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ABSTRACT 

The amount of data generated in medical records, especially in a modern 

context, is growing significantly. As the amount of data grows, it is very useful to 

classify the data into relevant classes for further interventions. Different methods 

that are not automated are very time-consuming and require manual effort have 

been tried for this before. 

Recently deep learning has been used for this task but due to the 

complexity of the dataset, specifically due to inter-class similarities in the dataset 

and specific terminology having different meanings in medical contexts has 

caused significant problems in having a definitive approach to medical notes 

classification. In this study, the different recent improvements to NLP borne from 

Transformer networks have been implemented on a significant medical notes 

dataset to classify them into 5 different classes, specifically neoplasms, digestive 

system diseases, nervous system diseases, cardiovascular diseases and general 

pathological conditions. 

To achieve this, specifically, the best model proposed is the BERT pre-

trained on a large corpus and fine-tuned on this medical notes dataset. A robust 

5-fold cross-validation is performed when these results are generated to utilize 

the entire dataset for finding optimal search parameters and the test dataset is 

used to report the results. The results on the optimized BERT model outperform 

the results in the paper that introduced this dataset and a baseline linear model. 
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In addition to the final accuracy, individual class-wise metrics were also 

calculated and reported showing that general pathological conditions have 

significant overlap with other diseases and thus are harder to classify. This was 

visualized using t-SNE of the embeddings of the CLS token in the BERT model. 

In conclusion, these results present a novel and effective method for 

medical notes classification using a transformer-based BERT model. The 

proposed model outperforms the current state-of-the-art results published on this 

dataset. There are still significant challenges requiring domain knowledge to be 

used in modelling to improve efficiency, but the proposed model achieves high 

class-wise accuracy metrics to automate classification tasks in the first pass after 

which further models can be used with higher confidence. 
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CHAPTER ONE 

INTRODUCTION 

 

Recording notes comprising all the relevant information of a patient is an 

important tool to preserve medical data. Health professionals must invest a 

significant amount of time collecting the data and this process involves a lot of 

manual intervention in organizing the accumulated records. By categorizing 

medical notes into predefined classes, such as diagnostic categories or levels of 

urgency, healthcare professionals can assist in prioritizing interventions and 

streamlining their workflow. Before the adoption of machine learning and 

modelling-based techniques, this effort was largely reliant on manual sorting and 

keyword-based searches. This was inherently very labor intensive, error-prone 

and lacked the scalability required to handle the large volumes of data generated 

in modern medical conditions [1]. There were rule-based systems which had 

nested conditions and regular expressions to scan through the texts, but these 

approaches were rigid and required constant updating to keep up with evolving 

medical terminology and techniques [2]. 

The limitations of these pre-ML approaches created the need for more 

advanced and automated solutions. Initially, shallow machine learning methods 

like Naive Bayes or SVM were applied but fell short in capturing the more 

intricate details of medical text [3]. More recently, in the last few years, CNNs 



 

 

2 

have gained a lot more prominence and have been successfully applied to this 

specific task [4]. 

Challenges 

In the realm of text classification specifically applied to medical notes, 

there are several challenges specific to classifying medical notes. A few of these 

challenges are described below: 

• Data Imbalance: Some terminologies are very specific to patients and thus 

are underrepresented in the dataset due to their rarity. So, the obvious 

problem of data imbalance between classes is more pronounced in this 

case [5]. 

• Terminological Variability: Medical notes often contain a plethora of 

synonyms, abbreviations, and jargon. These terms are not cleanly 

separable or identified in one individual class which again increases the 

challenge of modelling this data [6]. 

• Contextual Ambiguity: The meaning of certain terms in medical notes can 

change based on context. For instance, the term "cold" could refer to a 

viral infection or a low temperature, demanding models to have a deep 

contextual understanding [7]. 

• Lack of Training Data: Due to the sensitive nature of this content, there 

are not a lot of publicly annotated datasets available. However, obtaining 
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such annotations is challenging due to the need for expert knowledge, 

making large-scale labelled datasets scarce 

• Inter-institutional Variability: Notes from different healthcare institutions 

can have varying formats and levels of detail. This lack of standardization 

poses challenges in training universally applicable models [8]. 

The medical notes classification task has received some attention in 

recent times to translate the modern NLP model achievements to the biomedical 

field to do this specific task [4]. 

 

Aim of This Project 

In the realm of text classification for medical notes, various methodologies 

have been presented. This project introduces an optimized, transformer-based 

approach. By utilizing the capabilities of the transformer architecture, more 

specifically the BERT model was finetuned for medical note classifications. The 

primary objective is not only to classify the data but also to show the details of 

each classification. Through detailed analysis, the precision of each model is 

validated on individual tasks and its overall performance. Furthermore, by 

visualizing the embeddings from the model's last layer, further insights into the 

model's data representation are explored. This visualization unveils potential 

challenges inherent in the dataset and the solutions model offers in comparison 

to other techniques. In conclusion, this method has demonstrated superior 

performance when compared to other published approaches for this dataset. 
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CHAPTER TWO 

RELATED WORK 

 

This chapter will cover the approaches which have been tried specifically 

in the classification of medical records data. 

 

Traditional Machine Learning Approaches 

 
Rule-Based Approaches 

One of the earliest techniques employed for this task was rule-based 

systems where expert-curated rules were used to identify and classify medical 

concepts. These rules generally leveraged syntactic patterns of the language and 

semantic patterns related to the meaning of words and phrases to identify and 

classify different medical concepts in each hypothesis. Friedman [9] developed a 

natural language processing system specifically for clinical radiology reports. 

Their system used a combination of syntactic and semantic techniques to extract 

and structure information. In the syntactic case, the proposed system identified 

language structures and patterns to identify important information while on the 

semantic side, the system used the meaning of words and phrases and used 

those especially relevant to clinical importance to extract and identify relevant 

information from the data. 

 While this was one of the first relatively successful methods applied to 

these kinds of datasets, there were several immediate problems such as 
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scalability with manual curation of the rules, maintenance overhead of 

terminologies that evolve and the rules being too specific to the training dataset 

leading to lower generalized performance. This approach also relies heavily on 

the expertise of the domain experts curating the specific rules and 

misinterpretation in this case leads to lower performance. 

 BoW and TF-IDF 

Liu et al. [10] proposed an approach to classify clinical free-text radiology 

reports using machine learning techniques. In their methodology, the authors 

used two prominent text representation techniques: Bag-of-Words (BoW) and 

Term Frequency-Inverse Document Frequency (TF-IDF). The BoW is a simple 

yet effective model which represents texts based on the frequency of each word 

without considering ordinal position or order. On the other hand, the TF-IDF 

method weighs the importance of terms in documents by not only their local 

frequency but also their distribution in the entire dataset thus reducing the weight 

of commonly occurring terms that might not be so informative. This approach in 

general was found to be quite favourable compared to traditional Naive Bayes 

and SVM models. 

 

Early Deep Learning Approaches 

RNNs and LSTM 

Jagannatha et al. [11] explored the use of bidirectional Recurrent Neural 

Networks (RNNs) for medical event detection in Electronic Health Records 
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(EHR). This network was primarily targeting the sequential and temporal nature 

of clinical narratives. 

CNNs 

Gehrmann et al. [12] published a comparison between deep learning 

models, particularly CNNs, and traditional concept extraction methods for patient 

phenotyping and demonstrated the capability of these networks. 

  

Modern Deep Learning Approaches 

Transformer-Based Models 

With the recent popularity of transformer-based architectures, Lee et.al 

[13] introduced BioBERT, a variant of the BERT model pre- trained on a large-

scale biomedical corpus. The model was fine-tuned on specific biomedical text 

mining tasks, showing significant improvements over existing state- of-the-art 

models. 

Domain-Specific Pre-trained Models  

Alsentzer et al.[14] presented clinical embeddings from BERT, which was 

trained on a massive number of clinical notes. This work demonstrated the 

advantages of domain-specific embeddings, which capture the nuances and 

terminologies unique to the clinical domain, leading to enhanced performance in 

downstream tasks. 
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CHAPTER THREE  

DATA PREPARATION 

 

In the research, we made use of the health-related notes dataset found in 

the collection shared by Schopf et al.[15]. This dataset encompasses 14438 

training entries, accompanied by a separate testing set of 2888 entries. The 

entries are organized into five specific health categories: Tumours, Diseases of 

the digestive tract, Disorders of the nervous system, Heart-related conditions, 

and General health abnormalities. This organization assists in categorizing the 

data and provides a perspective on the variety of health issues covered in the 

dataset. 

The distribution of the data, detailed in Table 1, underscores the 

equilibrium between the categories, which could impact the efficacy of the 

models. Graphical depictions of this distribution can be seen in Figures 1 and 2. 

By examining the length of the summaries in both the training and 

evaluation datasets, we gained an understanding of the specifics of each entry. 

Visual results of this examination are displayed in Figures 3 and 4. 

Additionally, Figures 3-7 show the terms that appear most often in the 

dataset, giving a glimpse into commonly occurring topics. While words like 

"individual" are prevalent in all categories, they alone don't offer substantial 

differentiation. However, pairing these general terms with other unique terms 

specific to each category proves essential for data categorization. 
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Table 1. Distribution of Data Across Classes 

    

 

 

 
     

 
Figure 1.  Comparison of Categories.  
 
 
 
 

Class Name # Training # Test Total 

Neoplasms 2530 633 3163 

Digestive System 
Diseases 

1195 299 1494 

Nervous System 
Diseases 

1540 385 1925 

Cardiovascular 
Diseases 

2441 610 3051 

General Pathological 
Conditions 

3844 961 4805 

Total 11550 2888 14438 
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Figure 2. Class Distribution in Test Dataset 

 

 
 

 
Figure 3. Abstract Length in Training Dataset 
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Figure 4. Abstract Distribution in Test Dataset 

 
 

Data Format and Organization 

The dataset provided by Schopf et al. [15] is available on GitHub [18] as 3 

CSV files titled “medical_tc_train.csv” and “medical_tc_test.csv”. They contain 

records with labels called “medical_abstract” which is the medical note and 

"condition_label” which is the classes enumerated from 1-5 where the names of 

the classes are given in “medical_tc_labels.csv”. These files are loaded by using 

the “pandas” library into memory for further processing before being used by the 

model in a cross-validation setup. 
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Preprocessing 

As this dataset is used in the pipeline, before that the data is preprocessed 

to improve model performance using the following strategies. 

Text Cleaning 

• Convert all text to lowercase to ensure uniformity and reduce 

dimensionality. 

• Strip the text of any punctuation marks, as they may not be informative for 

models like logistic regression. 

Tokenization 

Split the abstracts into individual words or tokens. This is essential for 

models that operate on token-level input, such as RNNs, CNNs, and 

Transformers.  

Stop Words Removal 

Given the technical nature of medical abstracts, there needs to be strong 

caution in removing stop words. Standard stop-word lists might be not applicable 

since certain common words might carry importance in a medical context. 

Lemmatization 

Convert words to their base or dictionary form. For instance, "running" 

becomes "run". This can help in reducing the dimensionality and capturing 

semantic meaning. 
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Word Embeddings 

The network architectures contain an embedding layer and pre-trained 

word embeddings like Word2Vec, GloVe, or FastText. These embeddings can 

provide dense vector representations for words and potentially improve model 

performance. For Transformers, embeddings will be learned as part of the model. 

 

Other Publicly Available Datasets 

While the dataset by Schopf et al. [15] was used in this project, several 

other publicly available datasets in the medical domain could have been 

considered. 

These datasets offer diverse perspectives on health-related topics and are 

often used for different machine-learning tasks such as classification, regression, 

and clustering. The methods provided in this project can be further validated 

across those datasets. 

• MIMIC-III Clinical Database: A rich dataset containing de-identified health 

data associated with over forty thousand patients who stayed in critical 

care units of the Beth Israel Deaconess Medical Center between 2001 and 

2012. It includes information like demographics, vital signs, laboratory 

tests, and more [19]. 

• Medical Information Mart for Intensive Care (MIMIC-IV): An update to the 

MIMIC- III dataset, providing a more extensive collection of de-identified 

medical data\footnote [20]. 
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Figure 5. Word Clouds for Neoplasms 

 

 

 
Figure 6. Word Clouds for Digestive System Diseases 
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Figure 7. Word Clouds for Nervous System Diseases 
 
 
 

 

 
Figure 8. Word Clouds for Cardiovascular Diseases 
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Figure 9. Word Clouds for General Pathological Conditions 
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CHAPTER FOUR 

METHODOLOGY 

 

This chapter will outline the network architectures implemented for the 

task and their optimized hyperparameters. Further research improvements to 

transformer-based architecture are also discussed. 

 

Baseline 

Before delving into the complexities of transformer-based models, it is vital 

to establish a solid baseline to benchmark their performance. For this baseline, a 

well- established simple yet powerful linear model i.e., Logistic Regression is 

used, to classify medical notes. 

The hyperparameters of the Logistic Regression model were optimized 

using a GridSearch approach. The hyperparameters under consideration were: 

• Regularization strength 𝐶 : [0.001, 0.01, 0.1, 1, 10, 100] 

• Penalty: ["l1”, “l2”] 

• Solver: [“newton-cg”, “lbfgs”, “liblinear”, “sag”, “saga”] 

The best model, as determined by the GridSearch, was found to have the 

hyperparameters: 𝐶 =1, penalty as “l1”, and solver as “liblinear”. 

This will serve as a baseline against which the performance of subsequent 

transformer models will be compared. 
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Transformer 

Transformers, introduced by [16], have revolutionized the field of NLP due 

to their unique architecture and capability to capture contextual information [16]. 

In this project, this transformer architecture is leveraged for the classification of 

medical notes.  

The network architecture of the transformer can be seen in Figure 8. It  

consists of the following elements:  

• Input Embeddings: Tokens from the medical notes are initially converted 

into continuous vector representations or embeddings. These embeddings 

are further enhanced with positional encodings to incorporate the order of 

the words.  

• Multi-Head Self-Attention Mechanism: This allows the model to focus on 

different words with varying degrees of attention. It captures the inter-word 

dependencies without regard to their distances in the input text.  

• Feed-Forward Neural Networks: Each attention output is passed through a 

feed- forward neural network, the same one for each position.  

• Residual Connections: Around each sub-layer (i.e., attention and feed-

forward), there's a residual connection which helps in avoiding the 

vanishing gradient problem, enabling the model to be trained effectively.  

• Normalization and Layer Norm: The output from each sub-layer is 

normalized, ensuring that the activations don't reach extremely high or low 

values, facilitating faster and more stable training.  



 

 

18 

• Stacked Layers: Several such attention and feed-forward layers are 

stacked, allowing the model to capture complex patterns and 

relationships.  

• Output Layer: The final layer is typically a fully connected layer that 

projects the representation into the desired number of classes, in this 

case, the different categories of medical notes.  

For the task of classifying medical notes into five distinct classes using the 

transformer model, a specific set of hyperparameters was chosen to optimize 

performance. These hyperparameters were selected based on the literature 

review and optimizing the score on cross cross-validated dataset.  

Model Architecture 

• Number of Layers: A total of 12 encoder layers were employed in the 

transformer. Each layer comprises a multi-head self-attention mechanism 

followed by feed-forward neural networks.  

• Number of Attention Heads: Each encoder layer utilizes 8 attention heads, 

allowing the model to focus on different parts of the input simultaneously.  

Training Parameters 

• Batch Size: A batch size of 32 was used.  

• Learning Rate: An initial learning rate of 0.0005 was chosen, leveraging 

the Adam optimizer with a warm-up and decay strategy.  

• Dropout: To prevent overfitting and enhance generalization, a dropout rate 

of 0.1 was applied to various components of the network.  
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Regularization and Others 

• Layer Normalization: Layer normalization was applied before each sub-

layer, stabilizing the activations and enhancing training speed.  

• Positional Encoding: Sinusoidal positional encodings were added to the 

input embeddings to maintain word order information.  

In the process of fine-tuning the Transformer for the medical notes 

classification, attention visualization was employed to gauge the areas within the 

notes the model focused on. This method, based on the attention weights, 

provides insights into the model's decision-making process. It was observed that 

the model placed significant attention on specific medical terminologies and 

patterns, indicative of the underlying diseases. Moreover, gradient-based 

saliency maps were generated to further understand the importance of different 

tokens in the decision-making process.  

 

 

 

 

 

 

 

 

 



 

 

20 

 

Figure 10. Transformer Network Architecture  
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BERT 

BERT was another model applied for the same task. This network, 

introduced by Devlin et al. [17], has become a very popular approach to NLP due 

to its pre- training on large corpus followed by fine-tuning on specific tasks. Its 

bidirectional nature, which allows it to capture context from both the left and right 

sides of a token simultaneously, makes it particularly suited for intricate tasks like 

medical notes classification. The architecture of BERT, as illustrated in Figure 9, 

is built upon the transformer model. The primary difference lies in how BERT is 

pre-trained using two tasks: Masked Language Modeling (MLM) and Next 

Sentence Prediction (NSP).  

Input Representation 

• BERT combines token, segment, and positional embeddings to represent 

input data.  

Bidirectional Context 

• Unlike traditional left-to-right or right-to-left models, BERT is trained to 

predict tokens by considering context from both directions, thus termed 

"bidirectional".  

Pre-Training Tasks 

• MLM: Random tokens in a sentence are masked (hidden), and BERT is 

trained to predict them based solely on their context. 

• NSP: BERT is trained to predict if a sentence naturally follows a given 

sentence, aiding in understanding relationships between sentences. 
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Upon pre-training on large generic corpora, BERT can be fine-tuned for 

specific tasks, including classification. For the medical notes classification task, 

the last hidden state of the [CLS] token, a special token used in BERT's input 

representation, is extracted and fed into a fully connected layer. This layer's 

output is then used to classify the notes into one of the five desired categories. 

 

 
 

Figure 11. Overall Pre-Training and Fine-Tuning Procedures for BERT 

 

For the task of classifying medical notes into five distinct classes using the 

BERT model, the following hyperparameters are used after extensive 

experimentation. 

BERT Model Configuration 

• Model Variant: “bert-base-uncased". 

• Input Sequence Length: 512 tokens. This includes both the content and 

any special tokens, such as [CLS] and [SEP]. 
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• Number of Output Classes: 5 (corresponding to the five conditions). 

Tokenizer Configuration 

• Tokenizer: BERT tokenizer (base, uncased variant). 

• Maximum Token Length: 512 tokens. Each input sequence is limited to 

512 tokens to strike a balance between computational efficiency and 

information retention. 

• Truncation and Padding: Enabled, to ensure consistent input lengths. 

Training Configuration 

• Batch Size: 16 

• Learning Rate: $3 \times 10−5 

• Optimizer: AdamW 

• Loss Function: Cross-Entropy Loss 

 

Cross-Validation 

In the experiments that were conducted, a 5-fold cross-validation strategy 

was adopted to validate the performance of the model on the medical notes 

dataset, as illustrated in Figure 10. Cross-validation is a widely used technique in 

machine learning for assessing how a model generalizes to independent 

datasets. Specifically, 5-fold cross-validation involves splitting the dataset into 5 

equal-sized subsets or 'folds'. The training and evaluation process is repeated 

five times, with each fold acting as the validation set exactly once, and the 

remaining four folds collectively are used as the training set. 
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Figure 12. 5-Fold Cross Validation Illustration 

The provided illustration in Figure 10 delineates the iterative process of 

the 5-fold cross-validation:  

• In the first iteration, Fold 1 acts as the validation set while Fold 2, Fold 3, 

Fold 4, and Fold 5 together form the training set.  

• In the subsequent iteration, Fold 2 is utilized as the validation set and the 

other folds constitute the training data.  

• This pattern continues iteratively until each fold has been used as the 

validation data exactly once.  

Finally, after the relevant model parameters are chosen the performance 

is evaluated on the test set.  
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Memory and Hardware Requirements 

Deep learning, especially when dealing with architectures like 

Transformers and BERT, requires significant computational resources. The 

hardware and software setup for this project were adjusted to ensure optimal 

performance without compromising the efficiency of experiments. Here's a closer 

look at the setup and the versions of the software that's used. 

The different models listed in this project were trained and inference on 

the following hardware:  

• RAM: 16GB  

• Memory: Checkpoints size 2GB  

• GPU: 12GB NVIDIA GTX 1070  

• CPU: Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz  

Correspondingly, the software utilized for the networks is as follows:  

• torch: 2.0.1  

• pandas: 2.0.3  

• numpy: 1.24.4  

• matplotlib: 3.7.3  

 

Training Quirks and Nuances 

While training deep neural networks, especially more complex 

architectures such as Transformers and BERT, certain specific problems need to 
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be addressed that have a significant impact on model performance. Several 

important such factors will be discussed below:  

Model Initialization 

Model initialization is very important in certain classes of models. The way 

a model is initialized can significantly influence its convergence and final 

performance. While pre-trained models like BERT which have been implemented 

here have the advantage of leveraging weights from prior training on large data, 

the transformer models need very specific initialization. Techniques like He and 

Xavier initialization were tried to ensure the vanishing or exploding gradients 

problem doesn't occur.  

Learning Rate Scheduling 

Here while a constant learning rate is used for simpler tasks, in this project 

for medical notes classification sometimes a more dynamic learning rate proved 

more beneficial. Certain strategies like learning rate warm-up and decay were 

explored to see if the model converged faster. Generally, there were no 

significant drastic updates initially due to this and the decay phase subsequently 

reduced the learning rate over time which allowed the model to get a more 

refined solution. 

Tokenization Challenges 

As discussed in the previous preprocessing section, tokenization was very 

important for models like Transformers and BERT. However, in this dataset, 

standard tokenizers sometimes didn't perform properly and couldn't handle the 
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dataset due to jargon and abbreviations. Making sure these tokenization 

processes contained these nuances while not losing semantic meaning was 

manually observed.  

Positional Encoding Limitations 

As discussed in Chapter 4, the positional encodings are the way the 

transformer model imbibes context into the text for the model to process where 

the words are about other words. However, since medical notes were sometimes 

significantly long, the sinusoidal positional encoding could sometimes become 

less effective, especially if sequence lengths exceeded the typical lengths seen 

during training. Alternate ways were explored but in general, the dataset was 

able to maintain generalization with the sinusoidal encoding. While it was 

successful in this dataset, this is an important detail to recognize.  

Batch Size and Memory Constraints 

Newer architectures sometimes have many attention heads and layers. 

This can be quite memory-intensive. Balancing the batch size and memory and 

GPU available was important to train the model efficiently and to avoid out-of-

memory errors. Gradient accumulation could be considered in cases where this 

is not feasible but in this case for a reasonable batch size between 16 and 32, 

the model was trained successfully.  
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CHAPTER FIVE 

EXPERIMENTAL RESULTS 

 

Evaluation Metrics 

This chapter will outline the metrics used to compare the methods 

implemented for the medical notes classification task 

Accuracy 

Accuracy is the ratio of correct predictions (both true positives and true 

negatives) among the total number of records. It is most useful when classes are 

balanced. However, in cases where there's a class imbalance, accuracy can be 

misleading. The equation for accuracy [21] is: 

 

Accuracy  =  True Positives + True Negatives 

                                                             Total number of samples 

Precision 

To help with that problem with accuracy as a metric, another important 

value is Precision which evaluates the correctness of positive predictions. A high 

precision indicates a low false positive rate. It is particularly important when the 

cost of false positives is high. The equation for precision [21] is: 

 

Precision  =       True Positives 

True Positives + False Positives 



 

 

29 

Recall (Sensitivity) 

Recall on the other hand determines if the classifier can identify all 

relevant instances. It's crucial in scenarios where missing a positive sample 

(false negative) is more costly than misclassifying a negative sample (false 

positive). The equation [21] for this is: 

 

Recall  =       True Positives 

True Positives + False Negatives 

        
F1-Score 

The F1-score is the harmonic mean of precision and recall. It provides a 

balance between the two metrics, especially when there's an uneven class 

distribution. A higher F1 score indicates better-balanced precision and recall. The 

equation [21] is: 

Precision x Recall 
                            F1      =    2 x 

 
Precision + Recall 

 

AUC-ROC 

The ROC curve plots the true positive rate against the false positive rate 

for different threshold values. The AUC-ROC provides an aggregate measure of 

performance across all possible classification thresholds. A model with perfect 

discriminatory power has an AUC-ROC of 1, while a model with no discriminatory 

power (akin to random guessing) has an AUC-ROC of 0.5. 
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Result Analysis 

The methods outlined in Chapter 4 were employed on the datasets 

mentioned earlier for the classification of medical notes. This chapter provides a 

detailed summary of the results obtained from various transformer-based models 

in comparison with the baseline. A comprehensive review of the different 

experiments that were undertaken is also presented. The primary emphasis is on 

illustrating how the proposed BERT model stacks up against the baseline and 

current state-of-the-art models. 

Before discussing in-depth results, it is essential to note the number of 

trainable parameters in the different models: 

 

Table 2. Number of Trainable Parameters for Various Models 

Model # of Parameters 

Transformer 103,799,045 

BERT 109,486,085 

 

From Table 2, it is evident that the number of trainable parameters for the 

standard Transformer classifier and the BERT model are quite similar. Given that 

the baseline is a straightforward linear model, the number of parameters in these 

models is considerably higher in comparison. The performance metrics for the 

implemented models are provided in Table 3. The optimized BERT model, as 

observed, achieves the highest accuracy, making it the recommended model 

over the baseline logistic regression and the comparative Transformer model. A 
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detailed discussion of the results, with a primary focus on the proposed BERT 

model, is provided in the subsequent sections.  

 

Table 3. Performance Metrics for BERT and Baseline Models on Medical Note 
Classification 

 

 

Table 4. Class-wise Performance Metrics for Medical Note Classification 
for the  BERT Model 
 

Model Accuracy F1 Score Precision Recall 

Neoplasms 0.8726 0.6864 0.7709 0.7262 

Digestive 
System 
Diseases 

0.9124 0.6438 0.3445 0.4488 

Nervous System 
Diseases 

0.8975 0.6395 0.5299 0.5795 

Cardiovascular 
Diseases 

0.8778 0.6772 0.8049 0.7356 

General 
Pathological 
Conditions 

0.6208 0.5447 0.5515 0.5481 

 

From the provided classification metrics and class-specific results, the 

final proposed model is observed to outperform the baseline substantially. 

Confusion matrices for both models are depicted in Figures 13 and 14. 

Additionally, the AUC-ROC curve is illustrated in Figure 15. Delving into the 

Model Accuracy F1 Score Precision Recall 

Baseline 0.563 0.542 0.554 0.551 

Transformer 0.591 0.587 0.599 0.587 

BERT 0.629 0.621 0.627 0.629 
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class-wise accuracy metrics, it becomes evident that General Pathological 

Conditions pose a greater challenge in classification compared to other diseases, 

which achieve a minimum accuracy of 85%. The respective AUC-ROC values for 

the classes stand at 0.93 for neoplasms, 0.91 for digestive system diseases, 0.90 

for nervous system diseases, 0.93 for cardiovascular diseases, and 0.71 for 

general pathological conditions. These statistics underscore the inherent 

challenge of distinguishing general conditions from other disease categories. 

Comparison with State-of-the-Art 

Referring to the findings of Schopf et al. [15], who utilized the same 

dataset, the reported F1 scores are as follows: 

 

Table 5. Comparison with Results Published on the Same Dataset 
 

Model F1 Score 

Lbl2TransformerVec 
(SimCSE) 

39.60 

Word2Vec 25.00 

SimCSE 34.94 

DeBERTa [15] 57.28 

Final Model (Finetuned 
BERT) 

62.10 

 
 

From the table above, among the results published for this dataset, it is 

observed that the model finetuned with MLM and NSP exhibits the highest 

performance. The inherent challenge in classifying general pathological 

conditions will be further scrutinized by visualizing the network's last layer into 

distinct clusters. 
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Figure 13. Confusion Matrix of Baseline Linear Model 
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Figure 14. Confusion Matrix of BERT Model 
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Figure 15. ROC Curve and AUC-ROC Values Class-wise of BERT Model 

 

The t-SNE visualizations presented in Figure 14 offer an enhanced 

perspective of the embeddings derived from the BERT model. This visualization 

captures the embeddings of the Classification (CLS) token in the last layer. As 

can be seen, this visualization confirms the findings in Table 4. While it is not a 

linear model, there are clear separable clusters for every class except general 

pathological conditions which might explain the low accuracy. 
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Figure 16. t-SNE Visualization of Text Embeddings 

 

Insights And Project Contributions 

This section will cover the insights from models trained in this project 

along with the novelties compared to the original models that are used. The 

primary conclusions that can be drawn from the results listed in Tables 3 and 4 

show that the final model can classify the notes with accuracy at least 87% 

accuracy except in the case of general pathological conditions. These results are 

further validated in the visualizations in Figures 13 and 14 where the confusion 
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matrix shows that in both the cases of false positive and false negative the 

models are having a harder time concluding which texts classify as more general 

and also the low AUROC score in Figure 15. This can be thought of as the 

primary reason being that general conditions utilize words very common in all 

different diseases and they are a collection of different classes themselves 

grouped into one larger cluster. This part is visualized in Figure 16 concluding 

that in the case that the general pathological conditions are further mapped to 

different classes it will have a better chance. This is also shown in the word cloud 

in Figure 9 having very few unique words further explaining this difficulty. 

Regarding the novel contributions it was shown that utilizing He and Xavier 

initialization helped ensure that the vanishing or exploding gradient problem 

doesn't occur. Alongside, to improve the performance sinusoidal performance 

encoding was more effective than standard positional encoding. Along with this, 

the BERT model was finetuned to use a maximum of 512 tokens with truncation 

which showed to improve both performance and generalization. For the 

transformer itself, the network architecture was changed to use 12 layers as it 

was able to capture enough complex patterns with an increase not providing 

further gains in accuracy and needing more compute as well. In general, the 

inference is that individual models with more context on general pathological 

conditions as layered models could improve performance in that context. 
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CHAPTER SIX 

CONCLUSION 

 

In this project, medical notes classification was addressed using advanced 

deep-learning techniques. Within the domain of medical informatics, accurate 

categorization of medical notes stands as a cornerstone for administrative 

efficiency and the improvement of patient care.  

The BERT model, a popular implementation of the Transformer 

architecture, was adopted and its performance was benchmarked against other 

leading models. Metrics including accuracy, precision, recall, and F1-Score were 

employed for comprehensive evaluation. These quantitative benchmarks 

furnished insights into the model's capabilities and its comparative positioning.  

Though the model exhibited admirable performance in various class-wise 

accuracies, consistently surpassing the 85% threshold, challenges persist in the 

classification of general pathological conditions. There is potential for integrating 

more domain-specific knowledge into the modeling process. For example, fine- 

tuning specific parameters or leveraging domain-specific embeddings could 

enhance outcomes. The evident advantages of pretraining were highlighted; 

however, initializing natural language processing models with medical literature 

may further hone the model's capabilities.  
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Additionally, the exploration of advanced attention mechanisms offers 

promise. Considering the structured nature of medical notes, models adept at 

capturing interrelationships between medical terms could prove invaluable.  

This project thus underscores the potential and effectiveness of a fine-

tuned BERT model in the realm of medical notes classification. By further 

iterating on these methodologies and refining the approach, there is the 

possibility that the classification process can achieve greater precision, thereby 

minimizing manual oversight and elevating the accuracy of categorization. More 

specifically, recent improvements in the GPT architecture can be transferred to 

this dataset but this network generally requires much more data than what is 

used in this project.  

 

Future Work 

The medical note classification using transformer-based models, 

especially the BERT variant, has shown promising results. However, several 

options remain unexplored and could be pursued to further improve the 

performance or provide more insights into the problem. Here are some 

suggestions for future work:  

• Data Augmentation: Finding annotated datasets in the medical field is 

quite challenging. Data augmentation techniques, such as back translation 

or synonym replacement, could be employed to artificially expand the 

dataset and potentially improve the model’s robustness. 
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• Class-specific Models: Given the difficulty in classifying general 

pathological conditions, as observed from the results, it might be beneficial 

to build class- specific models, where each model is specifically fine-tuned 

for a particular category of diseases. This would be especially helpful to 

further sub-categorize the general pathological conditions.  

• Attention Visualization: While the t-SNE visualizations of embeddings are 

very useful, further work can also include visualizing the attention weights 

as they progress through the network.  

• Few-shot and Zero-shot Learning: For rare diseases or conditions where 

only, a few labeled examples are available, few-shot or even zero-shot 

learning techniques could be explored to leverage the knowledge gained 

from other tasks.  
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APPENDIX 

MODEL CODE 
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Checkpoints for the various trained models can be provided upon request. 

This includes network code, checkpoints, training, and evaluation files. 

The final proposed model code can be seen below: 

# Imports 

import re 

import string  

import pandas as pd import torch  

from tqdm import tqdm 

from sklearn.model_selection import train_test_split 

from transformers import BertTokenizer, 

BertForSequenceClassification, AdamW 

from torch.nn import CrossEntropyLoss 

from sklearn.metrics import accuracy_score, f1_score, 

precision_score, recall_score, confusion_matrix, roc_curve, 

auc  

# NLTK for text preprocessing 

import nltk 

from nltk.stem import WordNetLemmatizer  

from nltk.corpus import stopwords  

# Download necessary NLTK resources 

nltk.download('wordnet')  
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nltk.download('stopwords')  

# 1. Text Preprocessing 

def clean_and_lemmatize(texts, remove_stopwords=True):  

lemmatizer = WordNetLemmatizer() cleaned_texts = [] 

for text in texts:  

# Convert to lowercase 

text = text.lower() 

# Remove punctuation 

text = re.sub(f"[{string.punctuation}]", "",text)  

# Tokenize by splitting the text into words 

tokens = text.split()  

# Optional: Remove stop words  

if remove_stopwords:  

tokens = [word for word in tokens if word 

not in stopwords.words('english')]  

# Lemmatize each token  

lemmatized_tokens 

=[lemmatizer.lemmatize(token) for token in 

tokens]  

# Reconstruct the text from tokens 

cleaned_text = ' '.join(lemmatized_tokens) 

cleaned_texts.append(cleaned_text)  

return cleaned_texts  
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# 2. Data Loading 

def load_data(file_path):  

return pd.read_csv(file_path) 

# 3. Tokenization 

def tokenize_data(data, tokenizer):  

return tokenizer(data, padding=True, 

truncation=True, max_length=512, return_tensors='pt')  

# 4. Data Preparation 

def prepare_data(tokenized_data, labels):  

train_inputs, val_inputs, train_labels, 

val_labels = train_test_split(  

tokenized_data['input_ids'], labels, 

test_size=0.2, stratify=labels, random_state=42  

)  

train_attention_masks, val_attention_masks, 

_, _ = train_test_split(  

tokenized_data['attention_mask'], 

labels, test_size=0.2, stratify=labels, 

random_state=42  

)  

return train_inputs, val_inputs, 

train_attention_masks, val_attention_masks, 

train_labels, val_labels  
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# 5. Model Training and Validation 

def train_and_evaluate(train_data, val_data, model, 

epochs, batch_size, learning_rate):  

# Device setup  

device = torch.device('cuda' if 

torch.cuda.is_available() else 'cpu')  

     model.to(device) 

# Optimizer and loss function 

optimizer = AdamW(model.parameters(), 

lr=learning_rate) loss_fn = CrossEntropyLoss()  

train_inputs, val_inputs, 

train_attention_masks, val_attention_masks, 

train_labels, val_labels = train_data  

# Lists to store metrics  

train_losses = []  

val_losses = []  

val_accuracies = []  

for epoch in range(epochs):  

model.train()  

          total_loss = 0 

train_loop = tqdm(range(0, 

len(train_inputs), batch_size), 

total=len(train_inputs) // batch_size)  
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for i in train_loop: 

batch_input = 

train_inputs[i:i+batch_size].to(device)  

batch_masks = 

train_attention_masks[i:i+batch_size].t

o(device)  

batch_labels =  

torch.tensor(train_labels[i:i+batch_siz

e]).to(device) 

optimizer.zero_grad() 

outputs = model(batch_input, 

attention_mask=batch_masks, 

labels=batch_labels)  

loss = outputs.loss  

loss.backward()  

optimizer.step()  

total_loss += loss.item() 

train_loop.set_description(f"Epoch 

{epoch+1}") 

train_loop.set_postfix(loss=loss.item()

)  

avg_train_loss = total_loss / 

(len(train_inputs) // batch_size)  
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train_losses.append(avg_train_loss) 

print(f"Epoch {epoch+1}, Training loss: 

{avg_train_loss}")  

 

# Validation step 

model.eval() 

total_val_loss = 0 

correct = 0 

val_loop = tqdm(range(0, len(val_inputs), 

batch_size),  

total=len(val_inputs) // batch_size)  

with torch.no_grad():  

for i in val_loop: 

batch_input = 

val_inputs[i:i+batch_size].to(device)  

batch_masks =  

val_attention_masks[i:i+batch_size].to(

device) 

batch_labels = 

torch.tensor(val_labels[i:i+batch_size]

).to(device)  
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outputs = model(batch_input, 

attention_mask=batch_masks, 

labels=batch_labels)  

loss = outputs.loss  

total_val_loss += loss.item()  

preds = 

torch.argmax(outputs.logits, 

dim=1)  

correct += (preds == 

batch_labels).sum().item()  

val_loop.set_description(f"Validat

ing (Epoch{epoch+1})") 

  

 val_loop.set_postfix(val_loss=loss

.item()) 

avg_val_loss = total_val_loss / 

(len(val_inputs) // batch_size)  

val_accuracy = correct / 

len(val_labels) 

val_losses.append(avg_val_loss) 

val_accuracies.append(val_accuracy) 

print(f"Epoch {epoch+1}, Validation 

loss: {avg_val_loss},  
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  Validation accuracy: {val_accuracy}") 

  return train_losses, val_losses, 

val_accuracies  

   def test(test_data, model, batch_size = 32):  

  # Device setup  

  device = torch.device('cuda' if 

torch.cuda.is_available() else  

 'cpu') 

        model.to(device) 

# Ensure model is in evaluation mode  

model.eval()  

# Get predictions on test data  

all_test_preds = [] 

with torch.no_grad():  

for i in range(0, len(test_data), 

batch_size):  

batch_input =  

test_data['input_ids'][i:i+batch_size].to(de

vice)  

batch_masks =  

test_data['attention_mask'][i:i+batch_size].to(de

vice) 
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outputs = model(batch_input, 

attention_mask=batch_masks)  

preds = torch.argmax(outputs.logits, 

dim=1) 

all_test_preds.extend(preds.cpu().numpy())  

# Convert the labels to 0-indexed values 

test_labels = test_data['condition_label'].values 

- 1 

# Calculate metrics 

accuracy = accuracy_score(test_labels, 

all_test_preds) 

f1 = f1_score(test_labels, all_test_preds, 

average='weighted')  

precision = precision_score(test_labels, 

all_test_preds,  

average='weighted') 

recall = recall_score(test_labels, 

all_test_preds, average='weighted')  

print(f"Accuracy: {accuracy}") print(f"F1 Score: 

{f1}") print(f"Precision: {precision}") 

print(f"Recall: {recall}")  

# Main execution 

def main(): 
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# Load the dataset 

data = load_data('./medical_tc_train.csv')  

# Initialize the tokenizer 

tokenizer = BertTokenizer.from_pretrained('bert-

base-uncased')  

# Preprocess and tokenize the medical abstracts  

cleaned_abstracts = 

clean_and_lemmatize(data['medical_abstract'], 

remove_stopwords=True)  

tokenized_data = tokenize_data(cleaned_abstracts, 

tokenizer)  

# Labels starting from 0 

labels = data['condition_label'].values - 1  

# Prepare data for training and validation  

train_data = prepare_data(tokenized_data, labels)  

# Initialize the model  

model = 

BertForSequenceClassification.from_pretrained('be

rt- base-uncased', num_labels=5)  

# Training parameters  

learning_rate = 2e-5  

batch_size = 12  

epochs = 50  
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# Train and evaluate the model 

train_losses, val_losses, val_accuracies = 

train_and_evaluate(train_data, None, model, 

epochs, batch_size, learning_rate)  

# Save the trained model model_save_path = 

'/mnt/bert.pt' 

model.save_pretrained(model_save_path)  

# Output the results print("Training complete!")  

test_data = load_data('./medical_tc_test.csv')  

cleaned_test_abstracts = 

clean_and_lemmatize(test_data['medical_abstract']

, remove_stopwords=False)  

tokenized_test_data = 

tokenize_data(cleaned_test_abstracts,  

tokenizer)  

test(tokenized_test_data, model)  

# Run the main function  

if name == " main ":  

main()  
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