F̂(Z). Under conditions
formalized below, F̂(Z) captures the dependence between
the average potential outcome in the absence of exposure and
Z in both reference and target populations, in which case Ỹ
and Z can be expected to be mean independent in the target
population. Because Z are observed variables that predict A
but not Ỹ in the target population, we refer to Z as “bespoke”
instrumental variables (IVs) (8).

The conditional mean independence afforded by Ỹ per-
mits an IV-type analysis that addresses exposure measure-
ment error in a linear or log-linear regression.

Sufficient conditions for bespoke IV identification. Suppose
that each person in the reference and target populations has
a potential outcome variable Ya that would be observed
if exposed to treatment value a. Further suppose that Z =
(Z1, Z2) and that rather than taking all of Z as candidate
bespoke IVs, we take Z1 only as a bespoke IV, and Z2 are
additional covariates that we adjust for. Below we estab-
lish identification of the semiparametric marginal structural
model E[Ya − Ya=0|a, z2, R = 0] = β(z2)a leveraging the
instrument-like properties of Z1, to account for the fact that
one observes A∗ instead of A.

For a linear structural nested model, we make the follow-
ing assumptions:

1) Consistency, such that Ya = Y if A = a and R = 0.
2) A degenerate reference population with R = 1, in which

we have,

E[Y|R = 1, Z] = E
[
Y(a=0)|R = 1, Z

]
.

3) Partial population exchangeability, such that

E
[
Ya=0|R = 0, Z1 = z1, Z2

] − E
[
Ya=0|R = 0, Z1 = 0, Z2

]

= E
[
Ya=0|R=1, Z1 =z1, Z2

]−E
[
Ya=0|R=1, Z1 =0, Z2

]
,

for all values of z1.

4) Partial additive causal effect homogeneity (i.e., no inter-
action between A and Z1 on the scale of interest) in
causing the outcome, such that

E
[
Ya −Ya=0|A = a, z1, z2, R = 0

] = E
[
Ya −Ya=0|A = a,

z1 = 0, z2, R = 0
]

for all z1.

5) Bespoke IV relevance:

E
[
A|z1, z2, R = 0

] − E
[
A|z1 = 0, z2, R = 0

] �= 0 for each
observed z2.

6) Mean partially unbiased measurement error:

E
[
A∗|R = 0, Z1 = z1, Z2

] − E
[
A∗|R = 0, Z1 = 0, Z2

]

= E[A|R = 0, Z1 = z1, Z2] − E[A|R = 0, Z1 = 0, Z2] .

Notably, the condition that we refer to as “partial popu-
lation exchangeability” is substantially weaker than condi-

tional population exchangeability of the target and reference
populations (i.e., E

[
Ya=0|R = 0, Z1, Z2

] = E
[
Ya=0|R = 1,

Z1, Z2
]
) or full population exchangeability that the joint dis-

tribution of (Ya = 0, Z1, Z2) is the same in both populations.
This condition essentially requires that the Z1-Y associa-
tion in an unexposed reference population matches the Z1-
Ya=0 association in the target population conditional on Z2.
Bespoke instrument relevance (assumption 5), in which the
instrument has a causal effect on A, essentially requires that
Z1 predicts A within strata of Z2. Assumption 6 relaxes the
classical measurement error model. Under assumptions 1–6,
we prove the following result in the Web Appendix 2:

E
[
Ya − Ya=0|A = a, z1, z2, R = 0

] = β
(
z2

)
a is point

identified by the bespoke IV estimand,

E
[
Ya − Ya=0| a, Z2, R = 0

]

= E[Y−F(Z)|R=0,Z1=z1,Z2]−E[Y−F(Z)|R=0,Z1=0,Z2]
E[A∗|R=0,Z1=z1,Z2]−E[A∗|R=0,Z1=0,Z2] .

In Web Appendix 2, we establish an analogous identifica-
tion result under a semiparametric marginal structural log-
linear model provided a stronger identification condition that
the measurement error, U, is conditionally independent of
(A, Z1, Y), given Z2 in the target population.

Linear regression. Suppose that, focusing on the target
population (R = 0), we wish to estimate the parameter α1
in a linear model of the form = α0 + α1A + α2Z + ε, where
E(ε|A, Z) = 0; however, we only observe the mismeasured
surrogate A∗ rather than A. We can derive an estimate of α1
by treating Z as a bespoke IV (for clarity here, suppressing
notation to indicate conditioning on R = 0) and using a

familiar IV estimator, αIV
1 = cov(Ỹ ,Z)

cov(A∗,Z)
, which yields a con-

sistent estimate of the parameter of interest, α1, noting that,

αIV
1 = cov(Ỹ ,Z)

cov(A∗,Z)

= cov(α0+α1A+α2Z+ε−F(Z),Z)
cov(A+U,Z)

= cov(α0+α1A+α2Z+ε−E(Y|Z,R=1),Z)
cov(A+U,Z)

, and, under the condi-
tions above,

= cov(α0+α1A+α2Z+ε−E(Z,A=0,R=0),Z)
cov(A+U,Z)

= cov(α0+α1A+α2Z+ε−(α0+α2Z),Z)
cov(A+U,Z)

= cov(α1A+ε,Z)
cov(A+U,Z)

= α1σA,Z
σA,Z

= α1

,

noting that it suffices that E(U|Z, R = 0) = 0.
Suppose that Z = (Z1, Z2). Rather than taking all of Z as

candidate bespoke IVs, we might opt to use only one mea-
sured confounder, Z1, as a bespoke IV (while Z2 are addi-
tional covariates that we adjust for) because, as discussed,
point identification requires a homogeneity assumption for
the effect of A across levels of the bespoke IV.

Web Appendix 3 provides a brief description of a g-
estimation approach to an IV estimator (11), incorporating a



control function to create a “bespoke” IV, and SAS (SAS
Institute, Inc., Cary, North Carolina) code, for estimation
of the average effect of A on Y obtained under an additive
structural mean model (11, 12). The approach follows by
treating Z1 (centered at its mean conditional on Z2) as an
instrument, and g-estimation may proceed using generalized
method of moments to obtain an estimate, α̂IV

1 , that results
in lack of association between Z1 (centered at its mean
conditional on Z2) and H

(
α̂IV

1 , α̂0
) = Ỹ − α̂IV

1 A∗ − α̂0.

Log-linear regression. Suppose that we are interested
in estimation of the parameter, β1, under a log-linear
model of the form that was shown in equation 2 (again
focusing on the target population, R = 0). However, we only
observe the mismeasured surrogate A∗ rather than A. We
can derive an estimate of β1 by treating Z as a bespoke
IV and using g-estimation of the proposed “bespoke” IV
estimator by identifying an estimate, β̂IV

1 , that results in lack
of association between Z1 (centered at its mean conditional

β β βIV
1 A∗ − β̂0

) − 1, where

Ỹ

a model using the error-prone variable A∗ rather than A.
Finally, we estimated the proposed IV estimator using
the approach described in the text (and SAS code in Web
Appendix 3). We summarized results from the simulated
studies by computing the mean of the estimated association,
the estimated standard deviation of the estimates (the
empirical standard error, ESE), and the average squared
difference between the estimated association and the
specified true effect of A on Y (the mean squared error,
MSE). In Web Appendix 4, we further report the average
standard error and coverage probability of bootstrap-based
95% confidence intervals for simulations under the first
scenarios. Additional simulations were conducted, assuming
smaller study and reference samples (Web Appendix 5), and
simulations were conducted under a log-linear model, which
may be preferred when the outcome variable can take only
positive values (Web Appendix 6).

Example. We illustrate the proposed method in empirical
data that were derived from the Orinda Longitudinal Study
of Myopia, a cohort study of ocular component development
and risk factors for nearsightedness among children,
including family history of myopia and the amount and type
of visual activity that a child performed (16). The exposure
of primary interest is self-reported hours per week reading
for pleasure (READHR, in units of hours), and the outcome
of interest is spherical equivalent refraction (SPHEQ, in
units of diopter, a measure of the eye’s effective focusing
power). Covariates include age at study entry (AGE, in
years); year of study entry (STUDYYEAR, in years); gender
(GENDER, 1 = female, else 0); maternal history of myopia
(MOMMY, 1 = yes, else 0); and paternal history of myopia
(DADMY, 1 = yes, else 0). Here, we considered those who
reported a complete absence of reading for pleasure (0
hours) as an accurate indication of the absence of exposure.
For the purposes of illustrating the proposed approach,
we assumed that those who reported a complete absence
of reading for pleasure were subject to an intervention
preventing exposure (e.g., absence of books for pleasure
reading in the household). Among those who reported
reading for pleasure, we assumed that exposure estimates
suffered error proportional to the true value, log(X∗) =
log(X)+U, U ∼ N(0, σU), such that the imperfect exposure
measure also was non-negative. Using data for those 180
children who reported 0 hours per week reading for pleasure,
we fitted a regression model for SPHEQ as a function of
AGE, STUDYYEAR, GENDER, MOMMY, and DADMY.
We derived an estimated prognostic score as the predicted
value of SPHEQ given the fitted model and observed
covariates. Using data for those 438 children who reported
1 or more hours per week reading for pleasure, we fitted
a regression model for log(READHR) as a function of
AGE, STUDYYEAR, GENDER, MOMMY, and DADMY.
We derived an estimated exposure score as the predicted
value of log(READHR) given the fitted model and observed
covariates. We then estimated the diopter change per log-
unit increase in hourly reading by fitting a regression model
for SPHEQ as a function of the exposure score, with the esti-
mated prognostic score included as an offset term. We com-
pared results estimated using the proposed approach with

on Z2) and  H
(ˆ

1
IV , ˆ0

) = Ỹ exp 
( − ˆ= Y/F̂ (Z). Web Appendix 3 provides SAS (SAS Institute) 

code for estimation under a multiplicative structural mean 
model, implemented using generalized method of moments, 
and SAS code to obtain bootstrap-based confidence 
intervals.

Simulation example. Data were simulated for 1,000 stud-
ies, with 5,000 people in each study sample and 5,000 
people in each reference sample. Each person was randomly 
assigned a covariate value Z1 by sampling from a uniform 
distribution, Z1 ∼ Uniform(−1, 1), and a covariate value Z2 
by sampling from a Bernoulli distribution, Z2 ∼ Bern(0.5). 
We assigned A as a continuous variable that took a value 
of exp(−1 + 0.5Z1 + 0.5Z2 + ε1), where ε1 ∼ N(0,0.5); 
in the reference sample, A was set to 0. In the first set 
of simulations, the outcome variable, Y , was a continuous 
variable that took a value of 1 + 1 × Z1 + 1 × Z2 + 1 × 
A + ε2, where  ε2 ∼ N(0,1). In the second set of simulations, 
the outcome variable, Y , was a binary variable that took a 
value of 1 with probability 0.1 + 0.1Z1 + 0.1Z2 + 0.1A (with 
resampling if the expression yielded a probability less than 
0 or greater than 1).

We generated data under 3 scenarios. In the first scenario, 
a surrogate exposure, A∗, was generated under a model in 
which errors conform to the classical measurement error 
model, A∗ = A + U, U ∼ N(0, σU). Simulations were 
conducted for scenarios where σU=0.2, 0.5, 1, similar to the 
ranges of measurement errors that have been posited in sim-
ulations in a range of epidemiologic substantive areas (13–
15). In the second scenario, a surrogate exposure, A∗, was  
generated under a model in which errors are proportional 
to the magnitude of the true exposure, A∗ = A + U, U ∼ 
N(0, A). In the third scenario, a surrogate exposure, A∗, was  
generated under a model in which error depended upon the 
outcome variable, A∗ = A + U, U ∼ N(0, e0.1Y ).

For each simulated data set, we fitted a regression model 
for Y conditional on A, Z1, and Z2 to summarize the 
association in the study sample under the data generating 
model. We fitted a model for Y conditional on A∗, Z1, and Z2 
to summarize the biased estimate of association when fitting



those estimated using a covariate-conditional regression
model for SPHEQ as a function of log(READHR), AGE,
STUDYYEAR, GENDER, MOMMY, and DADMY in the
study sample of those children with 1 or more hours per
week reported reading for pleasure.

RESULTS

Simulation

Table 1 reports the simulation results for analyses of the
association between a continuous exposure variable and a
continuous outcome variable, where the exposure variable,
A, had a mean of approximately 0.57 (standard deviation =
0.40), and the imperfect exposure measure A∗ suffered expo-
sure measurement error for scenarios, σU (0.2, 0.5, or 1.0).
In all simulations, the average estimated association under
a model for Y conditional on A, Z1, and Z2 was equal
to 1. In all simulations, the average Z-conditional esti-
mate of association obtained using the error-prone proxy
A∗ was biased towards the null. In all scenarios, the pro-
posed estimator of the exposure-outcome association was
approximately unbiased. As the degree of exposure mea-
surement error, σU , increased, there was no increase in
bias of the proposed estimator, but there was increasing
bias in the covariate-conditional estimator of association
between the error prone proxy exposure measure and out-
come (as expected). The empirical standard errors of the
covariate-conditional models tended to be slightly smaller
than of the proposed estimator; the root mean square error
of the Z-conditional estimate of association obtained using
the error-prone proxy A∗ was larger than that of the pro-
posed estimator; when σU was larger, the root mean square
error of the Z-conditional estimate of association obtained
using the error-prone proxy A∗ was substantially larger
than that of the proposed estimator. Bootstrap-based 95%
confidence intervals had close to nominal coverage (Web
Table 1).

Table 1 also reports the simulation results for analyses
of the association between a continuous exposure and a
continuous outcome variable, where the proxy exposure
variable suffers measurement error that is proportional to the
true exposure, or where the proxy exposure variable suffers
measurement error that depends upon the outcome. In these
scenarios, the proposed estimator of the exposure-outcome
association also was approximately unbiased.

Table 2 reports simulation results obtained in simulations
where the outcome was a binary variable; overall patterns
of results were similar to those observed in Table 1. In all
scenarios, the proposed estimator of the exposure-outcome
association was approximately unbiased.

Additional simulations were conducted in which the study
and reference populations were smaller; again, the proposed
estimator of the exposure-outcome association was approxi-
mately unbiased, albeit with larger empirical standard errors
and root mean square error than in simulations where sample
sizes were larger (Web Table 2). Simulations also were con-
ducted under a log-linear model form, and in all scenarios,
the proposed estimator of the exposure-outcome association
was approximately unbiased (Web Tables 3 and 4).

Example results

The covariate conditional estimate of the association
between reading for pleasure and spherical equivalent
refraction was −0.03 (95% confidence interval (CI): −0.11,
0.05)-diopter change per log-unit increase in hourly reading
for pleasure each week. The proposed corrected estimate of
the association between reading for pleasure and spherical
equivalent refraction, corrected for measurement error, was
−0.12 (bootstrap 95% CI: −0.22, −0.02)-diopter change per
log-unit increase in hourly reading for pleasure each week.

DISCUSSION

This paper discusses regression analysis of an exposure-
response association with an error-prone exposure variable.
We illustrated that, under the conditions examined, the pro-
posed approach led to a notable reduction in bias due to
measurement error and mean square error compared with
a covariate-adjusted estimator of association between the
error-prone exposure variable and outcome.

The approach requires information for a reference popu-
lation in which the exposure is set by a possibly hypothetical
intervention (and not by a selection process). We refer to
a “hypothetical” intervention because we are assuming that
there is some external force that reveals the treatment-free
potential outcome, Ya=0 in the reference population, and
that, if this same external force were applied to the target
population, the Ya=0 that would be revealed would be similar
to the treatment-free potential outcome Ya=0 experienced by
those in the reference population. Importantly, the proposed
approach requires only “partial population exchangeabil-
ity” of the target and reference populations, a condition
substantially weaker than full exchangeability of the exter-
nal reference and target populations. The target and refer-
ence populations may differ with respect to distributions of
measured and unmeasured covariates; “partial population
exchangeability” simply requires, given consistency and a
degenerate reference population, that the Z1-Y association in
the reference population equals the Z1-Y association among
the unexposed in the target population.

Our proposed approach shifts the challenge for measure-
ment error correction from that of obtaining validation data
(in which exposure measures may be made using a gold-
standard measurement tool), replicate measurements of the
exposure, or another source of information about the struc-
ture and magnitude of the measurement error problem to
that of identifying a suitable reference population that meets
the necessary partial exchangeability conditions. In some
settings a suitable reference population may be based on
observations prior to the exposure occurring. For example,
in environmental and occupational epidemiology, if an agent
has emerged recently or if the exposure arose due to a change
in industrial process, then a reference group may be based
upon recent historical data. When drawing upon historical
data, attention should be paid to possible changes over time
in coding study data, standards of care, and other factors
that could result in a violation of the partial exchangeability
assumption. In other settings, a suitable reference population
may arise from spatial or physical considerations that define



Table 1. Simulations of Associations Between Exposure, A, Mismeasured Surrogate Exposure, A∗, Covariates,
Z, and Continuous Outcome, Y

Simulation Setup Estimates Obtained From Fitted Modelsa

Distribution of U Model
Estimate ESE MSE

N(0, 0.2)

1 E[Y|Z, A] 1.00 0.04 0.032

2 E[Y|Z, A∗] 0.73 0.04 0.265

3 Proposed approach 1.00 0.10 0.077

N(0, 0.5)

1 E[Y|Z, A] 1.00 0.04 0.032

2 E[Y|Z, A∗] 0.31 0.03 0.694

3 Proposed approach 1.00 0.10 0.080

N(0, 1.0)

1 E[Y|Z, A] 1.00 0.04 0.032

2 E[Y|Z, A∗] 0.10 0.01 0.901

3 Proposed approach 1.00 0.12 0.092

N(0, A)

1 E[Y|Z, A] 1.00 0.04 0.032

2 E[Y|Z, A∗] 0.18 0.02 0.816

3 Proposed approach 1.00 0.11 0.086

N(0, e0.1Y )

1 E[Y|Z, A] 1.00 0.04 0.032

2 E[Y|Z, A∗] 0.07 0.01 0.935

3 Proposed approach 1.00 0.13 0.101

Abbreviations: ESE, empirical standard error; MSE, root mean square error.
a Results shown for 3 magnitudes of exposure measurement error, σU, and 2 scenarios where measurement

error depends upon other covariates. Each scenario involves simulation of 1,000 studies with 5,000 people in the
study sample and 5,000 people in an unexposed reference sample.

subject to an intervention preventing exposure (e.g., absence
of books for pleasure reading in the household), acknowl-
edging that we assumed treatment exclusion in the reference
population. These illustrative data provide an example of the
proposed method with publicly available data and allow us
to compare findings using the proposed approach to those
obtained using a previously published method to minimize
bias due to exposure misclassification. The covariate con-
ditional estimate of association between reading for plea-
sure and spherical equivalent refraction was −0.03 (95%
CI: −0.11, 0.05)-diopter change per log-unit increase in
hourly reading for pleasure each week. In previous work,
we illustrated a method to reduce bias due to exposure
measurement error by standardization (6), yielding an esti-
mate of −0.07 (95% CI: −0.14, −0.00)-diopter change
per log-unit increase in hourly reading for pleasure each
week. Here, employing our proposed method to correct for
measurement error yields an estimate of −0.12 (bootstrap
95% CI: −0.22, −0.02)-diopter change per log-unit increase
in hourly reading for pleasure each week. Of course, there
are limitations to this illustrative example, and caution is
warranted in interpretation. For example, in addition to

the hypothetical external intervention preventing exposure. 
When there is knowledge regarding the distribution or envi-
ronmental transport of the agent, a reference group may 
be defined using that information. For example, potential 
exposure to a hazard may be limited to certain areas, while 
the remainder is unexposed and may serve as a reference 
group. Of course, some exposures are ubiquitous, such as 
the radioactive debris from atmospheric nuclear weapons 
testing, and this means that one cannot identify a completely 
unexposed reference group. In such circumstances one may 
conceive of a reference group that has experienced an “exter-
nal intervention” that set exposure to a nonzero baseline 
value. The proposed method can accommodate a known 
baseline exposure common to all members of the reference 
group by simply centering A∗ accordingly for the purposes 
of g-estimation.

The proposed approach is illustrated using data from a 
study of risk factors for myopia (16) that we have drawn  
upon previously to illustrate methods to minimize bias due to 
exposure measurement error (6). For the purposes of illus-
trating the proposed approach we assumed that those who 
reported a complete absence of reading for pleasure were



Table 2. Simulations of Associations Between Exposure, A, Mismeasured Surrogate Exposure, A∗, Covariates, Z,
and Binary Outcome, Y

Simulation Setup Estimates Obtained From Fitted Modelsa

Distribution of U
Model

Estimate ESE MSE

N(0,0.2)

1 E[Y|Z, A] 0.10 0.02 0.016

2 E[Y|Z, A∗] 0.07 0.02 0.027

3 Proposed approach 0.10 0.03 0.026

N(0,0.5)

1 E[Y|Z, A] 0.10 0.02 0.016

2 E[Y|Z, A∗] 0.03 0.01 0.069

3 Proposed approach 0.10 0.03 0.026

N(0,1.0)

1 E[Y|Z, A] 0.10 0.02 0.016

2 E[Y|Z, A∗] 0.01 0.01 0.090

3 Proposed approach 0.10 0.03 0.026

N(0,A)

1 E[Y|Z, A] 0.10 0.02 0.016

2 E[Y|Z, A∗] 0.02 0.01 0.082

3 Proposed approach 0.10 0.03 0.026

N(0, e0.1Y )

1 E[Y|Z, A] 0.10 0.02 0.016

2 E[Y|Z, A∗] 0.01 0.01 0.090

3 Proposed approach 0.10 0.03 0.026

Abbreviations: ESE, empirical standard error; MSE, root mean square error.
a Results shown for 3 magnitudes of exposure measurement error, σU, and 2 scenarios where measurement error

depends upon other covariates. Each scenario involves simulation of 1,000 studies with 5,000 people in the study
sample and 5,000 people in an unexposed reference sample.

treatment exclusion in the reference population, we assumed
that the effects of age, sex, and maternal and paternal myopia
on a child’s measure of spherical equivalent refraction in
the reference and target population are exchangeable; this
assumption of partial exchangeability may be reasonable to
the extent that age and parental effects may plausibly operate
in a similar fashion in the target and reference samples.

We have recently demonstrated that a bespoke IV can be
used to address biased due to unmeasured confounders (8).
Here we demonstrate that a bespoke IV also can serve to
address bias due to exposure measurement error. It is worth
noting that the assumptions for identification in this paper
do not rule out unmeasured confounding, so that the current
work essentially extends our prior work by simultaneously
also accounting for exposure measurement error. Therefore,
the proposed approach will also afford control for unmea-
sured confounders of the A-Y association.

The proposed approach may come at a cost in terms of
statistical efficiency; however, as we illustrate, the proposed
approach will often result in reduction of mean squared
error when measurement error is sizable. Consequently, the
proposed estimator may provide another useful approach to

address bias due to exposure measurement error in a range
of epidemiologic study settings.
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