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Introduction: Resting state functional MRI (RS-fMRI) is currently used in

numerous clinical and research settings. The localization of resting state

networks (RSNs) has been utilized in applications ranging from group analysis

of neurodegenerative diseases to individual network mapping for pre-surgical

planning of tumor resections. Reproducibility of these results has been shown

to require a substantial amount of high-quality data, which is not often available

in clinical or research settings.

Methods: In this work, we report voxelwise mapping of a standard set of

RSNs using a novel deep 3D convolutional neural network (3DCNN). The

3DCNN was trained on publicly available functional MRI data acquired in n

= 2010 healthy participants. After training, maps that represent the probability

of a voxel belonging to a particular RSN were generated for each participant,

and then used to calculate mean and standard deviation (STD) probability

maps, which are made publicly available. Further, we compared our results to

previously published resting state and task-based functional mappings.

Results: Our results indicate this method can be applied in individual subjects

and is highly resistant to both noisy data and fewer RS-fMRI time points than are

typically acquired. Further, our results show core regions within each network

that exhibit high average probability and low STD.

Discussion: The 3DCNN algorithm can generate individual RSN localization

maps, which are necessary for clinical applications. The similarity between

3DCNN mapping results and task-based fMRI responses supports the

association of specific functional tasks with RSNs.

KEYWORDS

deep learning, machine learning, resting state functional MRI, representation of

function, brain mapping
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1. Introduction

It is well known that intrinsic neural activity is temporally

correlated within widely distributed brain regions that

simultaneously respond to imposed tasks (1). This phenomenon

is known as resting functional connectivity, and the associated

topographies are known as resting state networks (RSNs) or

intrinsic connectivity networks (2, 3). Resting state functional

connectivity can be studied using both invasive and non-

invasive electrophysiology (4, 5). However, the majority of

research on resting state functional connectivity focuses on

blood oxygen level dependent (BOLD) functional magnetic

resonance imaging (fMRI), which, in the absence of specific

tasks (e.g., finger tapping), is referred to as resting state fMRI

(RS-fMRI). Correlation analysis of these fluctuations identifies

spatial patterns of functional connectivity widely known as

RSNs (6, 7).

RS-fMRI studies have yielded a better understanding of

normal brain functional organization and the pathological

changes that occur in neuropsychiatric disorders, e.g.,

Alzheimer’s disease, HIV infection, autism, Parkinson’s disease,

Down syndrome, and others (8–14). RS-fMRI mapping also has

applications in pre-surgical planning of operative procedures

for the treatment of brain tumors and repetitive trans-cranial

magnetic stimulation for depression (15–20). However, reliable

results often need a large amount of data which can be difficult

to acquire in some patient populations (21, 22).

Deep learning (DL) is a branch of machine learning that

has become widely used in multiple domains. DL is a form

of artificial neural networks comprising multiple “hidden”

layers between the input and output, which simultaneously

perform feature selection and input/output mapping by

adjusting network weights during training. DL models have

achieved state-of-the-art performance on numerous tasks, often

times comparable to or exceeding human performance (23–

25). This development has led to the adoption of DL in

medical research, with the ultimate goal of achieving precision

medicine at the individual patient level (26–29). Applications

of deep learning to neuroimaging data range from artifact

removal, normalization/harmonization, quality enhancement,

and lowering radiation/contrast dose (30–36).

Defining RSNs accurately is important and difficult and

there is no established method to do so. Thus, in this

study we trained a deep three-dimensional convolutional

neural network (3DCNN) utilizing a large cohort of healthy

participants (n = 2,010) across a wide age range to generate

maps that represent the probability membership of a voxel

belonging to a particular RSN. These maps are referred to

herein as voxelwise RSN membership probability maps. Model

results were compared to publicly available RS-fMRI (37) and

aggregated task fMRI (T-fMRI) mappings compiled in the

Neurosynth platform (www.neurosynth.org) (38). The trained

model was further evaluated for stability given varying quantities

of resting state fMRI data and levels of added noise. Voxelwise

RSN membership probability maps (group mean and standard

deviation) were derived using themodel results from all available

data and aremade publicly available. The 3DCNN algorithm can

generate individual RSN localization maps, which are necessary

for clinical applications (17, 39).

2. Materials and methods

2.1. Data

Normal human RS-fMRI data (N = 2,010) were obtained

from the control arms of primary studies designed, conducted,

and analyzed external to the derivative study described herein.

These include the Brain Genomics Superstruct Project (40)

(GSP) and ongoing studies at Washington University in St.

Louis, including healthy control data from the Alzheimer’s

Disease Research Center and Neurodegeneration studies

(Table 1). All participants were cognitively normal based

on study-specific performance testing. The appropriate

Institutional Review Board approved all studies, and all

participants provided written informed consent for the given

study, which also allowed de-identified data for use in this

derivative study.

2.2. Magnetic resonance imaging (MRI)
acquisition

All neuroimaging was performed on 3T Siemens scanners

(Siemens AG, Erlangen, Germany) equipped with the

standard 12-channel head coil (Table 1). A high-resolution,

3-dimensional, sagittal, T1-weighted, magnetization-prepared

rapid gradient echo scan (MPRAGE) (echo time [TE] = 1.54–

16ms, repetition time [TR] = 2200–2,400ms, inversion time =

1,000–1,100ms, flip angle= 7–8◦, 256× 256 acquisition matrix,

1.0–1.2 mm3 voxels) and T2-weighted fast spin echo sequence

(FSE) (TR = 3,200ms, TE = 455ms, 256 x 256 acquisition

matrix, 1mm isotropic voxels) were acquired. RS-fMRI scans

were collected using a gradient spin-echo sequence (voxel size

= 3–4 mm3, TR = 2,200–3,000ms, FA = 80–90◦) sensitive

to BOLD contrast. Statistical analysis of network functional

connectivity (evaluated within the default mode and dorsal

attention network) between the different data sets revealed

no major group differences (Supplementary Figure 1). Each

participant contributed ∼7–14min of resting state fMRI data,

processed using standard methods developed at Washington

University (41). Table 1 provides study-specific details related to

RS-fMRI image acquisition.
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TABLE 1 Characteristics of training data.

Total HIV ADRC GSP

Number of participants 2,010 206 665 1,139

Mean and STD of age 44.6± 23.5 37.9± 17.1 67.6± 7.8 21.3± 2.7

% Female 59% 52% 60% 59%

Mean and STD for education 14.8± 2.2 13.9± 2.1 15.9± 2.6 14.3± 1.9

% Caucasian 69% 44% 86% 65%

Scanner Trio/Prisma Trio/Biograph Trio

Voxel Size (mm3) 4 4 3

Repetition time (ms) 2,200 2,200 3,000

Time to Echo (ms) 27 27 30

Flip angle (degrees) 90 90 85

2.3. MRI processing

RS-fMRI data were preprocessed using previously described

techniques including non-linear atlas registration (42). Dynamic

fMRI data was adjusted to obtain consistent imaging intensities

across slices, thereby accounting for interleaved acquisitions

and differential timings across slices. fMRI data was also

adjusted for head motion within scan sessions and across

scan sessions for each subject using rigid-body transformations.

We further censored fMRI time frames by excluding frames

exceeding 0.5% of the root-mean-squared intensity variation

of scanned frames (41, 43). All fMRI data were affinely

transformed to a standardized atlas generated from T1-weighted

images historically acquired from healthy, young adults on

Siemens Trio scanners at Washington University (https://

4dfp.readthedocs.io/en/latest). Whenever available (HIV and

ADRC), affine transformations used T2-weighted images

for refinement of spatial normalization. Typical composite

transformations provided affine mappings of fMRI to T2-

weighted images to MPRAGE to the standardized atlas.

Spatial normalization also involved exclusion of transient

magnetization precessions in the initial five frames of fMRI,

Gaussian filtering with isotropic kernels of 6mm full-width

at half-maximum, removal of linear fMRI signal trends

within scan sessions, low pass filtering at 0.1Hz, removal of

linear regressions for head motion, removal of fMRI time

series localized to white matter or CSF, and removal of

fMRI time series averaged over the whole brain. The latter

global signal regression ensured that subsequent calculations

of correlation-related measures were zero-centered partial

correlations controlling for brain-wide variances (44). Volume-

dependent nuisance regressors derived from segmentations

generated by FreeSurfer for each subject (http://surfer.nmr.

mgh.harvard.edu). For visualizations, all imaging was affinely

transformed to high-resolution MNI atlases.

2.4. 3DCNN

A 3D convolutional neural network (3DCNN) with 74

layers was trained to classify each gray matter voxel to a

given RSN. The 3DCNN was implemented in Matlab R2019b

(www.mathworks.com). It had a densely connected architecture

(45), with residual layers (46) nested within each of the three

dense blocks. Within the network, 1 × 1 × 1, 3 × 3 ×

3, and 7 × 7 × 7 convolutions were performed. The final

output, as well as the output from each dense block was

directly connected to the cross entropy layer after global average

pooling and 20% dropout. This training strategy has been

shown to prevent overfitting through structural regularization,

is more robust to spatial translations of the input, and requires

fewer learnable parameters (47, 48). Batch normalization was

used prior to convolutional operations within the network.

Leaky rectified linear units were used after convolutions. Both

max and average pooling were used between dense blocks

for dimensionality reduction. Combining max and average

pooling has been shown in some studies to outperform either

technique on its own (49). Each pooling layer was 2 ×

2 × 2 with a stride of 2. Supplementary Figure 2 shows

the 3DCNN architecture. Because the number of samples

from each class (RSN) was not constant, the 3DCNN used

a cross entropy loss function with weighted classification

such that each class contributed equally to the loss function.

Training was terminated if the accuracy did not improve after

three validations.

2.5. Training data

Predefined seed regions of interest (50) (300 ROIs, https://

greenelab.ucsd.edu/data_software) were used to assign voxels to

one of 13 RSNs for generation of training data. The networks
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include dorsal somatomotor (SMD), lateral somatomotor

(SML), cinguloopercular (CON), auditory (AUD), default mode

(DMN), parietal memory (PMN), visual (VIS), frontoparietal

(FPN), salience (SAL), ventral attention (VAN), dorsal attention

(DAN), medial temporal (MTL), and reward (REW). Training

sample connectivity maps for each RSN were generated by

random sampling of voxels within ROIs of a given network.

The RS-fMRI signal within these voxels was averaged and

used to extract a whole brain 3D similarity map. For example,

for a given network (X) and an individual scan, we generate

a single training sample by subsampling ROIs known to

belong to X, averaging those ROIs together, and calculating

the similarity of the mean signal with the rest of the voxels

in the brain. Similarity was calculated by computing both the

Pearson product moment correlation and Euclidean Distance

between the mean of the subsampled RS-fMRI signals and

all other voxels in the brain. The 3D similarity map was

then assigned to the selected RSN (after confirming that it

had the highest correlation between the mean subsampled

signal and the mean signal for each network). The assigned

network labels were used for classification during training of the

3DCNN. This process was applied in numerous iterations for

each network and for each participant. Supplementary Figure 3

shows examples of 3D similarity maps of the DMN, FPN,

and SMD used for training. A total of 1,313,140 training

instances (∼100,000 per network) were generated across all

networks. During training, samples were augmented by a

combination of 3D random affine transformations [rotations

(±5 degrees), translations (±3 pixels)], intensity scaling

(between 0.9 and 1.1), shearing (±3Degrees), and adding

gaussian noise. Data augmentation has been shown in numerous

studies to improve out of sample testing and prevent overfitting

(51). Two hundred fMRI scans from our training data set

(approximately 10% of the data) stratified based on age,

gender, and study were reserved for generating validation data

for the 3DCNN, and validation samples were generated in

the same manner as above. Approximately 200,000 validation

samples (∼15,000 per network) were generated from the held

out scans.

2.6. Testing data

After training, model outputs were compared using RS-

fMRI data from the Midnight Scan Club (39) (MSC) collected

at Washington University. The MSC contains high quality

data collected from 10 participants, each scanned for 30min

in 10 separate sessions. The MSC data are freely avaliable

(https://www.openfmri.org/dataset/ds000224/) and have been

thoroughly characterized in numerous studies (39, 52–54).

MSC data were used to evaluate model performance given

a reduced quantity of fMRI data, and to evaluate model

performance after noise addition. Unstructured noise addition

was performed by adding the scaled fMRI data to scaled

pink noise. For example, to achieve 10% noise injection, the

fMRI data was rescaled to a [−0.9 0.9] interval, the noise

signal was scaled to a [−0.1 0.1] interval, and the signals

were added together. A new noise signal was generated for

each voxel. Similarity between results was measured using

the multiscale structural similarity index (MSSI) (55). MSSI

estimates similarity of a pair of 3D volumes by first estimating

similarity of the pair for successively down-sampled versions

of the pair, typically down-sampling by factors of 2, 4, 8,

16, and 32. Down-samplings are weighted according to a

Gaussian distribution peaked at the middle spatial factor to

mimic human visual sensitivity for spatial patterns. In the

current state of the art, RSN topographies are identified,

and distinguished from noise or artifacts, by human visual

assessments. Whether by seed correlations, factorizations such

as independent component analysis, or community detection

algorithms, final adjudication involves prior expectations of RSN

topographies derived from reported studies. MSSI represents

one of the best performing implementations of objective

structural similarity indices which posit that human visual

assessments are effectively ground truths. Structural similarity

provides better metrics of human visual assessments than

simpler metrics such as mean squared error, peak signal-

to-noise ratio, and their variations that invoke penalizations.

Structural similarity indices are especially suited for assessment

of RSN features because it compares imaging instances with

arbitrary reference imaging providing effective ground truths

(56). For visualization purposes the final outputs were mapped

to an average surface space with the methods described in

using “Conte69 atlas fs_LR” surface using HCP workbench

(53, 57).

2.7. RSN characterization

Mean voxelwise RSN membership probability maps were

generated by averaging the 3DCNN output for each subject in

our sample for each RSN separately. The same data set was used

to generate a voxelwise standard deviation (STD) map and a

voxelwise map of the mean divided by the STD. These maps

were then used to create RSN summary measures as the area

included in each RSN, averages of the mean and mean/STD

over the extent of each RSN based on the winner take all maps

(see below).

To evaluate our results in the context of traditional, seed-

based correlation analysis, we correlated RSN membership

probabilities produced by the 3DCNN and compared those

to traditional time series correlation matrices. The 3DCNN

correlation matrices were generated by correlating the softmax

output probabilities, while the functional connectivity matrices

were generated by correlating the RS-fMRI time series at both

the voxel and ROI level.
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FIGURE 1

Volumetric segmentation of resting state networks based on maximum probability produced by the 3DCNN averaged across 2010 participants.

SMD, dorsal somatomotor; SML, lateral somatomotor; CON, cinguloopercular; AUD, auditory; DMN, default mode; PMN, parietal memory; VIS,

visual; FPN, frontoparietal; SAL, salience; VAN, ventral attention; DAN, dorsal attention; MTL, medial temporal; and REW, reward.

2.8. Comparison data

As a partial validation of our method we compared our

results with two different schemes. First, we compared our

results with RSN maps published by Dworetsky et al. (37).

Their study generated probabilistic mappings of RSNs by

using data from five independent data sets, one for data-

driven network discovery and template creation, the second for

template matching and probability mapping, and the final three

for replication of the probabilistic maps. Second, we compared

our results with T-fMRI results generated in the Neurosynth

platform. The Neurosynth platform (neurosynth.org) can

generate statistical maps of significance of T-fMRI responses to

behavioral paradigms (38). In brief, Neurosynth parses texts of

published T-fMRI studies to generate aggregrated task activation

data linked to user-selected search terms, e.g., “language.”

Neurosynth maintains a large database of publications on

T-fMRI, which it parses for a set of pre-defined term and

activations related to brain function paradigms. When an article

uses a term, Neurosynth attempts to extract brain regions that

were consistently reported in the tables of that study. The list of

terms used in our analysis were “attention” (corresponding to

DAN), “auditory,” “default mode,” “language” (corresponding to

VAN), “motor” (corresponding to SMD), “reward,” and “visual.”

For both comparisons, similarity was measured using the MSSI.

3. Results

Participant demographics are shown in Table 1. A majority

of the cohort were Caucasian (69%) females (59%), with an

average age of 44.6 ± 23.5 years and 14.8 ± 2.2 years of

education. Supplementary Figure 4 shows the age distribution

based on the studies used in the analysis.

3.1. Model results

The model achieved 99% accuracy on training data and

96% accuracy on out of sample validation data after eight

epochs (Supplementary Figure 5). After training, data from

all 2,010 participants were processed with the 3DCNN, and

mean and standard deviation maps were generated from those

results. Figure 1 shows the RSN segmentation based on the
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FIGURE 2

(A) Surface segmentation of resting state networks based on maximum probability produced by the 3DCNN averaged across 2,010 participants.

(B) Probability maps of individual resting state networks averaged across 2,010 participants. SMD, dorsal somatomotor; SML, lateral

somatomotor; CON, cinguloopercular; AUD, auditory; DMN, default mode; PMN, parietal memory; VIS, visual; FPN, frontoparietal; SAL, salience;

VAN, ventral attention; DAN, dorsal attention; MTL, medial temporal; and REW, reward.

FIGURE 3

(A) Result of reducing the total number of BOLD time points. On average, the model maintained a 0.9 structural similarity when comparing

8,000 time points to ∼150 time points. (B) Structural similarity when comparing model results with various amounts of noise added to the BOLD

signal. The model maintained 0.9 structural similarity even after injecting 25–30% noise in the original bold signal.

winner take all (WTA) of softmax probabilities produced

by the 3DCNN averaged across all 2010 participants.

Similarly, Figure 2A displays the segmentation results

projected onto the cortical surface, and Figure 2B shows

the mean voxelwise RSN membership probability maps

for each network (0.2 threshold). Supplementary Figure 6
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FIGURE 4

Mean, standard deviation (STD), and mean/STD probability maps for the default mode network (DMN). The mean results show a large number of

voxels with high probabilities. STD maps show the majority of voxels have a relatively high STD. When scaling the mean values by the STD, the

regions with high relative probabilities becomes significantly smaller.

shows the per-network voxel count based on a given

probability threshold.

3.2. Model stability

The model was evaluated for stability of results based on

the number of RS-fMRI time points and signal noise. Figure 3A

shows the result of reducing the total number of RS-fMRI time

points averaged over the MSC data. On average, the model

maintained a 0.9 MSSI when comparing 8,000 time points to

∼150 time points (∼5:30min). However, stability varied across

networks (Supplementary Figure 7). Figure 3B shows the effect

on MSSI similarity on varying levels of added pink noise.

Overall, the model maintained 0.9 similarity even after the

addition of 25–30% noise in the original RS-fMRI signal.

3.3. RSN characterization

Figure 4 shows the mean, STD, and mean/STD probability

maps for the DMN (masked based on WTA probabilities from

Figure 1). These results show that a large number of voxels show

high mean probabilities. However, the STD maps show that the

majority of those voxels have a relatively high STD, likely due

to individual subject variability and limited signal to noise ratio

in the data. Scaling the mean values by the STD, a measure akin

to signal to noise ratio, demonstrates higher certainty of RSN

membership centrally and the expected uncertainty present at

the margins of the WTA regions.

Figure 5A shows the mean probability values averaged over

each RSN based on the mean WTA probability mask as shown

in Figure 1. The highest average probabilities were observed in

AUD, VIS, and somatomotor networks. Similarly, 5B shows the

average values for the mean scaled by the standard deviation,

indicating which networks have higher vs. lower individual

subject variability. Lastly, 5C shows the total area for each

network calculated by dividing the total number of voxels

belonging to each network (Figure 1) by the total number of

voxels considered in the gray matter mask. VIS, DMN, and FPN

covered the greatest area.

3.4. Comparison with prior task and
resting state and task results

Figure 6 shows the comparison of the 3DCNN results

computed over the MSC data with functional maps generated
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FIGURE 5

Network summary measures. (A) Mean probability values averaged over each RSN based on the argmax probability (Figure 1). The highest

average probabilities were observed in AUD; VIS; and somatomotor networks. (B) Average values for the mean scaled by the standard deviation.

(C) Total area for each network. VIS; DMN; and FPN covered the greatest area. SMD, dorsal somatomotor; SML, lateral somatomotor; CON,

cinguloopercular; AUD, auditory; DMN, default mode; PMN, parietal memory; VIS, visual; FPN, frontoparietal; SAL, salience; VAN, ventral

attention; DAN, dorsal attention; MTL, medial temporal; and REW, reward.

from the Neurosynth platform. This comparison provides

clear evidence of the similarity, at the group level, between

task based functional responses and RSNs, with all spatial

similarity measures being <0.83 (SMD) and peaking at 0.92

(DMN) as measured by the MSSI. Figure 7 shows the MSSI

similarity comparisons to the Dworetsky et al. (37) segmentation

including off-diagonal terms. The diagonal elements are

all >0.8, demonstrating a high degree of overlap between

RSNs determined using these two different methodologies.

The strongest similarities were seen in AUD, VIS, SMD,

and SML.

3.5. Correlation analysis

Figure 8 shows a comparison between correlated RSN

membership probabilities produced by the 3DCNN and the

traditional functional connectivity matrices produced from

Pearson’s correlation of the time series. These results are

averaged over all 2010 data samples at both the voxel

level (top row) and the ROI level (bottom row). By first

processing the fMRI data with the 3DCNN and then correlating

softmax inferences, we see much higher correlations and

greater orthogonality between regions as compared to directly
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FIGURE 6

3DCNN results computed over the MSC data and functional maps generated from the Neurosynth platform. Of the networks evaluated, default

mode (DMN), auditory (AUD), and attention [corresponding to dorsal attention (DAN)] showed the greatest structural similarity as measured by

the MSSI.

correlating the fMRI time series. The greater orthogonality

demonstrates the improved ability of the 3DCNN to separate

between the RSN.

4. Discussion

Our research defines a robust voxelwise classification model

of RSNs. We showed 96% validation accuracy in classifying

RSNs in a large cohort of healthy participants covering a

broad age range. These results were achieved on data collected

from multiple scanner types and sequence parameters (Table 1).

Further, the model was resilient to both noisy data and fewer

time points (Figure 3). Robustness to limited and noisy data is

important in clinical work and in neuroimaging studies with

limited scanner time, as the reliability of functional connectivity

mapping strongly depends on both the quantity and quality of

available resting state data (39, 58).

The 3DCNN can be viewed as an algorithm that increases

model accuracy by selecting relevant features and disregarding

irrelevant, redundant, or noisy features (59). In application

to RSN localization, the feature of interest is the correlation

structure of multivariate data. Figure 8 shows a matrix depicting

3DCNN RSN membership probabilities in comparison to fMRI

time series correlations at both the voxel and ROI levels.

In this context, the 3DCNN can be viewed as a supervised

feature extraction method optimized over the 13 networks

with RSN membership probability as the extracted feature.

The key feature in Figure 8 is the contrast between the RS-

fMRI functional connectivity matrix, which shows strong,

predominantly negative values in the off-diagonal blocks, vs.

the result generated by the 3DCNN, which shows only minimal

values in the off-diagonal blocks. The significance of this

Frontiers inNeurology 09 frontiersin.org

https://doi.org/10.3389/fneur.2022.1055437
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Luckett et al. 10.3389/fneur.2022.1055437

FIGURE 7

3DCNN results compared to maps published by Dworetsky et al. (37). The strongest similarities were seen in AUD; VIS; SMD; and SML. SMD,

dorsal somatomotor; SML, lateral somatomotor; CON, cinguloopercular; AUD, auditory; DMN, default mode; PMN, parietal memory; VIS, visual;

FPN, frontoparietal; SAL, salience; VAN, ventral attention; DAN, dorsal attention; MTL, medial temporal; and REW, reward.

difference relates to the hierarchical structure of RSNs (60, 61).

Such hierarchical organization mandates that signals generally

are shared across multiple RSNs, hence, the appearance of

correlations and anti-correlations in off-diagonal blocks of

correlation matrices. Moreover, the total number of discrete

RSNs is theoretically infinite (62) although models comprising

2, 7, and 17 RSNs exhibit particularly favorable goodness of fit

criteria (63, 64). After training on a selected set of discrete RSNs,

the 3DCNN assigns approximately unique RSN membership

to each part of the brain. In effect the 3DCNN orthogonalizes

the intrinsically hierarchical correlation structure of resting state

BOLD fMRI data.

A goal of this research was to provide voxelwise group

statistics based on all participants to identify ROIs with the

highest network membership probabilities. Several different

methods have been developed in the literature for the

identification of functional connected networks using RS-

fMRI data in groups and in individuals (37, 39, 65, 66).

These techniques have been expanded to include sub-cortical

structures, the cerebellum, and combined with other imaging

modalities (67–69). Although there is no recognized gold

standard for network mapping, our results are similar to

results obtained using different methodologies (37, 38, 70). Our

published maps contribute to this literature and, given the large

sample size and model robustness, provide an advantageous set

of ROIs for group level RS-fMRI analysis that could be used in

future studies.

We compared our results with probabilistic maps derived

from multiple RS-fMRI data-sets recently published by

Dworetsky et al. (37) (Figure 7). The AUD, VIS, SMD, and

SML networks show the highest correspondence between the

RSN maps proposed by Dworetsky et al. (37) and the present

results. The same networks show the greatest consistency across

subjects (expressed in terms of SNR) in Figure 5. Thus, RSNs

involving primary cortical areas exhibit the greatest consistency

across individuals and datasets whereas RSNs involving “higher

order” functional systems, e.g., those associated with cognitive

control (CON) and memory (DMN), are topographically more

variable. These observations are consistent with prior results

showing that association system RSNs are more variable across
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FIGURE 8

The 3DCNN allows for novel similarity measures. Softmax marginal probabilities can be correlated to generate alternative connectivity matrices

between functional regions. Correlations between 3DCNN softmax probabilities are compared to correlations between BOLD time series for

voxels (top row) and ROIs (bottom row). The 3DCNN shows higher correlations and greater contrast between regions compared to

conventional BOLD correlations. SMD, dorsal somatomotor; SML, lateral somatomotor; CON, cinguloopercular; AUD, auditory; DMN, default

mode; PMN, parietal memory; VIS, visual; FPN, frontoparietal; SAL, salience; VAN, ventral attention; DAN, dorsal attention; MTL, medial temporal;

and REW, reward.

individuals in comparison to RSNs representing sensory and

motor functions (71). In contrast, functional connectivity within

primary cortical areas is more variable within individuals and

across sessions, a phenomenon most likely reflecting differences

in levels of arousal (72, 73).

Resting state functional connectivity analysis began with

the observation that the topography of spontaneous activity

correlations within the somatomotor system replicates finger-

tapping task responses (1). This result was later extended to

other tasks, giving rise to the notion that RSNs can be associated

with specific sensory, motor, and cognitive functions (74).

However, with respect to “higher order” RSNs, these associations

appear to be incompletely specific and dependent on the details

of the imposed task (75, 76). Thus, the objective of associating

RSNs with specific cognitive processes is far from trivial. In this

context, we report a comparison of a subset of current RSNs with

task-based responses aggregated in the Neurosynth platform

(Figure 6). The key word used to search Neurosynth is listed at

the left of each row. This comparison provides clear evidence of

the similarity, at the group level, between task based functional
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responses and RSNs, with all spatial similarity measures being

at least 0.83. The results shown in Figure 6 do not include all

13 present RSNs. However, they suggest the possibility that a

more complete account of the associations between 3DCNN-

mapped RSNs and specific cognitive processes may be feasible.

Achieving this objective is of great importance from the clinical

and research perspectives.

From the clinical perspective, secure functional localization

can serve as the basis for expanding the use of RS-fMRI

for pre-surgical applications (17, 21). There are numerous

advantages of using RS-fMRI for clinical brain mapping in

comparison to task based paradigms. While preoperative fMRI

can significantly improve long term survival in the setting of

surgical resection of malignant brain tumors, its dependence on

patient participation limits who can access the mapping (i.e.,

children and modestly impaired patients) (77, 78). The need

for personnel to administer the scans and the long duration

of acquisition limits how often the task-based techniques are

available. Also, when clinically applied for preoperative brain

mapping task-based fMRI has a high failure rate. The limitations

of current mapping methods are obviated by the use of RS-

fMRI generally. RS-fMRI is robust, highly efficient, requires

minimal task compliance, and has a substantially reduced

failure rate when used clinically (when compared to task-based

methods). Our method has the potential to further simplify and

streamline brain mapping by automating functional localization

and limiting the need for significant technical and scientific

expertise that are required with more classic approaches (e.g,.

seed-based mapping).

A number of limitations and future directions exist in

relation to the present study. The current study primarily

focused on results in the context of group averages. While we

have provided STD maps which reflect voxelwise variability

between subjects, future work should focus on a more detailed

analysis of individual subject variability between probability

maps produced by the 3DCNN. Similarly, differences in

networks due to demographics, such as age and gender should

be investigated. Second, while there was a high degree of

similarity between our results and other published resting

state and task network maps, there were some differences.

Future work could involve an in-depth comparison of the

topographical differences observed among the various published

network maps. Lastly, our model showed little difference

when comparing results derived using 8,000 time points

(∼300min) compared to results from ∼150 time points

(∼5min). While these results are promising, future work should

focus specifically onmodels optimized for producing probability

maps based on data sets with fewer BOLD time points. This

could include investigating different network architectures and

hyperparameters and their impact on classification accuracy, as

well as identifying the optimal number of samples required for

the given network.

4.1. Conclusion

In this work, we have demonstrated the utility of deep

learning for accurate probabilistic mapping of resting state

networks in the brain. This method is robust to noisy and small

data sets. We demonstrate the similarity between our results and

other previously published task and resting state segmentations.

RSN probability maps are made publicly available, and maybe

helpful for future studies interested in ROIs computed from a

large data set (>2,000) of normal adults.
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