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ABSTRACT Device-to-device (D2D) communication plays an important role in the next generation of
communication systems. Enabling D2D communication decreases latency and expands the coverage of a
cell in cellular networks. In addition, D2D underlaying cellular users benefit from high spectral efficiency.
However, it creates interference to cellular communications. In this paper, we propose a genetic algorithm-
based method to minimize the interference and maximize the spectral efficiency. One of the advantages
of genetic algorithm is that it escapes from local maximums and evolves toward global maximum by
searching different parts of search space simultaneously. Since D2D underlay cellular network degrades the
signal-to-interference plus noise ratio (SINR), a minimum SINR is considered for cellular users. Numerical
evaluations demonstrate the superior performance of the proposed technique in terms of spectral efficiency
and interference mitigation.

INDEX TERMS Channel prediction, device to device (D2D) communication, genetic algorithm, spectral
efficiency, optimization.

I. INTRODUCTION
Next generation of mobile communication systems com-
prises of wide variety of applications. Internet of things
(IoT) is one of these applications that connects a tremen-
dous number of devices and users to each other [1]. By
increasing the number of IoT-based applications, communi-
cating through a base station (in cellular network) imposes
a huge load on the network. It also increases the latency
of the communication and decreases the quality of service.
Device to device (D2D) communication is proposed to over-
come these problems. This type of communication allows
the nearby devices to communicate directly, independent of
base station, to each other [2]–[4]. Therefore, D2D com-
munication decreases the load of the network and expands
the coverage of the base station by enabling multi-hop
transmission.

D2D communication in spite of simplicity has some chal-
lenges. Choosing the spectrum for D2D communications is
one of the challenges [5], [6]. Based on the used spectrum
by D2D users and their impact on the cellular users, D2D
communication can be classified as shown in Figure 1 [7].

One approach is that D2D users use unlicensed spectrum such
as TVwhite space [8], [9]. In this case, there is no interference
from D2D users to cellular users using licensed spectrum
and vice versa. However, due to the limited rules over the
unlicensed spectrum, it is difficult to control it and usually
not preferable. The other approach is that D2D users along
with cellular users utilize the licensed spectrum [10]. This
category is also classified into two subgroups of overlay and
underlay. In overlay, the D2D users and cellular users utilize
orthogonal time/frequency resource blocks (i.e. the smallest
unit of resources that can be allocated to a user) [11], [12].
In other words, the resources are divided into two groups, one
for cellular users and the other one for D2D users. Due to the
orthogonality of the resources, there is no interference from
one user to other users. However, in the overlay, the spectrum
is not utilized efficiently, because there might be some unused
resources in one group while there are not enough resources
in the other group. Despite the overlay, in underlay, D2D
users utilize the same spectrum as the cellular users [13]–[17].
Therefore, more users can be served within a fixed spectrum
compared to the overlay. Note that although the spectrum

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

21173

https://orcid.org/0000-0003-1473-7604


H. Takshi et al.: Joint Optimization of D2D Resource and Power Allocation Based on Genetic Algorithm

FIGURE 1. Classification of D2D communication based on the spectrum
sharing.

is used more efficiently in underlay, there is interference
between the communications who share the same resource
blocks. Thus, the importance of an interference management
and intelligent resource allocation method is increased. Inter-
ference mitigation results in efficient spectrum utilization.

In the literature, a significant effort has been done related to
the resource allocation and interference mitigation in under-
lay D2D communication [15]–[28]. Yu et al. [15] presented a
joint mode selection, channel assignment and power control
to maximize the spectral efficiency. They proposed three
different modes under which a D2D pair can either reuse a
resource of a cellular user or a use a dedicated resource. In the
case of reusing, only one D2D pair shares a resource block
with a cellular user which restrict the number of served userd.
In the other hand, the maximization is done in two steps:
1) power control 2) channel assignment. These two steps are
done independently which results in not a very optimized
solution.

In [16], a greedy algorithm is proposed for resource allo-
cation for D2D undelaying cellular networks. The authors
assumed that the number of cellular users is larger than the
D2D pairs which is not a realistic assumption for the new
generation of communications. Yu et al. [17] greedy algo-
rithm is presented which is used only for resource alloca-
tion. However, the users either transmit with the maximum
power or they do not have a transmission. In other words,
the effect of transmission power on the interference is not
considered. Also, the authors assumed that a single pair of
D2D users can only share the resource block with a cellu-
lar user. Thus, the number of served users is also limited.
Furthermore, the greedy algorithms often stuck in local opti-
mum solutions and do not evolve toward the global optimum
solutions.

The purpose of the resource allocation in [18] is to
have longer battery life at each device. Resource allocation
is done to enable the users to transmit with a minimum
power. However, efficient spectrum usage is not considered.
Wang et al. [19] resource allocation method for increasing the
energy efficiency and battery life of user equipment is sug-
gested. For this purpose, an iterative combinatorial auction
algorithm is used where D2D pairs and cellular users are as
bidders and auctioneer, respectively.

Zhong et al. [20] suggested to use different algorithms for
resource allocation in multiple input multiple output (MIMO)
systems under different conditions. First, they proposed an
algorithm based on random search that search a huge search
space randomly for finding a sub-optimal solution. Then,
the use of game theory is suggested for the cases that users

has incomplete information. Moreover, an iterative algorithm
based on best response dynamic structure and an algorithm
using sum-rate reinforcement mechanism is proposed as
alternatives for solving the game theoretic problem.

Algedir and Refai [21] minimized the interference while
maximizing the spectral efficiency using only resource allo-
cation and does not consider transmission power. Moreover,
only one D2D pair is allowed to share a resource block with
a cellular users.

Hassan et al. [22], used resource allocation done by a
proposed two-phased algorithm, to minimize the interference
for a given spectral efficiency. Thus, the result is not the
optimum solution in terms of spectral efficiency.

Ali et al. [23] aimed to maximize spectral efficiency per
unit network power consumption. Authors formulated the
optimization problem as a non-linear fractional programming
problem. Then, They converted it to the concave optimization
problem using Charmes-Cooper transformation. In order to
solve the concave optimization problem outer approximation
algorithm is proposed. Therefore, in [23]maximizing the over
all spectral efficiency is not considered.

Janis et al. [24] suggest minimizing the interference from
D2D users to the cellular by decreasing the power of D2D
users, and the interference from the cellular users to D2D
users by choosing the best resource. In their research one
resource block can be shared with one cellular user and one
device to device user at most, which can prevent using the
resources efficiently.

In [25], multiple different game algorithms for resource
allocation are presented. The non-cooperative and coopera-
tive behaviors of mobile users are analyzed to control the
transmission power for underlay D2D communication. Then,
the power control is done by a non-cooperative static game
profiting from Game theory. Additionally, Stackelberg game
is used for resource allocation while the resources for cellu-
lar users are assumed to be known. Authors also proposed
combinatorial auction for resource allocation of both cellular
users and D2D users. However, a suitable resource allocation
highly depends on the transmission power of the user. There-
fore, since the resource allocation is done independent of the
power control, the result is not well-optimized.

Stackelberg game is also suggested in [26] to coordinate
the resource allocation and power assignment. The authors
used the downlink resources. However, due to the heavy load
of download links and high power of base station, sharing
downlink resources is not preferable. Also sharing a cellular
user resource block with only one D2D pair is considered
which restricts the number of served users.

Xu et al. [27] suggested to use sequential second price auc-
tion as a method for resource allocation. However, the result
is not an optimal solution because in the resource allocation,
the effect of assigning different resources to cellular users is
not considered. In other words, the resource allocation for
cellular users is done before the optimization.

In [28], a genetic algorithm-based joint resource allocation
and user matching scheme (GAAM), is proposed. Genetic
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algorithm, unlike the greedy algorithms, escapes from the
local maximums by adding some randomness to the search
space. The probability of the added randomness should
be small. Otherwise, the search gets similar to a random
search. However, huge mandatory randomness is added in
the algorithm in [28] which degrades the performance of the
algorithm. Also, GAAM shares a resource block of a cellular
user with only one D2D pair without power control.

All of the mentioned algorithms are in the category of
the interference aware algorithms. They require knowledge
of global channel state information (CSI) between differ-
ent pairs at all the transmission time intervals (it is usually
obtained by feedback from users to base station). Achieving
this information causes a huge load on the network. Although
authors in [16]–[23], [26]–[28] did not highlight this problem,
a periodically update method for CSI is suggested in [24].
However, it makes the information not useful due to delay
caused by feedback or collecting the information periodically
which affects the performance of the algorithms. Also in [25],
a method based on local CSI is proposed, but in the next
generation of communications, there is a huge number of
users and devices even in local areas. Therefore, the number
of channels required to be known and imposed load due to it
are still huge.

In this paper, we propose a joint optimization for resource
allocation and power assignment based on the genetic algo-
rithm to maximize the spectral efficiency of the network.
Moreover, a minimum SINR for the cellular users is guar-
anteed. Also, there is no restriction on the number of D2D
users that can share a resource block with a cellular user. Fur-
thermore, in order to reduce the overhead of CSI knowledge,
we suggest to use a channel prediction method to reduce the
overhead significantly while the performance is preserved.

The rest of the paper is as follows. In Section II, the system
model is described. Then, the proposed algorithm is described
in Section III. In Section IV, channel prediction is explained.
The numerical simulation results are presented in Section V.
Finally, the conclusions of the paper are given in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A cellular cell with one base station in the center and a
number of users are considered as shown in Figure 2 (a).
The users are randomly distributed around the base station.
Users are classified into two groups of cellular users and
D2D users. Although the cellular users communicate through
the base station, in D2D communication, a device communi-
cates directly to another close by device. Two communicating
devices form a D2D pair. The set of communications are
defined as N = {U1,U2, . . . ,UV ,UV+1, ...UV+K }, where
Ui shows the ith communication. V and K are the total
number of cellular users and D2D pairs, respectively. There-
fore, the first V elements are cellular users and the next K
elements are D2D pairs. In other words, the set of cellular
users is denoted by M = {U1,U2, . . . ,UV } and the set of
D2D pairs is defined by D = {UV+1,UV+2, . . . ,UV+K }.
The bandwidth is divided into narrow resource blocks.

FIGURE 2. A cell and the graph based on it. A cellular user communicates
through base station while a D2D user communicates to another nearby
D2D user. (a) A cell with two cellular users and two D2D pairs.
(b) Interference graph based on the topology of the network.

R = {RB1,RB2, . . . ,RBQ} indicates the set of the resource
blocks. RBi and Q denotes the ith resource block and total
number of resource blocks, respectively. Also, A = {ai,r },
A ∈ {0, 1}(V+K )×Q is resource assignment matrix. ai,r =
1 means ith user utilizes r th resource block and ai,r = 0
shows that the r th resource block is not used by ith user.
It is also worth mentioning that since the downlink resources
are almost fully occupied by high power transmitted signals
from base station to the cellular users, the uplink resources of
the cellular users are shared with D2D users in the proposed
algorithm.

In Figure 2 (b), a directed graph based on the cell in
Figure 2 (a) is created. The graph shows the interfer-
ence between each pair of communications. Nodes in this
graph represent a communication, either a cellular or a
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D2D communication. The edges are interference between
two connected nodes. Ii,j is the edge weight which indicates
the set of interference value from ith node to jth node at
different resource blocks which is defined as:

Ii,j = {Ii,j,1, Ii,j,2, . . . , Ii,j,Q}, (1)

where Ii,j,r is the interference from ith node to jth node at
r th resource block. It is worth mentioning the dashed line
between U1 and U2 shows that sharing a resource block
between two cellular users is not allowed. Since their receiver
is the base station, if they share a resource block the receiver
cannot differentiate the signals. Thus, there is no interference
between cellular users.

Maximum spectral efficiency of ith communication at r th

resource block, either cellular user or D2D pair, is denoted by
Sei,r and defined based on Shannon formula as

Sei,r = log2(1+ SINRi,r ), (2)

where SINRi,r is the signal to interference plus noise ratio.
The SINRi,r in (2) is expressed as

SINRi,r =
ai,rpi,rgi,i,r
σ 2 + I ri

. (3)

In (3), pi,r is the transmission power of the ith node at r th

resource block and gi,j,r is the channel gain between transmit-
ter of the ith node and receiver of the jth node at r th resource
block. σ 2 denotes the noise power. I ri is the total interference
from other nodes to ith node which can be written as

I ri =
V+K∑
j=1,j 6=i

aj,r Ij,i,r =
V+K∑
j=1,j 6=i

aj,rpj,rgj,i,r . (4)

By substituting (4) in (3), we obtain

SINRi,r =
ai,rpi,rgi,i,r

σ 2 +
V+K∑
j=1,j 6=i

aj,rpj,rgj,i,r

. (5)

The goal is tomaximize the spectral efficiency of the network,
which can be written as

Senetwork =
V+K∑
i=1

Q∑
r=1

Sei,r =
V+K∑
i=1

Q∑
r=1

log2(1+ SINRi,r ). (6)

As (6) shows, Senetwork depends on SINRi,r . Moreover,
as shown in (5), in addition to resource allocation which
determines the interfering users, transmission power of the
users determines the amount of the interference and affects
the SINR and consequently the spectral efficiency. Therefore,
optimizing the transmission power of the users helps maxi-
mizing the spectral efficiency of the network and managing
the interference. It is also evident that both cellular users
and D2D users, have an upper limit for their transmission
power. Cellular users also should meet a minimum SINR to
prevent a severe reduction in spectral efficiency while sharing

FIGURE 3. A sample chromosome representation: RB1 is shared by U2,
U3 and U4 with power of p2, pd3 and p4, respectively. Also RB2 is shared
by U1 and U5 with power of p1 and p5, respectively. M = {U1, U2} and
D = {U3, U4, U5} are cellular users and D2D pairs, respectively.

their resource block. Thus, maximization problem can be
formulated as follows

S = argmax
p,a

V+K∑
i=1

Q∑
r=1

log2(1+ SINRi,r )

= argmax
p,a

V+K∑
i=1

Q∑
r=1

log2

1+
ai,rpi,rgi,i,r

σ 2 +
V+K∑
j=1,j 6=i

aj,rpj,rgj,i,r


(7)

subjectto


C1 :

V∑
i=1

ai,r ≤ 1, i ∈M,∀r ∈ R

C2 : pi < pd_max , i ∈ D
C3 : pi < pc_max , i ∈M
C4 : SINRi,r ≥ SINRmin, i ∈M,∀r ∈ R

(8)

where C1 shows that there is at most one cellular user in each
resource block. C2 and C3 limit the power of the users to
their upper limits. pd_max , pc_max are maximum transmission
power of D2D users and cellular users, respectively.C4 shows
that SINRmin is minimum SINR for the cellular users. It is
worth mentioning that there is no restriction in the number
of D2D users in one resource block as long as C4 is met.
Finding a solution for an optimization problem with more

than one constraint, similar to (7), is not possibly practi-
cal. Exhaustive search also is not applicable in engineering
implementations due to the huge size of the search space.
Therefore, to solve the constrained optimization problems,
Genetic algorithm is a well known method [29]. In the next
section, a new Genetic algorithm-based method is proposed
to solve the multi-constrained problem in (7).

III. ALGORITHM DESCRIPTION
Genetic Algorithm emulates the process of natural selection.
The algorithm starts with a set of candidate solutions (chro-
mosomes). A chromosome presents dedicated powers and
resource blocks to communications. Figure 3 shows a sample
chromosome, where two resource blocks are dedicated to five
communications (V = 2 and K = 3), each with a specific
transmission power. Additionally, each chromosome should
satisfy the constrains of the optimization problem in (7). The
set of chromosomes is called a generation. The generations
are changed iteratively. At each iteration, chromosomes of the
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current generation are chosen to be parents and produce the
children (offspring) for the next generation. The fitter chro-
mosome, in terms of spectral efficiency, has higher chance
to be selected as a parent. After series of iterations, the gen-
eration evolves toward the optimal chromosome. Moreover,
the algorithm works with three operators to form a new
generation based on the current generation: 1) proportional
selection, 2) crossover, 3) mutation.
In the following, first, a metric for the fitness of a chromo-

some is given. Then, the operators based on the problem in
(7) are defined.

A. DETERMINING FITNESS FUNCTION AND POWER
ASSIGNMENT
1) FITNESS FUNCTION
Fitness function measures the fitness of a chromosome. Since
the purpose of the algorithm ismaximizing spectral efficiency
of the network, the fitness value of a chromosome equals to
spectral efficiency of the network with respect to the chro-
mosome. Therefore, fitness value of a chromosome can be
written as

fchromosome =

V+K∑
i=1

Q∑
r=1

log2

1+
ai,rpi,rgi,i,r

σ 2 +
V+K∑
j=1,j 6=i

aj,rpj,rgj,i,r

.
(9)

2) POWER ASSIGNMENT
Power of the users is also optimized during calculating fitness
value. For this purpose, at each iteration, one D2D commu-
nication in each resource block (if there is any) is selected
randomly. Power of the selected communication is optimized
to maximize spectral efficiency of the desired resource block.
Furthermore, the SINR of the cellular user of the resource
block (if there is any) is set to SINRmin in order to serve more
D2D users. Then, the power of ith cellular user at r th resource
block is assigned based on (5) as

pi,r = SINRmin ×

(σ 2
+

V+K∑
j=1,j 6=i

aj,rpj,rgj,i,r )

ai,rgi,i,r
. (10)

Additionally, if a resource block is used by only one commu-
nication, the transmission power of the communication is set
to its maximum value. Algorithm 1 shows the pseudocode
for fitness calculation and power assignment. Inputs to the
algorithm are a chromosome (resource allocation matrix and
transmission power vector). Also, the outputs are fitness value
of the chromosome and optimized transmission power vector.

Next, we focus on mentioned operators and show that how
they fit in the framework of our proposed method.

B. PROPORTIONAL SELECTION
Proportional selection operator selects the chromosomes
based on their selection probabilities to be parents of

FIGURE 4. Crossover operation. Parent 1 and Parent 2 produce offspring.
crossover point randomly is selected and equals to 2. Moreover, length of
two resource blocks, which are randomly selected, equal to 4 and 1,
respectively.

next generation. The selection probability of a chromosome
is based on its fitness value and can be expressed as

prs(x, t) =
fchromosome(x)
max(fit(t))

, (11)

where x is a chromosome and prs(x, t) is the probability of
selecting x at t th generation as a parent. fchromosome(x) is the
fitness value of the chromosome x. Additionally, fit(t) is the
set of fitness values at t th generation as

fit(t)={fchromosome(x1), fchromosome(x2), . . . , fchromosome(xNt )}

(12)

where xi and Nt are ith chromosome and the total number of
chromosomes in t th generation, respectively.

C. CROSSOVER OPERATION
Crossover operator combines two parents and produces off-
spring for the next generation. At the beginning, a random
length is dedicated to each resource block of the offspring
where the sum of the lengths must be equal to total number
of communications. This length shows the number of poten-
tial communications that can be supported in the intended
resource block. Also, a random number in the range of
[1,V+K ] is selected which is called crossover point. It deter-
mines the number of communications which are taken from
each parent (e.g crossoverpoint = 3 means three communi-
cations and their transmission powers are taken from parent
1 and the others are taken from parent 2). Figure 4 shows
an example of crossover operation, where pi_j shows the
transmission power of ith user of jth parent. In the figure,
M = {U1,U2},D = {U3,U4,U5} and lengths of resource
blocks in the offspring are randomly selected to be 4 and 1,
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Algorithm 1 Fitness Calculation and Power Assignment
1: procedure Fit_Calc (resourceVector, powerVector)
2: Output fitness_value, powerVector
3: Initialization: sum_vector = ∅; cellVector = ∅;
4: for RB_member each row in resourceVector
5: if there is any D2D pair in RB_member
6: Select optd randomly among D2D pairs of
7: RB_member
8: for All possible values popt for power of optd
9: temp← powerVector
10: Update temp with popt for optd
11: if there is any cellular user in RB_member
12: cell ← cellular user in RB_member
13: p(cell)← required power for SINRmin
14: Add p(cell) to cellVector
15: if p(cell) ≤ pc_max
16: Update temp with p(cell)
17: rate← sumrate of RB_member
18: with respect to temp
19: else
20: rate←−infinity
21: end if
22: else
23: rate← sumrate of RB_member with
24: respect to temp
25: end if
26: Add rate to sumVector
27: end for
28: sumrate(RB_member)← max(sumVector)
29: else
30: p(cell)← pc_max
31: Update powerVector with p(cell)
32: sumrate(RB_member)← sumrate of
33: RB_member with respect to powerVector
34: end if
35: end for
36: fitness_value← sum(sumrate)

respectively. Also, the crossoverpoint equals to 2. Therefore,
first U2 and U4 are chosen from parent 1 and as the results
of first and second moves, the two communications are set as
the first two communications of the first resource block of the
offspring. Other communications of offspring are taken from
the second parent. First element of second parent is U1, but
it cannot be set as the third communication of the offspring.
The reason is that there is another cellular user (U2) at the
first resource block. Thus, in the third move, U1 is added
to the stack. As fourth move, U5 is added to the offspring
as the third communication. Since U4 and U2 already exist
in the offspring, they are not added again. The last element
in second parent isU3 which as fifthmovewill be set as fourth
communication of the offspring. The communications of the
first resource block of the offspring is completed. The next
communication is at the second resource block. Although

Algorithm 2 Crossover
1: procedure Crossover (Parent1,Parent2)
2: Output offspring
3: Initialization: i = 1 and done = 0
4: select Len = {len(1), len(2), ..., len(Q)} randomly in a

way that len(1)+ len(2)+ ...+ len(Q) = V + K
5: crossover_point ← random number 1 to V + K .
6: for rb = 1 to Q
7: while done = 0
8: if i ≤ crossover_point
9: temp← ith communication of the Parent1.
10: else
11: temp ← (i− crossover_point)th communication of

the Parent2.
12: while temp is already taken from Parent1
13: i← i+ 1
14: temp ← (i− crossover_point)th communication of

the Parent2.
15: end while
16: for pos = 1 to len(rb)
17: If pos is for a D2D pair and temp is a D2D pair

offspring(rb, pos)← temp
18: i← i+ 1
19: done = 1
20: else if pos is for a D2D pair and temp is a cellular

user
21: Add temp to the Cell_Stack
22: i← i+ 1
23: else if pos is for a cellular user and temp is a cellular

user
24: offspring(rb, pos)← temp
25: i← i+ 1
26: done = 1
27: else if pos is for a cellular user and temp is a D2D

pair
28: if Cell_Stack is not empty
29: offspring(rb, pos)← Cell_Stack(1)
30: Delete the first element in Cell_Stack.
31: done = 1
32: else
33: offspring(rb, pos)← 0
34: done = 1
35: end if
36: end if
37: end while
38: end for

there is no remaining elements in parent 2, the stack has one
element. Thus, in the sixth and the last move, the element
in the stack will be the only communication of the second
resource block of the offspring. Moves are shown by numbers
in the Figure 4. The pseudocode of crossover operation is
given in Algorithm 2. Two chromosomes (parents) are the
inputs to the algorithm and produced offspring is the output.
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Algorithm 3 Select and Reproduce
1: procedure Sel_Rep (gen, fit)
2: Output new_gen
3: max_fit ← max(fit)
4: for each chromosome in gen
5: prs(chromosome) = fit(chromosome)

max_fit
6: end for
7: for chr = 1 to Nt
8: p1,p2← choose two parents based on the probabil-

ity
9: new_in← Crossover(p1,p2)
10: mut ← random number 0 to 1
11: if mut < 0.2
12: mut_gen← Choose two cellular users or two
13: D2D pairs and swap them
14: Add mut_gen to new_gen
15: else
16: Add new_in to new_gen
17: end if
18: end for

D. MUTATION
In order to escape from local optimum solutions, the genetic
algorithm adds a random change to chromosomes with a low
probability [29]. For applying a random change in a chromo-
some, two users are selected randomly and swapped. In order
to follow the first constraint in (8) (C1), if the first selected
user is among the D2D pairs (cellular users), the second one
should also be selected among the D2D pairs (cellular users).
Note that the probability of the mutation should be low to
prevent a random search.

Combination of proportional selection, crossover oper-
ation and mutation is called select and reproduce. The
pseudocode of select and reproduce function is given in
Algorithm 3.

E. OPTIMIZATION USING GENETIC ALGORITHM
OPERATORS
The optimization algorithm, as shown in Algorithm 4, starts
with a random generation. Random generation generate Nt
random chromosomes as the first generation. Power of the
users is set to their upper limit in the beginning. Then, fitness
value of all the chromosomes in the generation is calculated.
Next, the select and reproduce function is called. In the
function, parents are selected according to their fitness value
and then, offspring are produced. Mutation is also applied
on the offspring at this step. Therefore, generation is updated
and algorithm is repeated rep times. Tuning the mutation rate
and crossover rate is usually done by means of trail-and-
error [30].

In order to assign the resource blocks and transmission
power of users efficiently, having the prior knowledge of
interference between the users is required. In other words,
CSI is required to be known prior to the resource and

Algorithm 4 Optimization
1: procedure Optimization (rep)
2: Output best_individual
3: Initialization:;
4: (initial_generation)← random generation
5: i← 1
6: do:
7: fit = ∅
8: for each chr in next_gen:
9: (fit_chr , Power)←
10: Fit_Calc(chr.resourceVector,chr.powerVector)
11: chr .powerVector ← Power
12: Add fit_chr to fit
13: end for
14: nextgen← Sel_Rep(fit, next_gen)
15: i← i+ 1.
16: while i < rep
17: best_individual ← max(fit)
18:

power allocation. In the following section, we describe a
channel prediction algorithm which results in a lower trans-
mission overhead.

IV. CHANNEL PREDICTION
Performance of adaptive communication systems depends
heavily on knowledge of CSI. Interference aware resource
allocation is also an adaptive system. Knowledge of the CSI
in adaptive systems, is usually provided through feedback.
After establishing a connection between the intended users,
the receiver estimates the channel and then, feeds it back
either to the transmitter or the base station. This process does
not only result in a huge load on the network, but also the
fed back information can be outdated due to delay caused
by the feedback. An error in CSI or an outdated information
results in a wrong decision in the system. Thus, instead of
feeding back the CSI from each user or using outdated CSI by
periodically collecting CSI, a prediction method at the base
station for CSI is used [31]–[36].

In our system model, we assume a flat fading channel. The
reason lies in dividing the bandwidth into small and narrow
bands. Therefore, users experience a flat fading channel. Taps
of a channel act as sum of the sinusoids [37]. This sum of
sinusoids can be modeled as an autoregressive (AR) process.
Let yt denote the received data at the t th time. ht is the
complex quantity of time-based channel impulse at t th time
instance and bt is the transmittedmodulated data (e.g. BPSK).
yt can be defined as:

yt = htbt + zt , (13)

where zt is the AddedWhite Gaussian Noise (AWGN). Then,
predicting the (n + 1)th sample based on the previous L
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TABLE 1. System numerical parameters.

samples can be done using a linear prediction.

hn+1 =
L∑
i=1

wihn+1−i, (14)

where the w is the predictor coefficient and is calculated as

w = R−1r (15)

where R is the autocorrelation matrix with coefficient
Rij = E[hn−ih∗n−j] and r is the autocorrelation vector with
coefficient rj = E[hnh∗n−j] [36].

In the next section, the performance of the algorithm is
evaluated using numerical simulations.

V. SIMULATION RESULTS
In this section, the performance of the algorithm under differ-
ent scenarios is evaluated. The evaluations include: A) net-
work spectral efficiency evaluation, B) cumulative distribu-
tion function (CDF) comparison, C) network interference
power evaluation. In all the simulations, radius of the cell is
assumed to be 500 m. There is a base station in the center
of the cell. The users are distributed randomly around the
base station. Maximum distance between D2D pairs is set
to 10 m [38]. Carrier frequency, resource blocks bandwidth
and maximum power of users (D2D transmitters and cellular
users) are set as in long term evolution (LTE) to 1.8 GHz,
180 kHz and 23 dBm, respectively [39]. The parameters used
in simulation results are given in Table 1, unless otherwise
specified. Each user is assumed to have an omni-directional
antenna. Without loss of generality for the case of simplicity,
for all the scenarios, an indoor channel model according to
Winner model is considered. In the case of outdoor, due to the
significant difference in antenna height for base station and
users (cellular and D2D users) two different channel models
should be considered, one for cellular users and one for D2D
users. The channel gain consists of large scale pathloss and
small scale fading. Large scale pathloss, denoted byPL, based
on Winner model is defined [40] as

PL(dB) = 22.7 log10 d + 27+ 20 log10 fc. (16)

FIGURE 5. Spectral efficiency for different number of resource blocks.

The small scale fading is assumed to be Rayleigh fading and
is modeled by jakes model as

hI (t) = 2
N0∑
n=1

(cosφncoswnt)+
√
2cosφN coswd t (17)

and

hQ(t) = 2
N0∑
n=1

(sinφncoswnt)+
√
2sinφN coswd t, (18)

where hI (t), hQ(t), φn and φN are the real and imaginary
components of channel at t th time instance, initial phases
of the nth doppler shifted sinusoid and maximum doppler
frequency (fm) shifted sinusoid, respectively and wd = 2π fm
withwn = wdcosφn [41]. The model is used to obtain L chan-
nel samples and the next samples are predicted using (14).

A. NETWORK SPECTRAL EFFICIENCY EVALUATION
This subsection is divided into three comparisons. The first
is the comparison of the throughput of the proposed algo-
rithm, GAAM [28], orthogonal [11], and random resource
allocation. Figure 5 shows the outperformance of the pro-
posed algorithm compared to GAAM, orthogonal, and ran-
dom resource allocation. In this figure, Q = 8, V = 4 and K
is varied from 2 to 18. In GAAM, a resource block is shared
by a cellular user and a D2D pair. Thus, when Q equals to
8 at most 8 cellular users and 8 D2D pairs are served. Since
V = 4, the maximum number of served communications is
4 + 8 = 12. Thus, the curve for GAAM is increasing until
number of communications equal to 12, and after that it is
almost constant. In the orthogonal resource allocation, first,
the 4 of 8 resource allocation is assigned to 4 cellular users.
Then, the other resources are assigned to random D2D pairs.
Therefore, after 8 number of communications, the slope of
the curve decreases significantly. In the random and the pro-
posed algorithm, as the number of communications increases,
the spectral efficiency increases as well. The reason lies in
having flexible number of D2D pairs in a resource block. It is
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FIGURE 6. Spectral efficiency with respect to the number of available
resource blocks.

FIGURE 7. Spectral efficiency for different number of repetitions.

shown that even the random resource allocation can do better
than GAAM and orthogonal resource allocation in dense and
crowded environment.

The second comparison in this subsection evaluates the
effect of number of resource blocks on the spectral efficiency.
In Figure 6, the number of cellular users is fixed, V = 8 and
K is varying from 7 to 152. It is shown that as the number
of resource blocks - Q- increases, the spectral efficiency
increases. The reason is that as more resource blocks results
in less interference between the users. The difference in
spectral efficiency for lower number of K is less than higher
numbers of K due to the minimum SINR that each cellular
user should met. There is a trade-off between having better
performance or lower number of resource blocks. Having
more resource blocks leads to higher cost and better per-
formance. The trade-off depends on the minimum expected
spectral efficiency and number of communications expected
to be served.

FIGURE 8. Cumulative distribution function of spectral efficiency.

FIGURE 9. Network interference for different number of repetitions.

Third comparison is with respect to the repetition param-
eter of the genetic algorithm, denoted by rep. The parameter
shows the number of produced generations. In Figure 7,
spectral efficiency for different values of rep is shown. As rep
gets larger, algorithm results in a better optimization. Higher
number for repetition makes the algorithm finds a better
solution but the algorithm needs to be run longer. There-
fore, there is another trade-off between having higher perfor-
mance or lower number for repetition. However, when rep
is large enough, e.g. rep = 50, result of the algorithm is an
acceptable solution and good enough. As the figure shows the
curves for rep = 50, 100, 200 are very close.

B. CDF EVALUATION
Figure 8 shows the CDF curves of the proposed algorithm,
GAAM [28], orthogonal [11] and random resource alloca-
tions. In the simulations, Q, V and K are assumed to be 8, 4
and 8, respectively. The CDF curves shows the ranges of the
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output algorithms. As Figure 8 shows, the proposed algorithm
outperforms the other methods. It also shows that random
resource allocation can even perform better than orthogonal
resource allocation. Moreover, random resource allocation
has the widest range.

C. INTERFERENCE EVALUATION
Figure 9 shows the amount of the intra-cell interference
for the proposed algorithm with different repetitions. The
parameters for this simulation is the same as Figure 7. It is
shown that for higher number of repetition, There is less
interference. In other words, at each iteration a better and
more optimized solution is found. Considering Figures 7 and
9, the proposed algorithm results in higher spectral efficiency
at each iteration by mitigating the interference.

VI. CONCLUSION AND FUTURE WORK
In this paper, a novel genetic algorithm-based method is
proposed to optimize the resource allocation and power
assignment of D2D communication underlaying cellular
communication. Contrary to orthogonal resource allocation
and GAAM, the algorithm is presented with respect to the
flexible number of D2D and cellular communications. There-
fore, larger number of users can be served with a limited num-
ber of resource blocks. Also, a minimum SINR is considered
for the cellular communications to guarantee the quality of
service of them. Moreover, despite GAAM, operators of the
genetic algorithm are defined to produce an acceptable off-
spring at each iteration. Therefore, no additional randomness
is added to the algorithm. It results in superior performance
and fast converging of the proposed method compared to
GAAM. In this paper, we consider only users in one cell
and we assume there is no interference from adjacent cells
. However, adjacent cells may effect SINR of the users inside
the cell. Taking the interference of the adjacent cells into
account in resource allocation algorithm is left for future
work.
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