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Mendelian randomization and genetic 
colocalization infer the effects 
of the multi-tissue proteome on 211 complex 
disease-related phenotypes
Chengran Yang1,2,3, Anne M. Fagan3,4,5, Richard J. Perrin3,4,5,6, Herve Rhinn7, Oscar Harari1,2,3,5 and 
Carlos Cruchaga1,2,3,5*   

Abstract 

Background: Human proteins are widely used as drug targets. Integration of large-scale protein-level genome-wide 
association studies (GWAS) and disease-related GWAS has thus connected genetic variation to disease mechanisms 
via protein. Previous proteome-by-phenome-wide Mendelian randomization (MR) studies have been mainly focused 
on plasma proteomes. Previous MR studies using the brain proteome only reported protein effects on a set of pre-
selected tissue-specific diseases. No studies, however, have used high-throughput proteomics from multiple tissues 
to perform MR on hundreds of phenotypes.

Methods: Here, we performed MR and colocalization analysis using multi-tissue (cerebrospinal fluid (CSF), plasma, 
and brain from pre- and post-meta-analysis of several disease-focus cohorts including Alzheimer disease (AD)) protein 
quantitative trait loci (pQTLs) as instrumental variables to infer protein effects on 211 phenotypes, covering seven 
broad categories: biological traits, blood traits, cancer types, neurological diseases, other diseases, personality traits, 
and other risk factors. We first implemented these analyses with cis pQTLs, as cis pQTLs are known for being less 
prone to horizontal pleiotropy. Next, we included both cis and trans conditionally independent pQTLs that passed 
the genome-wide significance threshold keeping only variants associated with fewer than five proteins to minimize 
pleiotropic effects. We compared the tissue-specific protein effects on phenotypes across different categories. Finally, 
we integrated the MR-prioritized proteins with the druggable genome to identify new potential targets.

Results: In the MR and colocalization analysis including study-wide significant cis pQTLs as instrumental variables, 
we identified 33 CSF, 13 plasma, and five brain proteins to be putative causal for 37, 18, and eight phenotypes, respec-
tively. After expanding the instrumental variables by including genome-wide significant cis and trans pQTLs, we 
identified a total of 58 CSF, 32 plasma, and nine brain proteins associated with 58, 44, and 16 phenotypes, respectively. 
For those protein-phenotype associations that were found in more than one tissue, the directions of the associations 
for 13 (87%) pairs were consistent across tissues. As we were unable to use methods correcting for horizontal pleiot-
ropy given most of the proteins were only associated with one valid instrumental variable after clumping, we found 
that the observations of protein-phenotype associations were consistent with a causal role or horizontal pleiotropy. 
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Background
Two-sample Mendelian randomization (MR) [1, 2], a 
genetic epidemiological method, has been increasingly 
used to infer the causal effect of an exposure on an out-
come using genetic variants as instrumental variables 
(IVs) from the summary statistics of the human disease-
related phenotypes. Colocalization approaches [3–5] 
have been used to support inference by reducing the like-
lihood that linkage disequilibrium (LD) affected the MR 
findings [6, 7]. As proteins are more likely to be used as 
drug targets than other molecular traits [8, 9], MR analy-
ses accompanied with colocalization using pQTLs as IVs 
would be valuable for the broad community of human 
genetics [10]. There were multiple MR studies inferring 
the effects of proteins on diseases, but most of them 
focused on fewer than 10 diseases [6, 11–13].

In 2020, Zheng and colleagues [7] performed a study 
of phenome-wide two-sample MR and colocalization 
on over 200 phenotypes (diseases/risk factors) using 
1002 proteins from five large-scale plasma pQTL data-
sets. A similar proteome-by-phenome-wide MR study 
by [7, 14] and colleagues [14] used 64 plasma pQTLs as 
IVs. However, these two studies were based exclusively 
on plasma proteomics, limiting its application to other 
disease-relevant tissues [15], such as the brain when 
investigating psychiatric or neurological diseases or CSF 
when investigating neuroimmune-related disorders. In 
our previous study [16] using a cohort including Alzhei-
mer disease (AD) cases and cognitively normal individu-
als, we demonstrated that pQTLs (~ 20% cis pQTLs; ~ 
80% trans pQTLs) are tissue-specific. In the same study, 
we performed sensitivity analyses demonstrating that the 
pQTLs from all three tissues (CSF, plasma, and brain) 
were neither disease- nor age-specific, suggesting that 
these multi-tissue pQTLs could be used as instrumental 

variables for MR analyses to identify potential causal pro-
teins for multiple disease-related traits, not limited to 
neurological diseases.

Here, we leverage this large multi-tissue pQTL atlas, 
as well as additional CSF and plasma pQTL datasets to 
identify novel MR-prioritized proteins for 211 complex 
disease-related phenotypes [7] (Fig.  1, Additional file  2: 
Table  S1), which include 37 biological traits, 21 blood 
traits, 23 cancer types, 18 neurological diseases, 94 other 
diseases (defined as any other diseases that are not can-
cers or neurological diseases), 10 personality traits, and 
eight other risk factors (such as fractured bone sites: 
ankle/arm/wrist, flatulence). We expand our prior study 
from using neurological traits to over 200 complex phe-
notypes [16]. We complement the previous single-tissue 
findings: plasma-only [7, 14] or brain-only proteome [6], 
with a multi-tissue approach. We highlight the findings 
from MR, druggable genome, and drug repurposing in a 
tissue-dependent manner.

Methods
Washington University proteomic data QC process
A multiplexed, aptamer-based platform [17] was used to 
measure the relative concentrations (relative fluorescent 
units) of proteins from CSF, plasma, and brain tissues, 
using 1305 modified aptamers in total. The assay covers 
a dynamic range of  108 and measures all three major cat-
egories: secreted, membrane, and intracellular proteins.

Aliquots of 150 μl of tissue were sent to the Genome 
Technology Access Center at Washington University in 
St. Louis for protein measurement. Assay details have 
been previously described by Gold and colleagues [17] 
from SomaLogic Inc. In brief, modified single-stranded 
DNA aptamers are used to bind the target proteins 
that are then quantified in the DNA microarray format. 

Between 66.7 and 86.3% of the disease-causing proteins overlapped with the druggable genome. Finally, between 
one and three proteins, depending on the tissue, were connected with at least one drug compound for one pheno-
type from both DrugBank and ChEMBL databases.

Conclusions: Integrating multi-tissue pQTLs with MR and the druggable genome may open doors to pinpoint novel 
interventions for complex traits with no effective treatments, such as ovarian and lung cancers.

Keywords: Protein quantitative trait loci, Mendelian randomization, Genetic colocalization, Multi-tissue proteomics, 
Complex human phenotypes

(See figure on next page.)
Fig. 1 Schematics of the study design and flowchart of analyses performed in this study. A Instrumental variables were selected from 
multi-tissue pQTL datasets and used for performing Mendelian randomization with 211 disease-related phenotypes. B In summary, eight 
steps were implemented in this study: step 1 as outcome selection; step 2 as genetics instrumental variables selection; step 3 as validation 
of genetic instrumental variables; step 4 as MR and colocalization analyses with two workflows—(4a) cis-only instrumental variables passing 
study-wide significance and (4b) cis- and trans-instrumental variables passing genome-wide significance; step 5 as combinations of workflows 
of protein-phenotype associations within each tissue; step 6 as cross-tissue comparisons of the same protein-phenotype associations; step 7 as 
enrichment with druggable genome; and step 8 as drug repositioning



Page 3 of 22Yang et al. Genome Medicine          (2022) 14:140  

Fig. 1 (See legend on previous page.)
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Protein abundances are quantified as relative fluores-
cence units.

Quality control (QC) was performed at both levels of 
samples and aptamers using the controlling aptamers 
(positive and negative controls) and calibrator samples. 
At the sample level, hybridization controls from each 
plate were used to correct for systematic variability in 
hybridization. The median signal from all aptamers was 
used to correct for within-run technical variability. This 
median signal was further assigned to different dilution 
sets within each tissue. For CSF and brain samples, a 20% 
dilution rate was used. For plasma samples, three differ-
ent dilution rates (40%, 1%, and 0.005%) were used.

To QC the proteomics datasets, the protein outli-
ers were first removed by applying the first four steps: 
(1) Minimum detection filtering. The limit of detection 
was defined as the summation of the average expres-
sion level of the new NP-buffer (used as dilution buffer 
of CSF samples from plate-42 to plate-50) and twofold 
standard deviation. If the protein for a given sample was 
below the limit of detection, this sample was an outlier. 
Collectively, if the number of outliers given a protein was 
greater than 15% of the total sample size, the analyte was 
removed. (2) Flagging proteins based on the scale-factor 
difference. The scale factor difference was calculated as 
the absolute value of the maximum difference between 
the calibration scale factor per protein and the median 
for each of the plates run. If the value for this protein was 
greater than 0.5, the protein failed this criterion. (3) Coef-
ficient of variation of calibrators filtering. The coefficient 
of variation for each aptamer was calculated by dividing 
the standard deviation by the average of each calibrator 
at the raw protein level. If the protein had a coefficient 
of variation of greater than 0.15, this analyte failed this 
QC step. (4) Interquartile range (IQR) strategy. Outliers 
were identified if the sample was located outside of either 
end of distribution using a 1.5-fold IQR given the log10 
transformation of the protein level. Collectively, if the 
number of outliers given a protein was greater than 15% 
of the total sample size (or non-outliers given a protein 
was fewer than 85% of the total sample size), this protein 
was filtered. Proteins were kept after passing all four cri-
teria above for all the downstream statistical analysis.

An orthogonal approach was used to determine sam-
ple outliers based on IQR. Collectively, if the number 
of outliers given a protein was greater than 15% of the 
total number of proteins that passed QC (or non-outliers 
given an analyte was fewer than 85% of the total number 
of proteins passed QC), this sample was labeled as an 
outlier. Furthermore, the analytes were removed if shared 
by most (~ 80%) of the subject outliers. After this second 
removal of analytes, sample outliers were called again. 
Sample outliers were again removed.

WashU multi‑tissue pQTL summary statistics
Overview
The summary statistics for pQTL for three tissues from 
the Washington University cohort were processed as 
described in the publication of Yang et al. [16] and pub-
licly available at the National Institute on Aging Genet-
ics of Alzheimer’s Disease Data Storage Site (NG00102 
dataset: https:// www. niaga ds. org/ datas ets/ ng001 02). In 
brief, we performed a linear regression on genotype dos-
age (additive model) against each protein level measured 
by an aptamer-based platform [17], including age, sex, 
first two principal component (PC) factors from popula-
tion stratification, and genotype platforms as covariates. 
We generated a dataset in three tissues (835 CSF, 529 
plasma, and 380 brain), by profiling thousands of proteins 
(713 CSF, 931 plasma, and 1079 brain) and 14,059,245 
imputed and directly genotyped common variants (vari-
ants with minor allele frequency (MAF) ≥ 2% were 
kept per genotype QC). CSF samples were collected the 
morning after an overnight fast, processed, and stored at 
− 80 °C. Plasma samples were collected the morning after 
an overnight fast, immediately centrifuged, and stored 
at − 80 °C. Brain tissues were collected from fresh fro-
zen human parietal lobes. Disease status was defined per 
the Clinical Dementia Rating Scale at the time of lumbar 
puncture (CSF) or blood draw (plasma). For brain sam-
ples, status was defined per the postmortem neuropatho-
logical analysis of study participant brains based on the 
criteria of Consortium to Establish a Registry for AD 
and/or Khachaturian. Hereafter, we termed the dataset as 
Washington University (WashU) cohort [16].

Disease‑specific analyses
To detect if there is a disease-specific effect on pQTLs, 
we performed linear regression on the same pQTL sets 
identified from the above default model using three addi-
tional models: (i) joint analysis including disease status as 
another covariate (cognitive unimpaired controls versus 
non-controls), (ii) AD case only using the same covari-
ates as the default model, and (iii) cognitive unimpaired 
controls only using the same covariates as the default 
model (see Extended Data Figure  4  from [16]). Overall, 
we observed all comparisons were significantly highly 
correlated, indicating no disease-specific pQTLs.

Age‑specific analyses
To detect if there is an age-specific effect on pQTLs, we 
performed separate analyses in participants younger and 
older than the average age of our cohort and compared 
the regression coefficient of all the significant pQTLs 
from the above default model to identify any age-specific 

https://www.niagads.org/datasets/ng00102
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effect. Overall, we observed all comparisons were sig-
nificantly highly correlated, indicating no age-specific 
pQTLs.

Power analysis of pQTLs
To investigate the power-sample size relationship of the 
pQTL datasets, we used the function powerEQTL.SLR() 
from the powerEQTL R package [18] to estimate the 
sample size given a fixed MAF (as 0.2), effect size, and 
variance at the power values range from 0.2 to 0.8. The 
median of effect size and variance were learned from the 
pQTL used in MR analyses within each tissue (Additional 
file 1: Fig. S1).

Meta‑analyses with other studies
CSF pQTLs
We performed fixed-effect meta-analyses on two CSF 
pQTL studies using METAL [19] based on inverse-var-
iance weighting. The two studies used for meta-analysis 
on CSF pQTLs were from Parkinson’s Progression Mark-
ers Initiative (PPMI) released in 2019 [20] (N = 132) 
and from the WashU cohort [16]. We included 709 CSF 
proteins shared in both studies. We did not include all 
proteins in the meta-analyses because of the assay differ-
ences (WashU used the 1305 version from the SOMAs-
can assay; PPMI2019 used the Merck-customized version 
from the SOMAscan assay).

For the cohort of the PPMI release in 2019, 132 sam-
ples with European ancestry passed proteomic QC in 
this release. The PPMI cohort comprised both PD and 
healthy participants with their clinical, imaging, and bio-
specimen biomarker assessment at 21 clinical sites since 
it launched in the year of 2010 [20]. The pQTL dataset 
was generated in-house. We performed a linear regres-
sion (additive model), including age, sex, and the first two 
PC factors from population stratification as covariates.

Plasma pQTLs
We performed fixed-effect meta-analyses on three 
plasma pQTL studies using METAL [19] based on 
inverse-variance weighting. The three studies used for 
meta-analysis on plasma pQTLs were from the INTER-
VAL cohort [21] (N = 3301), the SCALLOP cohort [22] 
(N = 30,931), and the WashU cohort [16]. For meta-
analyses on WashU and INTERVAL, we included 746 
plasma proteins shared in both studies. For meta-analy-
ses on WashU, INTERVAL, and SCALLOP, we included 
49 plasma proteins shared in three studies. We did not 
include all proteins in the meta-analyses because of the 
assay differences (WashU used 1305 version from the 
SOMAscan platform; INTERVAL used the University 
of Cambridge-customized version from the SOMAscan 
platform; SCALLOP used 92 cardiovascular proteins 

from the OLINK assay. All three studies used different 
assays/platforms, either the versions of the same technol-
ogy or the differences in technologies).

For the cohort of INTERVAL, we downloaded the 
pQTL summary statistics from the publication by Sun 
and colleagues in 2018 [21]. The sample size used for the 
pQTL mapping of this cohort was 3301. The participants 
of the INTERVAL cohort were from 25 sites of England’s 
National Health Service Blood and Transplant from 2012 
to 2014.

For the cohort of SCALLOP, we downloaded the pQTL 
summary statistics from the publication by Folkerson 
and colleagues in 2020 [22]. The sample size used for the 
pQTL mapping of this cohort was 30,931. The SCALLOP 
cohort consisted of 15 studies of European ancestry, and 
each study performed its own pQTL mapping. Meta-
analysis was performed using all 15 studies.

Heterogeneity of pQTLs
We checked the heterogeneity of pQTLs (HetPVal 
from two schemes of METAL [19]) across studies from 
METAL and found the majority (92% for cis-only and 
100% for cis + trans) of pQTLs used as IVs are not het-
erogeneous (HetPval ≥ 0.05). We added the flags on the 
MR results using these heterogeneous meta-analyzed 
pQTLs with extra columns “flag_heterogeneity” (TRUE if 
pQTL has a HetPVal < 0.05 under the scheme STDERR), 
“flag_heterogeneity2” (TRUE if pQTL has a HetPVal < 
0.05 under the scheme SAMPLESIZE), and “flag_hetero.
all” (TRUE if both heterogeneity flags are TRUE).

Human phenotype selection
We focused on the human phenotypes from a prior study 
[7] that aggregated more than 200 phenotypes for MR 
analyses. The authors selected complex human pheno-
types using the MR-Base database [2] and using two cri-
teria: (1) the GWAS with the largest sample size given 
the same disease with multiple GWAS and (2) GWAS 
with full summary statistics available as feasible to per-
form downstream analyses. Diseases and risk factors 
were chosen as outcomes. Starting with 225, we found, 
however, only 211 phenotypes with a valid ID (Fig.  1A, 
Additional file  2: Table  S1) due to the upgrade for the 
database of MR-Base [2] and its accompanied MRC Inte-
grative Epidemiology Unit OpenGWAS project [23] since 
January 2020. The summary statistics for all phenotypes 
were downloaded from the Integrative Epidemiology 
Unit OpenGWAS project website as VCF files [24] and 
corresponding index files for later colocalization usage. 
We categorized these phenotypes into seven groups: (1) 
biological traits, (2) blood traits, (3) cancer, (4) neurologi-
cal diseases, (5) other diseases and traits, (6) personal-
ity traits, and (7) other risk factors. LD score regression 
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[25] v1.0.1 was used to calculate the genetic correlations 
between each pair of phenotypes.

Instrumental variable selection for MR
Two workflows (Fig. 1B) were used to select IVs: Work-
flow-a cis study-wide significant pQTL (termed as “cis-
only” analysis) after keeping variants associated with 
fewer than five proteins (note: variants within the same 
LD block with the sentinel variants in the pleiotropic 
regions were also removed). This was performed to avoid 
pleiotropic effects as in a previous study [7] and also 
based on the empirical distribution of IVs overlapped 
with pleiotropic variants identified from all three tissues 
across different protein thresholds (Additional file 1: Fig. 
S2). Multiple testing significance thresholds were defined 
as protein-variant pairs with a p-value below the thresh-
old of (5 ×  10−8/number-principal-components). The 
number of PCs was derived as the minimum principal 
component number that cumulatively explains 95% of 
the total proteomic variance within each tissue after QC. 
For proteomics of CSF, plasma, and brain tissues, the 
number of PCs was 169, 230, and 75, respectively. Thus, 
the p-value thresholds were 3 ×  10−10, 2 ×  10−10, and 
7 ×  10−10, respectively. Workflow-b both cis and trans 
genome-wide significant pQTLs (p-value < 5 ×  10−8), 
termed as “cis + trans” analysis after removing highly 
pleiotropic variants, the same as workflow-a. We next 
performed LD clumping for the IVs with the R package 
TwoSampleMR [2] v0.5.3 to identify independent pQTLs 
for each protein. We used a threshold of r2 < 0.001 to 
exclude dependent pQTLs in the local genetic regions as 
the default parameter implemented in the clump_data 
function.

MR analyses using the TwoSampleMR R package
We used R package TwoSampleMR [2] v0.5.3, which 
includes two primary methods: For every single SNP, 
the most basic way, Wald ratio, was used; for multi-
ple SNPs without pleiotropy, inverse variance weighted 
(IVW) estimator was used. This is the simplest way, and 
it is a meta-analysis of each Wald ratio for each SNP. The 
regression is constrained to pass through the origin, thus 
leading to a zero intercept. This package also implements 
the harmonization steps before performing MR, and 
these steps are listed here: (1) correct the wrong effect/
non-effect alleles, (2) correct the strand issues, (3) fix the 
palindromic SNPs, and (4) remove the SNPs with incom-
patible alleles.

In our MR analysis, proteins from each tissue were set 
as the exposures and 211 complex human phenotypes 
as the outcomes (Fig.  1). As not all proteins within and 
between tissues nor all diseases are independent, we used 
a false discovery rate (FDR) < 0.05 as our multiple-test 

correction approach. The MR results were plotted as 
heatmaps using the geom_tile function from the R pack-
age ggplot2 [26]. Miami plots for the cis-only analy-
sis using the geom_point function from the R package 
ggplot2 [26].

Colocalization analyses on exposure with outcome
To remove the LD bias in MR analyses, we performed 
colocalization analysis using both coloc.abf function 
from R package coloc [3] v3.1 and coloc.susie func-
tion from R package coloc [27] v5.1 with a wrapper for 
susie_rss function from susieR [28] package v0.11.42. We 
first downloaded the full GWAS summary statistics for 
each disease/risk factor from the IEU OpenGWAS pro-
ject [23] as VCF files [24]. We next set the window size 
to ± 500 kb centering on IV per protein-phenotype pair. 
We used the default priors, with p1 as 1 ×  10−4, p2 as 
1 ×  10−4, and p12 as 1 ×  10−5. Evidence for colocaliza-
tion was assessed using the posterior probability (PP) 
for hypothesis 4 (indicating there is an association for 
both protein and disease and they are driven by the same 
causal variant(s)). We used PP.H4_final > 80% as a thresh-
old to suggest that associations were highly colocalized. 
Under the assumption of only a single causal variant, if 
there were multiple instrumental variables used in MR, 
we calculated the average PP.H4 from the coloc.abf out-
put. Under the assumption of multiple causal variants 
exist [28], we used the maximum PP.H4 of multiple cred-
ible sets from the coloc.susie output.

Steiger filtering on inference direction from exposure 
to outcome
To mitigate the potential impact of reverse association 
(that is, the protein as outcome and phenotype as expo-
sure), we used the Steiger filtering approach to identify 
the correct directions of inference (that is, the protein 
as exposure; phenotype as outcome). Only the protein-
phenotype pairs with the correct direction were kept. 
Specifically, we used the directionality_test function 
implemented in R package TwoSampleMR [2] v0.5.3.

Replication strategy for protein‑phenotype associations
To replicate the protein-phenotype associations in this 
study, we used the full MR results from the previous 
plasma proteome-by-phenome-wide study [7]. Specifi-
cally, we extracted the full MR results on all protein-phe-
notype associations using the pqtl function implemented 
in R package epigraphdb [29] v0.2. Additionally, we used 
the significant result from a published study on brain 
proteome by seven neurological phenotypes [6]. The rep-
lication rate was calculated based on the number of rep-
licated associations over the number of both replicated 
and not replicated associations.
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Cross‑tissue comparisons of MR results
Direct protein‑phenotype effect size comparisons of MR 
analyses across tissues
To compare the directions of effects across tissues given 
the same protein-phenotype pairs, we used the sig-
nificant MR results (FDR < 0.05) with meta-analyzed 
genome-wide significant cis and trans pQTLs and the 
strong colocalization evidence (PP > 80%) across three 
tissues. We used rectangles (geom_tile function) to 
visualize each detailed cross-tissue MR estimate of the 
protein-phenotype association. We used scatterplots to 
visualize all available MR estimates between two tissues.

Phenotype‑category proportion comparisons of MR analyses 
across tissues
To compare phenotype-category proportions of MR 
analyses across tissues, we used combined and split (cis-
only and trans-additional) MR results by instrumental 
variables. Cis-only MR results were from protein-phe-
notype associations in common between workflow-a 
and workflow-b. Trans-additional MR results were from 
protein-phenotype associations unique to workflow-
b alone. We used bar plots to visualize the proportions. 
We performed two-sided proportion tests for the overall 
phenotype-category proportions of MR analyses between 
each pair of three tissues.

Replication rates of the pQTL datasets between tissues
To calculate the replication rates of the pQTL datasets, 
we used Storey’s pi0 estimates [30] for deriving the rep-
lication rate (pi1 statistic) between the two tissue types. 
We calculated the replication rate of proteins used in MR 
between each tissue pair and found that the replicated 
rates were high (> 0.7) for all three pairwise compari-
sons (CSF vs plasma, pi1 = 0.97; CSF vs brain, pi1 = 0.77; 
plasma vs brain, pi1 = 0.79).

Enrichment of proteome‑wide MR with the druggable 
genome
Finan and colleagues [31] used targets of first-in-class 
drugs licensed since 2005; the targets of drugs currently 
in late-phase clinical development; information on the 
preclinical phase small molecules with protein binding 
measurements reported in the ChEMBL database [32]; 
as well as genes encoding secreted or plasma membrane 
proteins that form potential targets of monoclonal anti-
bodies and other biotherapeutics. The authors identified 
4479 genes as the latest druggable genome set and fur-
ther classified these genes into three tiers: Tier 1 con-
tained 1427 genes encoding targets of approved small 
molecules, biotherapeutic drugs, and clinical-phase 
drug candidates. Tier 2 included 682 genes encoding 
targets with known bioactive drug-like small-molecule 

binding partners and with more than 50% identity with 
drug targets. Tier 3 (3A and 3B) had 2370 genes encoding 
secreted or extracellular proteins, more distantly similar 
proteins to approved drug targets, plus proteins within 
key druggable gene families not already included in the 
first two tiers.

Altogether, we overlapped the 969 possible proteins 
passing QC with the 4479 genes (all three tiers) from 
the druggable genome using the Ensembl gene ID of the 
encoding genes.

We further assessed the overlap based on whether the 
protein was used in MR with cis or trans IVs and based 
on the druggable genome tiers. Similar to the previous 
study [7] using plasma pQTLs, we also calculated the 
enrichment of top pQTL MR findings with the druggable 
genome.

In CSF, we kept 144 protein-phenotype associations 
(80 proteins on 64 phenotypes) with both MR and colo-
calization evidence. We grouped the 80 proteins into four 
tiers based on their druggability: tier 1 contained 20 pro-
teins, tier 2 contained 3 proteins, tier 3 contained 46 pro-
teins, and tier 4 contained 11 proteins as unclassified. We 
classified 64 phenotypes into seven groups: 17 biological 
traits, 11 blood traits, 10 cancer types, one personality 
trait, two neurological diseases, 22 non-neurological dis-
eases, and one other trait.

In the plasma, we used 96 protein-phenotype associa-
tions (52 proteins on 49 phenotypes) with both MR and 
colocalization evidence. We grouped the 52 proteins into 
four tiers based on their druggability: tier 1 contained 10 
proteins, tier 2 contained nine proteins, tier 3 contained 
24 proteins, and tier 4 contained nine proteins as unclas-
sified. The 49 phenotypes were stratified into six groups: 
14 biological traits, nine blood traits, four cancer types, 
one personality trait, two neurological diseases, and 19 
non-neurological diseases.

In the brain, we analyzed 16 protein-phenotype asso-
ciations (nine proteins on 15 phenotypes) with both MR 
and colocalization evidence. We grouped the nine pro-
teins into four tiers based on their druggability: tier 1 did 
not contain any proteins, tier 2 contained two proteins, 
tier 3 contained four proteins, and tier 4 contained three 
proteins as unclassified. The 15 phenotypes were strati-
fied into five groups: six biological traits, two blood traits, 
one cancer type, one neurological disease, and five non-
neurological diseases.

The protein-phenotype associations with MR and colo-
calization evidence of each tissue were color-coded per 
their four corresponding druggability tiers.

Drug repurposing
To obtain information on drug compounds that tar-
get proteins with pQTLs from this study, we used the 
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DrugBank [33] database (as of 1/3/2020). This is a manu-
ally curated database that maintains profiles for > 15,000 
drugs. For our analysis, we focused on the protein tar-
get for each drug compound. For each protein assayed, 
we identified all drugs in the DrugBank with a matching 
protein target based on UniProt ID [34]. We further inte-
grated the MR and colocalization results on protein-phe-
notype associations into the overlap of proteins as drug 
targets. Additionally, we added the indication informa-
tion (“drug indications”) or side-effect (“drug warnings”) 
using the ChEMBL [32] database (as of 11/15/2021) for 
these drug compounds.

Results
Inferring multi‑tissue protein effects on disease‑related 
phenotypes using cis study‑wide significant pQTLs as IVs
Washington University cohort‑specific analyses
First, we performed analyses using only the pQTLs iden-
tified on the WashU cohort that included 835 CSF, 529 
plasma, and 380 brain samples in which 713, 931, 1079 
proteins were measured using the SOMAscan platform 
(1305 panel) and passed QC in each tissue, respectively.

We initially performed the MR analyses including the 
study-wide significant cis pQTLs (103, 47, 15 protein-
locus pairs in the CSF, plasma, and brain, respectively). 
Horizontal pleiotropy can lead to false-positive results 
in MR analyses. Although it is known that cis pQTLs are 
less likely to be susceptible to horizontal pleiotropy than 
trans pQTLs [1, 7, 9], we removed pleiotropic cis pQTLs 
(defined as associated with five or more proteins) as IVs. 
We also performed colocalization analyses to examine 
the confounding effect of LD. Colocalization can pro-
vide complementary supporting evidence of inference by 
decreasing the likelihood of confounding by LD. Further-
more, we used the Steiger filtering to identify the correct 
directions of inference. We kept only protein-phenotype 
pairs that protein has effects on phenotype thereafter 
(Figs. 2 and 3, Table 1, Additional file 2: Tables S2-S4).

We found that 33 CSF proteins were associated with 37 
phenotypes, (Figs. 2A and 3A) with both significant MR 
results (FDR < 0.05) and strong colocalization evidence 
(PP > 80%), 13 plasma proteins were associated with 18 
phenotypes (Figs.  2B and 3B), and five brain proteins 
were associated with eight phenotypes (Figs. 2C and 3C). 
In CSF (Fig. 2A), two proteins were associated with mul-
tiple phenotypes from the same category: (1) MSP was 

negatively associated with four general diseases (primary 
sclerosing cholangitis, Crohn’s disease, inflammatory 
bowel disease (IBD), ulcerative colitis (UC)) and three 
biological traits (years of schooling, forced vital capac-
ity (FVC), forced expiratory volume in 1-second (FEV1)) 
and (2) TNFSF15 was negatively associated with Crohn’s 
disease, IBD, and UC.

In the plasma (Fig.  2B), six proteins were associated 
with multiple phenotypes from the same category: (1) 
ADAMTS-5 was positively associated with two biologi-
cal traits (height and FEV1), (2) coagulation factor XI 
was positively associated with two diseases (deep venous 
thrombosis (DVT) and pulmonary embolism ± DVT), 
(3) CREL1 was negatively associated with two biologi-
cal traits (height and weight), (4) KYMU was negatively 
associated with two biological traits (FVC and FEV1), (5) 
lysozyme was positively associated with two blood traits 
(hypertension and high cholesterol), and (d6) WFKN2 
was negatively related to two biological traits (body mass 
index (BMI) and weight).

In the brain (Fig.  2C), protein CPNE1 was associated 
with multiple biological traits: it had a positive associa-
tion with age at menopause and a negative association 
with hippocampus volume.

Among all these protein-phenotype pairs, we repli-
cated previously reported findings in the plasma [7, 29] 
and brain [6] (Table  1, Additional file  2: Tables S2, S3). 
The replication rates in the CSF, plasma, and brain were 
64%, 91%, and 86%, respectively, when compared with 
the plasma studies [7, 29]. On the other hand, our results 
did not replicate three previous findings in the brain after 
overlapping both proteins and phenotypes: CPNE1 on 
intelligence, cathepsin H on AD, and ALT on intelligence, 
where the study used a brain pQTL dataset from 144 
samples [6].

Meanwhile, we uncovered 45%, 4%, and 12% novel 
protein-phenotype associations, in the CSF, plasma, and 
brain, respectively (Table 1, Additional file 2: Table S4).

pQTL meta‑analyses uncovered additional 
protein‑phenotype pairs
Furthermore, to increase the power of our analyses, we 
performed two-sample MR using summary statistics 
from meta-analyses for CSF and plasma independently 
(Fig. 1B). CSF meta-analysis included two cohorts includ-
ing PPMI released in 2019 (N = 132) [20] and WashU 

Fig. 2 Significant protein-phenotype associations identified using cis-only study-wide pQTLs as instrumental variables. Heatmaps were generated 
using the analyses on the WashU cohort only. A Thirty-three proteins against 37 diseases in CSF. B Thirteen proteins against 18 diseases in the 
plasma. C Five proteins against eight diseases in the brain. Colors were coded by 5 bins after cutting z-normalized beta MR estimate: below − 10 as 
dark blue, − 10 to − 5 as dodger blue, − 5 to 0 as cadet blue1, 0 to 5 as antique white1, and 5 to 10 as gold. Phenotype categories were listed on 
the left side as a bar plot (neurological diseases as blue, biological traits as red, blood traits as orange, cancers as purple, non-neurological diseases 
as green, and other risk factors as khaki)

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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Fig. 3 Miami plots for the cis-only study-wide pQTLs as IVs for all MR and colocalization analyses. Each dot represents the MR results for proteins 
on human phenotypes. A CSF. B Plasma. C Brain. Phenotype categories were color-coded: biological traits as red, blood traits as orange, cancers as 
purple, non-neurological diseases as green, neurological diseases as blue, and other risk factors as khaki; for protein-phenotype associations not 
significant or not colocalized, the color is dark/light gray
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[16]. We included 709 CSF proteins shared in both 
studies.

For the plasma, we leveraged two cohorts including 
INTERVAL (N = 3301) [21] and SCALLOP (N = 30,931) 
[22], that were meta-analyses with WashU [16]. For 
WashU and INTERVAL, we included 746 plasma pro-
teins shared in both studies, and for WashU, INTERVAL 
and SCALLOP, we included 49 plasma proteins shared in 
three studies.

These meta-analyses yielded 31 additional CSF and 215 
plasma pQTLs, which led to 10 additional CSF proteins 
associated with 13 phenotypes (Additional file  1: Fig. 
S3A, Additional file 2: Tables S5-S7) with significant MR 
results and strong colocalization evidence. Our analyses 
also identified 12 additional plasma proteins associated 
with 14 phenotypes (Additional file  1: Fig. S3B, Addi-
tional file 2: Tables S5-S7). In CSF (Additional file 1: Fig. 
S3A), protein IL1 receptor-type1 (IL-1 sRI) was associ-
ated with multiple phenotypes: it was negatively associ-
ated with three general diseases (IBD, Crohn’s disease, 
UC) while positively correlated with asthma. In the 
plasma (Additional file  1: Fig. S3B), the protein hapto-
globin was negatively associated with two blood traits 
(LDL and total cholesterol) while positively related to 
height. No protein-phenotype pairs had an opposite 
effect size before and after meta-analysis (36 in CSF and 
four in plasma).

We successfully replicated the finding that CSF IL-1 sRI 
increased the risk of asthma, which was not found in our 
initial analyses (as meta-analyses increased the statisti-
cal power of IL-1 sRI pQTL p-value from 1.09 ×  10−18 to 
2.32 ×  10−25). IL-1 receptor antagonist has been tested 
to attenuate asthmatic symptoms in animal models [35]. 
We also replicated the finding on plasma haptoglobin 

associated with reduced LDL and total cholesterol lev-
els, as reported by Boettger and colleagues [36]. Moreo-
ver, we highlighted the risky effects of plasma B7-H2 (or 
ICOS ligand) on rheumatoid arthritis (RA), as it has been 
validated in a mouse model of RA that anti-ICOS ligand 
domains can help reduce the disease symptoms [37].

Inferring multi‑tissue protein effects on disease‑related 
phenotypes using both cis and trans genome‑wide 
significant pQTLs as IVs
In the previous section, we only used cis pQTLs that 
passed the most stringent study-wide threshold. This 
threshold, however, may miss the real biological signals. 
Therefore, a more permissive threshold could reveal 
additional signals. To increase the power of MR analyses, 
we expanded our MR analyses by including potentially 
non-pleiotropic cis and trans pQTLs as instrumental 
variables that passed the genome-wide threshold (p < 5 × 
 10−8, F ≥ 10, and associated with fewer than 5 proteins).

Washington University cohort‑specific analyses
With this new threshold, 169, 116, 50 cis and trans 
pQTLs in the CSF, plasma, and brain, respectively, were 
used for MR and colocalization analyses for the WashU 
cohort analyses (Fig. 4, Table 2, Additional file 2: Tables 
S8-S10). This led to the identifications of 58 CSF proteins 
associated with 58 phenotypes (Fig. 4A), 32 plasma pro-
teins on 44 phenotypes (Fig. 4B), and nine brain proteins 
on 16 phenotypes (Fig.  4C) with significant MR results 
(FDR < 0.05) and strong colocalization evidence (PP > 
80%).

Similar to the cis-only-pQTL analyses above, we repli-
cated findings reported previously from a plasma [7, 29] 
and a brain study [6] (Table 2, Additional file 2: Table S8). 
In these new analyses, there were a total of 37, 37, and 
10 CSF, plasma, and brain protein-phenotype pairs that 
were previously reported, respectively. Several protein-
phenotype associations, however, did not replicate due to 
the weaker instrumental variables compared to the prior 
studies (Table  2, Additional file  2: Table  S9). Additional 
novel protein-phenotype findings (48, 12, two in CSF, 
plasma, and brain, respectively) were also revealed after 
including both cis and trans genome-wide significant 
pQTLs (Table 2, Additional file 2: Table S10).

Table 1 Summary of replication on MR results using study-wide 
cis pQTLs with WashU cohort

Replicated: p-value < 0.05 and the same direction of effect size in the prior 
plasma study by Zheng et al.’s 2020 full MR results; not-replicated: p-value ≥ 
0.05 and/or the opposite direction of effect size in the prior plasma study; novel: 
protein-phenotype pairs not found in the prior plasma study

Tissue Total Replicated Not replicated Novel

CSF 60 21 12 27

Plasma 23 20 2 1

Brain 8 6 1 1

Fig. 4 Significant protein-phenotype associations identified using cis and trans genome-wide pQTLs as instrumental variables. Heatmaps were 
generated using the analyses on the WashU cohort only. A Fifty-eight proteins against 58 diseases in CSF. B Thirty-two proteins against 44 diseases 
in the plasma. C Nine proteins against 16 diseases in the brain. Colors were coded by 6 bins after cutting z-normalized beta MR estimate: below 
− 10 as dark blue, − 10 to − 5 as dodger blue, − 5 to 0 as cadet blue1, 0 to 5 as antique white1, 5 to 10 as gold, and above 10 as orange. Phenotype 
categories were listed on the left side as a bar plot (biological traits as red, blood traits as orange, cancers as purple, non-neurological diseases as 
green, neurological diseases as blue, personality traits as pink, and other risk factors as khaki)

(See figure on next page.)
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Fig. 4 (See legend on previous page.)



Page 13 of 22Yang et al. Genome Medicine          (2022) 14:140  

pQTL meta‑analyses identified additional protein‑phenotype 
pairs
We performed meta-analyses from two cohorts of CSF 
and three cohorts of plasma, leading to additional 313 
CSF and 711 plasma pQTLs as IVs. This approach identi-
fied 21 additional CSF proteins associated with 17 pheno-
types (Additional file 1: Fig. S4A, Additional file 2: Tables 
S11-S13), and 15 plasma proteins were associated with 15 
phenotypes (Additional file 1: Fig. S4B, Additional file 2: 
Tables S11-S13). No protein-phenotype pairs had an 
opposite effect size before and after meta-analysis (70 in 
CSF and three in plasma).

To identify what was absent in our initial analyses that 
included cis-pQTLs, we compared two results from the 
study-wide versus the genome-wide p-value thresholds 
(Fig. 5, Additional file 2: Table S14). We identified addi-
tional associations for 45 CSF proteins with 42 pheno-
types (Fig.  5A), 28 plasma proteins with 35 phenotypes 
(Fig. 5B), and five brain proteins with seven phenotypes 
(Fig. 5C).

In CSF (Fig.  5A), three proteins (DcR3, IL-1 sRII, 
Prekallikrein) were associated with more than two phe-
notypes within each category: (1) DcR3 was negatively 
associated with four biological traits (FVC, FEV1, dias-
tolic blood pressure (DBP), systolic blood pressure (SBP)) 
and hypertension, while positively associated with BMI. 
(2) IL-1 sRII was positively associated with three diseases 
(Crohn’s disease, IBD, UC), while negatively associated 
with asthma. (3) Prekallikrein was positively associated 
with three diseases (Phlebitis and thrombophlebitis, 
DVT, and pulmonary embolism ± DVT).

In the plasma (Fig.  5B), two proteins (b-Endorphin, 
GRN) were associated with multi-phenotypes within 
each category: (1) b-Endorphin was negatively connected 

to four blood traits (HDL, total, high cholesterol, tri-
glycerides) while positively associated with ER-negative 
breast cancer, and (2) GRN was positively related to four 
blood traits (serum creatinine, LDL, total, high choles-
terol) and negatively related to HDL cholesterol. GRN 
was also found in positive associations with three car-
diovascular diseases (coronary heart disease (CHD), 
myocardial infarction, and angina) and negative associa-
tions with two biological traits (heel bone mineral density 
(BMD) and height).

In the brain (Fig.  5C), two proteins (PSP and OAS1) 
were concordantly associated with more than two phe-
notypes: (1) PSP was negatively connected to two gen-
eral diseases (angina and asthma) and one biological 
trait (DBP), and (2) OAS1 was negatively related to one 
biological trait (BMI) and one neurological disease (AD). 
Particularly, we showed a consistent finding that the 
brain OAS1 is protective against AD risk as recently pub-
lished by Magusali and colleagues [38]. Magusali et  al. 
[38] reported that OAS1 is required to limit the pro-
inflammatory response of human induced pluripotent 
stem cell-derived microglia.

Cross‑tissue comparisons on tissue consistency 
of the protein‑phenotype effects
To investigate whether the directions of effects were con-
sistent across tissues given the same protein-phenotype 
pairs, we compared the significant MR results (FDR < 
0.05) using meta-analyzed genome-wide significant cis 
and trans pQTLs with strong colocalization evidence 
(PP > 80%) across three tissues. We identified 15 pairs 
in more than one tissue, in which 13 pairs had consist-
ent MR estimates (Fig. 6). Among these 13 tissue-consist-
ent pairs, 10 were concordant between CSF and plasma 
(Fig. 6A, B), two between plasma and brain (Fig. 6A, C), 
and one between CSF and brain (Fig. 6A, D). For exam-
ple, WFKN2 levels from CSF and plasma were consist-
ently associated with two phenotypes: BMI and weight 
(Fig. 6A).

Two pairs showed discordant MR effect sizes (Fig. 6A, 
B): (i) higher CSF ART (or AGRP, Agouti-related protein) 
was associated with higher levels of sodium in the urine, 
whereas higher plasma ART was associated with lower 
levels of the same trait; (ii) higher CSF TXD12 was asso-
ciated with a higher risk of the ER-positive Breast cancer, 

Table 2 Summary of replication on MR results using genome-
wide cis and trans pQTLs with WashU cohort

Replicated: p-value < 0.05 and the same direction of effect size in the prior 
plasma study by Zheng et al.’s 2020 full MR results; not-replicated: p-value ≥ 
0.05 and/or the opposite direction of effect size in the prior plasma study; novel: 
protein-phenotype pairs not found in the prior plasma study

Tissue Total Replicated Not replicated Novel

CSF 110 37 25 48

Plasma 67 37 18 12

Brain 17 10 5 2

(See figure on next page.)
Fig. 5 Additional significant protein-phenotype associations were identified after including cis and trans genome-wide pQTLs as instrumental 
variables. Heatmaps were generated using the analyses after meta-analyses. A Forty-five proteins against 42 diseases in CSF. B Twenty-eight proteins 
against 35 diseases in the plasma. C Five proteins against seven diseases in the brain. Colors were coded by 6 bins after cutting z-normalized beta 
MR estimate: below − 10 as dark blue, − 10 to − 5 as dodger blue, − 5 to 0 as cadet blue1, 0 to 5 as antique white1, 5 to 10 as gold, and above 
10 as orange. Phenotype categories were listed on the left side as a bar plot (biological traits as red, blood traits as orange, cancers as purple, 
non-neurological diseases as green, neurological diseases as blue, and personality traits as pink)
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Fig. 5 (See legend on previous page.)
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whereas higher plasma TXD12 was associated with lower 
risk of the same phenotype. Overall, we found a small 
proportion of tissue-dependent protein effects on certain 
phenotypes.

To estimate the enrichment of phenotypes in different 
tissues, we compared phenotype-category proportions of 
MR analyses from each tissue (Fig. 7). Even plasma pro-
tein MR findings showed a higher proportion of blood 
traits, and brain protein MR results presented a higher 
proportion of neurological diseases, we found no statis-
tically significant proportions on phenotype category 
across tissues (Fig.  7A, C). As our previous study [16] 
suggested that trans, but not cis, pQTLs may be tissue-
specific, we further split the disease category of MR anal-
yses from each tissue into cis-only and trans-additional 
findings to determine if there is any tissue-specific phe-
notypic enrichment (Fig. 7B, C). We found the pairwise 
tissue comparisons involved in the brains on proportions 
of disease category using IVs from cis-only analyses had 

a larger p-value than from trans-additional analyses from 
the proportion test. This observation may be underpow-
ered but can be partially explained by our prior findings 
[16] that trans-pQTLs tend to be more tissue-specific 
than cis-pQTLs.

To determine whether the phenotype enrichment was 
affected by the statistical power across tissues because 
of the differences in sample size and protein, we first cal-
culated the statistical power for pQTL identification in 
each tissue, and we next did sensitivity analyses by keep-
ing only the same protein sets for the estimation of the 
disease enrichment. Our current study was well-powered 
(Additional file 1: Fig. S1) for cis-pQTL-based MR analy-
ses given the same protein available across all tissues. 
However, for trans-pQTL-based MR analyses, the statis-
tical power for CSF and brain were below 0.8 (Additional 
file 1: Fig. S1), indicating that we were underpowered to 
detect trans-pQTLs under the assumption that the pro-
tein should have at least one trans-pQTL in all tissues. 

Fig. 6 Cross-tissue MR estimate comparisons. A Heatmaps were generated on the MR estimates given the same protein-phenotype pairs with a 
PP > 80% when performing colocalization. Colors were coded by 4 bins after cutting z-normalized beta MR estimate: − 10 to − 5 as dodger blue, 
− 5 to 0 as cadet blue1, 0 to 5 as antique white1, and 5 to 10 as gold. B Scatter plot of CSF vs plasma MR estimates on the same protein-phenotype 
associations. C Scatter plot of plasma vs brain MR estimates on the same protein-phenotype associations. D Scatter plot of CSF vs brain MR 
estimates on the same protein-phenotype associations
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Fig. 7 Phenotype-category proportions of MR analyses from each tissue. Barplots were used to visualize the proportions of phenotype category 
per tissue and the percentage of each proportion was listed in the table in parallel. The MR results are from A combined analyses. B After splitting 
into cis-only and trans-additional findings by instrumental variables used. C Table summarizing the p-value of the proportion test (two-sided) for the 
overall phenotype-category proportions of MR analyses between each pair of three tissues. Phenotype categories were color coded as biological 
traits as red, blood traits as orange, cancers as purple, non-neurological diseases as green, neurological diseases as blue, personality traits as pink, 
and other risk factors as khaki
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Moreover, this assumption will be too stringent as we 
cannot ensure proteins from different tissues measured 
by the same platform share the same genetic structure. 
Thus, the phenotype enrichment analyses using trans-
pQTL-based MR results may be underpowered to pro-
vide robust estimates.

Even if we used the same panel (SOMAscan 1305 panel) 
in all three tissues, different subsets of proteins passed 
QC in each tissue could bias the downstream disease 
enrichment analysis. To correct this bias, we performed 
the enrichment analysis using only the 411 proteins that 
passed QC in all three tissues (Additional file 1: Fig. S5). 
Even the proportion of neurological diseases was higher 
in the brain than in the plasma (brain: 10%; plasma: 3.3%) 
and the proportion of blood traits was higher in plasma 
than in the other two tissues (plasma: 23%; CSF: 7.8%; 
brain: 10%), these differences were not statistically differ-
ent (CSF vs plasma p-value = 0.2; plasma vs brain p-value 
= 0.952; CSF vs brain p-value = 0.780). This is consistent 
with the current MR results including all proteins that 
passed QC in any tissues, indicating that the phenotype 
enrichments are not biased by different protein sets.

Overlap proteins with druggable genome
Moreover, we overlapped our proteins having strong MR 
and colocalization evidence with the druggable genome 
reported by Finan and colleagues [31]. To assess the 
overlap of the proteins identified in our MR analyses and 
based on the druggable genome tiers, we performed an 
enrichment analysis as described before [7] (Additional 
file  2: Table  S15). Of the proteins associated with the 
studied phenotypes, 86.3% (69/80), 82.7% (43/52), and 
66.7% (6/9) proteins in CSF (Additional file 1: Fig. S6A), 
plasma (Additional file 1: Fig. S6B), and brain (Additional 
file  1: Fig. S6C), respectively, intersected with the first 
three druggable genome tiers. These overlapping proteins 
were associated with seven, six, and four unique pheno-
typic categories (the “Methods” section).

Drug repurposing
Finally, to repurpose the known drug compounds for the 
phenotypes, we linked the inference results using meta-
analyzed genome-wide significant cis and trans pQTLs 
with two drug databases. Using the DrugBank database 
[33] to first assign protein targets with a compound, 
which is curated by UniProt [34] and the ChEMBL data-
base [32] to further keep the maximum clinical trial 
phase as “4” from the indication information and no 
side-effects, we identified two, three, one protein in CSF, 
plasma, and brain, respectively, connected with at least 
one compound for one disease-related phenotype (Fig. 8, 
Additional file 1: Fig. S7, S8, Additional file 2: Table S16). 
For CSF proteins as targets (Fig.  8A), two drugs can be 

used as an inhibitor given a positive estimate from MR 
analyses; for proteins from the plasma (Fig. 8B) and brain 
(Fig. 8C), two and two drugs, respectively, were predicted 
as activators, whereas two and one, respectively, were 
inferred as inhibitors. For example, plasma N-terminal 
pro-BNP can be targeted by carvedilol to lower the SBP. 
CSF TSG-6 can be targeted by acetylsalicylic acid in 
treating retinal detachment. Brain CPNE1 was found as a 
target of a small molecule drug, called theophylline, and 
potentially regulates the size of hippocampus volume and 
age at menopause.

Discussion
Here, our study revealed that 80 CSF, 52 plasma, and nine 
brain proteins were associated with 64, 49, and 15 human 
disease-related phenotypes, respectively. Of these, we 
identified 45.8%, 30.2%, and 12.5% novel protein-pheno-
type pairs in CSF, plasma, and brain, respectively. After 
integrating the published druggable genome results, we 
found that 66.7 to 86.3% of proteins, depending on tis-
sues, could be potential therapeutic targets for a complex 
trait/phenotype. These results systematically tested the 
potential effects of proteins, as potential drug targets, on 
human diseases or risk factors by both MR and colocali-
zation in a tissue-specific manner.

Our study is the first analysis that systematically evalu-
ated the cross-tissue protein effects on over 200 pheno-
types using pQTLs from three tissues. Our result can be 
used as a complementary resource to the plasma pro-
teome-by-phenome-wide MR studies [7, 14]. Our current 
study generated a multi-tissue MR atlas, and thus, we did 
not pre-select the priori “tissue-specific” phenotypes. 
This strategy would be extremely helpful in the down-
stream comparisons of cross-tissue MR effects given the 
same protein-phenotype associations.

From the MR results using genome-wide signifi-
cant pQTLs, we found 48, 12, and two novel protein-
phenotype pairs in CSF, plasma, and brain, respectively 
(Table  2), which were absent from previous studies [6, 
7]. We found the largest set of novel protein-by-pheno-
type associations was from CSF proteins, and it could be 
explained as this study used the largest CSF pQTL data-
set at the time of the analyses. Our MR results revealed 
that plasma proteins, as well as CSF and brain proteins, 
can be prioritized in the disease pathogenesis and further 
used as druggable targets. Our study expanded the scale 
of inferring CSF and brain protein effects on diseases to 
the phenome-wide scale compared to prior protein-dis-
ease MR studies in CSF [11] and brain [6]. Our results 
highlight proteins with potential opportunities for devel-
oping treatment with clinical trials; however, further 
functional experiments, in  vitro and in  vivo, would be 
essential to validate these findings. We think additional 
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preclinical and clinical studies are relevant as 67% of the 
FDA-approved drugs last year (2021) had strong genetic 
and genomic support [39]. We defined that protein-
phenotype associations are consistent across tissues as 
tissue-shared effects, whereas protein-phenotype asso-
ciations are opposite across tissues as tissue-specific 
effects. It would be easier to develop a drug for proteins 
with tissue-shared effects, as that is not depending on tis-
sue types.

We found 15 protein-disease pairs that were found in 
more than one tissue, and 87% (13 out of 15) of the shared 
protein effects on phenotypes were consistent across 
different tissues. We found two proteins with opposite 
effects across tissues. No previous studies have reported 
the two proteins with opposite associations between CSF 
and plasma: (1) ART protein level on the trait of sodium 
in urine level and (2) TXD12 on ER-positive breast can-
cer risk. It is important to note that these opposite effects 
were driven by different IVs used in each tissue as differ-
ent sentinel pQTLs were found in those tissues. Opposite 

QTL effect sizes across tissues have been reported before, 
mainly for the expression QTL (eQTL). Fu and colleagues 
[40] reported that 4.4% eQTLs had opposite directions 
using blood and non-blood tissues. Mizuno and Okada 
[41] later performed a study on the opposite eQTL effects 
with more tissue types (48 tissues) from Genotype-Tissue 
Expression (GTEx) project (release-version-7). This later 
study highlighted that the opposite eQTL effects can be 
observed between closely related tissues such as different 
brain regions (for example, cerebellum versus brain cor-
tex) and be estimated as 7.4% of the eQTL-genes. These 
two studies pinpointed that these opposite genetic effects 
on gene expression between tissues can further con-
tribute to the development of complex traits in a tissue-
dependent manner. Another MR study [42] (using eQTLs 
as IVs) on phenome-wide (395 complex traits) reported 
tissue-dependent effects on the same phenotypes. In this 
study, we extended these observations from gene expres-
sion to the protein level.

Fig. 8 Phenotype-drug pairs after integration of protein-phenotype associations from MR and drug-protein interactions from DrugBank & ChEMBL 
databases. Heatmaps were used to visualize drug-name against phenotype for the drug target repurposing purpose. The drug-predicted effects 
were listed as follows: A in CSF, two drugs can be used as an inhibitor given a positive estimate from MR analyses; B two activators and two 
inhibitors in plasma; and C two activators and one inhibitor in brain. Colors were coded: activator as magenta and inhibitor as black
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Our MR and colocalization results were largely driven 
by cis-pQTLs. As cis-pQTLs are more sharable across 
tissues compared to trans-pQTLs, our results tend to be 
tissue-shared. As for estimating the enrichment of dis-
eases in different tissues, we did not find any tissue-spe-
cific disease enrichment. This can be explained because 
the pQTLs used in MR and colocalization were shared 
among three tissues or because disease processes may 
implicate more tissues than initially expected.

The fact that we did not find any clear enrichment of 
phenotype category by tissue (for example, neurological 
diseases in the brain and/or CSF) but found general pro-
tein-phenotype associations in those analyses may pro-
vide new avenues to understand these complex traits, and 
indicate that it may be necessary to investigate not only 
the primary disease-relevant tissue. For example, protein 
levels in CSF were associated with several autoimmune 
diseases (e.g., Crohn’s disease, UC, IBD), suggesting that 
these diseases may also have a brain component. For 
Crohn’s disease, multiple neurological effects have been 
reported [43], including myelopathy, posterior reversible 
encephalopathy syndrome, and chronic inflammatory 
demyelinating polyneuropathy. For UC, it was found in 
patients with peripheral nerve disorders and cerebro-
vascular disorders [44]. As IBD is comprised of Crohn’s 
disease and UC, these neurological effects apply to IBD 
in general [45]. Therefore, CSF proteins can play roles 
in the pathogenesis of these autoimmune diseases. Pro-
teins from the plasma were associated with multiple 
none-blood traits (e.g., cancers: D12 benign neoplasm of 
colon rectum anus and anal canal or ER− Breast cancer 
or ER+ breast cancer or lung cancer; neurological-traits: 
depressive symptoms/anxiety; personality: childhood 
intelligence). For cancers, this can be explained by the 
cancer cells spreading to other organs (colon, breast, or 
lung) via the blood [46]. For neurological or personality 
traits, proteins in the plasma can be functioning in the 
brain indirectly via the blood-brain barrier [47]. Proteins 
from the brain were associated with multiple none-CNS 
traits (e.g., breast cancer; celiac disease, angina). For 
breast cancer, proteins in the brain can function in blood 
indirectly via the blood-brain barrier. For celiac disease, 
it was reported to have multiple neurological and psy-
chiatric effects [48]. For angina, it was observed to be 
associated with mental stress-induced inferior brain acti-
vation [49]. Therefore, brain proteins can play roles in the 
pathogenesis of these non-CNS diseases.

This study is the first time the strategy without select-
ing a priori “tissue-specific” phenotypes was applied to 
multi-tissue pQTLs; similar strategies have been used in 
multi-tissue eQTL studies previously. GTEx consortium 
in 2020 [50] used gene expression QTLs from 49 tissues 
of v8-release to analyze the role of these eQTLs in genetic 

associations for 87 human traits (including asthma, mul-
tiple sclerosis, Parkinson’s diseases, Crohn’s diseases, 
high cholesterol, etc.). The authors from the GTEx con-
sortium analyzed all pairwise combinations of 87 pheno-
types and 49 tissues without pre-selecting tissue-relevant 
phenotypes, e.g., brain tissues were not just used for the 
CNS traits; whole blood was not just for the blood traits. 
The same strategy was also originally published in 2018 
[51]. The authors inferred tissue enrichment of the eQTL 
from GTEx v6p-release in 18 complex traits. The authors 
reported most enriched tissues per trait also existed in 
less biologically obvious tissues, for example, eQTLs 
in the ovary were enriched in coronary artery disease; 
eQTLs in the skin were enriched in Alzheimer disease. 
This indicated two possibilities interpreted by Gamazon 
and colleagues [51]: (a) shared regulation with the actual 
tissues of action or (b) new pathogenic tissues.

The finding of protein-phenotype links in the tissue 
that was not initially expected is not the only highlight 
in this study which can point to new pathogenic events. 
In the case of cancer, having a link between cancer and 
brain/CSF may just be explained as the protein impli-
cated in cancer via an indirect pathway. This pathway may 
contain many factors from the brain/CSF proteins (as 
the starting point) to the cancer of certain organs (as the 
ending point), and it is the meaning of vertical pleiotropy, 
but not horizontal pleiotropy, thus it does not violate 
the assumption of MR, but indicates that this complex 
biology of the human body and these traits. In addition, 
finding the same protein associated with multiple pheno-
types point to the shared pathogenic processes etiologies. 
We found 34, 22, and 5 proteins from CSF, plasma, and 
brain, respectively, were associated with multiple pheno-
types (Additional file 1: Fig. S8). This is because IVs for 
the same protein were shared across multiple pheno-
types. For example, CSF MSP was associated with eight 
phenotypes in total. The genetic correlations between 
each phenotype (Additional file  1: Fig. S8A) revealed 
that not all eight phenotypes are highly correlated with 
each other, though some phenotypes were indeed highly 
correlated, such as primary sclerosing cholangitis (ieu-
a-1112), Crohn’s disease (ieu-a-12), IBD (ieu-a-294), and 
UC (ieu-a-970). Four of these diseases (primary scle-
rosing cholangitis, Crohn’s disease, IBD, and UC) were 
reported to present comorbidities [52]. As IBD contains 
Crohn’s disease and UC, the comorbid patients with both 
IBD and primary sclerosing cholangitis can be further 
broken down into 80% of UC and 20% CD. From the pre-
vious genetic studies, this comorbidity may be formed 
from participants with a predisposition to autoimmune 
biliary injury via colonic inflammation. This indicated 
CSF MSP played an important role in multiple diseases 
sharing the same mechanisms for disease pathogenesis. 
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Similar observations were held for plasma GRN (Addi-
tional file 1: Fig. S8B) and brain CPNE1 (Additional file 1: 
Fig. S8C).

Our study has several limitations. First, our bulk-
tissue proteomic profiling was not cell type-specific. 
Thus, our estimation of protein-phenotype would be 
biased when using cell type-specific proteomic datasets 
if available. However, we were accounting for differ-
ent tissues compared to the prior single-tissue stud-
ies [6, 7]. Second, the epitope-binding effect instead 
of true abundance change from aptamer-binding assay 
would create artifacts of pQTLs. Third, the pleiotropic 
IVs may still be missing due to our limited coverage 
of the whole human proteome. We and others are not 
able to detect horizontal pleiotropy due to the rela-
tively small number of proteins measured in our cur-
rent datasets. We were unable to use MR-Egger [53] or 
MR-PRESSO [54] to correct for horizontal pleiotropy 
as most of the proteins were only associated with one 
valid instrumental variable (F ≥ 10) after clumping. 
We were unable to distinguish whether the inferred 
causal relationships were truly causal due to failing to 
test for horizontal pleiotropy. Thus, our observations 
on protein-phenotype associations are consistent with 
a causal role or horizontal pleiotropy. Fourth, sensi-
tivity analyses would not be possible for most QTL 
studies, as stated by Baird and colleagues [55]. As an 
alternative approach, Burgess and colleagues claimed 
as a guideline [1] that colocalization can help evaluate 
exposures such as proteins and gene expression, par-
ticularly when the MR result is derived from a single-
gene region. Fifth, our pQTL dataset pre-meta-analysis 
is from an aging cohort. Even though we did not iden-
tify age-specific pQTLs in our dataset (age range from 
37 to 107) [16], it may be possible that age-specific 
pQTLs exist for other age ranges, or that our dataset 
does not provide enough statistical power for the age 
range of this study; thus this could bias the results due 
to survival bias. Sixth, our brain pQTL study is from 
a single center. This reflected that post-mortem brain 
tissues are challenging to collect, and future genome-
wide brain pQTL studies can be used for meta-analysis. 
Seventh, we were underpowered to detect more tissue-
specific protein effects on the same phenotypes. We 
learned empirically that the power of identifying trans-
pQTLs (Additional file  1: Fig. S1) for CSF and brain 
were below 0.8, whereas the power in plasma is 0.91, 
given the current sample size and assuming a protein 
is warranted with a trans-pQTL. As the sample size in 
each tissue is different, therefore the power to identify 
cis and trans pQTLs is different in each tissue, which 
can confound the results. The sample sizes of CSF and 
brain in this study are much smaller than the published 

plasma-based studies, thus may bias the cross-tissue 
findings. Eighth, our pQTL dataset pre meta-analysis 
was generated with a cohort mixed with AD cases and 
controls; our results may be confounded by the disease 
status, though we did not identify any disease-specific 
pQTLs [16].

Conclusions
In summary, our work evaluates multi-tissue protein 
effects on disease-related phenotypes at a large pro-
teome-by-phenome-wide scale. We prioritize six CSF 
proteins including MSP, TNFSF15, IL-1 sRI, DcR3, IL-1 
sRII, and Prekallikrein; nine plasma proteins includ-
ing ADAMTS-5, coagulation factor XI, CREL1, KYMU, 
lysozyme, WFKN2, haptoglobin, b-Endorphin, and GRN; 
and three brain proteins including CPNE1, PSP, and 
OAS1, as they were top ranked by the number of mul-
tiple phenotypes. We anticipate that in the future, much 
larger-scale studies using additional proteins from a more 
extensive set of tissues with more phenotypes will facili-
tate the drug repositioning process.
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