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SUMMARY

During childhood, neural systems supporting high-level cognitive processes undergo periods of rapid growth
and refinement, which rely on the successful coordination of activation across the brain. Some coordination
occurs via cortical hubs—brain regions that coactivate with functional networks other than their own. Adult
cortical hubs map into three distinct profiles, but less is known about hub categories during development,
when critical improvement in cognition occurs. We identify four distinct hub categories in a large youth
sample (n = 567, ages 8.5–17.2), each exhibiting more diverse connectivity profiles than adults. Youth
hubs integrating control-sensory processing split into two distinct categories (visual control and auditory/
motor control), whereas adult hubs unite under one. This split suggests a need for segregating sensory
stimuli while functional networks are experiencing rapid development. Functional coactivation strength for
youth control-processing hubs are associated with task performance, suggesting a specialized role in
routing sensory information to and from the brain’s control system.

INTRODUCTION

Childhood and adolescence mark an extended period of rapid

growth and brain development.1–5 During this time, many neural

systems are refined and integrated as children learn and refine

complex behaviors. Behavioral successes and delays during

developmentmay, at least partially, be associatedwith individual

variations of the normative trajectory of growth and refinement of

neural systems throughout the brain. A better understanding of

how these systems are organized and interconnected during

development may help inform interventions aimed at mitigating

delays and supporting successes across different youth

populations.

Although the core behaviors that support high-level cognitive

control abilities like executive functions (EFs) are established

early in life, EF abilities show significant improvement and

refinement that continues through young adulthood.6–8 This

period of accelerated learning and behavioral refinement that

occurs during childhood coincides with (and is most likely scaf-

folded by) increased brain maturation and specialization of

function that is observed across the cortex.9–11 Specifically,

the successful refinement of neural systems that support be-

haviors related to EFs such as memory, attention, and cognitive

flexibility are increasingly important as children begin to refine

the skills that are essential to academic and general life

success.12,13

Given the complex integration of multiple neural systems that

is required for behaviors related to EFs, it is not surprising that

EFs appear to recruit and integrate multiple brain regions.14

Across three EF task domains of working memory, inhibitory

control, and cognitive flexibility, cortical regions in the cingulo-

opercular, dorsal attention, fronto-parietal, and ventral attention

networks, such as the dorsolateral prefrontal cortex (DL-PFC)

and the superior parietal cortex, have been identified as key neu-

ral substrates of EF task performance.14–17 Critically, the cortical

development that supports high-level cognitive processes such

as the updating of working memory, inhibition, and cognitive

flexibility is not confined to any one specific brain region.16,18,19

Further, the developing brain appears to refine and specialize

connections between fronto-parietal cortical regions; this refine-

ment of integration between cortical regions may be a key

element to increasing ‘‘adult-like’’ performance on EF tasks.20,21

The apparent importance of spatially distant cortical regions in

the development of EFs during childhood highlights the fact that

the association between brain and behavioral development is

best characterized using a network view of brain function22–24

that conceptualizes brain function as coordinated neural activity

across many interconnected cortical regions. Using a network

view of brain function is key to identifying brain-behavior associ-

ations of EFs because it allows for the identification and interpre-

tation of how functional brain networks across the cortex may

integrate or connect between one another and how levels of
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integration are associated with high-level cognitive processes.

This viewpoint then raises two critical questions regarding the

integration of cortical regions related to EFs: (1) can common

patterns of complex integration of cortical regions be identified

during development, and (2) are measures of a higher level of

brain network integration associated with a greater ability in

high-level cognitive processes?

One method for analyzing the integration of cortical brain re-

gions during childhood is by identifying cortical hubs within

resting-state functional coactivation, or ‘‘connectivity,’’ (RSFC)

data. RSFC data allow us to view brain function as a large,

whole-brain network of integrated activity between brain regions

that is absent of a specific task state. This whole-brain network

of RSFC is then further organized into a set of networks25–28

that are reliably observed in adult populations. Importantly, acti-

vation of cortical regions within these established RSFC

networks, such as the cingulo-opercular and fronto-parietal net-

works, has been shown to be directly related to EF task

performance in children.15 We can quantify between-network

integration and the capacity for efficient exchange of information

across these brain networks with the identification of nodes that

are highly connected to multiple networks. This type of highly

connected brain region that connects and integrates functional

networks is referred to as a ‘‘hub’’ or ‘‘connector hub’’ re-

gion,29–31 and such hubs have been identified in adults during

both rest and active task states.32–34

Previous work identifying cortical hubs in adults has not only

identified specific cortical regions as connector hubs but has

also identified three distinct categories of connector hubs based

on functional connectivity profiles of parcels.35 These categories

were named ‘‘control-default’’ (deactivated during all tasks),

‘‘cross-control’’ (deactivated for motor task but activated for

memory task), and ‘‘control-processing’’ (activated during all

tasks) due to the cortical areas and functional networks they pri-

marily connected. Adult control-default hubs were localized to

the dorsal angular gyrus, precuneus, retrosplenial cortex, supe-

rior and inferior frontal gyrus, and ventromedial PFC. Adult

cross-control hubs, the second hub category, were localized

to the inferior parietal lobule, posterior precuneus, middle and

superior frontal gyrus, and supramarginal gyrus. Adult control-

processing hubs, the final adult hub category, were localized

to the dorsomedial PFC, lateral occipital cortex, pre- and post-

central gyrus, and posterior insula. Further, network simulations

that removed edges of these hubs from adult whole-brain

functional networks resulted in significantly altered brain-wide

functional network organization35 that would result in reduced in-

formation flow across the brain. These results suggest that not

only are distinct hub types present in the adult functional brain

network but that these specific hub regions play a potentially

crucial role in the integration and flow of information between

functional networks. Cross-control hub regionsmay play a larger

role in tasks that engage higher-level processes, such as those

of EF, given their more selective task-related activation in adults.

Given the fact that group-average RSFC networks appear

relatively adult-like in childhood36,37 and that the activation of

cortical regions within multiple RSFC networks are associated

with EF task performance in childhood,15 the current study

aimed to answer two main questions: (1) are the same three

distinct hub categories seen in adults also found in youths (sug-

gesting adult-like functional network integration), or are any of

these hub types absent or altered in childhood, and (2) if the inte-

gration of multiple networks is necessary for EF task perfor-

mance, does the functional connectivity strength of identified

hubs have practical implications for EFs? Namely, does a higher

nodal strength (the average value of all edges connected to that

node) of cortical hubs identified in youths relate to better EF task

performance? The current study tested the hypothesis that if

resting-state cortical hubs can be identified in a youth sample,

stronger hubs will reflect better integration of the brain’s

resting-state functional networks, which will relate to better out-

comes on measures of EF task performance.

RESULTS

Cortical hub parcels identified in youths
In order to test for distinct cortical hub categories in our youth

sample, we first identified all cortical parcels (predefined brain

regions within the Gordon parcellation) that had the network

properties of a cortical hub (see STAR Methods: identification

of hub parcels). We defined a resting-state cortical hub as any

parcel with a participation coefficient value in the top 20% for

a given individual. Cortical hub parcels were identified in all

567 participants, and the spatial consistency of hubs was exam-

ined across all subjects. While an expected degree of individual

variance in hub locations was observed, consistent hub overlap

was identified when hub parcels were aggregated across all 567

participants (Figure 1A; right hemisphere images can be found in

Figure S1). Hubs were most commonly observed in the bilateral

supramarginal gyrus, precuneus, superior parietal lobule, and

posterior cingulate; the right superior medial frontal gyrus; and

the left inferior temporal gyrus, inferior frontal gyrus, superior

frontal gyrus, prefrontal gyrus, and superior parietal lobule (Fig-

ure 1B). These peak parcels were members of the cingulo-oper-

cular, cingulo-parietal, fronto-parietal, default mode, dorsal

attention, and somatomotor hand resting-state functional net-

works per the Gordon 33326 surface parcellation (see Figure 1C

for network assignment reference).

Categories of youth cortical hub parcels
After identifying hub parcels across all individuals, we used hub

connectivity profiles to then cluster hubs with similar profiles into

distinct categories (see STAR Methods: hub parcel categoriza-

tion). Three sub-groups of participants were created for this

hub categorization step (n = 189 participants and 12,633 hub

profiles in each group). Across these three sub-groups, either

six or seven clusters were identified from the hub profiles within

each group (Figure S2). Out of these results, the first four clusters

in each group contained enough hub profiles to comfortably be

considered hub categories andwere assigned a qualitative label.

A fifth qualitatively similar cluster was found across the sub-

groups (cluster 5 in groups 1 and 2 and cluster 6 in group 3); how-

ever, the number of hub profiles in this cluster represented less

than 1% of the total. As a result, this cluster was not considered

for the main hub categories, nor were the remaining clusters that

contained only one or two hub profiles each; these were

removed from further analyses.
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Additionally, we checked for any possible influence of partici-

pant dataset on each group’s identified hub category clusters

(i.e., if clusters represented a specific data source, such as the

Adolescent Brain Cognitive Development [ABCD] or UT scans,

rather than unique hub connectivity profiles). Across all three

sub-groups, the identified hub category clusters showed a rela-

tively similar representation of participants from each fMRI

collection (Figure S3B, left vertical bar colored by collection).

Participants from all datasets showed similar proportions of

hubs assigned to each of the four main cluster categories (Fig-

ure S3C) across each of the three sub-groups. This suggests

that a single hub category was not driven by a specific dataset

but rather that all hub categories are present in all included

datasets.

The four main clusters were highly similar in all three of our

sub-groups (Figure S2) and were then merged across all 567

participants. Hub connectivity profiles for each of these clusters

were averaged across all participants, and four final ‘‘group-

wide’’ hub categories were created (Figure 2). Hub categories

were named based on their connectivity profiles and their resem-

blance to hub categories previously reported in adults.35 To

further confirm the hub category names and groupings, we ob-

tained the hub category density maps from the adult study.35

The four youth hub category density maps (Figure 2) were

correlated with the three adult hub category density maps to

quantify their closest adult hub category counterpart (Figure 3A).

These comparisons found higher correlations to their counter-

part adult hub category density map than 1,000 null models (Fig-

ure 3B) created from randomly rotating the youth category

density maps on the cortex (see STAR Methods: hub parcel

categorization).

The first category (12,983 profiles, 34% of total) contained

connections primarily to parcels within the default mode,

salience, ventral attention, fronto-parietal, unassigned, and cin-

gulo-parietal networks and was thus named the ‘‘youth con-

trol-default’’ hub (Figure 2A). These youth control-default hubs

were most similar to the adult control-default category (r =

0.638) and showed peak overlap in parcels located in the bilat-

eral precuneus, supramarginal and angular gyri, middle temporal

lobe, and the prefrontal and superior frontal cortex.

The second category of hubs (10,406 profiles, 27.4% of total)

contained connections primarily in the dorsal attention, visual,

retrosplenial-temporal, somatomotor hand, cingulo-opercular,

and cingulo-parietal networks. This second category was named

the ‘‘youth control-processing (VIS)’’ (VIS, visual) hub (Figure 2B),

was most similar to the adult control-processing category (r =

0.472), and showed peak overlap in parcels located in the inferior

temporal lobe, superior parietal cortex, precuneus, superior pa-

rietal lobe, and occipital lobe.

The third category, named the ‘‘youth control-processing

(AUD + SM)’’ (AUD, auditory; SM, somatomotor) hub (10,464

profiles, 27.5% of total) was also most similar to the adult con-

trol-processing category (r = 0.528), and contained parcels

with connections primarily in the auditory, cingulo-opercular, so-

matomotor mouth, and somatomotor hand functional networks

(Figure 2C). These youth control-processing (AUD + SM) hubs

showed peak parcel overlap in the supramarginal gyrus, anterior

cingulate, posterior insula, and pre- and postcentral gyrus.

The fourth major hub category (4,069 profiles, 10.7% of total)

contained parcels with connections primarily in the cingulo-

opercular, salience, dorsal attention, fronto-parietal, auditory,

and ventral attention networks and was named the ‘‘youth

cross-control’’ hub (Figure 2D). Youth cross-control hubs were

most similar to the adult cross-control hub category (r = 0.419)

and showed peak parcel overlap in the supramarginal gyrus,

anterior insula, pars opercularis, middle frontal gyrus, and

anterior cingulate.

EF task performance associated with cortical hub
connectivity
We tested the role of cortical hubs identified in youths on EF task

performance by associating the functional connectivity of hub

parcels, within each of the four identified categories, with EF

task outcomes. We tested this association by quantifying how

hubs may be specialized and support resting-state functional

network integration by integrating the functional networks

belonging to its assigned hub category. This value represented

the average connectivity of all hubs within a given hub category

Figure 1. Cortical hub identification

Cortical parcels identified as hubs. All images in are left hemisphere. Right

hemisphere images can be found in Figure S1.

(A) Density map of cortical parcels that were labeled as hubs across the full

group of 567 participants, illustrating the distribution of hub parcels across the

cortex.

(B) Parcels above a 70% threshold on the full group density map (70% chosen

only to highlight consistent hubs for visualization purposes) are outlined in

white to highlight peak hub regions.

(C) The Gordon 333 parcel set with network assignment key.
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to all parcels within the primary functional networks represented

in that given hub category.We labeled this value the ‘‘within-hub-

category’’ connectivity. Within-hub-category average connec-

tivity was then correlated with age-corrected scores on the

cognitive flexibility and working memory task outcomes from

each participant.

The within-hub-category average connectivity for both youth

control-processing (VIS) and youth control-processing (AUD +

SM) hubswas significantly correlated with the cognitive flexibility

task scores (r = 0.09, p = 0.03 and r = 0.13, p = 0.002, respec-

tively) before Bonferroni correction for multiple comparisons

(Figure 4). However, only the control-processing (AUD + SM)

hubs survived Bonferroni correction for eight tests (Bonferroni

adjusted p = 0.017). We also reran the same correlation analyses

using only the 500 ABCD participants in order to test if the larger

range of participant age in the UT sample significantly impacted

our outcomes. The results were similar to the whole-group anal-

ysis, with both control-processing hubs significantly correlated

(r = 0.10, p = .01 [VIS] and r = 0.12, p = 0.004 [AUD + SM]) with

cognitive flexibility task performance and only the control-pro-

cessing (AUD + SM) hubs surviving Bonferroni correction (Bon-

ferroni adjusted p = 0.032). Working memory task performance

was not significantly associated with any within-hub-category

connectivity.

DISCUSSION

Youth control-default and cross-control hubs show
more diverse connectivity than in adults
In the current work, we provide evidence that resting-state

cortical hub categories resembling those found in adults are es-

tablished bymiddle childhood. However, while adult-like cortical

hub categories are present in middle childhood, developmental

influences on functional network organizational trajectories

may explain the inclusion of additional network representation

in some youth hub categories. Specifically, we found evidence

of ongoing functional network refinement and segregation in

our youth control-default and youth cross-control categories

(Figures 2A and 2D), evidenced by more diverse functional

network representation than that found in their analogous adult

hub categories (e.g., the inclusion of stronger connectivity to

the salience network and weaker default mode connectivity in

youth cross-control hubs, and stronger salience network con-

nectivity in the youth control-default hubs, compared with those

observed in adults).

The inclusion of functional networks not found in the adult cat-

egories may be due to non-linear developmental trajectories of

functional network integration and specialization. Evidence of

this non-linear functional network integration during childhood

has been highlighted in previous work39 and may help explain

the more diverse connectivity observed in our youth-specific

hub categories. While the current work used participation coef-

ficient (PC) to identify individual parcels exhibiting hub-like con-

nectivity across functional networks, PC has also been used to

quantify the overall average integration of resting-state func-

tional networks. Marek and colleagues39 tracked fluctuations in

PC within common resting-state functional networks from early

adolescence to young adulthood. From ages 12 to 22, PC values

in the default mode network showed a U-shaped trajectory that

decreased until around 18 years old and then increased through

22 years old. Alternatively, PC values in the fronto-parietal

network increased from 12 to 14 years old, decreased until

around 20 years old, and then increased again through 22 years

old. These results suggest that, during development, parcels in

functional networks fluctuate between connections dominantly

within their ‘‘home’’ network to connections dominantly outside

of their ‘‘home’’ network.

Although themajority of participants in our sample are younger

than the age range in this previous work, their results offer a

possible explanation for the increased connectivity profile diver-

sity observed in the youth control-default and cross-control hub

categories compared with in adults. For example, during the

period of development highlighted in the current work (ages 8–

17 years), PC values for parcels within the default mode and

fronto-parietal networks for a given individual may rest anywhere

upon those non-linear curves.We posit that this fluctuation of PC

values during development results in more diverse connectivity

patterns for hub categories identified in youths. However, these

two hub categories (youth control-default and youth cross-con-

trol) were observed across all three of the participant sub-groups

(n = 189 each) used for the hub categorization step (Figure S2),

suggesting that these youth-specific hub categories are more

related to network refinement associated with development

than individual differences in our sub-samples of youths.

Two distinct types of youth control-processing hubs
Contrary to the single adult control-processing hub category that

integrates sensory networks with the cingulo-opercular and dor-

sal attention networks,35 we found that youth control-processing

hubs were split into two reliable and distinct categories across

subgroups. This evidence of two distinct control-processing

hub types in youth (youth control-processing (VIS) and youth

control-processing (AUD + SM) hubs; Figures 2B and 2C) may

highlight the developmental need for differentiated integration

of sensory inputs and outputs to cognitive-control-focused net-

works. Cortical activation related to cognitive control during task

Figure 2. Youth cortical hub categories

(A–D) Four primary cortical hub categories were identified in youths: (1) youth control-default (A) with connectivity primarily in the cingulo-parietal, default mode,

fronto-parietal, unassigned, salience, and ventral attention functional networks; (2) youth control-processing (VIS) (B) with connectivity primarily in the cingulo-

opercular, cingulo-parietal, dorsal attention, retrosplenial-temporal, somatomotor hand, and visual functional networks; (3) youth control-processing (AUD + SM)

(C) with connectivity primarily in the auditory, cingulo-opercular, somatomotor hand, and somatomotor mouth functional networks; and (4) youth cross-control

(D) with connectivity primarily in the auditory, cingulo-opercular, dorsal attention, fronto-parietal, salience, and ventral attention functional networks. Heat bars

indicate the number of subjects where a given parcel was identified as a hub. AUD, auditory; CO, cingulo-opercular; CP, cingulo-parietal; DMN, default mode; DA,

dorsal attention; FP, fronto-parietal; NA, unassigned; RT, restrosplenial-temporal; SAL, salience; SMh, somatomotor hand; SMm, somatomotor mouth; VA,

ventral attention; VIS, visual.
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engagement is anatomically separate from regions directly

involved in sensory processing and motor actions, but these

regions must coordinate incoming perceptions and outgoing re-

sponses for successful task performance.40 One theory of cogni-

tive control processes outlines a function where cortical regions

specialized for control processing may act as intermediaries that

route sensory information to and from cognitive-control-special-

ized networks.40,41 This proposed system is responsible for pro-

cessing incoming stimuli, routing this information to networks

that make decisions based on that incoming information, and

then routing those decisions back to the appropriate outputs

for the specific task.

We posit that the control-processing hubs found in youths are

differentiated based on sensory input, where the control-pro-

cessing (VIS) hubs primarily route visual stimuli to the dorsal

attention network and the control-processing (AUD + SM) hub

primarily routes auditory and somatomotor stimuli to the cin-

gulo-opercular network. The cingulo-opercular and dorsal atten-

tion networks, which are also primary networks within the youth

cross-control hubs, then interpret the information and make de-

cisions based on the task, before passing information back to

one or both of the control-processing hubs for output. This

observed split in control-processing hub categories provides

evidence that the functional networks that support this type of

cognitive-control-demanding task completion are not yet inte-

grated to the degree seen in an adult sample.35 We hypothesize

that this segregation of sensory stimuli that results in a separa-

tion of hub categories in our youth sample is due to the rapid

development of cortical regions that belong to the functional

networks.

Youth control-processing hubs are related to cognitive
flexibility
For the two identified youth control-processing categories (VIS

and AUD + SM), we found a significant association (before

correction for multiple comparisons) with performance on the

Figure 3. Youth hub density map comparisons with adults

(A) Correlation of youth hub density maps (by hub category) with adult hub density maps obtained from Gordon et al., 201835.

(B) Correlations of 1,000 randomly rotated youth hub density maps (by hub category) with the true correlation value highlighted in red.

(C and D) For visualization purposes, an example of the youth control-default hub density map (C) and the parcel-edge censored adult control-default hub density

map (D) are provided. Note: prior to correlational comparisons, the youth hub density maps were converted to vertex-wise values.
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cognitive flexibility task (Figure 4) that was collected out of scan-

ner (see STAR Methods: executive function tasks). Although the

control-processing (VIS) results did not survive Bonferroni

correction for eight tests, the correlation results follow the

same directional trend of the control-processing (AUD + SM) re-

sults that did survive correction. We feel that these results are

valuable for a better understanding of the association of youth-

specific hubs and cognitive flexibility task performance during

development. Based on recent work, we expect brain-behavior

associations using RSFC data to be very small, even when using

very large samples with thousands of participants.42 The split in

the control-processing hub category in youths is themost salient

divergence from the adult hub categories, and it is noteworthy

that both youth control-processing categories show a similar as-

sociation with cognitive flexibility task performance. Further

investigation is warranted into how these hub categories inte-

grate over age and how this integration may relate to mature

EF performance.

Additionally, these results support the theory outlined above

that both types of control-processing hubs in youths may act

as intermediaries, routing sensory information to and from

specialized cognitive-control networks necessary for successful

EF task completion. However, given that the network organiza-

tion tested in this current work is derived from resting-state

data, it is impossible to make direct associations in the current

work. This hypothesis does, however, align with the theory that

connectivity observed in RSFC data represents a long-standing

history of coactivation that occurs over the lifetime of an individ-

ual.43–46 We posit that the relationship of youth control-process-

ing hub RSFC with cognitive flexibility task performance is at

least partially a result of Hebbian coactivation of these hub re-

gions during development, which is necessary while youths are

engaged in the task state.

The association we see in the current studymay, in fact, also be

highlighting cortical areas previously found to exhibit significant

age-related differences in cognitive flexibility tasks.47 In this previ-

ous work, cortical regions within the fronto-parietal, default mode,

dorsal attention, and cingulo-opercular functional networks

showed significant age effects between adults and youths during

the preparatory control period of a similar cognitive flexibility

Figure 4. Hub connectivity associated with

EF task performance

(A and B) Average within-hub-category connectivity

correlated with cognitive flexibility task scores (un-

corrected r and p values). Significant associations

were observed before Bonferroni correction for the

average (A) youth control-processing (VIS) hub

connectivity and the average (B) youth control-pro-

cessing (AUD + SM) hub connectivity. Only the

(B) youth control-processing (AUD + SM) results

survived Bonferroni correction for 8 tests. Cognitive

flexibility scores were age corrected by regressing

out the effect of age and then Z scored.

(switching) task.47 The regions with the

greatest difference between youths and

adults during the cue period of the task line

up with our youth control-processing (VIS)

and control-processing (AUD + SM) categories. In fact, cortical

areas in the superior and inferior parietal, inferior temporal, and

lateral visual cortex show a large amount of overlap between the

peak age differences in that work and our youth control-process-

ing hub peak hub counts. We hypothesize that the similarity of re-

sults in these cortical regions may be evidence that youth control-

processing hubs are heavily involved in the preparatory control

phase of the cognitive flexibility task and are undergoing substan-

tial developmental change in this age range.

Together, these results suggest that individual differences in

youth control-processing hub connectivity may impact the suc-

cessful relay of sensory input to more cognitive-control-special-

ized networks, like those in the cross-control hub category.

During development, this routing of information may be espe-

cially important, as these control-processing hubs are not yet

consolidated as has been observed in adults.

Limitations of the study
In the current work, we used an established, predefined cortical

parcel set26 to identify cortical hubs in youths. While the use of a

predefined parcel set demonstrates the generalizability of hub

identification in youths and provides a less computationally

intensive method for this work, future work should quantitatively

test the difference of hubs defined with preestablished parcels

vs. individual-specific parcels (as used in the adult work35). Addi-

tionally, the current work focuses on a large, cross-sectional

sample from three fMRI collections to address the generaliz-

ability of hub categories found during development. However,

ourminimum inclusion criteria for this work was 5min of postmo-

tion censored data, and previous work has demonstrated that

datasets including large quantities of fMRI data (>45 min) result

in significant improvements of single-subject RSFC reli-

ability.48,49 Our future work plans to leverage a highly sampled

set of youths with hours of RSFC data, similar to the Midnight

Scan Club50 adult sample, to better investigate individual differ-

ences in RSFC hub categories during childhood using precision

functional mapping.

To fully understand the development of cortical hub parcels in

youths, the developmental trajectory of cortical hubs defined by

PC should be carefully considered. It is important that future
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work incorporates a longitudinal fMRI dataset that follows indi-

viduals from youth to adulthood (e.g., the ABCD study) and

tracks how the non-linear change of average PC of functional

networks impacts cortical hubs as children age. Of note, many

hub regions defined in our youth set belong to resting-state

functional networks, such as the default mode and fronto-parie-

tal networks, that have been shown to exhibit vast changes in co-

activation of both within and between network parcels during

this period of life.51–53 Future work should quantify the trajectory

of these changes in coactivation and how those changes

might influence cortical hub categorization during different

periods of development. Such work would add valuable knowl-

edge of how hubs organize longitudinally from youth into

adulthood.

Figure 5. Executive function tasks

(A–F) Examples of the cognitive flexibility tasks administered at the UT site (A, CogFlex) and the ABCD sites (C, dimensional change card sort [image: NIH

Toolbox]). Examples of the working memory tasks administered at the UT site (B, n-back) and the ABCD sites (D, emotional n-back [image: Casey et al.38]). To

match between sites, only trials containing neutral faces and places were used from the emotional n-back (EN-back) (D) task. Task score distributions are also

shown, separated by participants group, for the cognitive flexibility (E) and working memory (F) tasks.
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Lastly, the brain-behavior associations of cortical hubs to EF

task performance that we have highlighted in our youth dataset

are specific to functional network organization during resting

state. Previous work in adults found that the patterns of func-

tional coactivation or ‘‘connectivity’’ (FC) of connector hubs

showed significant changes from rest to task state compared

with non-connector hubs.33 While participants were engaged

in tasks, connector hubs showed increased modulation of be-

tween-network FC and reduced modulation of within-network

FC. Our future work plans to quantify the shift in hub connectivity

profiles from resting state to EF task state by replicating these

hub identification methods on fMRI data collected while youths

were actively engaged in the two EF tasks. We can then test

the influence of hub connectivity on task outcomes in these

different contexts relative to during rest.

Conclusions
Four main categories of cortical hub parcels, which strongly

resemble the three hub categories found in adults, can be iden-

tified in their ‘‘developmental form’’ by middle childhood. How-

ever, the youth control-processing hubs are split into two distinct

categories, and youth control-default and cross-control hub

connectivity profiles include more ‘‘control’’ network connec-

tions than their similar adult counterparts. Further, FC associated

with youth cortical control-processing hub categories showed a

distinct relationship with cognitive flexibility task performance.

We posit that control-processing hubs act as input/output con-

trollers of sensory information in youths and thus may relate to

coordinating and improving complex behaviors in development.

Overall, the results from this work suggest that adult-like

cortical hub categories can be clearly identified by middle child-

hood but that hub category profiles may still be developing,

especially in how control networks interface with input and

output processors; this developmental configuration may also

be influencing performance of some cognitive-control-

demanding tasks.
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Figure 6. Distance masks and cortical hub

profiles

(A and B) Correlations between cortical parcels less

than 30 mm geodesic distance of one another were

set to zero. This mitigates the impact of spatially

close parcels exhibiting higher functional connec-

tivity due to BOLD signal overlap rather than parcel

coactivation. One parcel centroid is highlighted (A),

and neighboring parcels within and beyond the

30mmgeodesic distance are shown. An example of

a hub connectivity profile is illustrated here (B).

Profiles are calculated by averaging the connectivity

between an identified hub parcel and its connec-

tivity to all parcels within each functional network.

This created a profile of 13 values: one average

correlation value for each of the predefined

functional networks. AUD, auditory; CO, cingulo-

opercular; CP, cingulo-parietal; DMN, default

mode; DA, dorsal attention; FP, fronto-parietal; NA,

unassigned; RT, restrosplenial-temporal; SMh, so-

matomotor hand; SMm, somatomotor mouth; VA,

ventral attention; VIS, visual.

Table 1. Participant demographics

Group demographics

UT ABCD Combined

Participants 67 (30 F) 500 (254 F) 567 (284 F)

Age range (years) 8.5–17.2 9.0–11 8.5–17.2

Age (mean [M] ± SD) 11.8 ± 2.1 10.1 ± 0.63 10.3 ± 1.1

Mean scan length 9:07 14:30 13:52

Race and ethnicity

Asian 2 7 9

Black 5 48 53

Hispanic 4 63 67

Multiracial or Other 15 38 53

White 41 344 385

Mean scan length is minutes and seconds of fully preprocessed resting-

state scan time, concatenated across all available runs, and postmotion

censoring at 0.25 framewise displacement (FD). F, female.
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study were required to have at least 5-min of post-processed resting state scan data, after motion censoring using a .25 framewise

displacement (FD) threshold (see post-motion censored time distribution in supplement (Figure S3A)). Participants from the UT data-

set were recruited for either a longitudinal, multidimensional study of executive function (e.g., Nugiel et al.57), or as part of the Texas

Twin Project.15 This combined dataset is comprised of youths ages 8.5–17.2 (M = 10.3) years-old at the time of scan, and only one
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vent participation in the MRI portion of the study.

Institutional review board (IRB) approval was received from the University of Texas at Austin (IRB #2014-09-0116; IRB #2016-06-

0025) and from the respective IRB sites associatedwith the Adolescent Brain Cognitive Development collection (DAR ID 11833).Writ-

ten assent was obtained by participants and written informed consent was obtained by their caregivers.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Adolescent brain cognitive development

(ABCD) data

Casey et al.38 RRID:SCR_015769 https://nda.nih.gov/abcd

Software and algorithms

FMRIB Software Library (FSL) Smith et al.54 RRID:SCR_002823; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

Freesurfer Dale et al.55 RRID:SCR_001847; https://surfer.nmr.mgh.harvard.edu/

MATLAB Mathworks56 RRID:SCR_001622; https://www.mathworks.com/

Original Code for this Manuscript This paper https://doi.org/10.5281/zenodo.7814714

Cell Reports 42, 112521, May 30, 2023 13

Article
ll

OPEN ACCESS

mailto:ddemeter@ucsd.edu
https://abcdstudy.org
https://nda.nih.gov/general-query.html
https://github.com/iamdamion
https://github.com/iamdamion
https://doi.org/10.5281/zenodo.7814714
https://nda.nih.gov/abcd
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://surfer.nmr.mgh.harvard.edu/
https://www.mathworks.com/
https://doi.org/10.5281/zenodo.7814714


METHOD DETAILS

Executive Function Tasks
The current study focused on tasks designed to target cognitive flexibility and working memory/updating EF abilities. Tasks were

matched as closely as possible between the University of Texas at Austin (UT) and the ABCD dataset, although slight differences

in the presented tasks are noted in the task details section. Further, in an effort to mitigate the influence of setting (tasks completed

inside or outside of MRI scanner) on task performance, task setting wasmatched between the two datasets. Therefore, the cognitive

flexibility task scores were collected from tasks performed outside of the scanner, while the working memory/updating task was per-

formed within the scanner. Similarly, we either normalized or matched the task scoring method reported for the ABCD dataset to

mitigate differences between reported scores within the two datasets (see Figures 5E and 5F for distribution of task scores across

collections).

Cued task switching/cognitive flexibility task
Participants in the UT dataset completed 46 trials of a cued rule matching task aimed to assess cognitive flexibility15,47 while outside

of the scanner (Figure 5A). For each trial, participants were cued tomatch a target stimulus based on one of two possible rules (match

the shape or color). Response choices were displayed for the duration of the trial. For the first 1.5 s of each trial a red box would

indicate the rule to follow. The target stimulus then appeared .5 s after the red box indicating the rule had disappeared and the stim-

ulus remained on screen for 2 s. During this time, the participant would indicate which response choicematched the target, according

to the rule. After each response period, a fixation cross was displayed for 1–4 s. All participants completed a brief practice example

set to confirm they understood the task. Z-scores calculated from task accuracy scores (correct/total trials) were used for our

analyses.

Participants in the ABCD dataset completed a similar switching task from the NIH Toolbox Cognition Battery; the Dimensional

Change Card Sort (DCCS) test58–60 while outside of the scanner (Figure 5C). During the DCCS, participants are presented with

two objects at the bottom of the screen. A third object is then presented in the middle of the screen and the participant is asked

to match it to one of the two objects on the bottom of the screen, either by shape or color. All participants are first given a practice

set, followed by a block of trials where they match based on one rule, a block where they match on the other rule, and then a block

where the rule is pseudo-randomly alternated between the shape and color rules. The DCCS provides a standard score metric

(normative mean = 100, SD = 15) that is not age corrected, and is provided to gauge a participant’s overall level of functioning on

the task. This score was then converted to z-scores for appropriate use with the UT dataset. This non-age-corrected score was

used as age correction is done later in our analyses.

Working memory/updating task
Participants in the UT dataset completed up to two versions of a block design, n-back task15 while inside the scanner (Figure 5B). At

the start of each scan, the participants were verbally reminded of the rules of the task by the scan operator. The n-back task was

adapted from61 and is used to assess an individual’s working memory or updating ability. Each task run consisted of 64 shape stimuli

in a fixed block design that were evenly divided into a 1-back and 2-back block. At the start of each block, participants were shown

instructions for 4 s that indicated if they should look for shapes shown one shape prior (1-back) or two shapes prior (2-back). Each

stimulus was shown for 1.5 s with a 1 s inter-stimulus interval. Participants were instructed to push a button when they believed the

shape they were currently viewing matched a shape either one or two shapes previous, based on the instructions. Each block was

followed by a 20 s fixation cross, and a total of 7 matches were shown in each block (21.0% of trials). The correct rate was calculated

(total correct/total stimuli shown) for only the 2-back trials, and this measure of task performance was used in our analyses.

Participants in the ABCD dataset completed up to two runs of an emotional n-back (EN-back) (Figure 5D) task while in the scan-

ner.38,62,63 The EN-back task is a variant of the Human Connectome Project n-back task63 and measures working memory pro-

cesses. The task includes two runs of eight blocks where participants are asked to indicate if an image matches or does not match

based on a 0-back or a 2-back rule. In the EN-back, trials consist of both emotional faces (such as happy or fearful) and neutral faces

or places. During the 2-back section participants are asked to indicate ‘‘match’’ when the current stimulus matches a target pre-

sented two trials back. Each block consists of 10 trials displayed for 2.5 s each and 4 fixation blocks displayed for 15 s each.

Each stimulus was presented for 2 s followed by a 500ms fixation cross. During each block, two of the trials are targets, 2–3 are

non-target lures, and the remaining trials are non-lures. To match the UT dataset, our analyses only included task performance

on the 2-back, non-emotional segments of the task, which was 4 blocks. We then calculated the correct rate (matching the UT data-

set task performance measure) and this measure was used for our analyses.

Neuroimaging acquisition
The university of Texas at austin

All participants scanned at the University of Texas at Austin (UT) were scanned in the Biomedical Imaging Center on a Siemens Skyra

3 T scanner, with a 32-channel head coil. Foam padding was used around the head for comfort and to reduce head motion, and ver-

bal feedback on body motion and to ensure participant comfort was provided between scans. One T1-weighted structural MPRAGE

sequence (TR = 2530ms, TE = 3.37ms, FOV = 256x256, voxel resolution = 13 13 1mm) scan and one T2-weighted structural image
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using a turbo spin echo sequence (TR = 3200ms, TE = 412ms, FOV = 256x256, voxel resolution = 13 13 1mm) were collected and

included in the preprocessing steps for this study.

Up to two, 6-min echo-planar sequence functional resting-state scans (TR = 2000ms, TE = 30ms, flip angle = 60�, MB factor = 2, 48

axial slices, voxel resolution = 23 23 2mm) were collected. All resting-state scans were acquired with the participant instructed to

view a white fixation cross on a black background. Participants were instructed to simply stay awake and lie still. Up to two working

memory task functional scans were collected (see n-back description above) using the same acquisition settings reported for the

resting-state scans. All tasks were run using PsychoPy version 1.864 with stimuli projected behind the scanner that participants

viewed using a mirror attached to the head coil. Participants recorded their responses during this task using a two-button response

pad.

Adolescent brain cognitive development (ABCD) study

In an effort to avoid any unknown scanner manufacturer confounds,65,66 only participant scans collected on a 3T Siemens Prisma

scanner were included in this dataset. All ABCD participant scans were downloaded in their unprocessed form from the NIH Data

archive (https://nda.nih.gov/abcd) and preprocessed using our in-house preprocessing pipeline. One T1-weighted structural scan

(TR = 2500ms, TE = 2.88ms, FOV = 256x256, voxel resolution = 1 3 1 3 1mm) and one T2-weighted structural scan (TR =

3200ms, TE = 565ms, FOV = 256x256, voxel resolution = 1 3 1 3 1mm) were used for our pre-processing. Up to four, 5-min

resting-state scans (TR = 800ms, TE = 30ms, flip angle = 52�, MB factor = 6, 60 axial slices, voxel resolution = 2.4 3 2.4 3

2.4mm) and up to two working memory functional scans (see EN-back description above) were collected and used in this study.

For complete information on the ABCD scan protocol, see Casey et al.38

Resting-state preprocessing
In-house preprocessing pipeline

To mitigate confounds to analyses that stem from preprocessing decisions, all participants’ scans were preprocessed using our

in-house pipeline comprised of FMRIB Software Library,54 Freesurfer,55 and Connectome Workbench67 commands, along with

custom MATLAB56 computational scripts. The pipeline follows the first three steps of the Human Connectome minimal preprocess-

ing pipeline,68 followed by volume and surface preprocessing steps developed in-house, informed by current best practices for

resting-state analyses.69–74

Volume resting-state preprocessing steps included: (1) motion correction and registration to 2mm MNI atlas space; (2) mode 1k

normalization; (3) temporal band-pass filtering (0.009Hz < f < 0.08 Hz); (4) demeaning and detrending of fMRI data; and (5) regression

of band-pass filtered nuisance signals including six directions of motion plus their derivatives, cerebral spinal fluid, white matter, and

whole brain signal. To reduce the reintroduction of noise that occurs with multiple transformations, all registration steps were done in

one single transform. Similarly, all nuisance signal regression and temporal filtering was performed simultaneously.74

Surface resting-state preprocessing steps work on the unsmoothed, but fully preprocessed volume scans from the volume pre-

processing stage and maps those outputs to 32k fs_LR surface space using the following steps: (1) creation of gray matter ribbon

using the white and pial boundaries previously created during the HCP steps; (2) downsampling of gray matter ribbon to functional

scan dimensions; (3) exclusion of voxels with high coefficient of variation to improve SNR (following the HCP pipeline’s ‘‘fMRISur-

face’’ procedure); (4) mapping of volume functional data to 32k fs_LR surface mesh; (5) spatial smoothing (2mm FWHM); (6) and

creation of CIFTI dense timeseries file.

QUANTIFICATION AND STATISTICAL ANALYSIS

Identification of hub parcels
Identification and categorical labeling of cortical hub nodes (parcels) largely followed themethods outlined byGordon and colleagues

using an adult sample.35 We identified hub nodes by first extracting resting-state timeseries for each individual, using a predefined

cortical surface parcellation set26 consisting of 333 unique parcels. Values for all vertices within each parcel were averaged and then

cross-correlated to create a 333x333 connectivity matrix, which was then Fisher-transformed. The spatial relationship of parcels was

taken into consideration by setting correlations of parcels that are within 30mm geodesic distance of one another to zero to mitigate

the impact of BOLD signal overlap on between-parcel coactivation (Figure 6A). Next, community detection was applied to each in-

dividual’s matrix using the Infomap algorithm75 across a set of edge density thresholds ranging from 0.3% to 5%. At each density

threshold, the Infomap algorithm was run using a random seed and 1k iterations. This method provided individually-specific com-

munity labels, for all parcels, at each matrix density threshold.

The participation coefficient (PC) metric was then calculated for each parcel, across all density thresholds, using the previously

defined individually-specific community labels provided by Infomap. PC for any parcel with a degree (the number of connections

to other parcels in the network) in the bottom 25th percentile of all parcels was set to zero. This degree censoring step is performed

due to parcels with a low degree providing unstable or inflated PC values.35 Finally, PC values were then converted to percentiles.

This percentile value, averaged across all thresholds, was used for hub identification. For our analyses, the top 20% of parcels for a

given individual (calculated from the percentile values of the previous step) was labeled as a hub; following the threshold suggested
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by Gordon and colleagues. While there is no established cutoff for labeling a parcel a hub vs. a non-hub, nearly identical results were

found using cutoffs from the 75th to 95th percentile35 and the 80th percentile cutoff is also reported in the previous adult work. Using

the 80th percentile cutoff resulted in 67 hubs for each participant.

Hub parcel categorization
Following hub identification, a connectivity profile was calculated for each hub. Hub connectivity profiles are created by calculating

the functional connectivity strength between each hub and all other parcels (excluding the hub’s self-correlation). Connectivity

strengths are then averaged across all within-network parcels to create a connectivity profile consisting of 13 averaged connectivity

strengths (one for each of the 13 independent networks in the Gordon parcellation) for each hub (Figure 6B).

Once hub connectivity profiles were created for all identified hubs, hub category types were assigned by clustering together hubs

that displayed a similar connectivity profile. We pseudo-randomly split our main sample into three groups of 189 participants (with

equal representation from the UT and ABCD datasets) to assess the stability of clusters found within our dataset. For each of these

three groups of 189 participants, the following stepswere completed: (1) First, we cross-correlated all identified hubs for all 189 group

participants to create a correlation matrix of hub profiles (12,663 x 12,663 matrix). (2) This correlation matrix was then used to identify

clusters within the set of hub profiles using the Louvain algorithm function76 from the brain connectivity toolbox. The Louvain

algorithm was applied to this signed matrix 1,000 times, using the asymmetric negative weight argument which preserves, but

down-weights negative connections as suggested for functional brain networks.77 (3) An ‘‘association-recluster’’ strategy (also

referred to as consensus clustering) was used to address the concern that modularity-based clustering is often non-deterministic,

and each iteration can result in different community assignments, despite the same input matrix. A consensus clustering assignment

was created by calculating the frequency, across the 1,000 Louvain iterations, that nodes co-occurred in the same community.78 (4)

This final consensus community assignment vector was used to group together hubs with similar connectivity profiles, and catego-

rize each group based on the average connectivity profile of all cortical hubs clustered into that group. (5) Each of these cluster groups

were then qualitatively compared to the three cortical hub categories described in the adult literature.35 Hub category names were

then assigned to each cluster group based on the average connectivity profile for all hubs in that group.

To test the appropriateness of our youth hub category names, the three adult hub category density maps were obtained from the

authors of the previous adult literature,35 and additional comparisons to the adult hub density maps were conducted. First, youth hub

density maps for each category were correlated against their adult counterparts (Figure 3A). For this step, values in regions between

cortical parcels in the adult maps were masked out and comparisons were conducted vertex-wise (see Figure 3D for visualization of

masked adult control-default density map). Comparisons of the adult hub density maps to null models of the youth hub density maps

were then conducted to highlight the true correlational relationship of the youth maps to the adult maps (Figure 3B). The null models

were created by randomly rotating all cortical parcels within the youth hub category density maps using a random cortical rotations

method.26 In this random cortical rotations method, 1K density maps are created by randomly placing parcels of the same size and

shape around the cortex, while maintaining the parcels relative position to one another. This method creates a null model that is then

appropriate for comparisons between the true youth and adult hub category density maps.

Cortical hub brain-behavior analyses
After hub categories were assigned for all cortical hubs, we then assessed the relationship of resting-state functional connectivity

(RSFC) of cortical hub types with EF task performance. First, the ‘‘within hub-category’’ average connectivity was calculated for

all cortical hubs within each category, for all participants. This value was calculated using only connectivity from each hub to parcels

within themain functional networks represented in the hub category of interest. This provided one average connectivity value for each

participant that represented the average connectivity of parcels within the main functional networks of a given hub category, to all

hubs belonging to that hub category. The average ‘‘within hub-category’’ connectivity values were then correlated with both the

cognitive flexibility and working memory task performance measures. For all tests, the cognitive flexibility and working memory

task scores were corrected for participant age via regression, and significance values were Bonferroni corrected for multiple

comparisons (eight tests).
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