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ABSTRACT 

Sentiment Analysis is an ongoing research in the field of Natural 

Language Processing (NLP). In this project, I will evaluate my testing against an 

Amazon Reviews Dataset, which contains more than 100 thousand reviews from 

customers. This project classifies the reviews using three methods –  using a 

sentiment score by comparing the words of the reviews based on every positive 

and negative word that appears in the text with the Opinion Lexicon dataset, by 

considering the text’s variating sentiment polarity scores with a Python library 

called TextBlob, and with the help of neural network training. I have created a 

neural network model that learns from the review stars and then compare the 

neural network’s performance against both the Opinion Lexicon and TextBlob’s 

classification methods. We see that the accuracy of the Opinion Lexicon 

classification method is 64.38% while the accuracy with TextBlob’s classification 

method is 65.71% and the neural network model achieves an accuracy of 

96.46%. The model would help brands for future reviews left by customers by 

classifying them as positive, negative, or neutral. 
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CHAPTER ONE 

INTRODUCTION 

Amazon reviews play a crucial role in the online shopping experience, 

offering potential buyers valuable insights and feedback from other customers on 

products they are considering. Reviews can range from simple star ratings to 

profound and detailed comments about a product's quality, usability, efficiency 

features, and performance. Amazon’s review ecosystem is a colossal compilation 

of diverse opinions and evaluations, which makes it an indispensable resource 

for shoppers seeking to make informed purchase decisions. To help ensure 

authenticity, Amazon's review system includes a "verified purchase" feature that 

provides additional confidence for buyers. Reviews on Amazon are a powerful 

tool for consumers, manufacturers, and retailers alike, as they help build 

customer satisfaction and trust. Reviews manifest as an influential tool for both 

consumers and manufacturers. They facilitate the cultivation of customer 

satisfaction, loyalty, and trust, which are paramount in the competitive realm of 

online retail. These reviews can help provide valuable insights for businesses 

and this can help them refine their products and services, thereby adopting a 

customer-centric ecosystem infused with quality and excellence.  

Natural Language Processing (NLP) is a field of artificial intelligence that 

focuses on enables computers to understand, interpret, and generate human 

language[1]. NLP combines linguistics, computer science, and artificial 

intelligence techniques to create algorithms and models to process and analyze 
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natural language data. These algorithms and models are typically trained on 

large text datasets such as books, news articles, research papers, and social 

media posts. Machine learning techniques are used to improve the accuracy and 

performance of NLP models. The field of NLP is growing rapidly with numerous 

exciting developments and applications. As digital text keeps on growing, NLP 

will become increasingly important for making sense of and leveraging this data. 

By processing and analyzing large volumes of textual data, NLP can provide 

valuable insights and will be capable of automating tasks that would otherwise 

require human intervention.  

In this project, I will be using Natural Language Processing’s key feature – 

sentiment analysis. With sentiment analysis, the existing reviews can be 

classified as Positive, Negative, or Neutral for companies to learn what worked 

with their product and what did not. Sentiment analysis can provide insights for 

common themes and sentiments in reviews, what products make the customer 

happy, and what issues could they be facing with a product. Sentiment analysis 

will help brands and manufacturers to analyze these reviews and look beyond 

the star ratings.  
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CHAPTER TWO 

LITERATURE REVIEW 

Existing Methods 

Sentiment analysis has been an active area of research, with various 

approaches and techniques proposed to analyze and classify sentiments in 

textual data. Traditional approaches often relied on lexicon-based methods that 

used sentiment lexicons or dictionaries containing predefined sentiment polarity 

for words. These lexicons were manually curated or generated using linguistic 

heuristics and contained positive and negative words with their associated 

sentiment scores. Commonly used techniques to create lexicons include 

counting the occurrences of positive and negative words in a text or computing 

sentiment scores based on the aggregation of word-level sentiments. 

Machine learning is a widely used approach in sentiment analysis. 

Algorithms are trained on labeled datasets to classify sentiments. Techniques 

such as Naive Bayes, Support Vector Machines (SVM), and Decision Trees have 

been used, with features derived from the text, such as syntactic patterns, or 

linguistic features. Feature engineering plays a crucial role in extracting relevant 

information from the text, while model training and optimization focuses on 

achieving high accuracy and generalization. 

More recently, deep learning models have gained popularity in sentiment 

analysis. Recurrent Neural Networks (RNNs) like Simple RNN, Gated Recurrent 

United Neural Network (GRUNN), and Long Short-Term Memory (LSTM) 
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networks have been successfully used to capture sequential dependencies and 

contextual information in texts.  

Previous Work 

In the past few years, a vast number of projects have been done in the 

field of sentiment analysis.  

• Pak and Paroubek proposed techniques to classify twitter reviews 

as positive, negative, or neutral. They used twitter API to collect 

tweets and analyze sentiments using Naive Based algorithms.[2]  

• Kiritchenko et al. wanted to improve the then existing Arabic 

sentiment lexicons since they had very low coverage. They then 

generated Arabic Translations of English Sentiment Lexicons by 

collecting Arabic tweets from Twitter and from the Arabic translation 

of NRC Emotion Lexicon.[3]  

• Park and Kim used a dictionary-based approach which consists of 

a list of predefined opinion words that were collected manually. 

They discovered that traditional dictionary-based approach is not 

enough and found the need to expand on the lexicon and build a 

new expansive thesaurus lexicon would increase the accuracy of 

the sentiment classification.[4]  

• Bautin et al. explored the concept of international sentiment 

analysis by using the Lydia text analysis system. The Lydia system 
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recognizes named entities in text and extract their temporal and 

spatial distribution and were able to analyze nine different 

languages. They felt the need to develop a system that would not 

lose the meaning of the word by simply translating the words to 

English and then performing sentiment analysis on them. They 

discovered that the calculated sentiment scores ended up being 

consistent across various languages without the need of a 

translator. They also proposed a cross-language analysis sentiment 

polarity score calculation that works across other cross-cultural 

comparisons.[5] 

• S.H. Muhammad et al. proposed the first large-scale human-

annotated Twitter sentiment dataset for four of the most widely 

spoken languages in Nigeria which consisted of 30,000 annotated 

tweets per language. They introduced methods for human 

annotators to manually decide the sentiment with the subjectivity 

voting of a text – if it has three positive vote the sentiment is 

positive, if it has three negative votes, the sentiment is negative, if it 

has two positive or two negative and the third vote is the opposite 

then they consider the majority vote to be of that sentiment. They 

also created sentiment lexicons for three Nigerian languages based 

on the NaijaSenti dataset. For sentiment analysis, they opted to use 

multiple local variants of BERT (Bidirectional Encoder 
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Representations from Transformers) – a multilingual variant of 

BERT trained of 104 languages called mBERT, a scaled-up 

mBERT called RemBERT which decouples embeddings and 

enable larger embedding output sizes during pre-training, a 

RoBERTa-style model called AfriBERTA which is trained on 11 

African languages, mDEBERTaV3 and XLM-R.[6] 

• Yan et al. presented a unified generative framework for Aspect-

based Sentiment Analysis (ABSA) which aimed to address multiple 

ABSA tasks within a single model. ABSA identifies aspect terms, 

sentiment polarities, and opinion terms in text. They proposed an 

approach where each tasks is a generative task. They use a pre-

trained sequence-to-sequence model BART to solve all ABSA 

tasks.[7] 

• Singh et al. performed sentiment analysis with the help of the BERT 

model on Twitter data sets to understand the public sentiments and 

opinions regarding the impact of COVID-19. One data set is 

collected by tweets from all around the world, and the other data 

set contains tweets made from accounts in India. The sentiment 

analysis is done by considering the polarity scores of the TextBlob 

library.[8] 

• Lyu et al. studied the sentiments in the COVID-19 vaccine-related 

discussion on Twitter tweets from the day WHO declared COVID-
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19 a pandemic on March 11, 2020, to January 31, 2021. The 

dataset consisted of 1,499,421 unique tweets from 583,500 

different users. The data consisted of discussions about 

vaccinations as the countries of the world progressed towards 

manufacturing its first vaccine. The resulting data showed the trust 

emotion reaching its peak on November 9, 2020 after Pfizer 

announced that its vaccine is 90% effective. They used syuzhet, 

which is a popular R package for sentiment and emotion analysis, 

and the National Research Council of Canada Emotion Lexicon for 

the dictionary. The increasingly positive sentiment around COVID-

19 vaccines and distant amount of trust implies a higher 

acceptance of COVID-19 vaccines compared to the previous 

ones.[9] 

• Rustam et al. performed sentiment analysis on tweets relating to 

COVID-19 using multiple machine learning methods. They used RF 

which is used for classification and regression problems that 

generates several trees and performs voting between them to make 

a majority decision. They used XGBoost which is a Gradient 

Boosting classifier that assigns weight to each sample, and has 

regularization techniques to control over-fitting of data. They used 

SVC which is a linear model used for sentiment analysis. They 

used Extra Trees Classifier (ETC) which trains and fits the number 
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of weak learners randomized on decision trees and boosts the 

prediction accuracy. They used the TextBlob library to find the 

sentiment polarity scores. They also used feature-extraction 

techniques such as TF-IDF, BoW and a combination of TF-IDF and 

BoW. They conclude that ETC is the best performer of them all with 

an accuracy of 93%, outperforming RF and XGBoost who both 

showed an accuracy of 92%.[10] 

• Nandwani and Verma discuss the various approaches of sentiment 

analysis and found while the lexicon-based approach performs well 

in both sentiment and emotion analysis, the dictionary-based 

approach is more adaptable and easier to apply.[11] 
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CHAPTER THREE: 

PROPOSED SYSTEM 

Proposed System  

This project aims to develop a model that accurately categorizes Amazon 

reviews as positive, negative, or neutral. It will employ several machine learning 

techniques that can help classify sentiment in Amazon reviews with high 

accuracy. Such sentiment analysis is useful for both consumers looking to 

explore a product or service and marketers seeking to gauge public sentiment 

about their business. 

To achieve accurate sentiment classification, my proposed sentiment 

analysis system consists of preprocessing techniques, lexical resources, and 

deep learning models. The initial step is text preprocessing, which involves 

lowercasing, removing punctuation, tokenizing, eliminating irrelevant words by 

removing stopwords, and handling word contractions. We utilize existing 

sentiment lexicons like Opinion Lexicon to identify positive and negative words 

and assign sentiment scores to the text. These lexicons provide valuable 

resources for sentiment classification. In addition to using opinion sentiment 

lexicons, we will also use TextBlob which uses its own internal sentiment 

analysis capabilities to find the text’s emotional tone. TextBlob’s internal analysis 

can offer an enhanced accuracy and classification compared to Opinion Lexicon. 

We will then calculate sentiment scores for each text by aggregating the 

sentiment polarities of individual words using Opinion Lexicon and TextBlob. In 
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addition, we employ advanced sentiment analysis models like LSTM (Long 

Short-Term Memory)[12] networks to capture contextual information and 

sequential dependencies within the text for more accurate sentiment 

classification. The sentiment analysis system is trained on a labeled dataset, 

where sentiments are categorized as positive, negative, and neutral.  

 

 

 
 

Figure 1. Block Diagram of Model 
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The block diagram in Figure 1 illustrates the different phases involved in 

working with the training model. I gathered review data from Amazon for select 

products using a Google Chrome browser extension. The raw reviews are 

carefully collected and compiled into a structured dataset for further analysis. The 

loaded data is processed to ensure data consistency by removing any 

whitespaces and punctuations and converting all text to lowercase. Next, the 

review text is categorized with three methods - by classifying the reviews based 

on the review stars on Amazon, by classifying the reviews using the sentiment 

score based on Opinion Lexicon, and by classifying the reviews using the 

sentiment polarity score of the text based on TextBlob.  

Once the text is categorized, we will train the neural network with 

TensorFlow Keras' Sequential model. The neural network will be trained on the 

classification labels of the review star method and will learn what texts are 

positive, negative, or neutral. After the training and testing we will evaluate each 

classification’s performance with Confusion Matrix metrics. 
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System Specifications 

Hardware Specifications 

 Minimum Recommended 

Processor Intel i5 7500 

or AMD Ryzen 3 3300X 

Intel i7 10700K  

or AMD Ryzen 9 3900X 

Graphics Card NVIDIA GTX 1050 NVIDIA GTX 2080 Ti or newer 

RAM 8 GB 16 GB 

Disk Space 5 GB* 

*Includes Libraries.  

Dataset size may also 

vary 

5 GB* 

*Includes Libraries.  

Dataset size may also vary 

 

Software Specifications 

 

Operating System Windows 10 or higher 

Languages Python 3.10 

IDE PyCharm, Jupyter Notebook 

Framework Flask 

Libraries TensorFlow, Keras, Pandas, TextBlob, NLTK, Scikit-

Learn, Matplotlib 
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System Design 

Module 1. User 

• Users can view the dataset 

• Users can input text 

• Users can select Predict Sentiment 

• Users can select Translate Sentiment  

Module 2. System 

Data Collection: 

• The system collects customer reviews from a certain source, such 

as an online marketplace or review platform. 

• The data is typically in text, accompanied by star ratings or other 

sentiment indicators. 

Data Preprocessing: 

• The collected data undergoes preprocessing to clean and prepare it 

for analysis. 

• Text cleaning techniques are applied to remove noise, such as 

punctuation, stopwords, and convert the text to lowercase. 

• Word contractions are expanded to their full forms for better 

analysis. 

• The cleaned text is stored in a separate column in the dataset. 

Sentiment Analysis: 
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• The system performs sentiment analysis on the preprocessed text 

to determine the sentiment expressed in each review. 

• The sentiment is categorized as positive, negative, or neutral based 

on the star ratings associated with the reviews. 

• A sentiment score is calculated for each review using Opinion 

Lexicon. 

• The sentiment score helps in quantifying the sentiment of the 

reviews. 

• A sentiment polarity score is calculated for each review using 

TextBlob. 

• The sentiment polarity score helps in quantifying the sentiment tone 

of the reviews. 

Training Data Preparation: 

• The system prepares the data for training a sentiment classification 

model. 

• The reviews and their corresponding sentiments are split into 

training and testing sets. 

• The target sentiments are encoded using one-hot encoding for 

further processing. 

Tokenization and Embedding: 

• The system tokenizes the text data using a tokenizer.  
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• Word embedding is performed to convert the text tokens into 

numerical vectors. 

• A pre-trained word embedding model, GloVe, creates an 

embedding matrix. 

• The embedding matrix maps words to their corresponding vector 

representations. 

Model Architecture: 

• The system designs a deep-learning model for sentiment 

classification. 

• The model architecture includes an embedding layer, recurrent 

layers (such as LSTM), and dense layers. 

• The embedding layer utilizes the pre-trained embedding matrix to 

capture semantic information. 

• The recurrent layers help capture sequential dependencies and 

understand the text's context. 

• The dense layers perform the final classification and generate 

predictions. 

Model Training and Evaluation: 

• The prepared training data and model architecture train the 

sentiment classification model. 

• The model is trained using the training set, with a specified number 

of epochs and batch size. 
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• The model's performance is evaluated during training using a 

validation set to monitor the loss and accuracy. 

• Early stopping and model checkpointing techniques are applied to 

prevent overfitting and save the best model. 

Model Deployment and Usage: 

• Once the model is trained and evaluated, it can be saved for future 

use. 

• The saved model can be loaded and deployed to classify the 

sentiment of new customer reviews. 

• The deployed model inputs the preprocessed text, performs 

tokenization and padding, and generates sentiment predictions. 

System Output and Reporting: 

• The system outputs the predicted sentiment labels for the customer 

reviews. 

• The predictions can be used to analyze and understand the 

sentiment trends in the collected reviews. 

• Reports and visualizations can be generated to present insights, 

such as sentiment distribution, sentiment changes over time, or 

sentiment comparison across different products or categories. 
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CHAPTER FOUR 

DATA AND DATA PREPROCESSING 

Data Collection 

I used a Google Chrome Extension that downloads review data of a single 

product on Amazon.com to a single CSV file. The extension had a limit of 1,000 

reviews per product, so I had to manually select more than 80-90 products and 

download the reviews of each of them. I had to manually merge the reviews into 

one single CSV file since the extension did not allow me to select and download 

reviews from multiple products at a time. 

The review data consists of redundant columns that will not make of any 

use to our project like Review Summary, Product ID, Reviewer ID, Reviewer 

Name, Verified Purchase, Style, UNIX Time, and Votes. We will only consider the 

“Overall” column, which is the stars left by the customer, and the “Review Text” 

column. We will make a copy of these two columns into a new Pandas 

Dataframe. 

Text Cleanup 

Text cleaning aims to prepare text data for analysis and machine learning 

tasks, where clean and consistent data is essential. This implements various text 

cleaning techniques such as removing punctuation and stopwords and 

converting text to lowercase. I used the following text cleaning techniques to 

preprocess the data before moving to classifying them: 
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• Converting to lowercase: It is important to ensure that all text is in 

the same case to maintain consistency and avoid duplicate entries.  

• Word contractions: The contractions library is used to expand 

common word contractions such as “can’t” to “cannot”, “won’t” to 

“will not” “didn’t” to “did not” “you’re” to “you are”, “I’m” to “I am”, etc. 

This ensures that similar phrases are treated as identical.  

• Removing punctuation: The remove_punctuation() function takes a 

text input and removes all punctuation. The string.punctuation list of 

punctuations include: “!, ", #, $, %, &, ', (, ), *, +, ,, -, ., /, :, ;, <, =, >, 

?, @, [, \, ], ^, _, `, {, |, }, ~” 

• Removing stopwords: We use the NLTK Stopwords library to define 

a set of English stopwords. The remove_stopwords() function 

removes all stop words from the text. Stop words are words that do 

not add much meaning to the words are removed with this function. 

The input text is split into words and any words that appear in the 

Stopwords set are filtered out. The NLTK Stopwords library 

includes: “other, which, you, hasn, above, and, nor, yours, here, 

out, so, during, in, d, we, off, that'll, there, are, on, should've, for, 

them, do, it, having, he, wouldn't, from, while, all, the, aren't, if, 

ours, was, ll, our, or, each, just, not, is, won, how, be, don, their, 

yourself, between, ain, mightn't, what, very, isn, both, further, 

whom, too, its, my, mustn, will, you're, no, didn't, shouldn, more, ve, 
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y, through, by, you've, him, it's, below, doesn't, as, can, until, ma, 

been, his, mustn't, you'd, an, again, once, those, re, into, hadn't, 

herself, a, only, under, why, down, needn, of, doing, few, because, 

m, itself, am, who, should, at, to, hasn't, don't, isn't, needn't, o, 

shouldn't, hers, doesn, haven't, against, yourselves, being, same, 

wasn't, themselves, this, hadn, won't, himself, most, theirs, shan't, 

they, weren, up, had, that, wasn, ourselves, she's, were, couldn, 

her, some, aren, did, before, such, your, myself, shan, wouldn, me, 

has, didn, i, does, but, with, after, any, couldn't, about, these, she, 

over, where, s, weren't, you'll, when, own, haven, t, than, then, now, 

have, mightn.” Additionally, we also remove any words consisting 

only of digits.  

• Removing whitespaces: We remove any leading or trailing 

whitespaces from the text to ensure consistency. 

Before cleaning the text, an example review looks like this: 

“I had two 27in monitors that pump out heat big time.  I needed another for 

work, so I bought one of these.  Nice, light, bright, and no heat.  After a week I 

bought another for my gaming PC.  They're beautiful.  I didn't get the ones with 

the adjustable stand.  I didn't need that and they're perfect.Pro tip: They're 

shipped in the box that shows what's inside, so the 2nd time I checked the box in 

checkout for Amazon to pack it in one of their boxes.“ 

After preprocessing the text, the review will look like this: 
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“two 27 in monitors pump heat big time needed another work bought one 

nice light bright heat week bought another gaming pc beautiful get ones 

adjustable stand need perfectpro tip shipped box shows inside 2nd time checked 

box checkout amazon pack one boxes“ 
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CHAPTER FIVE 

METHODOLOGIES 

Classification with Opinion Lexicon 

Lexicon refers to a person's vocabulary, language, or branch of 

knowledge. A predefined dictionary of words labeled positive, negative, or neutral 

is used in lexicon-based sentiment analysis. To determine the sentiment of a 

sentence, it is tokenized, and each token is matched with the available words in 

the model. Opinion Lexicon is a list of around 6800 words with positive and 

negative connotations created by Minqing Hu and Bing Liu[13]. It can be used to 

analyze sentiment in text data. We will create two lists, pos_words and 

neg_words, by extracting the positive and negative words from the Opinion 

Lexicon. We will be comparing the words in each review text with the words that 

appear in these lists to find if they have a positive or negative sentiment. 

pos_words contains a list of 2006 positive words, such as "love," "happy," 

"excellent," "amazing," "beautiful," etc. These words have a positive sentiment 

and can be used to identify positive sentiment in text data. On the other hand, the 

neg_words list contains approximately 4783 negative words, including words like 

"hate," "sad," "terrible," "disgusting," "ugly," etc. These words have a negative 

sentiment and can be used to identify negative sentiment in text data. 

We will create a method that will classify the review according to the three 

sentiment scores. The function get_sentiment_score() will calculate the 

sentiment score for each text. We will do this by first tokenizing each sentence of 
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the text using the TreebankWord tokenizer. Then we will be counting the number 

of positive and negative words in each sentence. For each sentence in the text, it 

will increment the score by 1 for each positive word that appears in the text and 

decrement the score by 1 for each negative word and then takes the average 

score of all the sentences in the text. 

The function then returns the total score. The result is a float value 

between -1 and 1, where negative values indicate a negative sentiment and 

positive values indicate a positive sentiment. Neutral sentiments have a score of 

0.  

Classification with TextBlob 

TextBlob[14] is a versatile Python library for Natural Language Processing 

that facilitates a wide range of text analysis tasks, including sentiment analysis, 

part-of-speech tagging, tokenization, and more. It is built on the shoulders of 

NLTK and offers an intuitive way for NLP tasks. 

We will be using the sentiment analysis feature of TextBlob to determine 

the sentiment and tone of the review. Unlike lexicon-based sentiment analysis 

which relies on predefined dictionaries, TextBlob employs machine learning 

techniques to analyze text sentiment. TextBlob sentiment analysis generates two 

key metrics: polarity and subjectivity. Polarity determines the sentiment’s 

orientation, ranging from -1 (negative) to 1 (positive), while subjectivity 

determines the opinion of the text. We will only consider Polarity in our project as 
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we are more inclined towards classifying the reviews as Positive, Negative, or 

Neutral. 

We will create a function similar to that of the Opinion Lexicon sentiment 

scores that will classify the review according to the sentiment polarity scores. The 

function calculate_sentiment_polarity() will calculate the sentiment polarity for 

each text using its own internal sentiment analysis methods. TextBlob will 

determine the sentiment of the text by first tokenzing the text into sentences and 

words. It then calculates the sentiment polarity for each sentence, and then these 

sentence-level scores are aggregated to produce an overall polarity score for the 

entire text. The result is a float value between -1 and 1, where negative values 

indicate negative sentiment and positive values indicate positive sentiment. 

Neutral sentiments have a score of 0. 

Classification with Neural Network 

Using the pre-trained classification labels (in our case – positive, negative, 

and neutral), neural networks can be trained to enhance the classification’s 

accuracy and consistency. The neural network architecture consists of multiple 

layers, including input layers, hidden layers, and an activation function. Each 

layer consists of neurons or nodes that are interconnected, enabling information 

flow and transformation. 

The first layer of the neural network model is the embedding layer, which 

converts tokenized words into numerical vectors and is capable of capturing the 

words’ semantics. This allows the model to recognize patterns and relationships 
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in the text. Then we have a recurrent neural network (RNN) layer, in our case we 

have the Long Short-Term Memory (LSTM) layer. This layer processes 

sentences into numerical sequences of a fixed length, which allows that model to 

capture temporal dependencies and patterns within the text. The model also has 

a Dense layer with a sigmoid activation function, which is added for further 

refinement and learning and can adapt to complex representations of the text. 

The sigmoid activation maps the output values between 0 and 1, which is used in 

binary classification tasks.  

The training phase is where the model learns to make classification by 

adjusting its weights based on the classification data from the review stars. In this 

phase, we will use the loss function and the optimizers we have set when we 

compile the model. For the loss function we use Categorical-crossentropy, a loss 

function that is commonly used for multi-class classification tasks where the 

targets are one-hot encoded. This function calculates the cross-entropy loss 

between the ground truth labels and the prediction distribution.  

Then we will use the Adam optimizer to minimize the loss function. Adam 

is an adaptive learning rate optimization algorithm that adapt the learning rates 

during training and is faster than most optimization algorithms. 

We begin by setting up a tokenizer object using the Tokenizer() class from 

Keras' preprocessing.text module.[15][16] This object fits the preprocessed review 

text and builds a vocabulary of words that will be used to represent each review 

as a sequence of integers. 
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The word_index object will return a dictionary containing the word-to-index 

mappings learned by the tokenizer during the fitting step. This dictionary can 

convert new text data into sequences of integers that can be fed into a machine-

learning model. Saving tokenizers is a good practice when working with text data 

in machine learning workflows, as it allows the same vocabulary and word-to-

index mappings to be used consistently across different model runs.  

We then save the tokenizer object created using the Pickle library. This 

object contains the vocabulary and word-to-index mappings learned from the 

preprocessed reviews. It will convert new text data into sequences of integers 

that can be fed into a machine-learning model. 

We will perform a train-test split on the preprocessed review data and the 

encoded sentiment labels in the final DataFrame, using the train_test_split() 

function from the scikit-learn’s model_selection module.[17] This will split the data 

into a training set and testing set. The split is performed with a test size of 0.3 – 

meaning 30% of data will be used for testing. The resulting split data is stored in 

four variables: X_train, Y_train, x_test, and y_test.  

To ensure good performance and overall accuracy of the model, we need 

to perform a preprocessing step called Sequence Padding on our data. 

Sequence padding is a preprocessing technique that converts all texts into 

numerical sequences, and it ensures all sequences in a batch have the same 

length. This is important because most deep learning architectures require a 

fixed-length input. Padding is a technique used to make all sequences the same 
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length for processing by an LSTM. Padding affects the way the networks function 

and can make a big difference in the way the models perform and have variating 

accuracies.  

To perform Sequence Padding, we define a function sequence_padding() 

that uses the provided tokenizer to convert the input sentences into numerical 

sequences using Keras' texts_to_sequences function from the Tokenizer class. It 

then pads and truncates these numerical sequences to ensure they all have the 

same length. These padded and truncated numerical vector sequences are 

stored in the train_set and test_set variables.  

We will then label data by converting them to One-Hot Encoding vectors 

for the softmax function in the neural network. One-hot encoding is a technique 

that converts categorical variables into binary vectors. The categorical values are 

first mapped to integer values, and then each integer value is represented as a 

binary vector.  

Then the read_glove_vector() function reads a pre-trained GloVe vector 

file[18] and returns a dictionary where each word is a key that maps to its 

corresponding vector representation. GloVe (Global Vectors for Word 

Representation) is an unsupervised learning algorithm that generates word 

embeddings.[19] The algorithm maps words into a space where the distance 

between words is related to semantic similarity. GloVe is trained on word co-

occurrences from a corpus like Wikipedia. For example, "cat" and "dog" tend to 

occur with similar other words.  
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In this function, we begin by initializing two data structures - an empty set 

called words and a dictionary called word_to_vec_map. Word2vec[20] is a natural 

language processing (NLP) technique that employs a neural network model to 

grasp word relationships within extensive text data. This trained model can 

identify synonymous words and offer word suggestions for incomplete 

sentences.[21] It creates a representation of each word in the vocabulary into a 

binary vector. 

The read_glove_vector function opens the GloVe file in read mode and 

iterates over each line. It splits each line into words and retrieves the current 

word and its vector representation, converting it from a list of strings to a numpy 

array of float64 data type. The current word and its vector representation are 

added to the word_to_vec_map dictionary.  

We will initialize the embedding matrix with the size of the vocabulary and 

the length of the embedding vector. We will iterate through each word in the 

vocabulary that we learned in the previous steps and get its corresponding 

embedding vector from word_to_vec_map. If the pretrained vector exists for the 

word, we assign the corresponding row of the embedding matrix to that vector. 

This embedding matrix will be used later as an input to the embedding layer of 

the neural network for training. 

After classifying each text, we create a training model using TensorFlow's 

Keras library for natural language processing. The model architecture includes 

three layers: an embedding layer, a long short-term memory (LSTM) layer, and 
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three dense layers with different activation functions. Let us look at what these 

layers do: 

• Embedding layer: The embedding layer is an essential component 

of a neural network model, as it is the first layer that receives the 

input data. Its primary function is to map the integer-encoded 

reviews to a fixed-size vector space. They take one-hot word 

vectors as inputs and output a dense vector of a specified 

dimensionality. Each dimension represents a latent feature of the 

category. This way, the embedding layer can help the neural 

network learn the semantic relationships between words in the text 

data. In this specific model, we use pre-trained GloVe word 

embeddings.  

• LSTM layer: The Long Short-Term Memory (LSTM) layer is a 

Recurrent Neural Network (RNN) layer well suited to sequential 

data[22]. The LSTM layer is used to learn the temporal 

dependencies in the sequence of words in the reviews. We use a 

single LSTM layer in this model with 128 units. The number of units 

in the LSTM layer is a hyperparameter that we use to improve the 

performance of the model.  

• Dense layers: After the LSTM layer, we add a dense layer with 64 

units and a sigmoid activation function. The Dense connects every 

neuron from  the previous layer to every neuron in the current layer. 
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This layer will take the output of the LSTM layer and will apply a 

non-linear transformation to the data.  

• Output layer: The output layer is the final layer in a neural network 

that produces predictions. It takes inputs from the previous layers 

and performs calculations using its neurons to produce the output. 

The output layer has its own set of weights that are applied before 

the final output is derived. This model has an output layer 3 units 

with a sigmoid activation function. The output layer takes in the 

output of the second dense layer and produces a probability 

distribution over the 3 sentiment classes: positive, negative, and 

neutral. The softmax activation function is used in the output layer 

to ensure that the predicted probabilities sum up to 1. 

Then we will create a function that creates a neural network model using 

the Keras Sequential API. The model is then compiled using three metrics: the 

‘categorical_crossentropy’ loss function, the Adam optimizer, and the ‘accuracy’ 

metrics. 

• The categorical_crossentropy loss function is frequently used in 

multi-class classification tasks. It calculates the difference between 

the predicted probabilities for each class and the true one-hot 

encoded class labels, resulting in a single scalar value representing 

the model's total loss on the training data. 
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• The Adam optimizer[23] is a popular stochastic gradient descent 

(SGD) optimization algorithm used in deep learning models. It is an 

adaptive learning rate optimizer that adjusts the learning rate of 

each weight in the model based on the history of its gradient 

updates.[24] This allows the optimizer to converge to the optimal set 

of weights more quickly and with less tuning than traditional SGD. 

• The accuracy metric assesses the performance of classification 

model. It measures the percentage of correctly classified examples 

out of the total number of examples. The accuracy metric is used to 

evaluate how well the model can correctly classify text into one of 

three output classes. 

We will train the neural network model using the Keras’ fit() method. The 

model is trained on the training set and its corresponding one-hot encoded 

labels.  
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CHAPTER SIX 

EXPERIMENTAL RESULTS 

Threshold Determination 

When we assign the Opinion Lexicon Sentiment scores or the TextBlob 

Polarity scores to a review text, we must make sure that the threshold that we set 

is close enough to what the original review’s sentiment or the ground truth label 

is. Since both the Sentiment and Polarity scores of Opinion Lexicon and 

TextBlob, respectively, have a range of -1 and 1, we must decide on how big of a 

threshold should the Neutral sentiment be. Therefore, I decided to further test 

what threshold should we set. 

Opinion Lexicon Test Cases 

Let us first look at the different threshold test cases for the Opinion 

Lexicon classification method. The First is the original threshold that we set 

where if the score is 0 then that is a Neutral review. The Second is where the 

score is in between 0 and 0.01 for neutral reviews. The Third is where the score 

is in between 0 and 0.02 for neutral reviews. The Fourth is where the score is in 

between 0 and 0.05 for neutral reviews. The Fifth is where the score is in 

between 0 and 0.1 for neutral reviews. The Fifth is where the score is in between 

0.1 and -0.1 for neutral reviews. 
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Table 1. Opinion Lexicon Threshold Test Cases 

Threshold Accuracy Positive Negative Neutral 

0 < Neutral > 0 64.38% 69055 18899 12008 

0 < Neutral > 0.01 64.23% 68577 18899 12486 

0 < Neutral > 0.02 63.21% 65539 18899 15524 

0 < Neutral > 0.05 58.51% 52736 18899 28327 

0 < Neutral > 0.1 46.82% 48270 18899 32793 

-0.1 < Neutral > 0.1 39.14% 32793 3523 63646 

 

 

In Table 1, we can see the number of Positive, Negative, and Neutral 

reviews of each of the thresholds and compare their performance with the 

Accuracy metrics to find which threshold suits better for this classification. We 

find that setting the threshold with the Neutral reviews having a score of 0 has a 

much higher accuracy than the other thresholds, and the accuracy keeps 

decreasing drastically each time we increase the threshold by an increment of 

0.01. 

TextBlob Test Cases 

Now we will look at the different threshold test cases for the TextBlob 

classification method.  
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Table 2. TextBlob Threshold Test Cases 

Threshold Accuracy Positive Negative Neutral 

0 < Neutral > 0 65.71% 79146 16123 4693 

0 < Neutral > 0.01 65.62% 78068 16123 5771 

0 < Neutral > 0.02 65.52% 76776 16123 7063 

0 < Neutral > 0.05 64.46% 71806 16123 12033 

0 < Neutral > 0.1 61.51% 61811 16123 22028 

-0.1 < Neutral > 0.1 57.10% 61811 6936 31215 

 

 

In Table 2, we can see the number of Positive, Negative, and Neutral 

reviews of each of the thresholds and compare their performance with the 

Accuracy metrics to find which threshold suits better for this classification. We 

find that setting the threshold with the Neutral reviews having a score of 0 has a 

much higher accuracy than the other thresholds. 
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Classification Model Evaluation 

Confusion matrix is a table that visualizes the performance of the 

algorithm. It is a contingency table of two dimensions – “actual” and “predicted” 

values. We will use Confusion Matrix to evaluate the results of Opinion Lexicon 

Classification, TextBlob Classification, and the Neural Network Predictions. To 

calculate the confusion matrix, we use the confusion_matrix function from scikit-

learn. This function takes the true sentiment labels and predicted sentiment 

labels obtained using the Opinion Lexicon sentiment scores as inputs. We will 

also use the function by taking the true sentiment labels and predicted sentiment 

labels obtained using the TextBlob sentiment scores as inputs. And then we will 

also use the function by taking the true sentiment labels and predicted sentiment 

labels obtained after training the neural network. The resulting confusion matrix 

provides us with information on how well the model has predicted the sentiment 

labels. It is a table with four cells representing the number of samples that belong 

to a particular combination of true and predicted sentiment labels. The four cells 

correspond to true positive (TP), true negative (TN), false positive (FP), and false 

negative (FN) predictions. 

• True Positive (TP): TP are the cases that accurately predict that the 

text is positive. 

• True Negative (TN): TN are the cases that accurately predict that 

the text is negative. 
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• False Positive (FP): FP is when a sentiment was predicted as 

positive but is negative. 

• False Negative (FN): FN is when a sentiment was predicted as 

negative but is positive. 

The confusion matrix shows the performance of the classification models 

of Opinion Lexicon, TextBlob and the Neural Network. The matrix has three 

classes, 'positive,' 'negative,' and 'neutral,' on both the true and predicted axes. 

The matrix shows the number of instances that were classified into each 

category. The diagonal values show the number of correctly classified instances, 

while the off-diagonal values show the misclassifications. 

We will calculate the performance metrics that will help assess the quality 

of each classification model. The key performance metrics include: 

• Accuracy: The ratio of the correctly labeled subjects to the whole 

pool of subjects. 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

• Precision: Precision is also known as Positive Prediction Value 

(PPV). It is the ratio of the correctly positively labeled subjects to all 

the positively labeled subjects. 

Precision = TP / (TP + FP) 

• Recall: Recall is the ratio of correctly true labeled subjects to all 

true labeled subjects. It is also known as Hit Rate or True Positive 
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Rate (TPR). 

Recall = TP / (TP + FN) 

• F1-score: It is the mean of precision and recall. 

F-1 score = (2 * TP) / ((2* TP) + (FP + FN)) 

 

 

 
 

Figure 2. Confusion Matrix for Opinion Lexicon Classification 

 

 

The confusion matrix, as we see in Figure 2, shows that the model better 

classified the positive and negative reviews than the neutral ones. The model 
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correctly classified 50,554 positive reviews and misclassified 9,825 positive 

reviews. Similarly, the model correctly classified 12,412 negative reviews and 

misclassified 17,268 negative reviews. On the other hand, the model only 

correctly classified 1,393 neutral reviews and misclassified 8,510 neutral reviews. 

We will calculate the accuracy of this model by considering the True 

Positives, True Negatives, False Positives, and False Negatives for each 

category: 

• True Positives (TP): 

o Negative: 12412 

o Neutral: 1393 

o Positive: 50554 

• True Negatives (TN): 

o Negative: 1393 + 6067 + 5781 + 50554 = 63795 

o Neutral: 12412 + 12434 + 4044 + 5781 = 34671 

o Positive: 12412 + 4834 + 2443 + 1393 = 21082 

• False Positives (FP): 

o Negative: 2443 + 4044 = 6487 

o Neutral: 4834 + 5781  = 10615 

o Positive: 12434 + 6067 = 18501 

• False Negatives (FN): 

o Negative: 4834 + 12434 = 17268 

o Neutral: 2443 + 6067 = 8510 
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o Positive: 4044 + 5781 = 9825 

We then calculate the Accuracy, Precision, Recall and F-1 score 

performance metrics: 

• Accuracy: 

o Accuracy (Negative) = (12412 + 63795) / (12412 + 63795 + 

6487 + 17268) = 0.7623 = 76.23% 

o Accuracy (Neutral) = (1393 + 34671) / (1393 + 34671 + 

10615 + 8510) = 0.6534 = 65.34% 

o Accuracy (Positive) = (50554 + 21082) / (50554 + 21082 + 

18501 + 9825) = 0.7166 = 71.66% 

• Precision: 

o Precision (Negative) = 12412 / (12412 + 6487) = 0.6567 = 

65.67% 

o Precision (Neutral) = 1393 / (1393 + 10615) = 0.1160 = 

11.60% 

o Precision (Positive) = 50554 / (50554 + 18501) = 0.7320 = 

73.20% 

• Recall: 

o Recall (Negative) = 12412 / (12412 + 17268) = 0.4181 = 

41.81% 

o Recall (Neutral) = 1393 / (1393 + 8510) = 0.1406 = 14.06% 
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o Recall (Positive) = 50554 / (50554 + 9825) = 0.8372 = 

83.72% 

• F-1 Score: 

o F1-Score (Negative) = (2 * 12412) / ((2* 12412) + (6487 + 

17268)) = 0.5110 = 51.10% 

o F1-Score (Neutral) = (2 * 1393) / ((2* 1393) + (10615 + 

8510)) = 0.1271 = 12.71% 

o F1-Score (Positive) = (2 * 50554) / ((2* 50554) + (18501 + 

9825)) = 0.7811 = 78.11% 

Then, the overall accuracy for Opinion Lexicon Classification  

= Σ(True Positive) / Total Number of Reviews 

= (12412 + 1393 + 50554) / 99962 

= 0.6438 = 64.38%  
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Figure 3. Confusion Matrix for TextBlob Classification 
 

 

The confusion matrix, as we in see in Figure 3, shows that the model 

better classified the positive and negative reviews than the neutral ones. The 

model correctly classified 54,326 positive reviews and misclassified 6,053 

positive reviews. Similarly, the model correctly classified 11,035 negative reviews 

and misclassified 18,645 negative reviews. On the other hand, the model only 

correctly classified 333 neutral reviews and misclassified 9,570 neutral reviews. 
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We will calculate the accuracy of this model by considering the True 

Positives, True Negatives, False Positives, and False Negatives for each 

category:    

• True Positives (TP): 

o Negative: 11035 

o Neutral: 333 

o Positive: 54326 

• True Negatives (TN): 

o Negative: 333 + 7561 + 2974 + 54326 = 65194 

o Neutral: 11035 + 17259 + 3079 + 54326 = 85699 

o Positive: 11035 + 1386 + 2009 + 333 = 14763 

• False Positives (FP): 

o Negative: 2009 + 3079 = 5088 

o Neutral: 1386 + 2974 = 4360 

o Positive: 17259 + 7561 = 24820 

• False Negatives (FN): 

o Negative: 1386 + 17259 = 18645 

o Neutral: 2009 + 7561 = 9570 

o Positive: 3079 + 2974 = 6053 

We then calculate the Accuracy, Precision, Recall and F-1 score 

performance metrics for each category: 

• Accuracy: 
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o Accuracy (Negative) = (11035 + 65194) / (11035 + 65194 + 

5088 + 18645) = 0.7625 = 76.25% 

Accuracy (Neutral) = (333 + 85699) / (333 + 85699 + 4360 + 

9570) = 0.8606 = 86.06% 

Accuracy (Positive) = (54326 + 14763) / (54326 + 14763 + 

24820 + 6053) = 0.6911 = 69.11% 

• Precision: 

o Precision (Negative) = 11035 / (11035 + 5088) = 0.6844 = 

68.44% 

o Precision (Neutral) = 333 / (333 + 4360) = 0.0709 = 0.70% 

o Precision (Positive) = 54326 / (54326 + 24820) = 0.6864 = 

68.64% 

• Recall: 

o Recall (Negative) = 11035 / (11035 + 18645) = 0.3717 = 

37.17% 

o Recall (Neutral) = 333 / (333 + 9570) = 0.0336 = 0.33% 

o Recall (Positive) = 54326 / (54326 + 6053) = 0.8997 = 

89.97% 

• F-1 Score: 

o F1-Score (Negative) = (2 * 11035) / ((2* 11035) + (5088 + 

18645)) = 0.4818 = 48.18% 
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o F1-Score (Neutral) = (2 * 333) / ((2* 333) + (4360 + 9570)) = 

0.0456 = 0.45% 

o F1-Score (Positive) = (2 * 54326) / ((2* 54326) + (24820 + 

6053)) = 0.7787 = 77.87% 

Then, the overall accuracy for TextBlob Classification  

= Σ(True Positive) / Total Number of Reviews  

= (11035 + 333 + 54326)  / 99962 

= 0.6571 = 65.71% 

 

 

 
 

Figure 4. Confusion Matrix for Neural Network Classification 



44 
 

The confusion matrix, as we see in Figure 4, shows the model classifying 

the reviews by learning the review star labels. We use the training labels that we 

used on the train_test_split function and evaluate the true labels with the neural 

network’s predicted labels. The model correctly classified 41,736 positive reviews 

and misclassified 469 positive reviews. Similarly, the model correctly classified 

20,347 negative reviews and misclassified 491 negative reviews. On the other 

hand, the model only correctly classified 5,927 neutral reviews and misclassified 

1,003 neutral reviews. 

We will calculate the accuracy of this model by considering the True 

Positives, True Negatives, False Positives, and False Negatives for each 

category: 

• True Positives (TP): 

o Negative: 20068 

o Neutral: 5756 

o Positive: 41677 

• True Negatives (TN): 

o Negative: 5756 + 636 + 196 + 41677 = 48265 

o Neutral: 20068 + 215 + 332 + 41677 = 62292 

o Positive: 20068 + 555 + 538 + 5756 = 26917 

• False Positives (FP): 

o Negative: 538 + 332 = 870 

o Neutral: 555 + 196 = 751 
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o Positive: 215 + 636 = 851 

• False Negatives (FN): 

o Negative: 535 + 215 = 750 

o Neutral: 538 + 636 = 1174 

o Positive: 332 + 196 = 528 

We then calculate the Accuracy, Precision, Recall and F-1 score 

performance metrics: 

• Accuracy: 

o Accuracy (Negative) = (20068 + 48265) / (20068 + 48265 + 

870 + 750) = 0.9768 = 97.68% 

o Accuracy (Neutral) = (5756 + 62292) / (5756 + 62292 + 751 

+ 1174) = 0.9724 = 97.24% 

o Accuracy (Positive) = (41677 + 26917) / (41677 + 26917 + 

851 + 528) = 0.9802 = 98.02% 

• Precision: 

o Precision (Negative) = 20068 / (20068 + 870) = 0.9584 = 

95.84% 

o Precision (Neutral) = 5756 / (5756 + 751) = 0.8845 = 88.45% 

o Precision (Positive) = 41677 / (41677 + 851) = 0.9799 = 

97.99% 

• Recall: 
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o Recall (Negative) = 20068 / (20068 + 750) = 0.9639 = 

96.39% 

o Recall (Neutral) = 5756 / (5756 + 1174) = 0.8305 = 83.05% 

o Recall (Positive) = 41677 / (41677 + 528) = 0.9874 = 98.74% 

• F-1 Score: 

o F1-Score (Negative) = (2 * 20068) / ((2* 20068) + (870 + 

750)) = 0.9612 = 96.12% 

o F1-Score (Neutral) = (2 * 5756) / ((2* 5756) + (751 + 1174)) 

= 0.8567 = 85.67% 

o F1-Score (Positive) = (2 * 41677) / ((2* 41677) + (851 + 

528)) = 0.9837 = 98.37% 

Then, the overall accuracy for Neural Network  

= Σ(True Positive) / Total Number of Reviews 

= (20068 + 5756 + 41677) / 69973 

= 0.9646 = 96.46% 
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Classification Model Comparison 

The following tables illustrate the test cases for the different classification 

methods. The accuracy varies with Opinion Lexicon, TextBlob and Neural 

Network. We will look at the three different test cases of each classification with 

example reviews from the dataset. 

 

 

Positive Test Cases 

Table 3. Positive Sentiment Test Case 

Method Accuracy Input Expected Output Actual Output 

Opinion 

Lexicon 

64.38% We've only had this for 

one day.  I bought it for 

my grandson.  He 

absolutely LOVES it!!  I 

even like it.  The mouse 

is very nice and fits his 

hand well, but it would 

probably fit most hands 

just fine.  The lights are 

really pretty, but not too 

bright so it wouldn't 

disturb anyone else in 

the room.  It's perfect so 

far!!  I can't believe we 

got this for such a 

reasonable price.  I hope 

it holds up well and my 

Grandson gets a few 

years of use out of it.  I 

would buy it again in a 

heartbeat! 

Positive Positive 

TextBlob 65.71% Positive Positive 

Neural Network 96.46% Positive Positive 
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As you can see from Table 3, the sentence produces the same result for 

the Opinion Lexicon, TextBlob, and Neural Network classification methods. 

 

 

Table 4. Positive Sentiment Test Case 

Method Accuracy Review Text Expected Output Actual Output 

Opinion 

Lexicon 

64.38% I have purchased 3 drive 

so far, one 1 gig, and two 

2 gig drives. I use these 

as backup for my three 

computers to store 

documents, pictures, and 

various other media. I 

use one to travel with 

with my laptop, I have 

found these to be fast 

and reliable, and very 

compact to travel with. I 

am considering buying 

some for my daughters 

for their home computers 

as they are always 

running out of space and 

trying to burn disks which 

takes a while. 

Positive Positive 

TextBlob 65.71% Positive Neutral 

Neural Network 96.46% Positive Positive 

 

 

In Table 4 for the Positive Test Case, the sentence produces a Neutral 

result for the TextBlob method instead of “Positive.” This is because the 

sentiment polarity score calculation for each of these texts was not high enough 

that they could meet the threshold of a “Positive” result. 
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Table 5. Positive Sentiment Test Case 

Method Accuracy Review Text Expected Output Actual Output 

Opinion 

Lexicon 

64.38% So.......... yes .... so..... it 

works, ok it works, but 

yes it is slow; if you don't 

mind and just need some 

extra space for all your 

crap then buy it, but if 

you are too busy to 

wait..... then don't buy it, 

simple as that. 

Positive Neutral 

TextBlob 65.71% Positive Negative 

Neural Network 96.46% Positive Positive 

 

 

In Table 5, we see mixed results as the review that was left on Amazon 

had a 5-star rating, so it is a “Positive” review. With the Opinion Lexicon 

classification, we get a “Neutral” result as the sentiment score calculation does 

not go higher than 0 as it also has a lot of negative words that decrement the 

score. With TextBlob, we get a “Negative” result with its internal sentiment 

analysis methods consider the words “don’t” in the review. 

 

 

Negative Test Cases 

Table 6. Negative Sentiment Test Case 

Method Accuracy Review Text Expected Output Actual Output 

Opinion 

Lexicon 

64.38% We were unable to get 

this to work.  Enclosed 

"manual" was almost 

unintelligible and made 

no sense.  Unfortunately, 

I kept trying too long and 

was unable to return it.  I 

Negative Negative 

TextBlob 65.71% Negative Negative 

Neural Network 96.46% Negative Negative 
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will never use this seller 

again. 

 

 

As you can see from Table 6, the sentence produces the same result for 

the Opinion Lexicon, TextBlob, and Neural Network classification methods. 

 

Table 7. Negative Sentiment Test Case 

Method Accuracy Review Text Expected Output Actual Output 

Opinion 

Lexicon 

64.38% The keyboard and 

mouse are fully 

functional and the mouse 

has a good feel for 

gaming.  However, the 

ESC, and F1 through F7 

keys have a bad paint / 

screen job.  See 

attached photos.  

Probably still worth the 

price, but I would have 

preferred a little QC on 

the finish. 

Negative Positive 

TextBlob 65.71% Negative Neutral 

Neural Network 96.46% Negative Negative 

 

 

In Table 7, however, the example produces a “Positive” result for Opinion 

Lexicon and a “Neutral” result for the TextBlob method instead of “Negative.” 
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Table 8. Negative Sentiment Test Case 

Method Accuracy Review Text Expected Output Actual Output 

Opinion 

Lexicon 

64.38% At first it worked great 

and I was so excited to 

have a touch screen. But 

today it stopped working 

Negative Positive 

TextBlob 65.71% Negative Positive 

Neural Network 96.46% Negative Negative 

 

 

In Table 8, the example produces a “Positive” result for TextBlob method 

instead of “Negative” for both the Opinion Lexicon and TextBlob methods. This is 

because the review has two positive words. 

 

 

Neutral Test Cases 

Table 9. Neutral Sentiment Test Case 

Method Accuracy Review Text Expected Output Actual Output 

Opinion 

Lexicon 

64.38% Bought it 5 years ago. It 

has always squeaked 

when you lean back in it, 

but after a year or so the 

squeak gets really loud. 

After about three years 

the arm cushions will fall 

off. After about 4 years 

the faux leather starts to 

peal off. The cushion 

never flattened out for 

me like I've seen other 

reviewers have said, I 

think that has to do with 

the weight of the person, 

I'm 6'1" and weigh 190 

lbs, and the cushion is 

Neutral Neutral 

TextBlob 65.71% Neutral Neutral 

Neural Network 96.46% Neutral Neutral 
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still decent after 5 years. 

 

 

In Table 9, the example produces a “Neutral” result for all three 

classification methods. 

 

 

Table 10. Neutral Sentiment Test Case 

Method Accuracy Review Text Expected Output Actual Output 

Opinion 

Lexicon 

64.38% USED Seagate 

(STGY8000400) Desktop 

8TB External Hard Drive 

HDDOn initial use, I 

clocked 25MB/s write 

speed. That is 1/4 or 1/6 

the speed of all my other 

USB 3.0 drives. I saw the 

top review and thought I 

got lemoned. I went 

through all the 

troubleshooting steps I 

could find online and the 

solution was Seagate's 

software update. I 

suspect the product's 

firmware was rolled back 

prior to resell.UPDATEFor 

unknown reasons, speed 

will drop back down to 

25MB/s, and other times it 

will run at normal speeds. 

When I have large data to 

transfer, I just restart my 

computer and hope for 

normals speeds. Minus 2 

stars for the random 

inconvenience. 

Neutral Negative 

TextBlob 65.71% Neutral Negative 

Neural Network 96.46% Neutral Neutral 
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In Table 10, we get a “Negative” result instead of the intended “Neutral” 

result for Opinion Lexicon and TextBlob classification as the sentiment score and 

the sentiment polarity score is below -0.1 for the text. 

 

 

Table 11. Neutral Sentiment Test Case 

Method Accuracy Review Text Expected Output Actual Output 

Opinion 

Lexicon 

64.38% I got it in Rose Gold, it's 

very dark Rose Gold and 

I wish I would've just got 

pink. The mouse works 

perfectly, the lights are 

cool and I love that it's 

chargeable but it is NOT 

comfortable to use with 

it's very flat design. 

There is zero wrist or 

palm support lol my hand 

cramps after a lot of use. 

I think I'll give it a couple 

weeks to see if I can get 

used to it. If not I'll give it 

away and order one with 

a slight bump for my 

palm. 

Neutral Positive 

TextBlob 65.71% Neutral Positive 

Neural Network 96.46% Neutral Neutral 

 

 

In Table 11, the text produces a “Positive” result for the Opinion Lexicon 

and TextBlob methods instead of “Neutral” as the review has more positive 

words for the sentiment score and sentiment polarity score calculation to sum up 

higher than 0.   
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CHAPTER SEVEN: 

USER INTERFACES 

 
 

Figure 5. Homepage of the Application 
 

 

Figure 4, as seen above, shows the project's user interface. The user 

interface is created using Flask’s Frontend Framework.[25] Here the user has 4 

input options: a textbox to enter some text, a Predict Sentiment button, a 

Translate Review button, and a Clear Screen button to clear the screen of any 
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outputs. On the backend of the application, the trained neural network is loaded 

for the Predict Sentiment function to work. The Translate Review button uses the 

translate() method from the iTranslate Python library to translate and predict 

sentiments. 

 

 

 
 

Figure 6. Sentiment Prediction Output from User Input 
 

In Figure 5 we see that once the user has entered some text and clicked 

the Predict Sentiment button, it will display the appropriate sentiment. The 
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Predict Sentiment button call the predict_sentiment() function and take the input 

text from the user and predict the sentiment. In this example, the sentiment is 

displayed as Positive.  

 

 

 
 

Figure 7. Translated Sentiment Prediction Output from User Input 
 

 

In Figure 6 we see that once the user has entered some text and then 

clicked on the Translate Review button, it will display the original text that the 
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user entered, the text translated back to English, and then display the sentiment. 

This is done by calling the translate() method of the iTranslate Python library, and 

then move the translated text to the predict_sentiment() function to predict the 

sentiment. 
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CHAPTER EIGHT 

CONCLUSION 

We have classified the reviews using three approaches – Opinion Lexicon, 

TextBlob, and Neural Network Training. We see an accuracy of 64.38% when we 

classify the reviews with Opinion Lexicon, and we see an accuracy of 65.71% 

when we use TextBlob polarity scores to classify the reviews. We have also 

created a neural network model that learns from the review star classification 

method and achieves an accuracy of 96.46%. We have created an application 

that will successfully analyze reviews left by customers in the future and be able 

to classify those reviews as positive, negative, or neutral based on the neural 

network model.  

Here are a few enhancements that could be made to the project: 

• Implement methods for users to provide feedback on sentiment 

predictions, allowing the model to be trained continuously over 

time. 

• Explore more advanced deep learning models, or transformer-

based models like BERT, to capture more intricate relationships 

and context within the text. 

As for the frontend of the project, certain enhancements come to mind that 

could be made: 

• A simplified process for training the model inside the application 

instead of using Jupyter Notebook. This is not currently possible in 
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my project as the training sometimes fails or stops before reaching 

its’ intended accuracy level. 

• Alongside training inside the application, the user should also be 

able to select a custom dataset, either in CSV or JSON formats. 

This is also not possible in the project's current state for the same 

reason above, but it is possible if you manually specify in the ipynb 

notebook which CSV file the application should use in the 

“read_csv” line. 

• The user should also be able to select custom models if they are 

training the model with newer datasets. This is also not possible in 

the project's current state for the same reason above, but it is 

possible if you manually specify in the code which model file the 

application should use in the “load_model()” method. 
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APPENDIX A: 

CODE 
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Importing Libraries 

 

 
 
Loading the Dataset into a Pandas Dataframe 
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Preprocessing the Data 

 

 
 
Categorize Reviews According to Review Stars 
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Categorize Reviews According to Opinion Lexicon 
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Plotting the Confusion Matrix of Opinion Lexicon classified reviews and Star 

classification reviews 

 
Evaluating Performance metrics of Opinion Lexicon predictions 
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Categorize Reviews According to TextBlob 

 
Plotting the Confusion Matrix of TextBlob classified reviews and Star 

classification reviews 
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Evaluating the Performance metrics of TextBlob Classification 

 
 

Concatenating the reviews into a new “Final” Pandas Dataframe 

 
 
Encoding the Review star Sentiment label columns 

 
 
Saving the reviews into a new CSV file 
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Reading the saved dataset and verifying the value counts 

 
 
Setting up tokenizers and dictionaries 

 
 
 
 
 
 
 
Saving the tokenizers for future use 
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Split the reviews into training sets and test sets 

 
 
Tokenizing, padding and converting reviews into numerical vectors 
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Converting the training and test labels to One-hot Encoded Vectors 

 
 
Read the Glove Vector file 
 

 
 
Creating the Embedding Matrix 
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Creating the Model 
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Fitting the Model

 
 
 
 
Evaluating the model with the Test Set, and saving the Model 
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Plotting the Confusion Matrix of the Neural Network Predictions and True 

Training Labels 
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Evaluating the Performance metrics of Neural Network Predictions 
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