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Sleep is now known to be a dynamic process, and our brains are active during sleep. Sleep 
affects human physical and mental health, and is essential for the normal functioning of all the 
systems of human body. In sleep itself, there are 2 distinct states that alternate in cycles and 
reflect differing levels of neuronal activity. Sleep consists of non-rapid eye movement 
(NREM) and rapid eye movement (REM) states. NREM is further subdivided into the 
following 4 stages: Stage I, II, III and IV. The most well-known criteria for sleep stage scoring 
were published by Rechtschaffen and Kales in 1968. Each state is characterized by a different 
type of brain wave activity. Sleep stage scoring is an important task for inspecting 
neurophysiological diseases of subjects. Currently, sleep stage scoring has been widely used 
for evaluating the condition of sleep and diagnosing the sleep related disorders in hospitals 
and institutions.  

Automatic sleep stage determination can free the clinicians from the heavy task of visual 
inspection on sleep stages. Rule-based waveform detection methods, according to 
Rechtschaffen and Kales criteria, have been developed in many studies. However, 
Rechtschaffen and Kales criteria include typical waveforms of healthy persons under ideal 
recording condition for sleep stage scoring. It would be insufficient to cover the variable sleep 
data of patients under usual recording condition in hospitals and institutions. The conventional 
rule-base methods have the similar limitations for clinical practice.  

An expert knowledge-based probabilistic method is developed in order to overcome the 
limitation of conventional rule-based methods. Sleep stage scoring is considered as a 
multi-valued decision making problem in the filed of clinics. The visual inspection of sleep 
stage scoring by a qualified clinician is adopted as the expert knowledge. According to the 
visual inspection on a set of training data, an expert knowledge database is established in 
terms of probability density functions of parameters for various sleep stages. The sleep stage 
decision making algorithm is repeated with conditional probability and predicted probability 
among the consecutive sleep data segments. Sleep stages is determined automatically by the 
maximum value of conditional probabilities based on the joint probability of parameters. 
Since the visual inspection and the training data are obtained from real clinics, the expert 
knowledge database of probability density functions reflected the actual distribution of 
parameters for sleep stages. The developed expert knowledge database is desirable for 
automatic sleep stage determination to deal with the sleep data from real clinics. 

In the expert knowledge-based method, the probability density function influences the 
performance of automatic sleep stage decision making by conditional probability. During the 
learning process of expert knowledge database construction, the probability density functions 
of parameters for various sleep stages are developed by using Cauchy distribution to 
approximately estimate the parameter distribution on histogram. Due to the infinite variance 
of Cauchy distribution, it had heavier tails to abate the effect of the mis-determination caused 
by artifacts. Comparing with Gaussian distribution, the performance of expert 
knowledge-based automatic sleep stage determination was improved to deal with the sleep 
data contaminated by artifacts.  
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The requirement of sleep stage scoring for patients with sleep diseases may differ from 
hospitals and institutions. Individual differences are also commonly existed, even under the 
same recording condition. An automatic parameter selection process is developed in order to 
establish an adaptive expert knowledge database. A set of characteristic parameters are 
defined as candidates. The parameter which is effective for sleep stage discrimination is 
selected automatically. The adaptive expert knowledge database is consisting of those selected 
parameters. Automatic sleep stage determination is carried out based on the adaptive expert 
knowledge database. After learning from clinicians’ visual inspection, adaptive expert 
knowledge database can be constructed automatically. The developed expert 
knowledge-based automatic sleep stage determination system has flexible performance to 
meet the customized requirements of sleep diseases in hospitals and institutions. 

In real clinics, clinician adopts additional rules to smooth the sleep stage scoring result 
especially for the continuity of stage II and onset/offset of stage REM. The corresponding 
sleep data may have few or no characteristics of the sleep stages which have been smoothed 
by the clinician. The automatic determination algorithm would be difficult to detect the sleep 
change and continuity only according to the characteristics of sleep data. An amendment 
function is developed to modify the decision making of sleep stage by the expert 
knowledge-based method. It is designed according to the additional rules by clinician for the 
continuity of stage II and onset/offset of stage REM. The cyclic rhythm of stage change and 
continuity by automatic sleep stage determination integrated with amendment function 
presented well comparing with visual inspection. The amendment function enhanced the 
performance of our expert knowledge-based method on stage change and continuity detection. 
�
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                     Chapter 1 

                   Introduction 

1.1  Overview of Human Sleep 

1.1.1 Historical perspective 

  Since the dawn of civilization, the mysteries of sleep have intrigued poets, artists, 
philosophers, and mythologists. The fascination with sleep is reflected in literature, 
folklore, religion, and medicine. Upanishad, the ancient Indian textbook of philosophy, 
sought to divide human existence to four states: the waking, the dreaming, the deep 
dreamless sleep, and the superconscious [1] [2]. One finds the description of 
pathologic sleepiness in the mythologic character Kumbhakarna in the great Indian 
epic Ramayana [3] [4]. Kumbhakarna would sleep for months at a time, then get up to 
eat and drink voraciously before falling asleep again. 
  The definition of sleep and a description of its functions have always baffled 
scientists. Mornzzi, while describing the historical development of the deafterentation 
hypothesis of sleep, quoted the concept Lucretius articulated 2,000 years ago--that 
sleep is the absence of wakefulness [5]. A variation of the same concept was 
expressed by Hartley in 1794, and again in 1830 by Macnish [6] [7]. Macnish defined 
sleep as suspension of sensorial power, in which the voluntary functions are in 
abeyance, but the involuntary powers, such as circulation or respiration, remain intact. 
The modern sleep scientist defines sleep on the basis of both behavioral and 
physiologic criteria [8] [9]. The behavioral criteria include (1) lack of mobility or 
slight mobility, (2) closed eyes, (3) reduced response to external stimulation (i.e., 
increased arousal threshold), (4) characteristic sleeping posture, and (5) reversibly 
unconscious state. The physiologic criteria (see Sleep Architecture and Sleep Profile) 
are based on the findings from electroencephalography (EEG), electroculography 
(EOG), and electromyography (EMG).  
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  Historically, sleep was thought to be a passive state. Throughout literature, a close 
relationship between sleep and death has been perceived, but the rapid reversibility of 
sleep episodes differentiates sleep from coma and death. Sleep and wakefulness, the 
two basic processes of life, are like two different worlds, with independent controls 
and functions. Hippocrates, the father of medicine, postulated a humoral mechanism 
for sleep and asserted that sleep was caused by the retreat of blood and warmth into 
the inner regions of the body, whereas the Greek philosopher Aristotle thought sleep 
was related to food, which generates heat and causes sleepiness. Paracelsus, a 
sixteenth-century physician, wrote that “natural” sleep lasted 6 hours, eliminating 
tiredness and refreshing the sleeper. He also suggested that people not sleep too much 
or too little, but awake when the sun rises and go to bed at sunset. This advice from 
Paracelsus is strikingly similar to modem thinking about sleep. Views about sleep in 
the seventeenth and eighteenth centuries were expressed by Alexander Stuart, the 
British physician and physiologist, and by the Swiss physician, Albrecht yon Haller. 
According to Stuart, sleep was due to a deficit of the “animal spirits”; von Haller 
wrote that the flow of the “spirits” to the nerves was cut off by the thickened blood in 
the heart, resulting in sleep. Nineteenth century scientists used principles of 
physiology and chemistry to explain sleep. Both Humboldt and Pfluger thought that 
sleep resulted from a reduction or lack of oxygen in the brain. 
  Ideas about sleep were not based on solid scientific experiments until the twentieth 
century. Ishimori, in 1909, and Legendre and Pieron, in 1913, observed sleep 
promoting substances in the cerebrospinal fluid of animals during prolonged 
wakefulness [10] [11]. The discovery of the EEG waves in dogs by the English 
physician Caton in 1875 and of the alpha waves from the surface of the human brain 
by the German physician Hans Berger in 1929 provided the framework for 
contemporary sleep research [12][13]. It is interesting to note that Kohlschutter, a 
nineteenth-century German physiologist, thought sleep was deepest in the first few 
hours and became lighter as time went on. Modern sleep laboratory studies have 
generally confirmed these observations. 
  The golden age of sleep research began in l937 with the discovery by American 
physiologist Loomis and colleagues of different stages of sleep reflected in EEG 
changes [14]. Aserinsky and Kleitinan’s discovery of rapid eye movement (REM) 
sleep in the l950s at the University of Chicago elect1ified the scientific community 
and propelled sleep research to the forefront [15]. This was followed by 
Rechtschaffen and Kale, technique of sleep scoring based on results of the EEG, EMG. 
and EOG, which has become the gold standard for sleep scoring throughout the world 
[16]. The other significant milestone in the history of sleep medicine was the 
discovery in 1965 (independently) by Gastaut and colleagues in France and Jung and 
Kuhlo in Germany of upper airway obstruction during sleep in patients with sleep 
apnea syndrome [17] [18]. 
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1.1.2 Importance of sleep 

Sleep is not a waste of time. It is now known to be a dynamic process, and our 
brains are active during sleep. Sleep is defined as a state of unconsciousness from 
which a person can be aroused [19]-[21]. In this state, the brain is relatively more 
responsive to internal stimuli than external stimuli. Sleep should be distinguished 
from coma. Coma is an unconscious state from which a person cannot be aroused [23] 
[24].  

Sleep is essential for the normal, healthy functioning of the human body. It is a 
complicated physiological phenomenon that scientists do not fully understand. 
Although researchers are not exactly sure why we need sleep, there are two basic 
theories. Sleep enables the body and mind to rejuvenate, reenergize, and restore. As a 
person sleeps, it is thought that the brain performs vital housekeeping tasks, such as 
organizing long-term memory, integrating new information, and repairing and 
renewing tissue, nerve cells and other biochemicals. Sleep allows the body to rest and 
the mind to sort out past, present, and future activities and feelings. Sleep may have 
evolved as a protective adaptation-finding food in the daytime and hiding at night is 
easier. Nearly every animal sleeps to some degree. Thus, it only makes sense that 
predators sleep more than animals that are prey. For humans, the amount and quality 
of sleep achieved is directly proportional to the amount and quality of the next day's 
productivity 

Sleep is a necessary and vital biological function. It is essential to a person's 
physical and emotional well being. Studies have shown that without enough sleep, a 
person's ability to perform even simple tasks declines dramatically. The average 
sleep-deprived individual may experience impaired performance, irritability, lack of 
concentration, and daytime drowsiness. They are less alert, attentive, and unable to 
concentrate effectively. Additionally, because sleep is linked to restorative processes 
in the immune system, sleep deprivation in a normal adult causes a biological 
response similar to the body fighting off an infection. Persistent sleep deprivation can 
cause significant mood swings, erratic behavior, hallucinations, and in the most 
extreme, yet rare cases, death. The jury is still out on the long-term effects of sleep 
deprivation on health. Current research in this area is examining the effects of sleep 
deprivation on the immune system. 

A pioneer in sleep research, Dr. William Dement, noted that most undergraduates 
enter college with some knowledge of personal health, but little to no knowledge of 
the value of sleep. He suggests that all students should not only learn the importance 
of physical fitness and good nutrition, but healthy sleep, calling all three the 
"fundamental triumvirate of health." 

At least 40 million Americans each year suffer from chronic, long-term sleep 
disorders each year, and an additional 20 million experience occasional sleeping 
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problems. These disorders and the resulting sleep deprivation interfere with work, 
driving, and social activities. The most common sleep disorders include insomnia, 
sleep apnea, restless legs syndrome, and narcolepsy. 

Almost everyone occasionally suffers from short-term insomnia. This problem can 
result from stress, jet lag, diet, or many other factors. Insomnia almost always affects 
job performance and well-being the next day. Sleep apnea is a disorder of interrupted 
breathing during sleep. It usually occurs in association with fat buildup or loss of 
muscle tone with aging. These changes allow the windpipe to collapse during 
breathing when muscles relax during sleep.  

 

1.2 Sleep Stage Scoring 

1.2.1 Definition of sleep stages 

As mentioned earlier, sleep is a dynamic process. There are 2 distinct states that 
alternate in cycles and reflect differing levels of neuronal activity. Each state is 
characterized by a different type of brain wave (electrical activity that is recorded with 
the help of electrodes placed on the skull) activity [25] [26]. Sleep consists of 
non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. NREM is 
further subdivided into the following 4 stages:  

� Stage I (light sleep)  
� Stage II  
� Stage III & IV (deep sleep)  
The stages of NREM sleep and REM sleep cycle over and over again during a 

night's sleep. Stages I, II, III, and IV are followed by REM sleep. A complete sleep 
cycle, from the beginning of stage I to the end of REM sleep, usually takes about one 
and a half hours. 

For the purpose of analysis, a night’s sleep is divided into 3 equal time periods: 
sleep in the first third of the night, which comprises the highest percentage of NREM; 
sleep in the middle third of the night; and sleep in the last third of the night, the 
majority of which is REM. Awakening after a full night’s sleep is usually from REM 
sleep. 

NREM sleep 
Stage I is a stage of light sleep and is considered a transition between wakefulness 

and sleep.  During this stage, the muscles begin to relax. It occurs upon falling asleep 
and during brief arousal periods within sleep, and usually accounts for 5-10% of total 
sleep time. An individual can be easily awakened during this stage. 
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Stage II occurs throughout the sleep period and represents 40-50% of the total sleep 
time. During stage II, brain waves slow down with occasional bursts of rapid waves. 
Eye movement stops during this stage. 

In stage III, extremely slow brain waves called delta waves begin to appear. They 
are interspersed with smaller, faster waves. In stage IV, delta waves are the primary 
waves recorded from the brain. These 2 stages are distinguished from each other only 
by the percentage of delta activity. Together they represent up to 20% of total sleep 
time. Stages III and IV are called deep sleep, during which all eye and muscle 
movement ceases. It is difficult to wake up someone during these 2 stages. If someone 
is awakened during deep sleep, he does not adjust immediately and often feels groggy 
and disoriented for several minutes after waking up. Some children experience 
bedwetting, night terrors, or sleepwalking during deep sleep. 

REM sleep 
REM sleep represents 20-25% of the total sleep time. REM sleep follows NREM 

sleep and occurs 4-5 times during a normal 8- to 9-hour sleep period. The first REM 
period of the night may be less than 10 minutes in duration, while the last may exceed 
60 minutes. In a normal night’s sleep, bouts of REM occur every 90 minutes. 

When the person is extremely sleepy, the duration of each bout of REM sleep is 
very short or it may even be absent. REM sleep is usually associated with dreaming. 
During REM sleep, the eyeballs move rapidly, the heart rate and breathing become 
rapid and irregular, and the blood pressure rises. The muscles of the body are virtually 
paralyzed. The brain is highly active during REM sleep, and the overall brain 
metabolism may be increased by as much as 20%. The electrical activity recorded in 
the brain during REM sleep is similar to that which is recorded during wakefulness. 

1.2.2 Importance of sleep stage scoring 

Sleep has been regarded as a testing situation for the autonomic nervous system, 
because its activity is modulated by sleep stages. Sleep stage scoring is an important 
task for inspecting neurophysiological diseases of subjects.  

Sleep related breathing disorders also influences the autonomic nervous system and 
can cause heart rate changes known as cyclical variation. Sleep apnea is a 
cardio-respiratory disorder characterized by brief interruption of breathing during 
sleep, and is often more generically described as sleep disordered breathing. Typical 
sleep patterns of a sufferer can involve heavy snoring interspersed with both partial or 
complete waking and grasping for breath. The primary health implications of sleep 
apnea are its impact on the cardiovascular system, increased accident levels due to 
sleepiness, and quality of life issues. Moreover, obstructive sleep apnea is not a rare 
condition. It occurs in 2%-4% of middle-aged adults and in 1%-3% of preschool 
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children. However, there is a surprisingly low public and medical awareness of the 
illness despite the fact that apnea has such health and quality of life implications, For 
example, of the 10-20 million sufferers in the U.S. with moderate-to-severe sleep 
apnea, it is estimated that only 10%-15% have been diagnosed.  

A contributing factor to the low level of awareness of this disease is the relatively 
limited access to diagnostic tests in the general population. In most countries, the gold 
standard for diagnosis of sleep apnea is overnight sleep by polysonomography, which 
is carried out in a specialized hospital or sleep laboratory. Currently, sleep stage 
scoring has been widely used for evaluating the condition of sleep and diagnosing the 
sleep related disorders in hospitals and institutions. 
�

1.2.3 Computerized sleep staging techniques 

Finding a way to study sleep data and getting valuable information from the data is 
a challenging task. Classifying this data can help medical professionals to diagnose 
sleep related disorders efficiently and accurately. �

Recent advances in the computing power and storage devices have made 
computer-based recording of polysomnograms very attractive. Digital 
polysomnograms offer the possibility of automating many tedious and 
time-consuming tasks of identifying sleep related events.  

Making visual inspection on sleep stages is a rather heavy task for clinicians. To 
make visual inspection of one's overnight sleep requires skillful knowledge about the 
sleep EEGs and stage-scoring criteria. Additionally, it is a rather laborious task, 
because sleep recording always contains large amount of data (about 7-8 hours). The 
computerized sleep stage determination technique can free the clinician from the 
heavy tasks of visual inspection. Automation also introduces a measure of objectivity 
in the scoring of various discrete events. Many researches were investigated on 
developing the computerized sleep stage scoring system [27] [28]. 

Waveform detection 
The waveform detection methods were firstly used for sleep analyzing by Smith et 

al. They started their research works on sleep stage analyzing in 1970’s [29]. In their 
study, the characteristic waveforms and phasic events detection methods were 
developed in order to realize automatic sleep stage determination. Smith et al. 
described the method used for spindle detection in 1975 [30]. They developed and 
applied slow wave amplitude and period analysis for sleep analyzing in 1978 [31]. 
The digital filters used in their analyzing system were described in 1972 and 1973 
[32]. In their later papers, they described many applications of their system of EEG 
analysis [33]. The systematic description of their method can be found in the 
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handbook of EEG and Clinical Neurophysiology in 1986 [34] [35].  
Many studies have been conducted concerning methods for characteristic 

waveforms detection for automatic sleep stage interpretation. Ben et al. investigated 
on detection of K complex and sleep spindle. They developed an object-oriented 
approach and tried to test Artificial Neural Nets method for sleep EEG interpretation 
by waveform detection [36] [37]. Another study on sleep spindle detection was by 
Akgul et al. Their work characterized the dynamics of sleep spindle, observed in EEG 
recorded from human sleep, using both time and frequency domain methods which 
depend on higher order statistics and spectra [38]. Rapid eye movement is the 
indicator for REM sleep. In Agarwal et al. works, they presented a detection scheme 
that combines many of the intrinsic properties of rapid eye movements [39]. Discrete 
wavelet transform was adopted by Tsuji et al. for automatic detection of rapid eye 
movements [40].  

A practical computer system for real-time analysis of sleep EEG was described by 
Lim et al. [41]. Their method was based on a two-component model of the signal in 
which waves are detected by a combination zero-crossing and peak detection 
algorithm. Principle et al. developed an automated sleep staging method by combining 
signal information, human heuristic knowledge in the form of rules, and a 
mathematical framework [42]. The EEG/EOG/EMG events related for sleep staging 
were detected in real time by an existing front-end system. An automatic sleep stager 
as close as possible to Rechtschaffen and Kales criteria was designed by Oxford 
Medical [43] [44]. An automated method for sleep stage scoring by using hybrid 
rule-based and case-based reasoning method was proposed by Park el al. [45]. Their 
rule-based reasoning was based on waveform or phasic event detection method. Their 
case-based reasoning method was in the field of artificial intelligence as a revision to 
rule-based result. An expert system for automatic identification of sleep stages based 
on characteristic waveforms and background EEG activity by using a decision tree 
was described by Anderer et al. [46] [47]. Another similar work was done by 
Sušmáková et al., which also going through the basic knowledge about classification 
of sleep stages from polysomnographic recordings [48] A huge number of 
characteristics, including relevant simple measures in time domain, characteristics of 
distribution, linear spectral measures, measures of complexity and interdependency 
measures were computed for sleep recordings. A multi-channel and temporal 
coincidences approach was proposed by Saccomandi et al. to detect transient EEG 
events in sleep stages [49].  

 
Autoregressive model (AR model) 

For decades, linear parametric model have proved very useful in various 
applications. Autoregressive model are of particular interest because (1) AR model 
coefficients can be easily estimated by solving a set of linear equations or recursively 
computed using the Levinson-Durbin recursion formula, and (2) When new data 
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became available, AR coefficients can be efficiently updated with Kalman filter 
equations.  

AR model have been employed in characterizing the EEG of various sleep stages as 
well as detecting the occurrence of transients of epileptic origin by Jansen et al. [50]. 
The application of AR model with bispectual analysis was developed by Ning et al 
[51]. In their study, they reviewed the basic properties of AR modeling and bispectural 
analysis and provided their application in EEG research of sleep stage scoring. 
Spectral estimation of EEG signals by Autoregressive modeling was developed by 
Estrade et al. [52]. They proposed Itakura Distance for AR model to measure the 
degree of similarity between EEG and EOG signals. 

 
Neural Network model 

Neural networks have been applied to various kinds of problems in many fields due 
to their ability to analyze complicated systems without accurate modeling in advance. 
Neural network was compared with several classification methods to select the most 
efficient classifier for rat sleep staging in Robert et al. [53] [54]. NN technique was 
developed for modeling the dynamic-transition during human sleep by Nakao et al. 
[55]. Sleep stage scoring using the neural network model was investigated by 
Schaltenbrand et al. for comparison between visual and automatic analysis in normal 
subjects and patients [56]. Similar work was done in Caffarel et al. study of neural 
network system evaluation for automatic sleep stage scoring [57]. 

Based on the conventional neural network method, Shimada et al. proposed a new 
type of neural network (NN) model referred to as a sleep EEG recognition neural net 
work (SRNN) which enables to detect several kinds of important characteristic waves 
in sleep EEG which are necessary for diagnosing sleep stages [58].  

Artificial neural network (ANN) and wavelet based method was developed by 
Sinha [59]. In his study, EOG and EMG signals were used for manual identification of 
sleep states before training and testing of ANN. The percentages power of the 2 s 
epochs of the digitized EEG signals were calculated and analyzed to select the 
manually confirmed sleep-wake states for each epoch. Second order Daubechies 
mother wavelet has been used to get the wavelet coefficients for the selected EEG 
epochs.  

 
Fuzzy model 

Neurofuzzy systems find their applications in many areas, medical diagnosis being 
one of many areas. Classification of sleep stages for infants has been analyzed by 
using fuzzy models. A neuro-fuzzy classifier (NFC) of sleep-wake states and stages 
has been developed for healthy infants of ages 6 mo and onward by Held et al. [60] 
[61]. Their sleep classification process is divided into three steps: data acquisition, 
pattern identification, and sleep-waking state-stage classification.  

Another study was done by Pinero et al. [62]. Their system is divided into four 
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modules: the first processes the electrophysiological signals and determines its most 
relevant parameters; the second module establishes fuzzy rules that will be used 
during the classification process; the third module is an inference module, it 
implements a fuzzy model. They applied their system to classify patients with 
different sleep disorders. 
 
Non-linear model 

Application of non-linear dynamics methods to the physiological sciences 
demonstrated that non-linear models are useful for understanding complex 
physiological phenomena such as abrupt transitions and chaotic behavior. Sleep stages 
and sustained fluctuations of autonomic functions such as temperature, blood pressure, 
EEG, etc., can be described as a chaotic process. The EEG signals are highly 
subjective and the information about the various states may appear at random in the 
time scale. 

Sleep data analysis is carried out using non-linear parameters by Acharya UR [63]. 
The parameters consisted of correlation dimension, fractal dimension, largest 
Lyapunov entropy, approximate entropy, Hurst exponent, phase space plot and 
recurrence plots. Spectral and nonlinear EEG measures were compared by Fell et al. 
for sleep stages discrimination [64]. Hidden Markov model was utilized by 
Doroshenkov et al. for sleep stage classification based on calculation of characteristics 
of the main sleep rhythms [65]. Grube et al. reported an automatic sleep staging 
system with a fully automatic, probabilistic sleep-analyzer using Hidden Markov 
Models (HMMs) based on data from a single EEG channel [66].   
 
Other techniques 

Several signal processing techniques have been applied to realize the automatic 
sleep staging. Data mining was investigated by Laxminarayan et al. [67]. They 
introduced a specialized association rule mining technique that can extract patterns 
from complex sleep data comprising polysomnographic recordings, clinical 
summaries, and sleep questionnaire responses. Blind signal separation was 
investigated by [68]. They developed a staging system in ambulatory conditions. The 
sleep EEG, EMG and EOG were separated using the Independent Component 
Analysis approach. A novel approach was developed by Schwaibold et al. for 
automated sleep stage recognition, which mimics the behaviour of a human expert 
visually scoring sleep stages [69]. A nonparametric statistical approach for EEG 
segmentation was utilized by Kaplan et al. to detect the change-points between 
quasi-stationary EEG segments based on the EEG characteristics within four 
fundamental frequency bands (delta, theta, alpha and beta) [70]. An expert system was 
developed by Ray et al. for computer sleep stage scoring in [71]. 

A computer-assistant staging system for clinical application was proposed by 
Gotman et al. [72]. Their method used the principle of segmentation and 
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self-organization technique based on primitive sleep-related features to find the 
pseudonatural stages present in the sleep record. Sample epochs of these natural 
stages were presented to the user, who can classify them according to the 
Rechtschaffen and Kales or any other standard. The method then learned from these 
samples to complete the classification. Their method allowed the active participation 
of the operator in order to customize the staging to their preferences.  

A noncontact method for sleep stage estimation was proposed by Watanabe et al. 
[73] [74]. They described a novel method to estimate the sleep stage through 
noninvasive and unrestrained means. A mathematical model was created which was 
consisting of a sleep stage classifier and observer. The sleep state transition equation 
was the basis for the design of observer, which the observed relationships were the 
basis for designing classifier. 

Other signals 
The sleep-related diseases may be related to cardiogram, respiration. The 

measurement for sleep data recording may include other signals besides sleep EEG, 
such as respiration, leg movements, ECG, EOG, EMG etc. There are several studies 
challenged on small amount of EEG data [75] and other signals for automatic sleep 
staging. 

A particular application of the FFT (Fast Fourier Transformation) on heart rate was 
described by Lisenby et al. [76]. In their method, the beat-by-beat intervals were 
represented as the magnitude of a periodically sampled function. When FFT is applied 
to these data, pseudofrequency information from Beatquency Domain was obtained 
for sleep cycle detection. The effect of sleep stages and sleep apnea on autonomic 
activity by analyzing heart rate variability was investigated by Penzel et al. [77]. A 
cardiorespiratory-based sleep staging in subjects with obstructive sleep apnea was 
described in the study by Redmond et al. [78]. The reliability of classification 
performance based on heart rate variability was investigated by Lewick et al. [79]. 
They considered rejecting the unreliable segments before applying classification 
methods. 

Another signal utilized for sleep staging was Electro-oculography (EOG). Virkkala 
et al. investigated on EOG signal for sleep analysis. In their study, EOG was adopted 
for automatic slow wave sleep detection [80] [81]. An amplitude criterion was used 
for detecting slow waves. They developed EOG analysis for automatic detection of 
unintentional sleep onset [82]. An automatic estimation of slow eye movements was 
developed and used as the main criterion to separate sleep stage I from wakefulness 
by Magosso et al. [83]. Additionally, synchronous EEG activity was used to determine 
wakefulness. Their method was developed for the classification of wakefulness, stage 
REM, Stage I, II and slow wave sleep using two-channel electro-oculography.  

Choi et al. introduces a method of bed actigraphy (BACT) for user-friendly 
sleep-wake monitoring [84]. BACT provides a non-intrusive acquisition of activity 
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data, and in particular does not require that sensors be attached to the subject's body. 
The system consists of four load-sensing cells supporting the bed, an A/D converter, 
and a microcontroller with appropriate software. 

 
 
 

1.3 Research Motivation 

The guidelines of Rechtschaffen and Kales are meant as a reference method. It 
becomes a gold standard for sleep stage scoring. Today, this technique seems not be 
sufficient enough to support the description of sleep process demanded for clinical 
practice [85]. Rechtschaffen and Kales criteria include rules of typical waveforms 
from healthy persons. However, sleep stage scoring is used for evaluating the 
condition of sleep and diagnosing the sleep related disorders in hospitals. The subjects 
are patients suffered by sleep disorders. Additionally, the typical waveforms shown in 
Rechtschaffen and Kales criteria are under ideal recording condition. The sleep data 
under usual recording condition at hospitals are inevitably contaminated by various 
artifacts. The surrounding circumstances may be variable in different hospitals. In 
practical, rules are often difficult or impossible to follow and deviations are common. 

Similar insufficiency can be found in the conventional rule-based computerized 
sleep stage scoring techniques. Those techniques are designed according to the rules 
for sleep staging in Rechtschaffen and Kales criteria. Artifacts and surrounding 
circumstance in clinical practice are not considered in those techniques as well as the 
patients with sleep disorders. Using Rechtschaffen and Kales criteria only, those 
rule-based methods may be successful for the sleep data under ideal recording 
condition of healthy persons, but not for the sleep data under usual recording 
condition of patients at hospitals. 

For clinical practice, effective technique is still needed. In the field of clinics, 
commercial systems are not efficiently usable. The reason may be that the commercial 
systems utilized rule-base method which is insufficient to deal with the sleep data 
under usual condition at hospitals and institutions. Clinicians have not been free from 
the heavy and qualified task of sleep stage scoring. It is necessity to develop usable 
computerized sleep stage scoring technique for clinical practice. 
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1.4 Research Objective 

The aim of this research work is to establish an effective and reliable automatic 
sleep stage determination system which can be utilized for clinical practice. Most 
elaborate descriptions are itemized as follows: 

 
 

1. The sleep data recorded under the usual condition at the hospital is investigated in 
order to testify effectiveness of our developed technique for clinics.  
 

2. The visual inspection on sleep stages by a qualified clinician is investigated in 
order to develop the knowledge-based methodology for automatic sleep stage 
determination.  
 

3. The modeling of probability density function of parameters for sleep stages is 
investigated by considering the artifacts contamination problem.  
 

4. Automatic parameter selection algorithm is investigated in order to make the 
automatic sleep stage determination system flexible for variable cases of sleep 
disorders.  
 

5. Amendment function for automatic sleep stage determination is investigated by 
considering the additional rules by clinicians after visual scoring of sleep stages.  

1.5 Thesis Structure 

The structure of the thesis is shown in Figure 1.1. Background, research motivation 
and objective are explained in Chapter 1. Main probabilistic method of automatic 
sleep stage determination is explained in Chapter 2. The following Chapter 3, 4 and 5 
are developed based on the main method in Chapter 2. The conclusions and 
contributions of current study are explained, and future study is discussed in Chapter 
6. 

 

In Chapter 1, the overview of human sleep was introduced through the historical 
stories on human sleep and the importance of sleep. The general knowledge of sleep 
stage scoring was introduced by illustrating the definition of sleep stages and the 
clinical importance of sleep stage scoring. The automatic sleep stage determination 
techniques were investigated. The motivation, objective of this research was 
explained. The structure of the thesis was explained briefly.  

  

In Chapter 2, an expert knowledge-based automatic sleep stage determination 
system is introduced. The sleep stage scoring is considered as a multi-valued decision 
making problem in the field of clinics. Visual inspection by a qualified clinician on 
sleep stage scoring is utilized to obtain the probability density functions of parameters 
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for various sleep stages during the learning process of knowledge database 
construction. Sleep stage is determined automatically based on conditional 
probability.  

 

In Chapter 3, the expert knowledge database for sleep stage determination is 
developed. Cauchy distribution is adopted to model the probability density function of 
parameters to the histogram. Comparing with Gaussian distribution, Cauchy 
distribution has heavier tails which can abate the affect of artifacts during sleep stage 
determination process. 

 

In Chapter 4, the expert knowledge-based automatic sleep stage determination is 
developed with a process of automatic parameter selection. Optimal parameters are 
selected for variable sleep disorder cases. The selected parameters were utilized for 
automatic sleep stage determination.  

 

In Chapter 5, the expert knowledge-based automatic sleep stage determination is 
developed integrated with an amendment function. The amendment is carried out to 
modify the decision making of sleep stages by the expert knowledge-based method. 
The amendment algorithm is designed according to the humanized visual inspection 
by qualified clinician for continuity of stage II and onset/offset of stage REM 
detection. 

 

In Chapter 6, the research works of current study are explained. The contributions 
of research works explained in Chapter 2, 3, 4 and 5 are indicated to show the 
effectiveness. Finally, the future study is discussed by several research topics facing to 
the application in hospital. �
�

�

�

�

�

�
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Figure 1.1: Thesis structure. 
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Chapter 2 

 

2.1 Introduction 

Human sleep contains several stages. They are stage awake, REM (Rapid Eye 
Movement) and NREM (non-Rapid Eye Movement). NREM sleep is consisting of 
stage I, II, III and IV. For normal and healthy persons, those types of stages 
corresponding to certain frequency bands and amplitudes follow a fairly well-behaved 
cyclic pattern of sleep EEG (electroencephalograph) throughout the night. Sleep stage 
scoring is an important task for inspecting neurophysiological diseases of subjects. 
The most well-know criteria for sleep stage scoring is Rechtschaffen and Kales 
criteria [16]. Currently, sleep stage scoring has been widely used for evaluating the 
condition of sleep or diagnosing the sleep related disorders in the sleep laboratories 
and hospitals. To make visual inspection of one's overnight sleep requires skillful 
knowledge about the sleep EEGs and stage-scoring criteria. Additionally, it is a rather 
laborious task, because sleep recording always contains large amount of data (about 
7-8 hours).  

Many researchers investigated on developing the computerized sleep stage scoring 
system in order to free the clinicians from the heavy task of visual inspection. 
Waveform detection method was firstly applied by Smith et al. in human sleep 
analyzing [31] [35]. Their sleep analyzing system consists of several characteristic 
EEG waveform detectors. They presented an agreement of 83% comparing with 
visual inspection for nine subjects (5-79 years of age). Their sleep stage I and REM 
sleep were mixed. An automatic sleep stager as close as possible to Rechtschaffen and 
Kales criteria was designed by Oxford Medical [44]. The comparison with the visual 
inspection by two experienced clinicians for ten male subjects (20-40 years of age) 
was evaluated. The agreement was 74.1%. The limitation of it was not scoring 
sufficient stage wake, REM and II, but too many stages I, II and IV. Automatic sleep 
stage scoring by using a neural network model was investigated by Schaltenbrand et 

Expert Knowledge-based Automatic 
Sleep Stage Determination 
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al. [56]. They compared and analyzed on a sleep recording set of 60-subjects, 
consisting of 20 normal subjects, 20 depressed patients and 20 insomniac patients. For 
each group, the agreements were 84.5%, 81.5% and 81.0% respectively. The main 
differences between their automatic analyze and visual inspection were observed in 
stage I and the confusion between stage III and IV. An automated method for sleep 
stage scoring by using hybrid rule-based and case-based reasoning method was 
proposed by Park el al. [45]. Their rule-based reasoning was based on waveform or 
phasic event detection method. Their case-based reasoning method was in the field of 
artificial intelligence as a revision to rule-based result. The accuracy evaluation with 
three expert manual scoring was 87.5% in normal recordings and 85.3% in abnormal 
recordings. Their method had limitation in differentiating stage I from stage II and 
stage REM. A computer-assisted sleep staging method was presented by Agarwal and 
Gotman [72]. By using their segmentation and self-organization technique, sleep 
EEGs could be subsequently classified according to Rechtschaffen and Kales criteria 
or other sleep stage methodologies. They evaluated their method for 12 subjects, 4 
subjects with different pathologies and 8 normal subjects. The overall agreement 
between their computer scoring and one expert visual inspection was 76.8%. Their 
stage I has the poorest agreement with almost misclassified into stage REM and stage 
wake. An expert system for automatic identification of sleep stages based on 
characteristic waveforms and background EEG activity by using a decision tree was 
described by Anderer et al. [46]. They utilized 590 polysomnographies (PSGs) 
recordings. All the recordings were visual inspected by thirty sleep experts from 8 
different sleep labs. Their final validation revealed an overall agreement of 80% with 
the human expert visual inspection. Their disagreement was specifically concerning 
misclassifications of the stage wake, stage I, stage II and stage REM. 

The above techniques had their advantages in the automatic recognition of sleep 
stages. However, there is still no powerful sleep stage determination methodology 
being developed for real clinics. Almost all the methodologies were designed as close 
as Rechtschaffen and Kales criteria. Rechtschaffen and Kales criteria are worthy for 
sleep stage scoring. However, the typical waveforms for normal and healthy persons 
in Rechtschaffen and Kales criteria are insufficient to cover the variable cases in real 
clinics. The conventional rule-based techniques, only according to Rechtschaffen and 
Kales criteria, have the similar limitations to deal with the sleep data in hospitals. For 
clinical application, effective and reliable automatic determination technique is still 
required. 

In this study, we developed a sleep stage determination system based on expert 
knowledge of visual inspection. The developed sleep stage determination system is 
according to a multi-valued decision making method. The knowledge base for sleep 
stage determination is developed in terms of probability density functions (pdf) of 
parameters with interest according to the visual inspection by a qualified clinician. 
The clinician made visual inspection on stage awakes, stage REM, stage I, II, III and 
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IV for the sleep data recorded in real clinics. Stage awake is classified to open eyes 
and close eyes states so as to have a well fit between the parameters and the stages. 
Sleep stage is determined automatically by the values of conditional probabilities. 

 

2.2Method 

2.2.1 Subjects and sleep data 

Eight subjects had been analyzed in this study across the patients having an average 
age about 50 years old. They had breathing disorders during sleep (Sleep Apnea 
Syndrome). Their overnight sleeping data were recorded after the treatment of 
Continuous Positive Airway Pressure (CPAP) based on the polysomnographic (PSG) 
measurement from the department of Clinical Physiology, Toranomon Hospital in 
Tokyo, Japan. Detail explanation was done for all the patients before PSG recordings 
and informed consent was obtained. The subjects information is shown in Table 2.1. 
For each subject, age, sex and disease were notified. “�” indicated that the sleep data 
of the subject had been visually inspection by clinician including open eyes and close 
eyes states during awake. 
�

�

 
Table 2.1: Subjects information 

Subject ID Age, Sex Visual inspection

A 52, Male -- 

B 60, Male  

C 58, Male -- 

D 54, Male  

E 44, Male -- 

F 50, Male  

G 50, Male -- 

H 36, Male  
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The sleep data recording in Toranomon hospital is illustrated in Figure 2.1. Figure 
2.1 (A) showed the pictures of actual recording circumstance. Subject was in a quiet 
room. Some electrodes were pasted on the head. In another room, the recorded sleep 
data can be reviewed on digital computers. Clinician make visual inspection for those 
recording sleep data. Figure 2.1 (B) showed the raw sleep data recorded under PSG 
measurement used in Toranomon Hospital. It includes four EEG recordings, two EOG 
recordings and one EMG recording. EEGs were recorded on central lobes and 
occipital lobes with reference to opposite earlobe electrode (C3/A2, C4/A1, O1/A2 
and O2/A1) according to the International 10-20 system [88]. EOGs were derived on 
Right Outer Canthus and Left Outer Canthus with reference to earlobe electrode A1 
(LOC/A1 and ROC/A1). EMG was obtained from muscle areas on and beneath chin 
(chin-EMG). Initially, EEGs and EOGs were recorded under a sampling rate of 100 
Hz, with a high frequency cutoff of 35Hz and a time constant of 0.3s. Chin-EMG was 
recorded under a sampling rate of 200Hz, with a high-frequency cutoff of 70Hz and a 
low frequency cutoff of 10Hz. The sleep data were divided into consecutive 
30-second data for sleep stage scoring in Toranomon hospital. 

2.2.2 Visual inspection 

The sleep stage definition with typical characteristics in Rechtschaffen and Kales 
criteria is summarized in Table 2.2. Visual inspection by a qualified clinician which 
covers the staging criteria was adopted for expert knowledge database construction. 
“Expert” indicated to the qualified clinician who is the specialist. 

In this study, the data of visual inspection was obtained by an experienced clinician 
who is one of the co-author (F.K.) in Toranomon Hospital. The clinician made visual 
inspection based on her knowledge and experience though an epoch-by-epoch 
approach. The PSG recording of subject was divided into consecutive 30-second 
recordings, which are called epochs. Then, each epoch was assigned a single sleep 
stage by the clinician. When more than one stage was presented in an epoch, the one 
which took up the greatest portion of the epoch was scored as the stage of that epoch. 

Seven types of stages were inspected. In the stage of the awake or the wakefulness, 
EEGs (O1/A2, O2/A1) show predominant rhythmic alpha activity when the subject is 
relaxed with the eyes closed [89] [90]. This rhythmic EEG pattern significantly 
attenuates with attention, as well as when the eyes are open. The waking EOG 
consists of rapid eye movements and eye blinks when the eyes are open and few or no 
eye movements with the eyes closed. The EMG shows a relatively high level of tonic 
activity. In this study, the clinician classified stage awake into two sleep stages though 
her visual inspection. They were open eyes awake (O(W)) and close eyes awake 
(C(W)) according to the alpha activity on O1/A2 and O2/A1 channels and the 
existence of eye movements on EOGs.
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(A) Sleep stage recording in hospital

(B) The recorded sleep data
 

 
 

Figure 2.1: Sleep data recording. (A) Sleep data recording and monitoring in the 
hospital; (B) The recorded sleep EEGs, EOGs and EMG. 
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In sleep stage itself, the clinician made visual inspection on REM (rapid eye 
movement) sleep and NREM (non rapid eye movement) sleep of stage I, II, III and IV. 
The stage REM was characterized by activated EEG, bursts of rapid eye movements 
and suppression of the EMG activity. The stage I was evaluated as low-voltage, mixed 
frequency EEG pattern. The stage II sleep was distinguished from stage I sleep on the 
basis of two specific EEG patterns: the sleep spindle and the K-complex. The stage III 
and the stage IV were discriminated by the presence of the high-voltage slow wave 
activity as deep sleep, with very low levels of EMG and without eye movements. 
Usually stage III was scored when 20% to 50% of slow wave activities appeared in an 
epoch and stage IV was scored when more than 50% of slow wave activities occupied 
in an epoch according to Rechtschaffen and Kales criteria. For old persons, stage III 
and IV of deep sleep could not be obviously discriminated based on Rechtschaffen 
and Kales criteria. In this study, the clinician inspected stage III and stage IV based on 
a relatively different presence of slow wave activity in an epoch. 
 

Table 2.2: Sleep stage scoring criteria 
 

Stage Characteristics 

Awake Dominant alpha activity 8-13Hz, low voltage fast wave 

REM Episodic REMs, low voltage EMG 

I Low voltage slow wave of 2-7Hz 

II Slow wave (less than 20%), Sleep spindle, k-complex 

III High voltage slow wave of 0.5-2Hz (20%-50%) 

IV High voltage slow wave of 0.5-2Hz (more than 50%) 

 
�
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2.2.3 Parameter definition 

In order to carry out the automatic sleep stage determination, a set of parameters 
for sleep stage discrimination is defined in this section. The definitions of three types 
of parameters are given in Table 2.3. The following items are the meaning of each 
type. 

 
� Ratio

The duration of EEG components are calculated by the maximum value of the 
ratios of the summation of periodogram with certain frequency bands � to the 
total frequency band T in EEG channels (C3/A2, C4/A1 and O1/A2, O2/A1) 
between two hemispheres. 

 
� Amplitude 

The amplitude of EEG components are calculated by the maximum value of 
the square root of the summation of periodogram [91] with certain frequency 
bands � in EEG channels (C3/A2, C4/A1 and O1/A2, O2/A1) between two 
hemispheres.  

 
� Amount

The amount of EOG components are calculated by the summation of 
periodogram with certain frequency band in EOG channels (LOC/ROC, LOC/A1, 
ROC/A1). The amount of EMG components is calculated by the summation of 
periodogram with certain frequency band in EMG channel (chin-EMG). 

 
 
In Table 2.3, the certain frequency bands � were defined according to the 

consisting components of EEGs (delta, alpha, theta, beta) . The total frequency band T 
of EEGs was 0.5-25 Hz. For sleep EOGs, the certain frequency bands corresponded to 
the eye movements (2-10 Hz). For sleep EMG, the certain frequency bands 
corresponded to the high frequency activity of muscles (25-100 Hz).  

According to the definition of sleep stages, each state reflected the different neural 
actvity and was characterized by brain waveforms. In clinical practice, clinicians also 
paid attention to the frequency characteristics of the sleep data duirng the visual 
inspection on sleep stages. Therefore, the parameters utilized in this study were 
extracted from the frequecny domain of sleep EEGs, EOGs and EMG.  
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2.2.4 Expert knowledge database construction 

A set of training data is required for knowledge base construction. In this study, the 
knowledge base is constructed based on the overnight sleep recording data of subjects 
and the visual inspection by clinician.  

The whole sleep recording data are divided into epochs. Each epoch is subdivided 
into still smaller segments of 5-second. In order to yield the parameter values, the 
periodogram is derived by taking 512-point FFT (Fast Fourier Transform) for EEG's 
and EOG's, whereas 1024-point FFT for EMG. The parameter values are calculated 
based on the definition of Table 2.3. The parameter values of consisting segments are 
taken average to derive the parameter value of one epoch for training purpose. 

The epochs are classified into sleep stage groups according to the visual inspection. 
Finally, each epoch is assigned to a single sleep stage based on the visual inspection 
of clinician and described by a set of parameter values. For each sleep stage, the 
values of parameters are counted to make the histograms.  

 
 

Table 2.3: Parameters for sleep stage discrimination 
 

 Meaning Parameter 

EEG 

Ratio [%] 

( 3) ( 4)max 100%, 100%
( 3) ( 4)T T

S C S CR
S C S C
� �

�

� �
� � �� 	


 �
 

( 1) ( 2)max 100%, 100%
( 1) ( 2)T T

S O S OR
S O S O
� �

�

� �
� � �� 	


 �

Amplitude [�V] 
� 
max 6 ( 3),6 ( 4)A S C S C� � �� � �  

� 
max 6 ( 1),6 ( 2)A S O S O� � �� � �  

EOG Amount [�V2] ( )S LOC ROC� , ( )S LOC , ( )S ROC  

Chin-EMG Amount [�V2] ( )S Chin EMG�  
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In Figure 2.2, the expert knowledge database is the pdfs of parameters 
corresponding to stages. Stage awake was classified into open and close eyes awake. 
f(y|�) corresponds to the pdf of parameter y in stage �, m indicated number of 
parameters, n indicated number of sleep stages.  

According to the training data set and the visual inspection, a transitional 
probability matrix of sleep stage change is calculated. As the visual inspection is made 
for each epoch, the consisted segments of one epoch are considered having the same 
scoring result within one epoch. The transitional probability between sleep stages can 
be calculated and designates the probabilities of sleep stage transition between two 
conjoint segments. 
 
 
 
 

�

�

�

�

�

�

�

�

stages

�

Figure 2.2: The probability density functions of parameter distributions for each sleep 
stage, where f(y|�) corresponds to the pdf of parameter y in stage � and m is the index 

number of parameters, n is the index number of sleep stages. 
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2.2.5 Automatic sleep stage determination 

The test recording of one's sleep is divided into epochs and segments as same as the 
training data. The automatic sleep stage determination is processed on those 
consecutive segments, following the algorithm in Figure 2.3. 

 
� Initialization 

The initialization includes a supposition of predicted probability P1|0=1/n. At the 
beginning of the processing, the predicted probability of first segment for various 
sleep stages shared the probability equally with a value of 1/n, where n is the number 
of the types of sleep stages.  

 
� Conditional probability 

The joint pdf of the parameters for current segment k is calculated as 

1

( | ) ( | )
m

i l i
k k

l

f y f y� �
�

��             (2.1) 

where yk={yk
1, yk

2, …, yk
m} is a parameter vector which denotes the parameters 

calculated for the current segment k, and �i denotes the sleep stage. In Eq.2, each 
parameter yk

l in yk is assumed to be independent with each other.  
The conditional probability of segment k is calculated based on the Bayesian rule, 

| 1
|

| 1
1

( | ) ( )
( )

( | ) ( )

i i
k k ki

k k n
j

k k k j
j

f y P
P

f y P

� �
�

� �

�

�
�

�

�
          (2.2) 

where Pk|k-1 (�i) is the predicted probability of current segment k. The conditional 
probability indicates the possibility of the occurrence of the sleep stage �i in the 
current segment k. 
 
� Decision making 

The sleep stage �* is determined by choosing the maximum value among the 
conditional probabilities corresponding to various sleep stages as 

*
|: max( ( ))i

k kP� � .              (2.3) 
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Figure 2.3: Algorithm of automatic stage determination.  
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� Predicted probability 
The predicted probability Pk+1|k (�i) of next segment k+1 is given by 

1| |
1

( ) ( )
n

i j
k k ij k k

j
P t P� ��

�

��                                           (2.4) 

where tij denotes the probability of transition from stage i to stage j and Pk|k (�j) the 
conditional probability of current segment.  

 
The automatic sleep stage determination is iterated though the calculation of 

conditional probability (Equation 2.2) and predicted probability (Equation 2.4) among 
the consecutive segments. The decision (Equation 2.3) is made based on the value of 
conditional probabilities. Then the sleep stage for each epoch is determined by 
choosing the stage which takes up the greatest portion in one epoch. The derivation of 
each equation can be found in the previous work by some of the authors. 
 

2.3 Results 

2.3.1 Expert knowledge database 

The continuous sleep recordings of two subjects were utilized as the training data to 
obtain the knowledge base of pdfs of parameters and the transitional probability 
matrix of sleep stage change.

The transitional probability matrix T was derived from the same training subjects. 
According to the visual inspection of the training recordings by the clinician, the 
elements in the matrix T were obtained as Equation 2.5, 

 

         O(W) C(W)    R       I        II        III       IV
0.996 0.003 0.000 0.001 0.000 0.000 0.000   O(W)
0.008 0.932 0.000 0.058 0.002 0.000 0.000   C(W)
0.000 0.002 0.996 0.002 0.000 0.000 0.000

T �
     R   

0.000 0.014 0.002 0.942 0.042 0.000 0.000      I
0.000 0.002 0.001 0.008 0.986 0.003 0.000      II 
0.000 0.001 0.000 0.000 0.015 0.973 0.012      III
0.000 0.000 0.000 0.000 0.005 0.008 0.987     IV

� �
� �
� �
� �
� �
� 	
� �
� �
� �
� �

 �

                (2.5) 
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The stages from left to right and top to bottom were open eyes awake, close eyes 
awake, REM, stage I, II, III and IV. The row denoted the present sleep stage while the 
column denoted the next sleep stage. The values on the diagonal indicated the 
probabilities of continuing stages. In Equation 2.5, the sleep stages were continued 
with high probability and with a relatively low probability of transition during one's 
continuous overnight sleep recording. 

 

2.3.2 Stage determination by conditional probability 

Another two subjects were tested by automatic sleep stage determination. 
Following the algorithm of multi-valued decision making, their overnight sleep 
recordings (about 8-hour) were analyzed.  

 
In Figure 2.4, the expert knowledge-based automatic sleep stage determination was 

illustrated step by step. (A) is the recorded raw sleep data of 5-second segment. For 
each segment, a set of parameter values were shown in (B). According to the 
probability density function of expert knowledge database, the probability of 
paramters for various sleep stages were obtained. Thus, joint probability of a 
parameter for various sleep stages can be calculated. The values of joint proabability 
were shown in (C). Conditional probability were obtained for sleep stages based on 
the joint probability and predicted probability of previous segment in (D). The 
decision making of sleep stage was carried our by choosing the sleep stage which had 
maximum value of the conditional probability. This segment containing blinks in 
EOG channels and high voltage high frequency components in EMG channel, which 
are the indicators for open eyes awake. The final decision making for this segment 
was stage awake with eyes opened in (E). The conditional probability was utilized to 
calculate the predicted probability of next segment in (F).  

 
In Figure 2.5, the automatic sleep stage determination process was illustrated. 

Figure 2.5 (A) showed the raw sleep data of 30-second epoch, which included the 
sleep data in Figure 2.4 at the second segment. Figure 2.5 (B) is the calculation 
process repeated by predicted probability and conditional probability among the 
consecutive segments. The maximum value of conditional probabilities for segments 
were marked by grey color. According to the maximum value, a certain sleep stage 
was decided for each segment. Automatic sleep stage determination was done by 
choosing the sleep stage which occupied major portion in the epoch. The sleep data 
showed similar characterisitcs as in Figure 2.4. The decision for total 6 segments were 
stage awake with eyes opened. The final determination result for this epoch was stage 
awake with eyes opened, which was consistent with visual inspection.  
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Similar process for detemination of stage awake with eyes closed, stage REM, 
stage I, stage II, stage III and stage IV were illustrated in Figure 2.6, 2.7, 2.8, 2.9, 2.10 
and 2.11 respectively. In Figure 2.6, alpha activity (8-13 Hz) can be observed in EEG 
channels of O1/A2 and O2/A1. Alpha activity is the idicator for stage awake with eyes 
closed. The decision of sleep stage for the five segments were stage awake with eyes 
closed and last segment was stage I. The final determination result for this epoch was 
stage awake with eyes closed. In Figure 2.7, rapid eye movements can be observed in 
EOG channels and EMG level were rather low. Those are indicators for stage REM. 
The decision making result showed all segments were stage REM. The final 
determination result for this epoch was stage REM. In Figure 2.8, sleep data showed 
mixed frequency. Compare with stage awake, the EMG lever were lower. The 
decision making result for the first five segments were stage I, last segment was stage 
II. Since stage I occipied major portion of this epoch, stage I was determined as the 
sleep stage for this epoch. In Figure 2.9, sleep spindle can be observed which is the 
indicator of stage II. The decision making result showed all segments were stage II. 
The final determination result for this epoch was stage II. In Figure 2.10, slow wave 
activity can be observed. For deep sleep, the amount of slow wave activity was the 
indicator. The decision making result showed almost al the semgnes were stage III 
exept the third segment. Since stage III occipied major portion of this epoch, stage III 
was determined as the sleep stage for this epoch. In Figure 2.11, the amount of slow 
wave activity were larger than in Figure 2.10. The decision making result showed the 
latter five segments were stage IV, the first segment was stage III. Since stage IV 
occipied major portion of this epoch, stage IV was determined as the sleep stage for 
this epoch. 
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Figure 2.4: Expert knowledge-based automatic sleep stage determination algorithm. 
(A) Raw sleep data of 5-second segment. (B) Parameter values for current segment. 
(C) Joint probability of parameters for various sleep stages obtained from the expert 

knowledge database of probability density functions. (D) Conditional probability 
based on joint probability and predicted probability of previous segment. (E) Decision 

making of sleep stage based on the maximum valued of conditional probability. (F) 
Predicted probability for next segment based on Conditional probability. 
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Figure 2.5: Automatic sleep stage determination – stage awake with eyes opened. (A) 
Raw sleep data of two EOG recordings, one EMG recording and four EEG recording. 
(B) Calculation process repeated by predicted probability and conditional probability 
among consecutive segments. The final determination result is stage awake with eyes 

opened which is consistent with visual inspection by clinician. 
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Figure 2.6: Automatic sleep stage determination – stage awake with eyes closed. (A) 
Raw sleep data of two EOG recordings, one EMG recording and four EEG recording. 
(B) Calculation process repeated by predicted probability and conditional probability 
among consecutive segments. The final determination result is stage awake with eyes 

closed which is consistent with visual inspection by clinician.�
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Figure 2.7: Automatic sleep stage determination – stage REM. (A) Raw sleep data of 
two EOG recordings, one EMG recording and four EEG recording. (B) Calculation 

process repeated by predicted probability and conditional probability among 
consecutive segments. The final determination result is stage REM which is consistent 

with visual inspection by clinician. 
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Figure 2.8: Automatic sleep stage determination – stage I. (A) Raw sleep data of two 

EOG recordings, one EMG recording and four EEG recording. (B) Calculation 
process repeated by predicted probability and conditional probability among 

consecutive segments. The final determination result is stage I which is consistent 
with visual inspection by clinician. 
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Figure 2.9: Automatic sleep stage determination – stage II. (A) Raw sleep data of two 

EOG recordings, one EMG recording and four EEG recording. (B) Calculation 
process repeated by predicted probability and conditional probability among 

consecutive segments. The final determination result is stage II which is consistent 
with visual inspection by clinician. 
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Figure 2.10: Automatic sleep stage determination – stage III. (A) Raw sleep data of 
two EOG recordings, one EMG recording and four EEG recording. (B) Calculation 

process repeated by predicted probability and conditional probability among 
consecutive segments. The final determination result is stage III which is consistent 

with visual inspection by clinician. 
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Figure 2.11: Automatic sleep stage determination – stage IV. (A) Raw sleep data of 
two EOG recordings, one EMG recording and four EEG recording. (B) Calculation 

process repeated by predicted probability and conditional probability among 
consecutive segments. The final determination result is stage IV which is consistent 

with visual inspection by clinician.�
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2.4 Discussion 

2.4.1 Visual inspection 

In recent studies, guideline of stage scoring published by Rechetsffenn and Kales is 
frequently used either in medical or scientific field. In some sense, Rechetsffenn and 
Kales criteria supply kinds of exact rules for sleep stage discrimination. Waveform or 
phasic events detection methods, which have designed according to Rechetsffenn and 
Kales criteria, can be found in many computerized sleep stage recognition studies. 

 
In Rechtschaffen and Kales criteria, sleep stages were defined by typical waveforms 

under ideal recording condition for normal and healthy adults. In the field of real 
clinics, Rechtschaffen and Kales criteria were insufficient. Firstly, the subjects at 
hospital were patients. The patients suffered by special disease may have particular 
characteristics, where Rechtschaffen and Kales criteria did not mention. Secondly, 
sleep data were long-term recording which was inevitably contaminated by various 
artifacts. The occurrence of artifacts increased the difficulty of sleep stage recognition 
either by visual inspection or by computerized algorithm. Third, difference between 
hospitals was existed in real clinics. The recording circumstances were different from 
hospitals and institutions. Each clinician usually made visual inspection based on their 
experience and knowledge by considering special circumstances. Therefore, rules in 
Rechtschaffen and Kales criteria can not cover all the cases in real clinics. Those 
rule-based sleep stage recognition techniques, designed according to Rechtschaffen 
and Kales criteria, also can not be successful to deal with the sleep data from real 
clinics. 

 
In this study, we are investigating the automatic sleep stage determination technique 

which can be applied for real clinics. Unlike the rule-based method, our method was 
knowledge based. In the learning process of expert knowledge base construction, 
sleep data from real clinics and visual inspection by a qualified clinician was adopted. 
The obtained probability density functions can reflect the actual distribution of 
parameters corresponding to each sleep stage. In the automatic determination process, 
sleep stage was automatically determined by conditional probability. The conditional 
probability indicated the most possible stage for present sleep data, which mimic the 
humanized work of visual inspection by clinician.  
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2.4.2 Conditional probability 

We determined sleep stage according to the conditional probability. A joint 
probability of all the selected parameters is calculated and utilized to obtain the value 
of conditional probability corresponding to each sleep stage. The conditional 
probability indicates the possibility of the occurrence of the stage under current 
parameters values. For current segment of sleep data, the maximum value of condition 
probability was searched and the related stage was determined from O(W), C(W), 
REM, I, II, III and IV by one step. 

 
The decision of sleep stage was made for every 5-second segment of the continuous 

sleep recording. The stage, which occupied major portion of the consisting segments 
in a 30-second epoch, was chosen. Previous epoch would be referred when it was 
difficult to judge. Our automatic sleep stage determination algorithm mimicked the 
humanized visual inspection work by clinician. In another hand, our algorithm was 
sensitive to the sleep stage change between the consecutive 5-seond segments. The 
sleep stage transition can be estimated. 

 
 
 

2.5 Conclusion 

In this study, we utilized a method of multi-valued decision making operated on 
expert knowledge base for automatic sleep stage determination. The expert knowledge 
base was created on the visual inspections made by a qualified clinician. The visual 
inspection covered staging criteria and considered surrounding circumstance in real 
clinics. The developed expert knowledge databased of visual inspection was reliable 
for automatic sleep stage determination for clinical practice. The automatic sleep 
stage determination based on conditional probability can utilized to mimic the 
humanized visual inspection by clinician for clinical practice. 
 
 
 
�

�
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Chapter 3 

3.1 Introduction 

Human sleep is a dynamic behavior. It is consisted of several types of stages which 
can be interpreted by the characteristics of bio-neurological signals, sleep EEG 
(electroencephalogram), EOG (electrooculogram) and EMG (electromyogram). Sleep 
stage scoring is an important task for inspecting neurophysiological diseases of 
subjects. One’s overnight sleep always contains large amount of data. During the long 
term recording, sleep data are inevitable to be contaminated by various kinds of 
artifacts. To make visual inspection on sleep stages requires skillful knowledge on 
both of the stage-scoring criteria and sleep data under usual recording conditions. 

Techniques of automatic sleep stage determination not only can reduce the 
clinicians’ laborious work of visual inspection on sleep stages, but also can provide 
quantitative and objective evaluation on human sleep. Waveform detection technique 
(first applied by Smith et al.) could be found in many studies on automatic sleep stage 
determination [31] [35]. The rule-based methods had also been developed in recent 
years. However the conventional rule-based methods containing waveform detection 
or phasic event detection techniques may have advantages in automatic sleep stages 
recognition under ideal recording condition without artifacts. When sleep recording 
was contaminated by artifacts, the detection methods had limitations in discriminating 
the actual waveforms from artifacts.  

In our previous studies, multi-valued decision making can be applied to realize 
automatic sleep stage determination. However, the cortical EEG signals are inevitably 
contaminated with electrical activities arising from sources of human body other than 
the brain. We found that artifacts can affect the recognition of sleep stages during the 
automatic analysis [92]. Various artifacts can be found in sleep EEG. For different 
types of artifacts, increasing efforts had been made to minimize and identify the 
artifacts in sleep analysis (for a review, see [93]). Muscle artifacts are the most 

Automatic Sleep Stage Determination by 
Conditional Probability of Cauchy 

Distribution�
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common artifacts which can be characterized by surges in high frequency to the local 
background activity [94]. Although it caused problems in sleep stage recognition, but 
it also contained valuable information related to body movement or arousal which 
would facilitate the determination of sleep stages.  

In this study, we developed a sleep stage determination system to deal with the 
sleep data contaminated by artifacts. The main method of automatic sleep stage 
determination is by using the knowledge-based multi-valued decision making method, 
which has explained in Chapter 2. The knowledge base for sleep stage determination 
is consisted of probability density functions (pdfs) of parameters according to the 
visual inspection by a qualified clinician. In order to abate the effect of artifacts, we 
used Cauchy distribution instead of Gauss distribution to construct the knowledge 
base of characteristic parameter distributions. 

 

3.2 Method 

3.2.1 Data acquisition 

All the sleep data were recorded at the department of Clinical Physiology, 
Toranomon Hospital in Tokyo, Japan. Totally eight subjects were participated, having 
an average age about 50 years old. They were suffered by breathing disorders during 
sleep (Sleep Apnea Syndrome). Their overnight sleeping data were recorded after the 
treatment of Continuous Positive Airway Pressure (CPAP) based on the 
polysomnographic (PSG) measurement. The PSG measurement at Toranomon 
Hospital includes four EEG recordings, two EOG recordings and one EMG recording.  

The subjects were same with Table 2.1 in Chapter 2. The recording condition have 
been described in detail in Chapter 2, subsection 2.2.1 Subjects and sleep data.  

3.2.2 Expert knowledge database construction 

The block diagram of multi-valued decision making method in Chapter 2 is 
summarized in Figure 3.1. It consists of two modules. Figure 3.1 (A) is a learning 
process of expert knowledge database construction. Visual inspection is adopted. 
Figure 3.1 (B) shows the algorithm of automatic sleep stage determination iterating 
through the consecutive segments. The probability density function of parameters is 
estimated approximately by using Cauchy distribution. The decision making of sleep 
stages is carried out based on the conditional probability of Cauchy distribution. 
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Figure 3.1: Black diagram of processing. (A) Expert knowledge database of 

probability density functions approximated by Cauchy distribution. (B) Automatic 
sleep stage determination based on conditional probability of Cauchy distribution. 
 
 
 

3.2.2.1 Parameter calculation 

The overnight sleep recording data is divided into 30-second epochs. Each epoch 
was subdivided into still smaller segments of 5-second. In order to calculate the 
parameter values, the periodogram was derived by taking 512-point FFT (Fast Fourier 
Transform) for EEGs and EOGs, whereas 1024-point FFT for EMG. The parameters 
included the ratio of EEG components in C3/A2, C4/A1 and O1/A2, O2/A1 channels, 
the amplitude of EEG components in C3/A2 and C4/A1 channels, the amount of EOG 
components in LOC/ROC, LOC/A1 and ROC/A1 channels, and the amount of EMG 
components in chin-EMG channel. The detail description of parameter definition was 
in Chapter 2, subsection 2.2.3 Expert Knowledge Database Construction.  
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3.2.2.2 Probability density function of Cauchy distribution 

The epochs are classified into sleep stage groups according to the visual inspection 
by a qualified clinician (F. K.) in Toranomon Hospital. Each epoch is assigned to a 
single sleep stage and described by a set of parameters values. For each sleep stage, 
the values of parameters are counted to make the histograms.  

The pdf of parameter of each stage is approximately evaluated using histograms 
with Cauchy distribution. Based on the definition of Cauchy distribution, the pdf of 
parameter y in stage � can be mathematically expressed by,  

2 2( | )
(( ) )

bf y
y a b

�
�

�
� �

 ,           (3.1) 

where a is the location parameter and b is the scale parameter. The values of a is 
determined by media and b is determined by quartile [95][96]. 

In addition, a transitional probability matrix of sleep stage change is calculated by 
using the same method in Chapter 2, subsection 2.2.3 Expert knowledge database 
construction. 

 
 
 

3.2.3 Sleep stage determination by conditional probability 

Following the algorithm described in Chapter 2, subsection 2.2.4 Automatic sleep 
stage determination, the predicted probability of first segment P1|0 for various sleep 
stages shared the probability equally with a value of 1/n, where n is the number of the 
types of sleep stages. The automatic sleep stage determination is repeated by 
calculating the conditional probability and predicted probability among the 
consecutive segments. The decision is made based on the maximum value of 
conditional probabilities. The sleep stage for each epoch is determined by choosing 
the stage which takes up the greatest portion in one epoch.  

In this study, the probability density function was modeled by Cauchy distribution. 
According to the particular feature of infinite variance, the probability density 
functions of parameters were obtained by approximate methods [97]. A joint 
probability of parameters was obtained approximate to the Cauchy distribution. 
Therefore, conditional probability may indicate the possibility of sleep stage 
occurrence for certain segment of sleep data under Cauchy distribution.  
 



43 

 

3.3 Results 

3.3.1 Probability density function of Cauchy distribution 

The continuous sleep recordings of two subjects (Subject D and H) were utilized as 
the training data to obtain the knowledge base of pdfs of parameters for sleep stages. 
Figure 3.2 showed the parameter calculation process. The continuous sleep data was 
divided into 30-second epochs. Each epoch was sub-divided into 5-second segments. 
Figure 3.2 (A) illustrated a 30-second epoch sleep raw data consisting 6 segments. For 
each segment, a set of parameters were calculated. Figure 3.2 (B) showed the 
parameter for the third segment in Figure 3.2 (A). The periodogram was obtained for 
sleep EEGs, EOGs and EMG. A set parameter was calculated based on the 
periodograms. The obtained parameter values were shown in a table. According to the 
visual inspection, the parameter values were grouped for various sleep stage to make 
the histograms. 

 
In this study, Cauchy distribution was adopted to approximate the histogram instead 

of Gaussian distribution. The histogram, Gaussian distribution and Cauchy 
distribution of the ratio of alpha (R� , �: 0.5-2 Hz) for stage awake with eyes closed 
were illustrated in Figure 3.3. The vertical bars corresponded to the histogram, the 
solid line was Cauchy distribution and the dotted line was Gaussian distribution. 
Cauchy distribution had similar shape as Gaussian distribution but the infinite 
variance allowed much heavier tails comparing with Gaussian distribution.  
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Figure 3.2: Parameter calculation process. 
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Figure 3.3: Histogram, Gaussian distribution and Cauchy distribution of R� (8-13 Hz) 
of the stage awake with eyes closed. The tails of Cauchy distribution were much 

heavier than Gaussian distribution. 
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3.3.2 Automatic sleep stage determination 

The algorithm of automatic determination was applied on another two subjects. 
Following the algorithm of multi-valued decision making, their overnight sleep 
recordings (about 8-hour) were analyzed. Among the recording data, one epoch was 
selected and the calculation processing was illustrated with the time series of PSG 
measurement in Figure 3.4 and Figure 3.5. The result by conditional probability of 
Cauchy distribution was in Figure 3.4. The result by conditional probability of 
Gaussian distribution was in Figure 3.5.  

 
In Figure 3.4 (A), the third segment k+2 of the raw sleep data was contaminated 

with electrode artifact. Figure 3.4 (B) illustrated the derivation of conditional 
probability of Cauchy distribution for this segment. A set of parameters were 
calculated for this segment. Those values were utilized to obtain the joint probability 
for each sleep stage. Based on the joint probability of parameters and predicted 
probability, the conditional probability of Cauchy distribution was obtained. For this 
segment, the artifact did not affect the decision making with Cauchy distribution. The 
result is stage I. In Figure 3.4 (C), the decision making result for all the segments were 
stage I and final determination result for the epoch was stage I which is consistent 
with the visual inspection by clinician. 

 
In Figure 3.5, the calculation process for the same time series in Figure 3.4 was 

showed by using conditional probability of Gaussian distribution. In Figure 3.5 (B), 
the value of joint probability included rather small value close to 0 for stage III and IV. 
The decision making for the segment contaminated by electrode artifacts was affected 
and judged to stage awake. In Figure 3.5 (C), the decision of sleep stage for the 
following segments were also affected which were judged to stage awake. The final 
determination result was inconsistent with the visual inspection. The main reason 
caused the mis-determination by Gaussian distribution was related to the 
exponentially decrease tail. 
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3.3.3 Accuracy evaluation 

The automatic sleep stage determination result of subject B was compared with 
visual inspection in Figure 3.6. Figure 3.6 (A) was the visual inspection by the 
clinician. Figure 3.6 (B) was the result of automatic sleep stage determination by 
using Gaussian distribution. Figure 3.6 (C) was the result of automatic sleep stage 
determination by using Cauchy distribution. The automatic sleep stage determination 
results of subject F by using Gaussian distribution and Cauchy distribution were 
compared with visual inspection in Figure 3.7. The hypnogram of automatic 
determination presented well comparing with visual inspection on sleep cycles and 
changes during the overnight recording by using Cauchy distribution. 

 
The results of automatic sleep stage determination on two test subjects were 

evaluated. The epochs which have the consistent determination result with visual 
inspection were counted. The amount of the epochs was divided by the total amount 
of sleep stage scored by clinician to calculate the accuracy. For subject B, the 
determination result by Gaussian distribution was in Table 3.1 and Cauchy 
distribution in Table 3.2. For subject F, the determination result by Gaussian 
distribution was in Table 3.3 and Cauchy distribution in Table 3.4.The total accuracy 
was improved by Cauchy distribution comparing with Gaussian distribution.  
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Figure 3.4: Calculation process of automatic sleep stage determination by conditional 

probability of Cauchy distribution. (A showed the raw sleep data of an epoch; (B) 
showed the procedures to obtain the conditional probability of Cauchy distribution of 
segment k+2; (C) was the calculation repeated among the consecutive segments for 

one epoch. 
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Figure 3.5: Calculation process of automatic sleep stage determination by conditional 
probability of Gaussian distribution. (A) showed the raw sleep data of an epoch; (B) 
showed the procedures to obtain the conditional probability of Gaussian distribution 

of segment k+2; (C) was the calculation repeated among the consecutive segments for 
one epoch. 
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Figure 3.6: The automatic determination result of subject B by Cauchy distribution, 

Gaussian distribution compared with visual inspection. (A) Visual inspection by 
qualified clinician. (B) Determination by conditional probability of Guassian 

distribution. (C) Determination by conditional probability of Cauchy distribution. 
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Figure 3.7: The automatic determination result of subject F by Cauchy distribution, 
Gaussian distribution compared with visual inspection. (A) Visual inspection by 

qualified clinician. (B) Determination by conditional probability of Guassian 
distribution. (C) Determination by conditional probability of Cauchy distribution. 
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Table 3.1: Evaluation of accuracy comparing with visual inspection  
(Gaussian distribution, Subject B) 

  Automatic determination   
 O(W) C(W) REM I II III IV 

V
is

ua
l I

ns
pe

ct
io

n O(W) 29 3 3 1 0 1 0 37 78.38%
C(W) 7 106 13 3 0 0 0 129 82.17%
REM 5 0 127 17 0 0 0 149 85.23%

I 40 12 17 67 24 0 0 160 41.88%
II 10 0 33 76 225 25 0 369 60.98%
III 1 0 1 3 3 40 0 48 83.33%
IV 0 0 0 4 4 93 0 101 0.00%

Total : 59.82%
 
 
 
 
 
 
 

Table 3.2: Evaluation of accuracy comparing with visual inspection  
(Cauchy distribution, Subject B) 

  Automatic determination   
 O(W) C(W) REM I II III IV 

V
is

ua
l I

ns
pe

ct
io

n O(W) 19 12 1 1 1 2 1� 37 51.35%
C(W) 8 107 0 14 0 0 0� 129 82.95%
REM 9 0 93 47 0 0 0� 149 62.42%

I 41 17 1 74 27 0 0 160 46.25%
II 8 3 2 64 253 39 0 369 68.56%
III 0 0 0 0 6 39 3 48 81.25%
IV 0 0 0 1 3 57 40 101 39.60%

Total : 62.94%
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Table 3.3: Evaluation of accuracy comparing with visual inspection  
(Gaussian distribution, Subject F) 

  Automatic determination   
 O(W) C(W) REM I II III IV 

V
is

ua
l I

ns
pe

ct
io

n O(W) 54 11 6 7 0 0 0 78 69.23%
C(W) 4 52 1 0 0 0 0 57 91.23%
REM 1 0 152 21 3 0 0 177 85.88%

I 14 15 30 38 4 0 0 101 37.62%
II 12 0 72 82 231 25 0 422 54.74%
III 0 0 0 0 5 90 0 95 94.74%
IV 0 0 0 0 0 53 0 53 0.00%

Total : 62.77%
 
 
 
 
 
 
 

Table 3.4: Evaluation of accuracy comparing with visual inspection  
(Cauchy distribution, Subject F) 

  Automatic determination   
 O(W) C(W) REM I II III IV 

V
is

ua
l I

ns
pe

ct
io

n O(W) 30 27 5 14 0 2 0� 78 38.46%
C(W) 1 53 0 3 0 0 0 57 92.98%
REM 0 1 131 31 14 0 0 177 74.01%

I 3 24 8 60 6 0 0� 101 59.41%
II 3 0 18 66 294 40 1 422 69.67%
III 0 0 0 0 3 59 33 95 62.11%
IV 0 0 0 0 0 16 37 53 69.81%

Total : 67.55%
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3.4 Discussion 

3.4.1 Cauchy distribution 

In our method, Cauchy distribution is adopted as the probability distribution instead 
of Gaussian distribution. Comparing with Gaussian distribution, Cauchy distribution 
has similar shape which can be represented by location ± scale. In addition, it has 
infinite variance where the tails are much heavier. 

During the long-term recording of human overnight sleep, it is inevitably 
contaminated by artifacts, such as blink artifacts, body movement, electrodes artifact, 
etc. Artifacts always cause problem either in the computerized analysis or the human 
visual analysis. For example, the electrodes artifact shows similar characteristics as 
the slow wave (0.5-2 Hz), and it is predominant in the deep sleep (stage III and IV). 
Then the value of Rs1 of those epochs will be closer to the distribution in stage III and 
IV, far from the distribution of the actual stage. It will cause mis-determination. Then 
the value of the conditional probability corresponding to the mis-determined stage 
affects the predicted probability for next segment in Equation 3.1. 

Due to the definition, Gaussian distribution has exponentially decreasing tail 
whereas Cauchy distribution has ratio decreasing tail. In Equation 2.3, the conditional 
probability was calculated by ratio. When artifact occurred, the values of some 
parameters would locate at the tails of distribution. By ratio, the mis-determined stage 
would be an exponential value (10-10-10-20) when using Gauss distribution. The effect 
of mis-determination will be seriously transferred to the following segments. But 
when using Cauchy distribution, the affect could be abated because it has heavier tails 
and the value located at the tail would be 10-2-10-3.  

The periodogram of EEG has similar characteristic as Cauchy distribution [91]. 
Cauchy distribution may have significance for neurophysiological signal analysis 
especially for EEG. Therefore, we chose Cauchy distribution for modeling the 
parameter distribution on histogram. The heavier tail of Cauchy distribution showed 
its effectiveness to abate the effect of mis-determination caused by artifact 
contamination. On the other hand, Cauchy distribution also showed consistent 
determination results where the recording data was not contaminated with artifacts. 
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3.4.2. Automatic sleep stage determination 

The automatic determination processing in Figures 3.4 and 3.5 showed that the 
proposed methodology was sensible to the sleep stage changing in every 5-second 
segment. The final decision making of each epoch was as close as the way when 
clinician made their visual inspection. The discrimination of sleep stage was 
appreciably satisfied. For both test subjects, the recognition of the stage awake, light 
sleep and deep sleep stages are good. Compare with other sleep stages, the recognition 
of stage REM was not as good as other sleep stages. In Toranomon hospital, a belt 
around the chin was utilized in order to avoid EMG artifact. The amplitude of 
chin-EMG was in low level. The distribution of high frequency activity in chin-EMG 
could not separate stage REM well from other sleep stages. Besides, the subjects we 
investigated are the patients suffered from breathing disorders during sleep. The sleep 
patterns of those subjects after the treatment of Continuous Positive Airway Pressure 
(CPAP) are slightly different with the normal and healthy person. The disorders of 
REM sleep behavior will cause intermittent atonia in REM sleep. The amplitude of 
slow wave activity is difficult to distinguish stage III and stage IV because they are 
the persons over 50 years old. Stage III and IV are mixed in those subjects. 

 

3.5 Conclusion 

We developed an automatic sleep stage system by a multi-valued decision making 
method based on conditional probability of Cauchy distribution. Due to the infinite 
variance of Cauchy distribution, the effect of the mis-determination caused by 
artifacts could be abated. The performance of the expert knowledge-based automatic 
sleep stage determination system was improved to deal with the sleep data 
contaminated with artifacts for clinical practice.

 
�
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Chapter 4 

4.1 Introduction 

With the development of modern electrical measurement and recording techniques, 
the dynamic behavior in sleep can be observed. There are two sleep states: rapid eye 
movement (REM) sleep and non rapid eye movement (NREM) sleep. The NREM 
sleep consists of stage I, stage II, stage III and stage IV. Another stage of awake is 
often included, during which a person falls asleep. For normal and healthy persons, 
those types of sleep stages corresponding to certain frequency bands and amplitudes 
follow a fairly well-behaved cyclic pattern throughout the night. Sleep stage scoring is 
an important task for inspecting neurophysiological diseases of subjects. The most 
well-known criteria for sleep stage scoring were published by Rechtschaffen and 
Kales in 1968 [16]. Currently, sleep stage scoring has been widely used for evaluating 
the condition of sleep and diagnosing the sleep related disorders in hospitals and 
institutions. 

Automatic sleep stage determination can free the clinicians from the heavy task of 
visual inspection on sleep stages. Rule-based waveform detection method, according 
to Rechtschaffen and Kales criteria, has been frequently utilized in many studies. The 
limitations of Rechtschaffen and Kales criteria have been noticed [85]. The 
insufficiency is that it only includes typical characteristic waveforms of healthy and 
normal persons for staging. Besides, EOG (electrooculogram) signal was investigated 
to process stage determination [80] [81]. A changeable transition probability of sleep 
stages based on body movement was developed to interpret the human sleep [73] [74]. 

Although various methodologies have been developed, effective technique is still 
needed for clinical application. Sleep data adopts long-term recording. It is inevitably 
being affected by various artifacts [93] [94]. Individual differences are also commonly 
existed, even under the same recording condition [98]. For same sleep data, different 
clinician may also have different scoring result [99] [100]. For the patients with 

Automatic Sleep Stage Determination 
with Automatic Parameter Selection 
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sleep-related disorders, their sleep data has particular characteristics. Therefore, the 
recorded sleep data containing complex and stochastic factors will increase the 
difficulties for the computerized sleep stage determination techniques to be applied 
for clinical practice. 

In this study, sleep stage determination is considered as a multi-valued decision 
making problem in the field of clinics. The main methodology, explained in Chapter 2, 
has been proved to be successful for sleep stage determination. The aim of this study 
is to develop a flexible technique adapting to different cases of sleep data, which can 
meet the customized requirements in hospitals and institutions. The method includes 
two modules: expert knowledge database construction and automatic sleep stage 
determination. Visual inspection by a qualified clinician is utilized to obtain the 
probability density function of parameters during the learning process of expert 
knowledge database construction. A process of parameter selection is introduced in 
order to make our algorithm flexible. Automatic sleep stage determination is 
manipulated based on conditional probability. 
 

4.2 Method 

4.2.1 Data acquisition 

The sleep data investigated in this study was recorded in the Department of Clinical 
Physiology, Toranomon Hospital, at Tokyo, Japan. Eight subjects of an average age 
about 50 years old, were participated. These patients had breathing disorder during 
sleep (Sleep Apnea Syndrome). Their overnight sleeping data were recorded after the 
treatment of Continuous Positive Airway Pressure (CPAP) based on the 
polysomnographic (PSG) measurement. The PSG measurement used in Toranomon 
Hospital included four EEG (electroencephalogram) recordings, two EOG recordings 
and one EMG (electromyogram) recording.  

The subjects were same with Table 2.1 in Chapter 2. The recording condition have 
been described in detail in Chapter 2, subsection 2.2.1 Subjects and sleep data.  

4.2.2 Visual inspection 

A qualified clinician F.K. in Toranomon hospital scored sleep stages on the 
overnight sleep recording of subjects. The clinician made the visual inspection based 
on the Rechtschaffen and Kales criteria and clinical experience through an 
epoch-by-epoch approach.  
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The PSG recording of subjects were divided into consecutive 30-second epochs. 
Each epoch was assigned by a single sleep stage. In the case of multiple stages 
presented in a certain epoch, the stage taking major portion of the epoch was scored. 
In total, seven types of stages were inspected, stage awake with eyes opened, stage 
awake with eyes closed, stage REM, stage I, stage II, stage III and stage IV.  Stage 
awake was classified into open eyes state and close eyes state. Stage I and stage II 
were identified with light sleep. Stage III and stage IV were identified with deep 
sleep. 

The detail explanation of visual inspection work by qualified clinician was in 
Chapter 2, subsection 2.2.2 Visual inspection. 

4.2.3 Multi-valued decision making 

The block diagram of multi-valued decision making method (Chapter 2) is 
illustrated in Figure 4.1. It consists of two modules. Figure 4.1 (A) is a learning 
process of expert knowledge database construction. Visual inspection is adopted. 
Figure 4.1 (B) shows the algorithm of automatic sleep stage determination iterating 
through the consecutive segments. An automatic parameter selection process is 
developed to obtain an adaptive expert knowledge database. The selected parameters 
are adopted to manipulate the automatic sleep stage determination algorithm. 
 

k+1

Parameter calculation

Histogram

Cauchy distribution

Parameter calculation

Conditional probability

Decision making

Predicted probability

Visual inspection

k

Training data Test data

(A) Expert knowledge database construction (B) Automatic sleep stage determination

Parameter selection

 
Figure 4.1: Black diagram of processing. (A) Expert knowledge database construction 
to obtain the probability density function of optimal parameters. (B) Automatic sleep 

stage determination integrated with the selected optimal parameters. 
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4.2.3.1 Expert knowledge database construction with 

optimal parameters 

� Parameter calculation 
The overnight sleep recording from subjects was divided into consecutive 

30-second epochs for training purpose. Each epoch was subdivided into 5-second 
segments. A set of characteristic parameters, extracted from the periodogram of EEGs, 
EOGs and EMG, were calculated for each segment. In order to obtain the parameter 
values, the periodogram was derived by taking 512-point FFT (Fast Fourier 
Transform) with Hanning window for EEGs and EOGs, whereas 1024-point FFT with 
Hanning window for EMG. The frequency resolution for all the channels was 0.2Hz. 
There are three types of parameters: ratio, amplitude and amount. The description of 
each parameter is given in Table 4.1.  

Totally, 20 parameters were calculated as candidates. Ratios include RO
�1, RO

�2, 
RO

�3, RO
�4, RC

�1, RC
�2, RC

�3, and RC
�4. Amplitudes include AO

�1, AO
�2, AO

�3, AO
�4, 

AC
�1, AC

�2, AC
�3, and AC

�4. Amounts include SL
�5, SR

�5, SLR
�5, and SM

�6, The 
superscript C stands for C3/A2 or C4/A1, O for O1/A2 or O2/A1, L for LOC/A1, R 
for ROC/A1, LR for LOG/ROC and M for chin-EMG channel. The subscripts 
indicate the frequency bands which are given in the notation under Table 4.1. The 
parameters of consisted segments were taken average to derive the parameter value of 
one epoch. 
 
 

Table 4.1 Parameter description 
 
Parameter Description 

Ratio (%) 

Maximum value of the ratios of the summation of periodogram with the 
certain frequency bands (�1, �2, �3, �4) to the frequency band (T) in 
EEG channels (C3/A2, C4/A1 and O1/A2, O2/A1) between two 
hemispheres. 

Amplitude (�V) 
Maximum value of the square root of the summation of periodogram with 
the frequency bands (�1, �2, �3, �4) in EEG channels (C3/A2, C4/A1 
and O1/A2, O2/A1) between two hemispheres. 

Amount (�V2) 
Summation of periodogram with the frequency band  (�5) in EOG 
channels (LOC/ROC, LOC/A1, ROC/A1), with the frequency band (�6) in 
EMG channel (chin-EMG) 

* �1: 0.5-2 Hz; �2: 2-7 Hz; �3: 8-13 Hz; �4: 25-35 Hz;  
�5: 2-10 Hz; �6: 25-100 Hz; T: 0.5-25 Hz. 
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� Histogram and probability density function 

The epochs were classified into sleep stage groups according to the visual 
inspection by clinician. The histogram for each parametric variable was created for 
each sleep stage. The probability density function was approximately evaluated using 
histogram with Cauchy distribution. The procedures of how to obtain the histogram 
and probability density function of Cauchy distribution have been explained in 
Chapter 2 and Chapter 3.  
 
� Parameter selection 

The distance of the pdfs between stage i and stage j was calculated by 
 
  d(i,j)=|ai-aj|.                                                  (4.1) 

 
The larger distance indicates smaller overlap between the pdfs. It is measured by 
 
  d(i,j)>max(3bi,3bj).                                            (4.2) 

 
When the distance is larger than three times of the deviations of the probability 

density functions of both stages, the parameter is selected. 
 

� Transitional probability matrix 
In addition, a transitional probability matrix of sleep stage change was calculated 

for the training data as in Chapter 2. The consisted segments of one epoch were 
considered having the same scoring result. The transitional probability between sleep 
stages was obtained. It designated the probabilities of stage change between two 
conjoint segments.  
 

4.2.3.2 Automatic sleep stage determination with optimal 

parameters

The overnight sleep recordings of subjects were divided into the same length of 
epochs and segments as the training data. The values of selected parameters were 
calculated for each segment. 
Initially, predicted probability of first segment for various sleep stages shared the 

probability equally with a value of 1/n. n is the number of the types of sleep stages. 
The automatic sleep stage determination is iterated though the calculation of 
conditional probability (Equation 2.2) and predicted probability (Equation 2.4) among 
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the consecutive segments. The decision (Equation 2.3) is made based on the value of 
conditional probabilities. The sleep stage for each epoch is determined by choosing 
the stage which takes up the greatest portion in one epoch. The detail explanation of 
the automatic sleep stage determination was in Chapter 2.  
 
 
 
 
 

4.3 Results 

4.3.1 Probability density function 

The overnight sleep recordings of two subjects (Subject D and Subject H) were 
utilized as the training data for expert knowledge database construction. The pdfs of 
the selected parameters are illustrated in Figure 4.2. The horizontal axis indicates the 
types of stages, the vertical axis is the value of parameters, "�" denotes the location of 
Cauchy distribution, and "�" denotes the scale of Cauchy distribution.  

 
Totally, 8 parameters were selected. In the ratio of �1 (0.5-2Hz) in EEGs, S3 and 

S4 of deep sleep had lager location values separated from other stages. S3 and S4 
were slightly separated from each other among the training subjects of elder persons. 
The amplitude of �2 (2-7Hz) in EEGs, REM and light sleep (S1, S2) showed 
relatively large location values comparing with others. The ratio of �3 (8-13Hz) in 
EEGs can be the evidence for C(W). EEGs (O1/A2, O2/A1) showed predominant 
rhythmic alpha activity when the subjects were falling to sleep with the eyes closed. 
The amplitude of �4 (25-35Hz) in EEGs indicated that stage awakes of O(W) and 
C(W) were separated from other stages. The amount of �5 (2-10Hz) in EOGs, S2 
showed larger location value comparing with other stages. In the amount of �6 
(25-100Hz) in EMG, REM had the smaller location value comparing with other sleep 
stages. In stage REM, EMG voltage was in the lowest level. The combination of those 
selected parameters was utilized for manipulating the automatic sleep stage 
determination. 
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4.3.2 Sleep stage determination 

The overnight sleep recordings of another two subjects (Subject B and Subject F) 
were analyzed, which were different from the training data. The calculation process 
for one epoch is illustrated in Figure 4.3.  

 
In Figure 4.3, the forepart of sleep recording showed REMs in EOGs. In the latter 

part of sleep recording, EEGs showed high amplitude. The level of EMG was rather 
low. According to the conditional probabilities with underline, the first two segments 
were determined by REM. The middles were stage I and the latter parts were O(W). 
In this case, the stage result of previous epoch was referred. The last two segments in 
previous epoch were REM. Then, REM was determined as the result for this epoch. 
The transition from REM to awake can be estimated. Through the visual inspection, 
awake occurred after this epoch. 
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Figure 4.2: Parameter distributions. The x-axis denoted the sleep stages, the 
closed circles denoted the location parameter and the open circles denoted the scale 

parameter. 
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Figure 4.3 Calculation process of automatic sleep stage determination for a 30-second 
epoch. (A) Raw sleep data under PSG measurement including two EOG channels, one 
EMG channel and four EEG channels. (B) Automatic sleep stage determination based 

on conditional probability. The line names are sleep stages. The column names are 
conditional probability and predicted probability for each 5-second segment. 

Underline is the maximum value of conditional probability. The decision making 
result is given for each segment. The automatic sleep stage determination for current 

epoch is showed. 
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4.3.3 Accuracy evaluation 

Automatic sleep stage determination result of two test subjects were evaluated in 
Table 4.2. The accuracy of stage wake (combined open and close eyes awake), stage 
REM, light sleep (combined sleep stage I and II) and deep sleep (combined sleep 
stage III and IV) were given respectively for Subject B and Subjct F.  

 
The discrimination of sleep stage was appreciably satisfied. The average accuracy 

of two test subjects showed that stage awake was 85.8%, stage REM was 76.2%, light 
sleep (stage I and stage II) was 80.6% and deep sleep (stage III and stage IV) was 
95.7%. 

 
 
 

Table 4.2: Evaluations of sleep stage determination for two subjects 
 

 Subject B Subject F Average 

StageWake 84.3% 87.4% 85.9% 

StageREM 73.2% 79.1% 76.2% 

Stage I/II 80.7% 80.5% 80.6% 

Stage III/IV 93.3% 98.0% 95.7% 

 
 
 
 

4.4 Discussion 

4.4.1 Parameter selection 

Unlike the rule-based method, our method is expert knowledge-based. The visual 
inspection by a qualified clinician takes an important role during the learning process 
of expert knowledge database construction. The clinician made visual inspection not 
only referring to Rechtschaffen and Kales criteria, but also considering the artifacts 
and surrounding circumstance in clinical practice. We considered that the visual 
inspection has covered both Rechtschaffen and Kales criteria and clinical experiences. 
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The visual inspection by a qualified clinician, thus, can be reliable to construct the 
knowledge database of probability density functions of parameters and manipulate the 
automatic sleep stage determination. 

 
Parameter selection was one component included in our learning process of expert 

knowledge database construction. The principle of parameter selection is to decrease 
the positive error and negative error of sleep stage determination. In our study, one 
parameter is not expected to distinguish all the sleep stages from each other. The pdfs 
of some stages may be overlapped. If the pdf of the stage is separated from others, this 
parameter can be selected. The next parameter would be selected if it can distinguish 
the stages in the overlapped part of previous parameters. A distance of three times of 
the deviation, which covers 99% of the pdf, is adopted for measurement. The 
combination of the selected parameters is optimized for manipulating the automatic 
sleep stage determination algorithm. 
 
 
 
 

4.4.2 Clinical application 

The aim of our study is to develop flexible methodology of sleep stage 
determination which can adapt to the customized requirements in hospitals and 
institutions. Therefore, sleep data from clinics is worth for investigation and analysis. 
In this study, the patients were from Toranomon hospital. Toranomon hospital is 
named for the diagnosing and treatment of Sleep Apnea Syndrome. A qualified 
clinician F.K. from Toranomon hospital made visual inspection on sleep stages. 
According to the visual inspection, expert knowledge database was constructed. The 
result of automatic sleep stage determination showed close agreement comparing with 
the visual inspection. Our system can satisfy the sleep stage scoring requirement in 
Toranomon hospital. In addition, our method is flexible to learn from any clinicians. 
Accordingly, the developed automatic sleep stage determination system can be 
optimized to meet the requirements in different hospitals and institutions. 

 
The sleep recording data of 2 subjects are utilized for training. During the learning 

process of expert knowledge database construction, visual inspection by clinician is 
required. It is not convenient always learning from large amount of data, which will 
bring heavy burden to clinician. Therefore, we practice on few data for training. The 
sleep recording data of 7 subjects which were different from training data have been 
tested. All subjects were patients with Sleep Apnea Syndrome in Toranomon hospital. 
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Their sleep data was recorded after the treatment of CPAP. 2 of them were inspected 
by clinician. The results of those 2 subjects were evaluated and analyzed. The results 
of other tested subjects were also satisfactory. The evaluation of the reliability and 
effectiveness for clinical practice is important for automatic sleep stage determination 
technique [101]. Increasing the test data amount with various kinds of patients will be 
followed in future works. 

 

4.5 Conclusion 

An expert knowledge-based method for sleep stage determination was presented. 
The process of parameter selection enhanced the flexibility of the algorithm for 
clinical practice. The developed automatic sleep stage determination system can be 
optimized to different sleep disorder cases by learning few sleep data with visual 
inspection by qualified clinician. 
  
 
�

�

�
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Chapter 5 

 

5.1 Introduction 

Human sleep has been described by several stages, REM (rapid eye movement) 
stage and four non-REM stages of stage I, II, III and IV. Another stage of awake is 
often included, during which a person falls asleep. The most well-known staging 
criteria were published by Rechtschaffen and Kales (Rechtschaffen and Kales criteria) 
in 1968. It defines rules for sleep stage determination by characteristic waveforms and 
activities in sleep EEGs (electroencephalogram), EOGs (electrooculogram), EMG 
(electromyelogram) as well.  

The computerized sleep stage recognition techniques desired based on 
Rechtschaffen and Kales criteria can be found in many studies. Although 
Rechtschaffen and Kales criteria is a worth reference for sleep stage discrimination, 
this technique seems not be sufficient enough to support the description of sleep 
process demanded for clinical practice [85]. Rechtschaffen and Kales criteria include 
rules of typical waveforms from healthy persons [16]. However, sleep stage scoring is 
used for evaluating the condition of sleep and diagnosing the sleep related disorders in 
hospitals. The subjects are patients suffered by sleep disorders. Additionally, the 
typical waveforms shown in Rechtschaffen and Kales criteria are under ideal 
recording condition. The sleep data under usual recording condition at hospitals are 
inevitably contaminated by various artifacts [93] [94]. The surrounding circumstances 
may be variable in different hospitals. Therefore, the conventional rule-based 
technique designed only according to Rechtschaffen and Kales criteria would have 
limitation for clinical practice.  

An expert knowledge-based methodology has been presented in our previous study 
in order to overcome the above limitation [87]. Since qualified clinician made visual 
inspection referring to the staging criteria and considering the surrounding 
circumstance in the hospital, the visual inspection by qualified clinician was reliable 

Automatic Sleep Stage Determination 
Integrated with Amendment Function 
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to deal with the sleep data contaminated with artifacts from real clinics [92]. 
Moreover, a parameter selection function has been developed to make our algorithm 
flexible [102] [103]. By learning from few subjects with visual inspection, our 
automatic sleep stage determination can be optimized for various cases of sleep data. 
In real clinics, clinician adopts additional rules to smooth the sleep stage scoring 
result especially for the continuity of stage II and onset/offset of stage REM [104] 
[105]. The corresponding EEGs, EOGs and EMG may have few or no characteristics 
of the sleep stages which have been smoothed by the clinician. The automatic 
determination algorithm would be difficult to detect the sleep change and continuity 
only according to the characteristics of sleep data. 

In this study, a modification process is presented to enhance the performance of our 
automatic sleep stage determination system on sleep stage changing and continuity. 
The sleep stage is determined automatically based on the expert knowledge-based 
method of conditional probability. The modification is manipulated incorporating 
sleep-related event detection to modify the decision by the expert knowledge-based 
method. The continuity of stage II and onset/offset of stage REM are detected 
automatically. The modification algorithm mimics the humanized inspection by 
clinician. 

 

5.2 Method 

5.2.1 Sleep data acquired from hospital 

Four subjects were analyzed in this study across the patients having breathing 
disorders during sleep (Sleep Apnea Syndrome). The subjects were male, aged 49 to 
61 years old. Their overnight sleeping data were recorded after the treatment of CPAP 
(Continuous Positive Airway Pressure) based on the polysomnographic (PSG) 
measurement from the department of Clinical Physiology, Toranomon Hospital, 
Tokyo, Japan. The PSG measurement included electroencephalogram (EEG), 
electromyogram (EMG), electrooculogram (EOG) and other signal types.  

The subjects were same with Table 2.1 in Chapter 2. The recording condition have 
been described in detail in Chapter 2, subsection 2.2.1 Subjects and sleep data.  
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5.2.2 Visual inspection by clinician 

5.2.2.1 Sleep stages 

The clinician scored sleep stages according to the knowledge and experience 
covering the Rechtschaffen and Kales criteria. The overnight sleep recording was 
divided into consecutive 30s epochs. The clinician made visual inspection through an 
epoch-by-epoch approach. Totally, seven types of sleep stages were visually inspected, 
including awake with eyes closed, awake with eyes opened, REM sleep and non-REM 
sleep of stage I, II, III and IV. Stage awake was classified into open eyes state and 
close eyes state according to the alpha activity (8-13Hz) on EEGs of O1/A2 and 
O2/A1 channels and the existence of eye movements on EOGs. Stage I and II were 
identified as light sleep. Deep sleep of stage III and IV were scored based on a 
relatively different presence of slow wave activity within an epoch. 

The detail explanation of visual inspection work by qualified clinician was in 
Chapter 2, subsection 2.2.2 Visual inspection. 
 

5.2.2.2 Sleep related events 

The related events, investigated in this study, are corresponding to the change and 
continuity of stages. Here, the continuity of stage II and onset/offset of stage REM 
were inspected by clinician based on the indicators of sleep EEGs, EOGs and EMG. 
The principle is summarized as below [106]. 

 
� Continuity of stage II 

- Stage II is indicated by K-complex and sleep spindle in sleep EEGs. 
- If the occurrence of K-complex or sleep spindle is less than 3-min to previous 

occurrence, the interval sleep recordings are smoothed by stage II. 
 

� Detection of stage REM onset and offset 
- The epoch where K-complex or sleep spindle is observed and EMG is as low 

as stage REM level is judged by stage REM onset. 
- Although REMs can not be observed, stage REM is considered to be 

continued until EMG level becoming higher. 
- The epoch where EMG level became higher is judged by stage REM offset. 
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5.2.3 Characteristic parameters  

The overnight sleep recording data is divided into 30-second epochs. Each epoch 
was subdivided into still smaller segments of 5-second. In order to calculate the 
parameter values, the periodogram was derived by taking 512-point FFT (Fast Fourier 
Transform) for EEGs and EOGs, whereas 1024-point FFT for EMG. The parameters 
included, the ratio of EEG components Rs1 (0.5-2 Hz) and R� (8-13 Hz) in C3/A2, 
C4/A1 and O1/A2, O2/A1 channels, the amplitude of EEG components As2 (2-7 Hz) 
and Ah (25-35 Hz) in C3/A2 and C4/A1 channels, the amount of EOG components SLR, 
SLOC and SROC (2-10 Hz) in LOC/ROC, LOC/A1 and ROC/A1 channels, the amount 
of EMG components Schin-EMG (25- 100 Hz) in chin-EMG channel.  

 
The detail description of parameter definition was in Chapter 2, subsection 2.2.3 

Expert Knowledge Database Construction.  
 
 
 
 

 5.2.4 Expert knowledge-based method  

The block diagram of multi-valued decision making method is illustrated in Figure 
5.1. It consists of two modules. Figure 5.1 (A) is a learning process of expert 
knowledge database construction. Visual inspection is adopted. Figure 5.1 (B) shows 
the algorithm of automatic sleep stage determination iterating through the consecutive 
segments.  

 
During the learning process of Figure 5.1 (A), training data of the overnight sleep 

recording were divided into consecutive 30s epochs. Each epoch was sub-divided into 
5s segments. The extracted characteristic parameters of sleep EEGs, EOGs and EMG 
were calculated for each segment. According to the visual inspection, each epoch was 
scored by a single stage. The consisted segments of one epoch were considered 
having the same scoring result. The pdf of parameter of each stage was derived by 
approximately evaluated using histogram with Cauchy distribution. In addition, the 
transitional probability between sleep stages was counted and calculated to obtain a 
probability transition matrix T.  
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During the test process of Figure 5.1 (B), test data of the overnight sleep recording 
were divided into same length of epochs and segments as the training data. Initially, 
the predicted probability of first segment for various sleep stages shared the 
probability equally with a value of 1/n, where n is the number of the types of sleep 
stages. A joint pdfs of parameters for various sleep stages was calculated. The 
conditional probability of segment k was calculated based on the Bayesian rule. The 
decision making of sleep stage were carried out according to the maximum value of 
conditional probability, which indicated the most possible stage for current segment 
based on the parameter values. The predicted probability of next segment k+1 was 
calculated based on conditional probability and probability transition matrix. The 
automatic sleep stage determination was iterated by calculating the conditional 
probability and predicted probability among the consecutive segments.  

 
The detail explanation of expert knowledge-based automatic sleep stage 

determination was in Chapter 2, subsection 2.2.2 Expert knowledge database 
construction and subsection 2.2.3 Automatic sleep stage determination.  

 

k+1

Parameter calculation

Histogram

Cauchy distribution

Parameter calculation

Conditional probability

Decision making

Predicted probability

Visual inspection
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(A) Expert knowledge database construction (B) Automatic sleep stage determination
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Figure 5.1: Black diagram of processing. (A) Expert knowledge database construction 
to obtain the probability density function of Cauchy distribution for parameters. (B) 

Automatic sleep stage determination integrated with amendment function. 
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5.2.5 Amendment function 

In Figure 5.1 (B), an amendment function is developed to modify the decision 
making result by expert knowledge-based method. The amendment function was to 
modify the decision making of sleep stage by the expert knowledge-based method. It 
included the continuity of stage II and onset/offset of stage REM. 

The continuity of stage II was measured by a data length of 3-min. If the data 
length between two decisions of stage II was less than 3-min, the decision of sleep 
stage during interval sleep recordings were amended to stage II.  

The continuity of Stage REM was amended by detecting the onset and offset. Stage 
REM may start or end with stage awake and stage II. If stage awake or stage II 
occured before and after the determined stage REM, the onset and offset are detected. 
The interval sleep recordings between the onset and offset were amended to stage 
REM. 

 

5.3 Results 

5.3.1 Sleep stage determination and stage II amendment 

The procedures of sleep stage determination and amendment of stage II are showed 
in Figure 5.2. Figure 5.2 showed the procedures of sleep stage determination and 
smoothing of stage II.  

In Figure 5.2 (A), K-complex can be observed in the last segment. The other 
segments showed mixed frequency and low voltage of EEGs. According to the 
maximum value of conditional probability in Figure 5.2 (B), the calculation process of 
last segment was illustrated. For the 5-second segment, characteristic parameters were 
calculated. Based on the expert knowledge database of probability density functions 
of parameters, joint probability of parameters for each sleep stage was obtained. The 
joint probability was utilized to calculate the conditional probability. For this segment, 
the maximum value of conditional probability was corresponded to stage II. In Figure 
5.2 (C), the former four segments were judged by stage REM and last two segments 
were judged by stage II. The decision making results included stage II. The length to 
the previous stage II was less than 3min. The continuity of stage II was manipulated. 
The final determination result for this epoch was stage II, same as the visual 
inspection by clinician. 
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5.3.2 Sleep stage determination and stage REM amendment 

Stage REM was amended between the detected onset and offset. The procedures of 
sleep stage determination and detection of stage REM onset/offset are shown in 
Figure 5.3 and Figure 5.4 respectively.  

In Figure 5.3 (A), the consisting segments showed mixed frequency and low 
voltage of EEG. Rapid eye movements were not observed in EOGs. The calculation 
repeated with conditional probability and predicted probability was showen in Figure 
5.3 (B). Based on the conditional probability, the decision making results were stage I 
in Figure 5.3 (C). The next epoch was stage REM and the previous epoch was stage II. 
The stage REM onset was detected as in Figure 5.3 (D). Finally, this epoch was 
scored to stage REM onset in Figure 5.3 (E).  

In Figure 5.4, similar situation occurred after the determined stage REM. The 
decision making results of the consisting segments contained stage I and stage II. The 
next segment was stage awake. This epoch was scored to stage REM offset. The 
decision of sleep stages between the onset and offset epochs were amended. The final 
determination results were consistent with the visual inspection by clinician. 
 

5.3.3 Accuracy evaluation 

The result of two subjects (Subject B and Subject F), which were different from the 
training subjects (Subject D and Subject H), had been evaluated. The determination 
results of subject B and F are showed in Figure 5.5 and Figure 5.6 respectively.  

 
The stage scoring results by visual inspection, automatic sleep stage determination 

without and with amendment function are illustrated respectively. The horizontal axis 
is time and vertical axis is sleep stages. The grey cycles showed that the recognition 
of stage II and stage REM was improved with amendment function. The hypnogram 
presented well comparing with visual inspection on sleep change and continuity 
detection. 

 
The accuracies of two subjects are shown in Table 5.1 and Table 5.2 respectively. 

The columns represent the result of automatic determination and the lines represent 
the visual inspection by clinician. The light sleep of stage I and II were combined as 
well as deep sleep of stage III and IV. The grey parts showed the agreements on stage 
awake, REM, light sleep and deep sleep. Those were divided by the total amount of 
the sleep stages scored by visual inspection to calculate the accuracy.  
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For subject B, the agreement epochs of stage II was 345 after amendment while 294 
before amendment. The agreement epochs of stage REM was 137 after amendment 
while 123 before amendment. The accuracy of stage awake was 85.2%, stage REM 
77.4%, light sleep 88.5%, and deep sleep 93.9%. The total accuracy for this subject 
was 86.9%.  

 
For subject F, the agreement epochs of stage II was 336 after amendment while 253 

before amendment. The agreement epochs of stage REM was 109 after amendment 
while 87 before amendment. The accuracy of stage awake was 83.7%, stage REM 
73.2%, light sleep 87.9%, and deep sleep 83.9%. The total accuracy reached 84.4%. 
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Figure 5.2: Sleep stage determination and stage II amendment. (A) A 30s epoch of 
raw sleep data, divided into 5s segments; (B) Calculation process containing 

parameters, joint probability, conditional probability; (C) Automatic sleep stage 
determination with amendment of stage II continuity. 
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Figure 5.3: Sleep stage determination and stage REM amendment. (A) A 30s epoch of 

raw sleep data, divided into 5s segments; (B) Calculation process repeated with 
conditional probability and predicted probability; (C) Decision making result of sleep 

stage for segments; (D) Detection of stage REM onset; (E) Determination result of 
sleep stage for an epoch. 
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Figure 5.4: Sleep stage determination and stage REM amendment. (A) A 30s epoch of 

raw sleep data, divided into 5s segments; (B) Calculation process repeated with 
conditional probability and predicted probability; (C) Decision making result of sleep 

stage for segments; (D) Detection of stage REM offset; (E) Determination result of 
sleep stage for an epoch. 
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(A) Visual inpection

(B) Automatic sleep stage determination without amendment function
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Figure 5.5: The automatic determination result of subject B with and without 
amendment function compared with visual inspection. (A) Visual inspection by 

qualified clinician. (B) Automatic determination without amendment. (C) Automatic 
determination with amendment. 
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Figure 5.6: The automatic determination result of subject F with and without 
amendment function compared with visual inspection. (A) Visual inspection by 

qualified clinician. (B) Automatic determination without amendment. (C) Automatic 
determination with amendment. 
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Table 5.1: Accuracy evaluation for subject B. Automatic sleep stage determination 
integrated with amendment function comparing with the visual inspection.  

 
  Automatic determination  
  Awake REM I II III IV   Accuracy 

V
is

ua
l I

ns
pe

ct
io

n 

Awake 115 4 13 3 0 0 115/135 
(85.2%) 

REM 0 137 14 26 0 0 137/177 
(77.4%) 

I 24 8 53 16 0 0 463/523 
(88.5%) II 2 11 49 345 14 1 

III 0 0 0 9 53 33 139/148 
(93.9%) IV 0 0 0 0 16 37

Total accuracy:  854/ 983 = 86.9% 

 
 
 
 
 

Table 5.2: Accuracy evaluation for subject F. Automatic sleep stage determination 
integrated with amendment function comparing with the visual inspection. 

 
  Automatic determination  
  Awake REM  I II III IV Accuracy 

V
is

ua
l I

ns
pe

ct
io

n 

Awake 139 2 20 4 1 0 139/166 
(83.7%) 

REM 6 109 34 0 0 0 109/149 
(73.2%) 

I 45 7 72 36 0 0 465/529 
(87.9%) II 1 2 21 336 9 0 

III 0 0 0 18 27 3 125/149 
(83.9%) IV 0 0 1 5 55 40

Total accuracy:  838/993 = 84.4% 
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5.4 Discussion 

5.4.1 Stage amendment 

We engaged in the expert knowledge-based method for automatic sleep stage 
determination which can be effective for clinical practice. At the hospital, the clinician 
made visual inspection on stage II and stage REM with additional rules, not only 
based on the characteristics of sleep EEGs, EOGS and EMG [107] [108]. In 2001, 
supplements and amendments to the staging criteria of R&K were published by 
Japanese Society of Sleep Research, in which the additional rules for stage II and 
stage REM was summarized [106]. Those rules were widely utilized in hospitals. We 
developed the expert knowledge-based method with amendment function to mimic 
the visual inspection work on sleep stage scoring in clinics.  

We developed our automatic sleep stage determination method integrated with 
amendment function to modify the decision by the knowledge-based method. In the 
results of Figure 5.2, 5.3 and 5.4, the decision making results showed the most 
possible stage according to the characteristics of the sleep data in every 5s segment. 
Stage was changed sensitively. If we count the stage which occupied major portion 
within the 30s epoch, the determination result for Figure 5.2 would be stage REM, for 
Figure 5.3 stage I and for Figure 5.4 stage II. After the detection of continuity of stage 
II and onset/offset of stage REM, decision making results were modified. Finally, 
consistent results with the visual inspection can be obtained. With a modification 
process, the recognition accuracy of stage II and stage REM were improved 
satisfactory.  

 
 

5.4.2 Clinical application 

Since our algorithm mimicked the visual inspection by clinician, our system can be 
applicable for clinical practice. The cyclic pattern of stage change and continuity is 
one of the purposes of sleep stage scoring. Clinician would measure the effect of the 
treatment and make further inspection for the patients by referring to the 
computerized sleep stage determination result on the sleep cyclic rhythm of stage 
change and continuity. The developed amendment function enhanced the performance 
of expert knowledge-based method on stage change and continuity detection.  
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5.5 Conclusion 

We developed an automatic sleep stage determination system with the abilities of 
sleep related events detection. Our system can mimic the inspection work by 
clinicians and establish a reliable and objective evaluation technique on sleep 
recording. The performance of expert knowledge-based automatic sleep stage 
determination was improved on the sleep stage continuity and change detection with 
the amendment function. 
 
�
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Chapter 6 
 
 
 

6.1 Conclusions 

Sleep stage scoring has been widely used for evaluating the condition of sleep or 
diagnosing the sleep related disorders in the sleep laboratories and hospitals. 
Computerized sleep stage scoring is proposed to manage the large amount of data, an 
overnight sleep generates, as well as to minimize the amount of time required to score 
and analyze sleep stages. 

The ultimate objective of this work is to develop an effective and reliable automatic 
sleep stage technique for clinical practice. Since rule-based method according to 
Rechtschaffen and Kales criteria had limitation in real clinics, expert 
knowledge-based method can be new to be applied in clinics.  

 
In Chapter 2, an expert knowledge-based method has been introduced. The expert 

knowledge is the visual inspection by a qualified clinician. The clinician made visual 
inspection not only based on Rechtschaffen and Kales criteria, but also considering 
the circumstance in the hospital. The automatic sleep stage determination based on 
visual inspection can have the same reliable result of sleep stage scoring on the actual 
sleep data.  

 
In Chapter 3, Cauchy distribution is adopted to estimate the probability density 

function of parameter on the histogram. The affect of artifacts can be abated by using 
Cauchy distribution comparing with Gaussian distribution. 

 
In Chapter 4, a parameter selection process is introduced during the learning 

process of expert knowledge database construction. For various cases of sleep data, 
optimal parameters can be selected automatically. The performance of automatic sleep 
stage determination can be adaptive with the optimal parameters.  

Conclusions and Future Study 
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In Chapter 5, an amendment function is added after the determination of sleep 

stages by knowledge-based method. The continuity of stage II can be traced. The 
onset/offset of stag REM can be detected. With the amendment function, the 
performance of automatic sleep stage determination can be improved. 

 
As a conclusion, the developed automatic sleep stage determination in this thesis 

can be an assistant tool for clinical practice enabling a further inspection by clinician. 
The clinician can be free from the heavy task of visual inspection. The performance of 
our system is adaptive to meet the different requirement in hospitals and institutions. 

 
 
 
 

6.2 Research Contributions 

Current research work makes the following major contributions: 
 

1. The expert knowledge-based automatic sleep stage determination can overcome 
the limitation by the conventional rule-based methods. The visual inspection by a 
qualified clinician is the reliable sleep stage scoring result for real clinics at the 
hospital. The obtained parameter distributions for sleep stage, which is learning 
from the visual inspection and actual sleep data, can reflect the actual distribution 
of parametric variable. The distributions are reliable to manipulate the automatic 
sleep stage determination algorithm on the actual sleep data from the hospital. 
 

2. The mathematical model of Cauchy distribution on the histogram can abate the 
affect of artifacts to our automatic sleep stage determination technique. Cauchy 
distribution has ratio decreasing tail whereas Gaussian distribution has 
exponentially decreasing tail. The heavier tails allow the affect of 
mis-determination to be minimized in conditional probability during the transition 
between data segments. 
 

3. Amendment process is presented which mimic the visual inspection by qualified 
clinician. With the amendment function, the sleep stage recognition result was 
improved. The accuracy of agreement on stage II and stage REM was increased 
remarkable. The final result showed close agreement with the visual inspection by 
clinician. 
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4. Parameter selection process is presented as a component in the learning process of 
expert knowledge database construction. For variable cases of sleep data, optimal 
parameters can be selected automatically. The result of automatic sleep stage 
determination can meet the customized requirement in different hospitals. 
 

5. The developed automatic sleep stage determination in this thesis has strong 
performance for clinical practice. By learning from different clinicians, our system 
is flexible to be utilized in real clinics. 

 
 
 

6.3 Future Study 

Current research works are focused on the methodology developments. The future 
research works will consider the clinical application in the hospital. To be close to our 
ultimate purpose, our automatic sleep stage determination system needs to be applied 
in real clinics at the hospital. Such application can evaluate the reliability of our 
system. During the application, the methodology can be developed to solve the actual 
problems encountered. The future research plan is as below. 
 
 
1. Realization of automatic algorithm for sleep stage determination by using 

expert knowledge-based method. 
The current automatic sleep stage determination algorithm will be modified to 

adapt to the real-time automatic determination. In order to realize the real-time 
determination, automatic feedback algorithm needs to be considered especially for the 
amendment function, and automatic expert database construction needs to be 
developed for real requirements in hospital.  

 
 

2. Expert knowledge-based method of automatic sleep stage determination for 
different sleep-related diseases. 

The current automatic sleep stage determination algorithm was tested for the 
patients with Sleep Apnea Syndrome after CPAP treatment. In future, more sleep data 
from the patients with different sleep-related diseases will be analyzed and tested to 
develop the expert knowledge-based method. Other sleep signals besides EEGs, 
EOGs and EMG will also be considered according to the requirements in hospital.  
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3. Evaluation of the reliability and effectiveness of expert knowledge-based 
automatic sleep stage determination system for clinical practice. 

The reliability and effectiveness is important to evaluate the automatic 
determination technique for clinical practice. With the permission of hospital, we may 
compare the results by using our method and by using the commercial system in the 
hospital. Based on the comparison, the performance of the current method can be 
evaluated. Furthermore, the current method can be developed by considering the 
comparison with other methods to be a usable technique for clinical practice. 
 
 
4. Sleep engineering related works. 

The sleep problem seems popular in the modern society. Especially, the persons, 
whose work condition requires much concentration, are easy to feel tense, tiredness, 
pressure if they did not have enough sleep or rest. In future, experimental works for 
healthy persons will be carried out. The evaluation of healthy person’s sleep can be an 
interesting topic for human daily life and work. 

 
 
 
�
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