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ABSTRACT

A sampling-based method is introduced to approximate the Gittins index for a general family of
alternative bandit processes. The approximation consists of a truncation of the optimization horizon
and support for the immediate rewards, an optimal stopping value approximation, and a stochastic
approximation procedure. Finite-time error bounds are given for the three approximations, leading to
a procedure to construct a confidence interval for the Gittins index using a finite number of Monte
Carlo samples, as well as an epsilon-optimal policy for the Bayesian multi-armed bandit. Proofs are
given for almost sure convergence and convergence in distribution for the sampling based Gittins
index approximation. In a numerical study, the approximation quality of the proposed method is
verified for the Bernoulli bandit and Gaussian bandit with known variance, and the method is shown to
significantly outperform Thompson sampling and the Bayesian Upper Confidence Bound algorithms
for a novel random effects multi-armed bandit.

Keywords Stochastic Approximation · Multi-Armed Bandits · Optimal Stopping · Bayesian Computation ·
Markov Decision Processes

1 Introduction

The family of alternative bandit processes (FABP) is a well established problem in the field of Operations Research
(Glazebrook [1983]). In short, an FABP is a problem in which the decision maker sequentially chooses one out of a
finite collection of independent Markov reward processes (sometimes called arms) to evolve, and the goal is to optimize
the total discounted reward. As initially proven in Gittins [1979], an index value can be determined based on the state
of each bandit process, and the optimal policy is to choose the arm with the highest index value at each decision epoch.
This index value, introduced as the dynamic allocation index, is now referred to as the Gittins index. As the Gittins
index can be calculated separately based on the state of each bandit process, there is a large gain in computational
efficiency for finding the optimal policy when compared to methods taking the states of all bandit processes into account
(Puterman [1990]). Next to the family of alternative bandit processes, the Gittins index was also found to be the optimal
solution to a number of other problems in operations research such as optimal scheduling and search problems (Aalto
et al. [2011], Boodaghians et al. [2023]).

When, e.g., the total average reward is considered, or the Markov reward processes are no longer independent, the bandit
problem becomes a restless bandit problem, where each arm evolves after an arm is chosen, instead of just that specific
arm. Optimality of the Gittins index policy is no longer a guarantee in this case. When the condition of indexability is
met, however, the policy choosing the largest Whittle index can provide a well-behaving heuristic for the problem under
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consideration (Weber and Weiss [1990], Glazebrook and Minty [2009], ?). The Whittle index has a definition similar to
the Gittins index, and hence computation methods for the Gittins index work for the Whittle index as well.

Families of alternative bandit processes arise in various applications, such as job scheduling in queues, mining
(or search) operations, advertisement, and Bayesian multi-armed bandit problems (Mahajan and Teneketzis [2008],
Gittins et al. [2011]). The current paper will focus mainly on multi-armed bandit problems, with an application
to clinical trials. Due to an increase in computational power and an increased focus on patient-centric medicine,
research on treatment allocation in clinical trials using the Gittins index has gained popularity in the last decade
(Villar et al. [2015a,b], Robertson et al. [2023]). In the multi-armed bandit problem, the decision maker is tasked with
the choice to sample rewards from one out of a finite collection of unknown distributions at each decision epoch. In
the Bayesian setting, each distribution is endowed with a prior. The resulting sequences of posterior distributions and
posterior mean outcomes at each decision epoch then result in the separate Markov reward processes of an FABP. The
Bayesian multi-armed bandit problem, popularized in Robbins [1952], was introduced in Thompson [1933] along
with the approximate solution method now referred to as Thompson sampling, which was hence the first approximate
solution method for the Bayesian multi-armed bandit problem (Slivkins [2019]).

This paper focuses on maximizing the Bayesian total expected discounted reward. When the regret under a multi-armed
bandit problem is analyzed in the frequentist framework, many index-based approximate solution methods exist (Bubeck
and Cesa-Bianchi [2012], Kuleshov and Precup [2014], Lattimore and Szepesvári [2020]), either based on frequentist or
Bayesian approaches. in Lai et al. [1985], frequentist asymptotic lower bounds were found for the number of suboptimal
choices made under a broad class of approximate solution methods. In the case of bounded rewards, the asymptotic
regret upper bound equals this lower bound for e.g., approximate solution methods based on an upper confidence bound
(UCB) for the expected reward (Lai [1987], Auer et al. [2002]), proving that these methods are asymptotically optimal
in the frequentist framework. Many Bayesian approximate solution methods are asymptotically optimal and were
shown to have excellent empirical frequentist performance (Kaufmann et al. [2012a], Kaufmann [2018], Lattimore and
Szepesvári [2020]). In Lattimore [2016] it was shown that, in the frequentist framework, the Gittins index strategy with
improper uniform prior for the mean yields an asymptotically optimal approximate solution method for the Gaussian
model, outperforming other optimal Bayesian methods such as the Thompson sampling and Bayesian Upper Confidence
Bound (Bayes-UCB).

There is a large amount of literature on calculating the Gittins index, starting with the Calibration method introduced
in Gittins [1979]. A survey covering most literature up to 2014 on offline and online algorithms to calculate the
Gittins index for general countable state FABPs is provided in Chakravorty and Mahajan [2014]. In Yao [2006], an
approximation method for the Gittins index is derived in the Gaussian bandit with unknown mean and known variance.
A numerical approximation for this bandit based on quadratic splines is described in Lattimore [2016]. In Edwards
[2019] the lack of general open source code for calculating the Gittins index is acknowledged, and methods and
accompanying code, based on the Calibration method in Gittins [1979], are given to calculate the Gittins index for the
Bernoulli and Gaussian bandit with known variance.

Calculation methods found in literature only work for countable state FABPs or are tailored to the Gaussian bandit
with known variance. The calculation methods often revolve around the Bellman equation where it is assumed that the
transition probabilities are known in closed form. First, when dealing with experimental data, the models can be much
more complex and the assumption of known transition probabilities might not hold. For instance, the main types of
outcome data encountered in clinical trials are categorical, continuous or event-times. Clearly only the first of these
three is covered by considering a finite or countable state space, as continuous outcome data are often modeled using
parameters on an uncountable parameter space. Second, in, e.g., latent variable modeling, the posterior distribution of
the model parameters is often not known in closed form. Markov chain Monte Carlo approaches (Gilks et al. [1995])
provide a means to do (approximate) posterior inference in this case. Hence, the transition structure of the FABP is
unknown, however one can still sample (approximately) from the Markov reward process. Another situation where the
posterior is not available in closed form is when the prior being used in the Bayesian analysis is nonconjugate with
respect to the likelihood. For instance, when a Bayesian experiment is performed for Gaussian data with possibly
conflicting prior information, a nonconjugate Student’s t-distribution can be assumed as a prior distribution for the mean
(Neuenschwander et al. [2020]). No method exists to accurately approximate the Gittins index in these settings.

To address the open problems listed above, a sampling-based Gittins index approximation (SBGIA) is introduced in this
paper. The SBGIA can be calculated for any type of state space, also when there is access only to a simulator for future
rewards. We first approximate the Gittins index using a truncation of the optimization horizon and support for the imme-
diate rewards of the Markov chains. Second, we use a stochastic approximation procedure (Robbins and Monro [1951])
based on the optimal stopping value approximation introduced in Chen and Goldberg [2018] to find the root (i.e., the
fair charge) of the prevailing charge formulation of the Gittins index, see, e.g., Weber [1992, Equation 2]. As the SBGIA
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is sampling-based, samples from the (approximate) posterior reward distribution can be used to make decisions in the
proposed algorithm.

The paper is organized as follows. Section 2 introduces the family of alternative bandit processes. Section 3 extends
optimal stopping value approximation results from Chen and Goldberg [2018] to reward processes that are not restricted
to be non-negative. In Section 4.1, based on convergence results provided in Chen and Goldberg [2018], we obtain
finite-time convergence results for the SBGIA. In Section 4.2 we prove asymptotic convergence results for the stochastic
approximation iterates. In Section 5 we show the performance of the SBGIA in several numerical simulation studies.
Appendix A states the longer proofs of the theorems in the paper, and Appendix B summarises the notation used in the
paper.

2 Family of alternative bandit processes

We consider A independent Markov chains (Sa
t )t for a ∈ [A] = {1, . . . , A}, referred to as arms, each on a (shared)

Borel space (S,G) with underlying probability space (Ω,F ,P). The (shared) transition kernel is denoted Ps, where
s denotes the initial state of the Markov chain, and expectations w.r.t. Ps are denoted Es. Let R denote a G/B(R)-
measurable reward function. See Lattimore and Szepesvári [2020, Chapter 35] for details on this setting.

Let P be the set of policies, i.e., the mappings from the set of histories

H = {(s1u, . . . , sAu , au)t−1
u=0 × (s1t , . . . , s

A
t ) : t ∈ N0, au ∈ [A], sau ∈ S ∀a ∈ [A], u ∈ N0} (1)

to the unit-A-simplex ∆A of probability vectors over [A]. A fixed policy π ∈ P induces a Markov chain((
(Sa

u)
Nπ

a,t

u=1

)
a∈[A]

)
t

, where Nπ
a,t is the number of times arm a is chosen by the policy π up to and including

time t. We denote the probability measure and expectation under this fixed policy by Pπ and Eπ. The objective is to
find the optimal policy maximizing the total sum of discounted rewards for a discount factor γ ∈ (0, 1):

π∗ = argmax
π∈P

Eπ

[ ∞∑
t=0

γtR
(
SAt

NAt,t

)]
. (2)

We furthermore assume that the reward function for arm a, with initial state sa, is discounted absolutely convergent in
expectation under discount factor γ
Assumption 1.

C(sa) = Esa

[ ∞∑
t=0

γt|R(Sa
t )|

]
< ∞ ∀sa ∈ S.

Under Assumption 1, the argmax in (2) is attained, and the optimal policy π∗ for the Markov decision process above is
the policy choosing the arm with the highest Gittins index, see, e.g., Lattimore and Szepesvári [2020, Theorem 35.9].
To specify this, let sah be the current state for arm a in history h ∈ H, then

π∗(h) ∈ argmax
a∈[A]

ν(sah), with ν(sa) = sup
τ∈T a

Esa

[∑τ−1
t=0 γtR(Sa

t )
]

Esa

[∑τ−1
t=0 γt

] ∀sa ∈ S, (3)

where T a is the set of stopping times in N w.r.t. the filtration (Fa
t )t generated by the process (Sa

t )t starting from state
sa. The Gittins index ν(sah) hence only depends on the current state sah for any arm a. When ties occur in the above
expression, i.e., the argmax returns more than one value, the policy uniformly chooses an arm from the different
choices of argmax. Hence, under this choice, the Gittins index policy is a randomized Markov policy.

The Gittins index can also be written as (Weber [1992, Equation 2])

ν(sa) = sup

{
ν : sup

τ∈T a

Esa

[
τ−1∑
t=0

γt(R(Sa
t )− ν)

]
≥ 0

}
∀sa ∈ S. (4)

Under Assumption 1, the supremum in the above condition is zero at a unique point ν(sa)
(Lattimore and Szepesvári [2020]), hence ν(sa) is the root of the function

ν 7→ sup
τ∈T a

Esa

[
τ−1∑
t=0

γt(R(Sa
t )− ν)

]
. (5)
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3 Preliminaries

This section extends the results on the optimal stopping value approximation introduced in Chen and Goldberg [2018] to
reward processes that are not restricted to be non-negative, which are needed to develop our results. Section 4 translates
these results to the setting of the family of alternative bandit processes.

3.1 Optimal stopping approximation

When considering the behavior of only one of the A arms, the superscript a is dropped from the state, filtration, and set
of stopping times. Let J0, tK = {0, 1, . . . t}, SJ0,tK contain the realisations of S up to time t, and let Ft be the smallest
sigma algebra for which SJ0,tK is measurable. For N ∈ N, let TN denote the set of integer-valued stopping times τ
adapted to (Ft)t∈[N ] such that τ ∈ [N ] almost surely. We assume that S is a Polish space, ensuring the existence of
regular conditional probabilities for (St)t (e.g., Athreya and Lahiri [2006, Theorem 12.3.1]). Let Zt = gt(SJ0,tK) for
measurable real-valued functions (gt)t∈[N ]. The random variable Zt is assumed integrable (on the probability space for
S) for all t. The goal is to compute

inf
τ∈TN

E[Zτ ]. (6)

The following two results extend Theorems 1 and 2 in Chen and Goldberg [2018] to remove the restriction that Z
is non-negative. The proofs readily follow along the lines of the proofs in Chen and Goldberg [2018]. Theorem 1
expresses (6) as an infinite sum. For Zt bounded, Theorem 2 provides an error bound for truncation of the infinite sum.

Theorem 1 (OPTIMAL STOPPING VALUE REPRESENTATION).

inf
τ∈TN

E[Zτ ] =

∞∑
k=1

E
[
min
u∈[N ]

Z(k)
u

]
,

where for all k ∈ N and t ∈ [N ]

Z
(1)
t = Zt, (7)

Z
(k+1)
t = Z

(k)
t − E

[
min
u∈[N ]

Z(k)
u

∣∣∣Ft

]
. (8)

Proof. The proof follows the proof of Lemma 1 and Theorem 1 in Chen and Goldberg [2018] noting that, even though
Z is not assumed non-negative in this case, the sequence (Z

(k)
t )k≥2 remains a non-negative decreasing sequence of

random variables for all t ∈ [N ]. Hence limk→∞ infτ∈TN
E[Zk

τ ] = 0 still holds.

Theorem 2 (OPTIMAL STOPPING APPROXIMATION). Suppose Zt ∈ [a, b] almost surely for all t ∈ [N ] for some
a, b ∈ R such that a < b, then

0 ≤ inf
τ∈TN

E[Zτ ]−
K∑

k=1

E
[
min
u∈[N ]

Z(k)
u

]
≤ b− a

K + 1
. (9)

Proof. The proof for a = 0, b = 1 follows from Chen and Goldberg [2018, Theorem 2]. The extension to general
closed intervals follows by considering the following mapping between stochastic processes

T (Z) =

(
Zt − E

[
min
u∈[N ]

Zu

∣∣∣Ft

])
t∈N

.

We have that T ((c1 − c2)Z + c3) = (c1 − c2)T (Z) for all c1, c2, c3 ∈ R. Hence, letting
Z̃ = (Z − a)/(b− a) we have from Chen and Goldberg [2018, Theorem 2] that

inf
τ∈TN

E[Z(k+1)
τ ] = inf

τ∈TN

E[T k(Z)τ ] = (b− a) inf
τ∈TN

E[T k(Z̃)τ ] = (b− a) inf
τ∈TN

E[Z̃(k+1)
τ ] ≤ b− a

K + 1
.
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3.2 Simulation approximation

Following Chen and Goldberg [2018], the sum of expectations in (9) may be approximated via simulation. Let [v,w]
denote concatenation of the vectors v and w. Let 1m be the all-ones vector in Rm for all m ∈ N. For each index
i ∈ ∪K

k=1Nk let Si be versions of S such that Si = Sj if j = [i,1m], and Si is independent of Sj otherwise.

Let K ∈ N and n(i, k) ∈ N for all i, k. Recall (7) and (8), for all k < K define the random processes

Z
(1)
i,t,n = gt(S

i
J0,tK), (10)

Z
(k+1)
i,t,n = Z

(k)
[i,1],t,n − 1

n(i, k)

n(i,k)+1∑
j=2

(
min
u∈[N ]

Z
(k)
[i,j],u,n

∣∣∣{S[i,j]
J0,tK = S

i
J0,tK}

)
, (11)

where Z
(k)
[i,j],u,n

∣∣∣{S[i,j]
J0,tK = S

i
J0,tK} denotes the random variable Z

(k)
[i,j],u,n conditioned on the event that the paths of the

two processes S[i,j] and S[i] are equal up to time t. After time t they continue independently (as j ≥ 2). Note that this
random variable is well defined as the regular conditional probabilities for (St)t exist (Section 3.1). The requirement
Si = Sj if j = [i,1m] induces that the “right" partial paths of Si used at a lower level are used to construct values
Z

(k)
i,t,n at higher level k. To illustrate our notation and the relation between (7), (8) and (10), (11), note that Z(2)

[2,j1],t,n

equals

Z
(1)
[2,j1,1],t,n

− 1

n([2, j1], 1)

n([2,j1],1)+1∑
j2=2

(
min
u∈[N ]

Z
(1)
[2,j1,j2],u,n

∣∣∣{S[2,j1,j2]
J0,tK = S

[2,j1]
J0,tK }

)

≈ Z
(1)
[2,j1,1],t,n

− E
[
min
u∈[N ]

Z
(1)
[2,j1,1],u,n

∣∣∣{S[2,j1,1]
J0,tK = S

[2,j1]
J0,tK }

]
= Z

(1)
[2,j1,1],t,n

− E
[
min
u∈[N ]

Z
(1)
[2,j1,1],u,n

∣∣∣F [2,j1,1]
t

]
,

where Z
(1)
[2,j1,j2],t,n

= gt(S
[2,j1,j2]
J0,tK ), F [2,j1,1]

t is the sigma algebra generated by S[2,j1,1]
J0,tK , and the approximation is

exact in the limit n([2, j1], 1) → ∞ by the law of large numbers. Note that the process S[2,j1,1] used to determine
Z

(1)
[2,j1,1],t,n

equals S[2,j1]. Hence, corresponding to conditioning on Ft above, in order to determine Z
(2)
[2,j1],t,n

it is

assumed that the history of the Markov process up to time t is the same for all Z(1)
[2,j1,j2],t,n

after which the processes
continue independently.

Consider the following random variable projected on [a, b]:

V (K)
n = max

a, min

b,
1

n(K,K)

n(K,K)∑
j=1

K∑
k=1

min
u∈[N ]

Z
(k)
[k,j],u,n

 . (12)

By the law of large numbers and Theorem 1, we have that

lim
K→∞

lim
n→∞

V (K)
n = lim

K→∞

K∑
k=1

E
[
min
u∈[N ]

Z(k)
u

]
= inf

τ∈TN

E[Zτ ],

where n → ∞ indicates the element-wise limit n(i, k) → ∞ for all (i, k).

Following Chen and Goldberg [2018], we may show that for every ξ > 0 and δ ∈ (0, 1) we can choose a function nξ,δ ,
given implicitly in Algorithms Bk and B̂k in Chen and Goldberg [2018, Pages 27 and 30], such that

P

(∣∣∣∣∣
K∑

k=1

E
[
min
u∈[N ]

Z(k)
u

]
− V (K)

nξ,δ

∣∣∣∣∣ ≤ ξ/2

)
≥ 1− δ.

This statement was shown in Chen and Goldberg [2018] for non-projected V
(K)
nξ,δ . However, the projection on [a, b] can

only reduce the error |
∑K

k=1 E[minu∈[N ] Z
(k)
u ]−V

(K)
nξ,δ | so the statement still holds for V (K)

nξ,δ as defined in (12). Hence,
choosing K(ξ) = ⌊2(b− a)/ξ⌋ we have by Theorem 2 and the triangle inequality that

P
(∣∣∣∣ infτ∈TN

E[Zτ ]− V (K(ξ))
nξ,δ

∣∣∣∣ ≤ ξ

)
≥ 1− δ.

5
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4 Gittins index approximation

This section first introduces our main method, which is a sampling-based method for Gittins index approximation.
Section 4.1 develops finite-time bounds for the approximation, and Section 4.2 develops asymptotic convergence results.

Combining the results of Sections 2 and 3.1, we define for some Rℓ, Ru ∈ R such that Rℓ < Ru

Z̃t(ν) = gνt (SJ0,tK) =
1− γ

2(Ru −Rℓ)(1− γN )

t−1∑
u=0

γu(ν −R(Su)), (13)

which is the argument in (5), scaled by c = 1−γ
2(Ru−Rℓ)(1−γN )

for later convenience.

We now introduce our sampling-based Gittins index approximation.

SAMPLING-BASED GITTINS INDEX APPROXIMATION (SBGIA)

• Approximation I: truncation
Truncate the support of Z̃t and the time horizon for the optimal stopping problem (4):

νσ(s) = sup

{
ν : inf

τ∈Tσ

Es[Z̃τ (ν)] ≤ 0

}
≈ sup

{
ν : sup

τ∈T
Es

[
τ−1∑
t=0

γt(R(St)− ν)

]
≥ 0

}
, (14)

where the infimum is taken over the set of stopping times Tσ = {τ ∈ T : τ ≤ σ} with, for a choice of N ∈ N,

σ = σH ∧N, σH = inf{t ∈ N : R(St) /∈ [Rℓ, Ru]} (15)

where the minimum operator is denoted with ∧. Note that νσ only considers R(St) ∈ [Rℓ, Ru]. Hence, using
the stopped (bounded) process Z = Z̃σ such that Z̃σ

t = Zt∧σ for all t, νσ in (14) can also be formulated as

νσ(s) = sup

{
ν : inf

τ∈TN

Es[Zτ (ν)] ≤ 0

}
. (16)

Boundedness of Z allows using the results stated in Section 3.1.
• Approximation II: simulation

Highlighting the dependence on the state s and current estimate ν only, we sample Vs(ν) = V
(K(ξ),N)
s,nξ,δ (ν)

truncated to [−1/2, 1/2] by sampling the respective processes Si, from the Markov kernel Ps starting from
state s, needed to determine Z

(K(ξ))
i,t,nξ,δ

in (10), (11) and combining them in (12) such that

P

(∣∣∣∣∣ inf
τ∈TN

Es[Zτ (ν)]− Vs(ν)

∣∣∣∣∣ ≤ ξ

)
≥ 1− δ. (17)

Using this sampling procedure, we approximate νσ(s) using stochastic approximation (Borkar [2008]), i.e., a
stochastic root-finding procedure, starting from an initial point ν0(s) ∈ [Rℓ, Ru] such that

νm+1(s) = νm(s)− αmVs,m(νm(s)), (18)

where Vs,m are independent versions of Vs, and (αm)m is a possibly stochastic, predictable non-negative
sequence of step-sizes in R. We collect νM (s) as our sampling-based approximation of the Gittins index ν(s),
where M is defined according to a certain (user-defined) stopping criterion (see Remark 2).

4.1 Finite-time error bounds

In this section, we first derive a truncation error bound for the first-stage approximation (Theorem 3). Subsequently, we
couple the stochastic approximation iterates from the second-stage approximation to stochastic approximation iterates
from a continuous increasing function (Lemma 1). Using a mean-squared error recursion result for these coupled
sequences (Theorem 4), we then construct a confidence interval for the Gittins index in finite-time, where “finite-time”
pertains to the number of stochastic approximation iterates (Theorem 5). Using finite-time bounds, we construct an
ϵ-optimal policy for the family of alternative bandit processes (Theorem 6).

An upper bound on the error when approximating ν(s) by the truncation-based index νσ(s) as defined in (14) is given
in the following theorem, which holds for a general stopping time σ. A similar bound was given in Wang [1997] for a
fixed truncation N of the time horizon.

6
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Theorem 3 (TRUNCATION ERROR BOUND). Under Assumption 1 there is a unique real number νσ(s) attaining the
supremum

sup

{
ν : inf

τ∈Tσ

Es[Z̃τ (ν)] ≤ 0

}
.

In fact, νσ(s) is the unique root of
fσ
s : ν 7→ inf

τ∈Tσ

Es[Z̃τ (ν)].

The infimum in the condition is attained for some τσ(ν, s) ∈ Tσ .
Furthermore, with x+ = max(x, 0) for x ∈ R, it holds that

0 ≤ ν(s)− νσ(s) ≤
Es [γ

σν(Sσ)
+]

1− Es[γσ]
.

Proof. The complete proof can be found in Appendix A and is outlined here. The first two statements follow by showing
that νσ(s) equals the Gittins index for the Markov process S̃ documenting the full history of S up to and including
each time t with rewards R̃(S̃t) = R(St)I(t < σ), after which we can apply commonly known results for the Gittins
index from Lattimore and Szepesvári [2020]. Only the upper bound ν(s) − νσ(s) ≤ Es [γ

σν(Sσ)
+] /(1 − Es[γ

σ])
is non-trivial and mainly follows from bounding the difference between two optimal stopping values by the optimal
stopping value of the difference and using the strong Markov property.

We now give an error bound for the sampling-based approximation νM (s) as defined in (18). Note that Zt(ν) ∈
[−1/2, 1/2] almost surely. Hence, according to Theorem 2 we have

0 ≤ inf
τ∈TN

Es [Zτ (ν)]−
K∑

k=1

Es

[
min
u∈[N ]

Z(k)
u (ν)

]
≤ 1

K + 1
.

Defining the functions
f̃s : ν 7→ Es[Vs(ν)], fs : ν 7→ inf

τ∈TN

Es[Zτ (ν)], (19)

we have by (17) and by Jensen’s inequality

|f̃s(ν)− fs(ν)| ≤ Es

∣∣∣∣∣ inf
τ∈TN

Es[Zτ (ν)]− Vs(ν)

∣∣∣∣∣ ≤ δ + ξ =: B(δ, ξ). (20)

Using these results, we derive mean-squared error bounds for our approximation method. We do this by defining
coupled stochastic approximation iterates based on the function fs that lie almost surely below and above the sequence
(νm(s))m defined in (18). As we do not have access to fs or even unbiased estimates of fs, these iterates cannot
directly be simulated, but we can bound their distance to (νm(s))m, and show finite-time convergence results for these
sequences, which can then be used to derive finite-time convergence bounds for (νm(s))m. To this end, let

ϵm = Vs,m(νm(s))− f̃s(νm(s)), (21)

which is a martingale difference sequence with respect to the natural filtration (Fϵ
m)m w.r.t. (ϵm)m as Vs,m (hence f̃s)

is bounded and
E[ϵm | Fϵ

m−1] = E[Vs,m(νm(s)) | νm(s)]− f̃s(νm(s)) = 0,

since νm(s) is a function of (ϵm′)m−1
m′=1.

Let

ν̄0(s) = ν0(s), ν̄m+1(s) = ν̄m(s)− αm (fs(ν̄m(s))−B(δ, ξ) + ϵm) , (22)

¯
ν0(s) = ν0(s),

¯
νm+1(s) =

¯
νm(s)− αm (fs(

¯
νm(s)) +B(δ, ξ) + ϵm) , (23)

where (αm)m is the same sequence as in (18).
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Lemma 1. Assume the step-size sequence (αm)m is such that supm αm ≤ 2(Ru − Rℓ) almost surely. For m =
0, 1, 2, . . ., we have

¯
νm ≤ νm ≤ ν̄m. (24)

Proof. Observe that ν̄0 =
¯
ν0 = ν0, so that (24) is satisfied for m = 0.

Now assume
¯
νm ≤ νm ≤ ν̄m for some m ≥ 0. We have

ν̄m+1(s)− νm+1(s) = ν̄m(s)− νm(s)− αm

(
fs(ν̄m(s))− (f̃s(νm(s)) +B(δ, ξ))

)
≥ ν̄m(s)− νm(s)− αm (fs(ν̄m(s))− fs(νm(s)))

≥
(
1− αm

2(Ru −Rℓ)

)
(ν̄m(s)− νm(s)) ≥ 0,

where the second statement follows from (20), and the last statement follows as for any ν1, ν2 ∈ R

min
(

1−γ
1−γN (ν1 − ν2), ν1 − ν2

)
2(Ru −Rℓ)

≤ fs(ν1)− fs(ν2) ≤
max

(
1−γ
1−γN (ν1 − ν2), ν1 − ν2

)
2(Ru −Rℓ)

, (25)

which can easily be shown from the definition of fs, using the fact that the suprema are attained at unique stopping
times.

Similarly, if
¯
νm(s) ≤ νm(s) for some m, then

¯
νm+1(s) ≤ νm+1(s). The proof is completed by induction.

The next theorem gives the mean-squared error between either sequence ν̄m(s),
¯
νm(s) and a limit point.

Theorem 4 (MEAN-SQUARED ERROR RECURSION FOR COUPLED SEQUENCES). For ω∗ ∈ R, initial point ω0 ∈ R,
and martingale difference sequence (21), let the sequence (ωm)m be defined as

ωm+1 = ωm − αm(fs(ωm)− fs(ω
∗) + ϵm).

Assume the step-size sequence is such that supm αm ≤ 2(Ru −Rℓ) almost surely. Then for all m

E[(ω∗ − ωm+1)
2] ≤ E[(1− cαm)

2
(ω∗ − ωm)2] + E[α2

m]E[ϵ2m].

Proof. The full proof can be found Appendix A. The result is obtained by using conditional independence of the
martingale difference sequence ϵm, rewriting the difference between fs(ω

∗) and fs(ωm) to a scaled difference between
ω∗ and ωm using (25) and the law of total expectation.

Observe that by the assumption on αm we have cαm < 1 (for N > 1) so that the influence of the initial difference
between ω0 and ω∗ decays exponentially. The squared difference of the iterate ωm and ω∗ converges to a value that
depends on the second moment of the martingale differences and the step-size sequence (αm)m.

Different choices of step-size sequences yield different upper bounds on the rates of convergence. We examine two
standard choices.
Example 1 (Constant step-size). Let αm = α for all m with α ≤ 2(Ru − Rℓ). Let B2

0 = (ω0 − ω∗)2, and assume
maxm E[ϵ2m] ≤ v2ϵ . From the recursion for ωm, we obtain that

E[(ω∗ − ωm)2] ≤ B2
0(1− cα)2m +

v2ϵα

c
.

Example 2 (Linear step-size). Let αm = A/m for all m, with A > 1/c. Assume maxm E[ϵ2m] ≤ v2ϵ . Then, by
Theorem 4 we have for all m0 ≥ A/(2(Ru −Rℓ)) that

E[(ω∗ − ωm+1)
2] ≤ (1− cA/m)2E[(ω∗ − ωm)2] +A2v2ϵ /m

2 ≤ (1− cA/m)E[(ω∗ − ωm)2] +A2v2ϵ /m
2.

Hence, by Chung [1954, Lemma 1] we have for all m ≥ A/(2(Ru −Rℓ)) that

E[(ω∗ − ωm)2] ≤ A2v2ϵ
m(cA− 1)

+ o(m−2 +m−cA).

8
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In the above two examples, we see that we can choose the step-size sequence and stopping point m such that
E[(ω∗ − ωm)2] is arbitrarily small. We can construct confidence intervals for ω∗ using Chebyshev’s inequality:

P(|ω∗ − ωm| > ξ) ≤ E[(ω∗ − ωm)2]

ξ2
≤ δ.

Observe that fs is a strictly increasing surjective function on R. We may therefore

choose ν̄(s),
¯
ν(s) such that fs(ν̄(s)) = B(δ, ξ), fs(

¯
ν(s)) = −B(δ, ξ). (26)

We may now construct a finite-time confidence interval for the Gittins index ν(s) for finite m, which can be made
arbitrary small by choosing Es[σ],m large and ξ, δ small.
Theorem 5 (FINITE-TIME CONFIDENCE INTERVAL). Let ν̄(s),

¯
ν(s) be chosen according to (26). Then

ν̄(s)−
¯
ν(s) ≤ 2B(δ, ξ)/c, (27)

which can be made arbitrarily small by suitable choice of ξ and δ.

Let (αm)m and M be chosen such that supm αm ≤ 2(Ru −Rℓ), and

P(|ν̄(s)− ν̄M (s)| ≤ ξ2) ≥ 1− δ2/2, P(|̄ν(s)−
¯
νM (s)| ≤ ξ2) ≥ 1− δ2/2. (28)

Then, with probability at least 1− δ2

ν(s) ∈
(
νM (s)− ξ2 − 2B(δ, ξ)/c, νM (s) + ξ2 + 2B(δ, ξ)/c+

Es[γ
σν(Sσ)

+]

1− Es[γσ]

)
. (29)

Proof. From (25) we obtain that

2B(δ, ξ) = fs(ν̄(s))− fs(
¯
ν(s)) ≥ c(ν̄(s)−

¯
ν(s)),

which implies (27).

Observe that by (26), νσ(s) ∈ [
¯
ν(s), ν̄(s)] as fs is increasing and fs(νσ(s)) = 0. Hence, by a union bound for the

complements of the events in (28), and inequality (27), we have with probability larger than 1− δ2 that the following
confidence interval holds for the second-stage approximation

νσ(s) ∈ (νm(s)− ξ2 − 2B(δ, ξ)/c, νm(s) + ξ2 + 2B(δ, ξ)/c).

The result follows from Theorem 3.

The confidence interval (29) can be used to construct an ϵ-optimal policy for any FABP. For this we first need to
show that the values of (νm)m are restricted to a closed bounded interval. The proof of this lemma can be found in
Appendix A.
Lemma 2. Let supm αm ≤ Mα < ∞ almost surely. We have almost surely that for all m

νm(s) ∈ [Rℓ −Mα/2, Ru +Mα/2].

For the family of alternative bandit processes, we can now define an ϵ-optimal policy, which we will denote the SBGIA
policy (SBGIAP).
Theorem 6 (ϵ-OPTIMAL POLICY FOR FABP). Let supm αm ≤ 2(Ru − Rℓ) < ∞ almost surely. Let π be the
randomized Markov policy such that for all histories h ∈ H

π(h) = argmax
a∈[A]

νM (sah),

where (νm)m is determined by (14) – (18), and M,σ, δ, ξ are chosen such that for some ϵ > 0

P
(
|ν(sah)− νM (sah)| ≤ (1− γ)2ϵ/4

)
≥ 1− (1− γ)2ϵ/(4AD(sah)) ∀a ∈ [A], (30)

for D(sah) = (1− γ)C(sah) + max(|Rℓ|, |Ru|) +Mα/2.Then, the policy π is ϵ-optimal for the family of alternative
bandit processes, i.e.,

Eπ∗

[ ∞∑
t=0

γtR
(
SAt

NAt,t

)]
− Eπ

[ ∞∑
t=0

γtR
(
SAt

NAt,t

)]
≤ ϵ.

9
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Proof. Note that (30) is possible due to (29). in Glazebrook [1982], it is shown that for any stationary policy π

Eπ∗

[ ∞∑
t=0

γtR
(
SAt

NAt,t

)]
− Eπ

[ ∞∑
t=0

γtR
(
SAt

NAt,t

)]
≤ Eπ

[ ∞∑
t=0

γt

(
max
a∈[A]

ν(Sa
Na,t

)− ν
(
SAt

NAt,t

))]
/(1− γ).

(31)
By our choice of m,σ, δ, ξ we have by a union bound over a for the events in (30) that for any time point t

P
(
max

a
|ν(Sa

t )− νm(Sa
t )| > (1− γ)2ϵ/4

)
≤ (1− γ)2ϵ/(4D(Sa

t )).

Combining Lemma 2 with the fact that ν(Sa
t ) ≤ (1− γ)C(Sa

t ) yields |ν(Sa
t )− νm(Sa

t )| ≤ D(Sa
t ) for all m, hence

E
[
max

a
|ν(Sa

t )− νm(Sa
t )|
]
≤ (1− γ)2ϵ/4 + (1− γ)2ϵ/4 = (1− γ)2ϵ/2.

Using this in the right-hand side of (31) scaled by (1− γ) gives

Eπ

[ ∞∑
t=0

γt

(
max
a∈[A]

ν(Sa
t )− ν

(
SAt
t

))]
= Eπ

[ ∞∑
t=0

γt

(
max
a∈[A]

ν(Sa
t )− νm(SAt

t ) + νm(SAt
t )− ν

(
SAt
t

))]

≤ Eπ

[ ∞∑
t=0

γt

(
max
a∈[A]

(ν(Sa
t )− νm(Sa

t )) + νm(SAt
t )− ν

(
SAt
t

))]

≤
∞∑
t=0

γtEπ

[
2 max
a∈[A]

|ν(Sa
t )− νm(Sa

t )|
]
≤ (1− γ)ϵ.

4.2 Asymptotic convergence results

This section investigates convergence properties of the stochastic process defined in (18). In the previous section, we
have shown that after a finite, known, amount of iterations, the iterates νm(s) lie in an interval containing ν(s) with high
probability. The length of this interval depends on the choice of K and n. In this section, we let K and n be constants,
not depending on ξ, δ, and investigate convergence and asymptotic normality of the iterates νm(s) when m goes to
infinity, under different choices of the step-size sequence. First, we show that when the step-size sequence almost surely
satisfies the Robbins-Monro conditions (Robbins and Monro [1951]), the stochastic approximation iterates converge
almost surely (Theorem 7). Then, we show that if we instead take a constant step-size sequence, the iterates converge
in mean-square to the set of roots (Theorem 8). Lastly, under stronger conditions, we show that we can construct
an adaptive stochastic approximation procedure (Lai and Robbins [1979]), where a central limit theorem holds for
the stochastic approximation iterates (Theorem 9). In the following, we let Vs(ν) = V

(K,N)
s,n (ν) for fixed choices of

K,N, n, and define f̃s and ϵm as in (19), (21), respectively.

The sequence (18) relates to an Euler scheme for the first-order scalar autonomous ordinary differential equa-
tion (ODE) (Borkar [2008]),

d

dx
ν(x) = −f̃s(ν(x)). (32)

This differential equation has as equilibrium points the roots Rs of the function f̃s, provided that a root exists. We show
that iteration scheme (18) satisfies the conditions stated in Borkar [2008, Chapter 2], hence almost surely the limiting
behavior of the sample paths of the stochastic process (18) equals that of the solution to the above ODE. We then show
that the ODE (32) always converges to an equilibrium point, irrespective of the starting point. It follows that the sample
paths of (18) almost surely converge to a random variable ν̃(s) ∈ Rs such that f̃s(ν̃(s)) = 0.

To make this formal, we define an internally chain transitive invariant set corresponding to an ODE in accordance with
the definition given in Borkar [2008].
Definition 1 (Internally chain transitive invariant set (Borkar [2008])). A closed set E ⊂ R is said to be an internally
chain transitive invariant set for the ODE (32) if

• any trajectory ν of (32) with ν(0) ∈ E satisfies ν(x) ∈ E ∀x ∈ R,

• for any ν, ν′ ∈ E and any ϵ > 0, T > 0, there exist n ≥ 1 and points ν0 = ν, ν1 . . . , νn−1, νn = ν′ in E
such that the trajectory of (32) initiated at νi meets with the ϵ-neighbourhood of νi+1 for 0 ≤ i < n after a
time ≥ T .

10



A Sampling-based Gittins Index Approximation A PREPRINT

We first show that f̃s is Lipschitz continuous.

Lemma 3. The function f̃s is Lipschitz continuous in ν.

Proof. We first prove by induction in k that Z(k)
i,u,n is Lipschitz continuous for all k, i, u, n, starting with k = 1. From

(10) and (13) it follows that Z(1)
i,u,n is Lipschitz continuous with constant L = 1/(2(Ru −Rℓ)) for all i, u, n. Now

assume that Z(k)
i,u,n is Lipschitz continuous up to some k for all i, u, n. As the minimum, average, and sum of a finite set

of Lipschitz continuous functions are Lipschitz continuous, we have by (11) that Z(k+1)
i,u,n is also Lipschitz continuous

for all possible i, u, n. By induction we have that Z(k)
i,u,n is Lipschitz continuous for all k, i, u, n. Now, by (12)

f̃s(ν) = Es

max

−1/2, min

1/2,
1

n(K,K)

n(K,K)∑
j=1

K∑
k=1

min
u∈[N ]

Z
(k)
[k,j],u,n(ν)

 .

Hence, as the expectation, maximum, minimum, and sum of Lipschitz continuous functions are Lipschitz continuous,
we have that f̃s is Lipschitz continuous.

Using this lemma, the next result follows.
Theorem 7 (ALMOST SURE CONVERGENCE OF STOCHASTIC APPROXIMATION ITERATES).
Assume (αm)m almost surely satisfies the Robbins-Monro conditions (Borkar [2008]):

∞∑
m=1

αm = ∞,

∞∑
m=1

α2
m < ∞. (33)

The sequence (νm(s))m generated by (18) almost surely converges to a (possibly sample path dependent) compact
connected internally chain transitive invariant set of (32).

Proof. We verify that assumptions (A1 - A4) in Borkar [2008, Chapter 2] are satisfied, from which the result follows by
Borkar [2008, Chapter 2, Theorem 2]:

(A1) We have from Lemma 3 that f̃s is Lipschitz continuous.

(A2) The Robbins-Monro conditions hold by assumption.

(A3) The sequence (ϵm)m defined by (21) is a bounded martingale difference sequence.

(A4) Note that condition (33) is sufficient for the condition on the step-size sequence in Lemma 2, hence we have
supm |νm(s)| < ∞ almost surely.

The next corollary follows.
Corollary 1. Under Assumption (33), the sequence (νm(s))m generated by (18) converges almost surely to a random
variable ν̃(s) ∈ [Rℓ, Ru] such that

f̃s (ν̃(s)) = 0.

Proof. From the proof of Lemma 2, we have fs(ν) < 0 for ν < Rℓ and fs(ν) > 0 for ν > Ru. Hence, d
dxν(x, s) > 0

if ν < Rℓ and d
dxν(x, s) < 0 if ν > Ru. From Lipschitz continuity of fs it then follows that no solution of (32) goes

to infinity. Hence, by classification of solutions to a first-order scalar autonomous ODE, we know that each solution of
(32) must converge to a (semi-)stable point contained in the set Rs of roots of fs, which is non-empty and contained in
[Rℓ, Ru] by the above discussion.

If the step-size sequence is constant, i.e., αm ≡ α ∈ (0,∞) for all m, the following result holds by Borkar [2008,
Chapter 9, Theorem 3], which states that νm(s) is close to Rs in the limit in mean-square, but does not necessarily
almost surely converge to a point in Rs.

11
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Theorem 8 (CONVERGENCE OF STOCHASTIC APPROXIMATION FOR CONSTANT STEP-SIZE).
For a constant H > 0

lim sup
m→∞

E
[
min
ν∈Rs

(νm(s)− ν)
2

]
≤ Hα.

Proof. We already saw in the proof of Theorem 7 that assumptions (A1) and (A3) in Borkar [2008, Chapter 2] are
satisfied. Furthermore (9.2.1) and (9.2.2) in Borkar [2008] are satisfied as the iterates (νm(s))m stay in a closed
bounded interval (Lemma 2).

Remark 1. In the above results, we have shown two convergence results under two different assumptions on the
step-size sequence. Theorem 7 assumes that the Robbins-Monro conditions almost surely hold for the step-size sequence
(αm)m. This is a stronger condition than the one assumed in Section 4.1, where only supm αm < Mα was assumed for
some bound Mα. Under this stronger condition we were able to show that the stochastic process (νm)m converges to
a root of the function f̃s and based on a sample path alone, we can determine whether the sequence has converged
or not. If we instead take a constant step-size sequence, we could only show that the limit of the stochastic process
is close to Rs, in terms of mean-squared difference. Often the rate of convergence is much higher for constant
step-size sequences (Borkar [2008]).

The following lemma gives a recursive formula for the derivative which can be used for selection of the step-size in the
adaptive stochastic approximation procedure (18).
Lemma 4. If for all t the cumulative distribution functions of R(St) starting from S0 = s have finitely many jumps,
then for all but finitely many points ν the function f̃s is differentiable with derivative

d

dν
f̃s(ν) =

K∑
k=1

Es

[
h
(k)
[k,1],n

(
U

(k)
[k,1],n(ν), ν

)
I(Ṽs(ν) ∈ [−1/2, 1/2])

]
,

where Ṽs(ν) =
∑K

k=1 minu∈[N ] Z
(k)
[k,1],u,n(ν), U

(k)
i,n (ν) = argmin

u∈[N ]

Z
(k)
i,u,n(ν), and

h
(1)
i,n(t, ν) = (1− γt)/(2(Ru −Rℓ)(1− γN )),

h
(k)
i,n(t, ν) = h

(k−1)
[i,1],n(t, ν)−

1

n(i, k)

n(i,k)+1∑
j=2

h
(k−1)
[i,j],n(U

(k−1)
[i,j],n (ν), ν)|{S

[i,j]
J0,tK = S

i
J0,tK} (k ≥ 2).

Proof. The full proof can be found in Appendix A. The result might seem straightforward at first but the situation is
more difficult due to the dependence of U (k)

i,n on ν. The result is obtained by showing continuity of U (k)
i,n for all but

at most finitely many points, by giving a coinciding lower and upper bound for the derivative of argminu∈[N ]Z
(k)
i,u,n

whenever it exists and then using dominated convergence to show the derivative for the expected sum truncated
to [−1/2, 1/2].

The next theorem states that using Lemma 4 an adaptive stochastic approximation method can be designed with
asymptotically optimal variance (Lai and Robbins [1979]).
Theorem 9 (CENTRAL LIMIT THEOREM FOR STOCHASTIC APPROXIMATION ITERATES).
Let h(k)

m,[k,1],n, U
(k)
m,[k,1],n be independent versions (in m) of h(k)

[k,1],n, U
(k)
[k,1],n, and

hm : ν 7→
K∑

k=1

h
(k)
m,[k,1],n(U

(k)
m,[k,1],n(ν), ν).

Let
αm =

1

|
∑m

ℓ=1 hℓ(νℓ(s))|
.

Let V be the set of points where f̃s is differentiable. If infν∈V d/dνf̃s(ν) > 0, then there is a unique point ν̃(s) such
that f̃s(ν̃(s)) = 0. If the derivative of f (K)

s,n exists at ν̃(s) and E[Vs(ν̃(s))
2] > 0, we have

√
m(νm(s)− ν̃(s))

d→ N

0,
E[Vs(ν̃(s))

2](
d
dν f

(K)
s,n (ν̃(s))

)2
 . (34)
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Proof. The full proof can be found in Appendix A. We first show that the sequence mαm converges to a constant, by
showing that αm satisfies the Robbins-Monro conditions almost surely and by applying Corollary 1. After this, we can
apply the results in Lai and Robbins [1978], where we have to account for the fact that the residuals are not independent
and identically distributed but bounded, and the function is only differentiable at all but finitely many points.

Remark 2 (Step-size sequence and stopping criterion). We propose to use the adaptive step-size sequence
αm = 1/|

∑m
ℓ=1 hℓ(νℓ(s))| for the stochastic approximation sequence (18), and base the stopping criterion for

the stochastic approximation sequence on the estimated radius of the confidence interval implied by (55). We stop the
stochastic approximation procedure (18) when the estimated confidence radius based on Theorem 9 is small enough,
i.e., when

C1−β

√
1
m

∑m
ℓ=1(Vs,ℓ(νℓ(s)))2

√
m| 1m

∑m
ℓ=1 hℓ(νℓ(s))|

≤ ϵν , (35)

with C1−β the level 1− β/2 quantile of the standard normal distribution, and ϵν a pre-specified tolerance.
Remark 3. When all values n(i, k) are large enough, we have by Theorem 2

f̃s(ν) ≈
K∑

k=1

Es

[
min
u∈[N ]

Z(k)
u (ν)

]
≤ inf

τ∈TN

Es[Zτ (ν)] = fs(ν), (36)

fs(ν) ≤
K∑

k=1

Es

[
min
u∈[N ]

Z(k)
u (ν)

]
+ 1/(K + 1) ≈ f̃s(ν) + 1/(K + 1), (37)

where we used b = −a = 1/2. As both f̃s and fs are continuous, negative at Rℓ, positive at CR, and fs is increasing,
we expect from (36) that the root of f̃s is an upper bound of the root of fs. As Es[minu∈[N ] Z

(k)
u (ν)] ≥ 0 for k ≥ 2, we

furthermore expect that the root of f̃s decreases to the root of fs, and by (37) we expect that both roots coincide in the
limit as K → ∞. We furthermore have by (25) and (37) that, for large enough values of n(i, k),

ν̃(s)− νσ(s) ≤ fs(ν̃(s))/c ≤ 1/(c · (K + 1)), (38)

hence the difference in the two roots is of order O(1/(K+1)). In order to get an accurate SBGIA, we hence propose, for
a fixed K, to first increase all n(i, k) to large enough values such that the root of f̃s has converged. After convergence
has occurred, we propose to increase K and to repeat this procedure until the root has also converged in K.

5 Application to Bayesian multi-armed bandits

We introduce the Bayesian multi-armed bandit in Section 5.1 as an application of the FABP. In Section 5.2, we consider
outcome distributions from an exponential family. Subsequently, we present results for the SBGIA applied to two
Bayesian bandits known from literature, the Bernoulli bandit and Gaussian bandit with known variance. In Section 5.3,
we evaluate the performance of the SBGIAP for a novel Gaussian random effects bandit problem.

5.1 Bayesian multi-armed bandit

Consider A distributions with support O. Selecting distribution a at time t ∈ N, results in a realisation of the random
variable Oa

t that has a known density p(Oa
t |θa) w.r.t. a measure µ, where the unknown parameter θa lies in a parameter

space Θ (shared for all a). The random variables Oa
t are assumed independent. We perform a Bayesian analysis, where

the parameters θa are independent a priori and endowed with prior probability measure Πa
0 w.r.t. the Polish space

(Θ,B(Θ)). Given this probability measure Πa
0 on (Θ,B(Θ)), we can determine the predictive distribution

p(O | Πa
0) =

∫
Θ

p(O | θ)dΠa
0(θ). (39)

A sample from this distribution then, in turn, generates a posterior distribution Πa
1(· | O,Πa

0) by Bayes’ rule, i.e.,

Πa
1(E | O,Πa

0) =

∫
E

p(O | θ)∫
Θ
p(O | θ)dΠa

0(θ)
dΠa

0(θ) ∀E ∈ B(Θ). (40)

We can use the predictive distribution (39) and posterior updating rule (40) to determine A Markov chains (arms), with
states (Πa

t )
A
a=1 corresponding to (posterior) distributions on Θ. The state space of each Markov chain is the space M of

probability measures on (Θ,B(Θ)). Furthermore, we endow this state space with the sigma algebra M, which is the

13
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smallest sigma field making all maps from M to R measurable. Then (M, M) is a Borel space (Ghosal and Van der
Vaart [2017, Chapter 3.1]). Each Markov chain (Πa

t )
A
a=1 has transition kernel

PΠa
t
(E) =

∫
O
I
(
Πa

t+1(· | O,Πa
t ) ∈ E

)
p(O | Πa

t )µ(dO) ∀E ∈ M. (41)

Our goal is to find a (Markov) policy π to sequentially sample from one of the A arms that maximizes the expected
discounted sum of outcomes under the Bayesian model, i.e, to maximize

Eπ

[ ∞∑
t=0

γtOAt
t+1

]
= Eπ

[ ∞∑
t=0

γtR(ΠAt
t )

]
, (42)

where R(Πa
t ) =

∫
Θ
E[O | θ]dΠa

t (θ) is the posterior mean outcome for the current posterior Πa
t . The equality in (42)

follows from Assumption 1 and Fubini’s theorem. Letting Sa
t = Πa

t for all a, t, S = M, and G = M, we are in the
setting of Section 2 with transition kernel (41) and reward function R.

5.2 Gittins index approximation results

This section considers the FABP with distributions from an exponential family as detailed in Section 5.2.1. Specific
results are presented for Bernoulli and Gaussian families in Sections 5.2.2 and 5.2.3.

For determining the SBGIA, we set β = 0.05 and ϵν = 0.001 in (35) to estimate a 95% asymptotic confidence interval
for ν̃(s) with radius 0.001. We compare the SBGIA with the Calibration method introduced in Gittins [1979], which
is a combination of a bisection method and backward induction to obtain the value of the truncated optimal stopping
problem in (4). The parameters of the Calibration method are set such that the approximation error is very small, so that
we may consider these values to be the true Gittins index values.

5.2.1 Exponential families

Assume the data comes from a distribution belonging to an exponential family, i.e., for known functions ψ, η, ρ, ζ we
have

p(Oa | θa) = ζ(Oa) exp(η(θa)
⊤ψ(Oa)− ρ(θa))dµ(O

a),

and

p((Oa
t )t | θa) =

t∏
u=1

ζ(Oa
u) exp

(
η(θa)

⊤ψ(Oa
u)− ρ(θa)

)
dµ(Oa

u).

Now assume a conjugate prior for this model (Diaconis and Ylvisaker [1979]), with normalizing constant ζ2

p(θa;Ψ
a
0 , κ

a
0) = ζ2(Ψ

a
0 , κ

a
0) exp(η(θa)

⊤Ψa
0 − κa

0ρ(θa)).

Letting Ψa
t = Ψa

0 +
∑t

u=1ψ(O
a
u) and κa

t = κa
0 + t, we have the following expression for the posterior

p(θa | (Oa
t )t) = ζ2(Ψ

a
t , κ

a
t ) exp(η(θa)

⊤Ψa
t − κa

t ρ(θa)) =: p(θa;Ψ
a
t , κ

a
t ).

The vector Ψa
t is often referred to as the sufficient statistic, and κa

t as the effective number of observations, which is
the sum of a prior number of observations κa

0 and the actual number of observations t for arm a. As the only random
element in the posterior is Ψa

t , which we will assume to lie in Rd, the Markov chain (Πa
t )t can be represented by the

time-inhomogeneous Markov chain (Ψa
t , κ

a
t )t on the finite-dimensional state space Rd+1 with transition dynamics

(Ψa
t , κ

a
t ) → (Ψa

t , κ
a
t ) + (ψ(O), 1), O ∼ p(O | (Ψa

t , κ
a
t )). (43)

The rewards R(Ψa
t , κ

a
t ) =

∫
Θ
E[O | θ] p(θ;Ψa

t , κ
a
t )dθ are the posterior mean outcomes. As our goal is to maximize

the expected discounted sum of outcomes under the Bayesian model, letting Sa
t = (Ψa

t , κ
a
t ) for all a, t, S = Rd+1,

and G = B(Rd+1), we are in the setting of Section 2 with the transition kernel implied by (43) and reward function R.

5.2.2 Bernoulli bandit

We consider the case when Oa
t are Bernoulli distributed with unknown success probability pa ∈ [0, 1], i.e.,

P(Oa = 1) = pa, P(Oa = 0) = 1− pa,

which implies that the family of outcome distributions is an exponential family with

ζ ≡ 1, η(pa) = log(pa/(1− pa)), Ψ(O) = O, ρ(pa) = − log(1− pa),

14
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and µ the counting measure on the nonnegative integers. We assume a conjugate Beta(αa, βa) prior on each pa, hence
Ψa

t = αa +
∑t

u=1 O
a
u and κa

t = αa + βa + t. In the following, we drop the superscript a from notation as we consider
results for a single arm a only.

Observe that R(Ψ, κ) = Ψ/κ, hence for a fixed horizon N ∈ N the Markov reward process starting from (Ψ, κ) is
bounded. Thus, in Section 4 we can take σ = N , and the result of Theorem 3 holds without truncation of the support of
the rewards. Using ν(SN )+ ≤ 1, and letting the Gittins index approximation after truncation be denoted by νN (Ψ, κ)
(as σ = N ), we have

0 ≤ ν(Ψ, κ)− νN (Ψ, κ) ≤ γN

1− γN
, (44)

hence for ϵtrunc > 0
N ≥ logγ(ϵtrunc/(1 + ϵtrunc)) =⇒ ν(Ψ, κ)− νN (Ψ, κ) ≤ ϵtrunc. (45)

For the rewards, we have

R(Ψ, κ+ w) ∈ [Ψ/(κ+ w), (Ψ + w)/(κ+ w)] ∀w ∈ [N ].

Starting from (Ψ, κ) the rewards lie in the bounded interval [Rℓ, Ru] up to a horizon N for

Rℓ = Ψ/(κ+N), and Ru = (Ψ +N)/(κ+N),

which can be used in (13).

Table 1 shows the Gittins index values found under the SBGIA and the Calibration method for the Bernoulli bandit
with γ = 0.8. For the SBGIA and the Calibration method, we set N = 35, corresponding to a truncation error bound
ϵtrunc of 0.0005 according to (45). We set each n(i, k) = 1 and considered K = 1, 2, 3. For ease of comparison,
Table 1 shows κ−Ψ, the effective number of failures, as the second state variable. Table 1 shows the log computation
time (in seconds), estimated bias (SBGIA minus Calibration), root-mean-squared error (RMSE), and average standard
deviation over estimates for the SBGIA (calculated as the average deviation in the approximation over states for two
independent simulation runs) for each considered value of K. Using (38), the rightmost column of Table 1 shows an
estimate of the limit as K → ∞, found by performing ordinary least squares on the columns K = 1, 2, 3 with the line
ν(s) = a+ b/(K + 1).

Table 1 shows that the Gittins index is overestimated by the SBGIA for K = 1, which is in agreement with our
expectation, as the expected minimum is always smaller than the minimum of the expectation over stopping times (see,
e.g., Chen and Goldberg [2018]). When K increases, the amount of overestimation decreases, and values of the SBGIA
lie above the Gittins index computed by the Calibration method for any state and value of K. It follows from Remark 3
that this behaviour should occur asymptotically when the values of n(i, k) go to infinity; the numerical results show
that it also occurs for small values of n(i, k). The estimate of the limit when K → ∞, shown in the rightmost column
of Table 1 has lowest bias and RMSE, indicating a correct assumption on the O(1/(K + 1)) convergence rate. The
computation time increases more than tenfold with each increase in K, and for K = 1 it is already about 100 times
larger than the computation time of the Calibration method. The standard deviation over runs (SD) is quite low, around
0.0001 for all values of K, indicating that the estimates are consistent over independent runs.

Table 2 shows the values of the SBGIA and the Calibration method for K = 2 and n(i, 2) = 1, 3, 5, i.e., only the
nested number of simulations for the SBGIA is increased. The CPU time, bias, RMSE, and standard deviations over
two independent simulation runs are shown at the bottom of Table 2.

Table 2 shows that when increasing n(i, k) a smaller error (expressed in bias and RMSE) is attained for a lower
computational cost in comparison to Table 1. The results in Table 2 hence agree with the proposal in Remark 3, as
increasing the number of nested simulations leads to higher precision in less computation time.
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Table 1: Gittins index values found under the SBGIA for K = 1, 2, 3, the Calibration method, and an estimate for
the limit as K → ∞ for the Bernoulli bandit. We set each n(i, k) = 1, γ = 0.8, N = 35, and set a tolerance of
ϵν = 0.001 in the stopping criterion (35) for determining the SBGIA. The computation (CPU) time denotes the time it
took to calculate all values in the column and is measured in seconds. The bias, RMSE, and standard deviation (SD) are
multiplied by 100, i.e., displayed in percentage points.

General Ψ κ−Ψ Calibration K = 1 K = 2 K = 3 Est. limit
1 1 0.641 0.643 0.642 0.642 0.641
1 2 0.443 0.447 0.446 0.445 0.442
1 3 0.332 0.338 0.337 0.335 0.332
1 4 0.263 0.270 0.268 0.267 0.264
1 5 0.216 0.224 0.222 0.221 0.218
1 6 0.183 0.191 0.189 0.188 0.185
2 1 0.760 0.760 0.760 0.760 0.759
2 2 0.590 0.592 0.591 0.591 0.590
2 3 0.476 0.480 0.479 0.478 0.476
2 4 0.398 0.402 0.401 0.400 0.398
2 5 0.340 0.345 0.344 0.342 0.340
2 6 0.296 0.301 0.300 0.299 0.297
3 1 0.816 0.816 0.816 0.816 0.815
3 2 0.671 0.673 0.673 0.672 0.671
3 3 0.566 0.568 0.568 0.567 0.566
3 4 0.487 0.490 0.489 0.489 0.487
3 5 0.427 0.430 0.429 0.428 0.427
3 6 0.379 0.383 0.382 0.381 0.379
4 1 0.849 0.850 0.849 0.849 0.849
4 2 0.725 0.726 0.725 0.725 0.724
4 3 0.628 0.629 0.629 0.629 0.628
4 4 0.552 0.554 0.554 0.553 0.552
4 5 0.491 0.494 0.494 0.493 0.492
4 6 0.443 0.446 0.445 0.444 0.443
5 1 0.872 0.873 0.872 0.872 0.871
5 2 0.762 0.763 0.763 0.762 0.762
5 3 0.674 0.675 0.675 0.674 0.673
5 4 0.602 0.604 0.603 0.603 0.602
5 5 0.543 0.545 0.545 0.544 0.543
5 6 0.494 0.497 0.496 0.496 0.495
6 1 0.888 0.889 0.888 0.888 0.887
6 2 0.790 0.791 0.791 0.791 0.790
6 3 0.709 0.710 0.710 0.709 0.709
6 4 0.641 0.643 0.642 0.642 0.641
6 5 0.585 0.586 0.586 0.586 0.585
6 6 0.537 0.539 0.538 0.538 0.537

log10 CPUtime 0.132 2.650 3.810 4.810
Bias (x0.01) 0.277 0.210 0.144 0.008
RMSE (x0.01) 0.342 0.264 0.189 0.071
SD (x0.01) 0.011 0.010 0.014
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Table 2: Gittins index values found under the SBGIA for n := n(i, 2) = 1, 3, 5 and the Calibration method for the
Bernoulli bandit. We set K = 2, γ = 0.8, N = 35, and set a tolerance of ϵν = 0.001 in the stopping criterion (35) for
determining the SBGIA. The computation (CPU) time denotes the time it took to calculate all values in the column
and is measured in seconds. The bias, RMSE, and standard deviation (SD) are multiplied by 100, i.e., displayed in
percentage points.

General Ψ κ−Ψ Calibration n = 1 n = 3 n = 5
1 1 0.641 0.642 0.642 0.642
1 2 0.443 0.446 0.445 0.444
1 3 0.332 0.337 0.334 0.333
1 4 0.263 0.268 0.266 0.265
1 5 0.216 0.222 0.220 0.219
1 6 0.183 0.189 0.187 0.186
2 1 0.760 0.760 0.760 0.760
2 2 0.590 0.591 0.591 0.590
2 3 0.476 0.479 0.478 0.477
2 4 0.398 0.401 0.399 0.399
2 5 0.340 0.344 0.342 0.341
2 6 0.296 0.300 0.299 0.298
3 1 0.816 0.816 0.816 0.816
3 2 0.671 0.673 0.672 0.672
3 3 0.566 0.568 0.567 0.566
3 4 0.487 0.489 0.489 0.488
3 5 0.427 0.429 0.428 0.428
3 6 0.379 0.382 0.380 0.380
4 1 0.849 0.849 0.849 0.849
4 2 0.725 0.725 0.725 0.725
4 3 0.628 0.629 0.629 0.628
4 4 0.552 0.554 0.553 0.553
4 5 0.491 0.494 0.493 0.493
4 6 0.443 0.445 0.444 0.444
5 1 0.872 0.872 0.872 0.872
5 2 0.762 0.763 0.763 0.762
5 3 0.674 0.675 0.674 0.674
5 4 0.602 0.603 0.603 0.602
5 5 0.543 0.545 0.544 0.544
5 6 0.494 0.496 0.496 0.495
6 1 0.888 0.888 0.888 0.888
6 2 0.790 0.791 0.791 0.790
6 3 0.709 0.710 0.709 0.709
6 4 0.641 0.642 0.642 0.642
6 5 0.585 0.586 0.585 0.585
6 6 0.537 0.538 0.538 0.537

log10 CPUtime 0.132 3.810 3.950 4.170
Bias (x0.01) 0.210 0.113 0.059
RMSE (x0.01) 0.264 0.145 0.085
SD (x0.01) 0.010 0.016 0.013
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Remark 4. The length of the confidence interval for the Gittins index is in large part determined by the error bound
for the optimal stopping value approximation given in Chen and Goldberg [2018]. The contribution of the optimal
stopping approximation is equal to 2B(δ, ξ)/c (Theorem 5), which can be seen as the bias of approximating νσ(s) by
νM (s). Here c is the slope of Zt(ν) in ν and B(δ, ξ) is a bound for the error induced by the approximation method
introduced in Chen and Goldberg [2018]. The bound is similar to the radius of the confidence interval found under the
Delta method when applied to sampled approximations to the truncated Gittins index f−1

s (0) = νσ(s), which would be
proportional to 1/f ′

s(0). This implies that the bound could be sharp, given that the error bound B(δ, ξ) is sharp. Note
that rescaling Z in (13) would not alter this radius, increasing the range of Z linearly increases the error according to
Theorem 2, yielding the same confidence radius. The results in Section 5.2 indicate that the bound can be made tighter.
For instance, for Ψ = 1, κ = 2, and K = 2, an absolute bias of 0.642− 0.641 = 0.001 is seen in Table 1. We have
Ru −Rℓ = 36/37− 1/37 = 0.946, c = (1− γ)/(2(Ru −Rℓ)(1− γN )) = 0.106, hence to get the theoretical bound
for the bias less than 0.001, we should at least have B(δ, ξ) = ξ + δ ≤ 0.106 · 0.001/2 = 5.29 · 10−5. Setting ξ =
δ = 5.29 · 10−5/2, following Chen and Goldberg [2018], we would need K = ⌊1/ξ⌋ = 378 · 102 and n(i, k) =
⌈log(2/δ)/(2ξ2)⌉ = 8.04 · 109 to obtain a bias of 0.001 for νσ(s). The main limiting factor in applying the theoretical
bound in practice is hence the bound from Chen and Goldberg [2018] which could possibly be made more tight.

5.2.3 Gaussian bandit

Let Oa
t be normally distributed with unknown mean θa, and known variance for each arm a. By scaling the mean

and outcomes by the (known) standard deviation, we can equivalently assume Oa
t ∼ N (θa, 1), which implies that the

family of outcome distributions is an exponential family with, letting ϕ denote the standard normal density,

ζ ≡ ϕ, η(θa) = θa, ψ(O) = O, ρ(θa) = θ2a/2, (46)

and µ the Lebesgue measure. We assume a N (µ0, va) prior on θa, hence κa
t = 1/va + t, Ψa

t = µ0/va +
∑t

u=1 O
a
u. In

the following, we drop the superscript a from notation as we consider results for a single arm a only.

Observe from (46) that O | (Ψt, κt) ∼ N (Ψt/κt, 1 + 1/κt), hence

R(Ψt, κt) = E[O | Ψt, κt] = Ψt/κt,

and
R(Ψt+1, κt+1) | (R(Ψt, κt), κt) ∼ N (R(Ψt, κt), 1/(κtκt+1)) . (47)

From Yao [2006] it holds that
ν(Ψt, κt) = R(Ψt, κt) + ν(0, κt).

It is hence sufficient to calculate the Gittins index for Gaussian rewards given that the initial sufficient statistic is zero.
Observe from (47) that, starting from the initial state (0, κt), the process (R(Ψt, κt+u))u is a Gaussian random walk
starting at zero with normally distributed, zero-centered increments with variance 1/((κt + u− 1)(κt + u)).

Let the stopping time σ be defined as in (15) for fixed N ∈ N, and let Rℓ = −L, Ru = L for fixed L > 0. We then
have by Kolmogorov’s inequality

P(0,κt)(σ < N) ≤ E[R(ΨN−1, κt+N−1)
2]

L2
=

1

L2

N−1∑
u=1

1/(κt+u−1κt+u) ≤
1

L2κt
.

We hence have E(0,κt)[γ
σ] ≤ γN + 1

L2κt
. Note that

C(0, κt) =

∞∑
u=0

γtE(0,κt)|R(Ψu, κt+u)| =
∞∑
u=1

γu

√
2

π

(
1

κt
− 1

κt+u

)
≤
√
2/κt

1− γ
.

From Theorem 3, and as ν(Sσ)
+ ≤ (1− γ)E[C(0, κσ)] ≤

√
2, it follows that

ν(0, κt)− νσ(0, κt) ≤
√
2E(0,κt)[γ

σ]

1− E(0,κt)[γ
σ]
, (48)

The truncation error in (48) is smaller than ϵtrunc > 0 when, e.g.,

N ≥ logγ

(
ϵtrunc/(2(

√
2 + ϵtrunc))

)
and L ≥

√
2(
√
2 + ϵtrunc)/(κtϵtrunc). (49)

Values of Ru = −Rℓ = L and N such that the above inequalities are satisfied can then be used in (13).
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Table 3 shows the Gittins index values found under the SBGIA and the Calibration method for the Gaussian bandit
with γ = 0.8. For the SBGIA, we set N = 39, corresponding to a truncation error bound ϵtrunc = 0.0005 according
to (48). For all states (0, κt) the value of L was set to the lower bound in (49). We next set each n(i, k) = 1 and
considered K = 1, 2, 3. The Gittins indices found under the Calibration method shown in Table 3 can also be derived
from Gittins et al. [2011, Table 8.1]. As we only consider Ψ = 0, each state of the Gaussian bandit in Table 3 is denoted
by κ. We show the log computation time at the bottom, as well as the bias, RMSE, and standard deviation in percentage
points. The rightmost column of the table shows an estimate of the limit as K → ∞, found by performing ordinary
least squares on the columns K = 1, 2, 3 with the line ν(s) = a+ b/(K + 1).

Table 3 shows that, as in Table 1, the Gittins index is overestimated for K = 1, and the values for the SBGIA, as
well as the error measures, decrease in K. The estimates for the Gaussian bandit show larger errors than those for
the Bernoulli bandit. Possibly due to the continuity in the support of the rewards, which induces a larger variance in
the sampled paths. The computation times for the Gaussian bandit are also approximately ten times larger than those
for the Bernoulli bandit. The computation time shown in Table 3 is similar for K = 1, 2, and increases tenfold when
going from K = 2 to K = 3. The computation time of the Calibration method is comparable to the computation
time for K = 1, indicating that the Gaussian bandit with known variance is already a hard problem to solve under
the Calibration method. The low average standard deviation in Table 3 indicates that the estimates are consistent over
different runs. The estimates of the limits in the rightmost column again show a better quality than those for finite K,
often giving the value of the Gittins index with an error of 0.001 for κ ≥ 4.

Table 4 shows values of the SBGIA obtained when setting K = 2 and varying n(i, 2) for the Gaussian bandit with unit
variance. As in Table 2, it is seen that the errors decrease faster in n(i, k) for K fixed than vice versa, in agreement
with the proposal in Remark 3.

Table 3: Gittins index values found under the SBGIA for K = 1, 2, 3, the Calibration method, and an estimate for
the limit as K → ∞ for the Gaussian bandit (unit variance). For columns K = 1, . . . , 3 we set each n(i, k) = 1
γ = 0.8, N = 39, and set a tolerance of ϵν = 0.001 in the stopping criterion (35) for determining the SBGIA. The
computation (CPU) time denotes the time it took to calculate all values in the column and is measured in seconds. The
bias, RMSE, and standard deviation (SD) are multiplied by 100, i.e., displayed in percentage points.

General κ Calibration K = 1 K = 2 K = 3 Est. limit
1 0.505 0.526 0.520 0.520 0.513
2 0.308 0.329 0.323 0.320 0.312
3 0.226 0.245 0.239 0.237 0.229
4 0.179 0.196 0.191 0.188 0.180
5 0.149 0.164 0.160 0.157 0.150
6 0.128 0.142 0.138 0.135 0.128
7 0.112 0.125 0.121 0.119 0.113
8 0.100 0.112 0.108 0.106 0.101
9 0.090 0.101 0.098 0.096 0.091
10 0.082 0.092 0.089 0.087 0.083
20 0.043 0.050 0.048 0.047 0.044
30 0.029 0.034 0.033 0.032 0.030
40 0.022 0.026 0.025 0.025 0.023
50 0.018 0.021 0.020 0.020 0.018

log10 CPUtime 4.050 3.860 4.320 5.730
Bias (x0.01) 1.250 0.871 0.725 0.172
RMSE (x0.01) 1.380 0.970 0.818 0.263
SD (x0.01) 0.030 0.031 0.059
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Table 4: Gittins index values found under the SBGIA for n := n(i, 2) = 1, 3, 5 and the Calibration method for the
Gaussian bandit (unit variance). We set K = 2, γ = 0.8, N = 39, and set a tolerance of ϵν = 0.001 in the stopping
criterion (35) for determining the SBGIA. The computation (CPU) time denotes the time it took to calculate all values
in the column and is measured in seconds. The bias, RMSE, and standard deviation (SD) are multiplied by 100, i.e.,
displayed in percentage points.

General κ Calibration n = 1 n = 3 n = 5
1 0.505 0.520 0.514 0.512
2 0.308 0.323 0.317 0.316
3 0.226 0.239 0.235 0.232
4 0.179 0.191 0.188 0.185
5 0.149 0.160 0.157 0.155
6 0.128 0.138 0.135 0.133
7 0.112 0.121 0.119 0.116
8 0.100 0.108 0.107 0.104
9 0.090 0.098 0.096 0.094

10 0.082 0.089 0.088 0.085
20 0.043 0.048 0.047 0.046
30 0.029 0.033 0.032 0.031
40 0.022 0.025 0.025 0.024
50 0.018 0.020 0.020 0.019

log10 CPUtime 4.050 4.320 4.710 4.880
Bias (x0.01) 0.871 0.644 0.437
RMSE (x0.01) 0.970 0.698 0.481
SD (x0.01) 0.031 0.015 0.010

5.3 Gaussian random effects bandit

This section compares the performance of a policy based on the SBGIA to that of policies Thompson sampling and
Bayes-UCB in case each arm describes the posterior under a Gaussian random effects model. This multi-armed bandit
model was not found in literature.

In the Gaussian random effects bandit model, it is assumed that there an additional factor that induces heterogeneity
within each of the A distributions of choice. The factor induces multiple clusters to which the outcomes are assigned.
Outcomes assigned to the same cluster have the same expected value, which deviates from the overall expected value
for the distribution. As each deviation is induced by a common factor, the deviations are sampled from a common
distribution. The assumed model is (hence) an independent mixed effects model (intercept and random effects) for the
outcomes under each of the A distributions.

For d ∈ N, let Ca,t ∈ {0, 1}d be a vector denoting cluster assignment for outcome Oa
t such that

∑d
i=1 Ca,t,i = 1.

We assume for all t that
Oa

t = θa +C
⊤
a,tua + ϵa,t, (50)

where, independently,
ϵa,t ∼ N (0, v(1)a ) and ua,i ∼ N (0, v(2)a ).

The set of model parameters for each arm a hence consists of (θa,ua, v
(1)
a , v

(2)
a ), and no parameters are shared between

the arms. The process of cluster assignment (Ca,t)t is assumed predictable, i.e., all cluster assignments are known prior
to assignment to the arm. The prior specification is as follows, we assume a normal N (θ0, σ

2
0) prior on each θa, an

inverse-gamma IG(α0, β0) prior on each v
(1)
a , and an IG(α1, β1) prior on each v

(2)
a .

The above data model and prior specification lead to an analytic expression for the full conditional distribution of each
parameter, and hence an efficient Gibbs sampling procedure such as the one in Wang et al. [1993] can be constructed.
This Gibbs sampling procedure can then be included in a sequential Markov chain Monte Carlo method (Chopin [2002])
in order to efficiently update approximations of the posterior distribution Πa

t upon sampling a new observation Oa
t+1.

For the sequential Markov chain Monte Carlo method the set of observations (Oa
t )t leads to a collection of samples

(θa,i,t,ua,i,t, v
(1)
a,i,t, v

(2)
a,i,t)

d2
i=1 of particles and weights (wa,i,t)

d2
i=1 such that

∑d2

i=1 wa,i,t = 1 and, denoting with δx the
Dirac measure at x,

Π̂a
t =

d2∑
i=1

wa,i,t δ(θa,i,t,ua,i,t,v
(1)
a,i,t,v

(2)
a,i,t)

≈ Πa
t . (51)

20



A Sampling-based Gittins Index Approximation A PREPRINT

Based on this approximation to the posterior, we consider three policies for the Bayesian multi-armed bandit:

• SBGIAP: Determine the SBGIA by sampling future approximations Π̂a
t to the posterior Πa

t from the Markov
chain that approximates (41) with transition kernel

PΠ̂a
t
(E) =

∫
O
Q(Π̂a

t+1(· | O, Π̂a
t ) ∈ E)p(O | Π̂a

t )µ(dO) ∀E ∈ M,

where Q denotes the measure on approximate posteriors induced by a sequential Monte Carlo step using
d2 particles, given the current approximation to the posterior Π̂a

t and the sampled outcome O. The reward
function for the Markov chain is given by the posterior mean under the empirical distribution

R(Π̂a
t ) =

d2∑
i=1

wa,i,t(θa,i,t +C
⊤
a,tua,i,t).

As in Theorem 6, the SBGIAP now chooses At = argmax
a∈[A]

νM (Π̂a
t ), where νm is determined as the M -th

iterate of (18) for a choice of K,N, n,M . To decrease the numerical burden, the approximated posteriors
Π̂a

t+1, . . . , Π̂
a
t+N in the SBGIAP are based on d3 ≤ d2 samples after sampling the first observation O, by

sampling d3 particles to continue with from the initial distribution Π̂a
t .

• Thompson sampling (Thompson [1933]):
Sample i ∼ Categoricald2

(wa,t) and set ηa,t = θa,i,t +C
⊤
a,t+1ua,i,t. Choose At = argmax

a∈[A]

ηa,t.

• Bayesian upper confidence bound (Bayes-UCB) (Kaufmann et al. [2012a]): Set

ηa,t = q̂((θa,i,t +C
⊤
a,t+1ua,i,t, wa,i,t)

d2
i=1, 1− (t log(T )6)−1),

where q̂((ρi, wi)i, 1− α) is the empirical 1− α quantile given the samples ρi and weights wi, and where T is
the total sample size of the experiment. Choose At = argmax

a∈[A]

ηa,t.

The total discounted rewards found under the policies are compared using a simulation study. We note that the policies
Bayes-UCB and Thompson sampling, unlike the SBGIAP, are not tuned to a specific discount factor γ. Other Bayesian
bandit policies tuned to a specific discount factor are not known from literature, and introducing them in the current
paper would deviate attention from the SBGIAP. Policies Bayes-UCB and Thompson sampling have good performance
guarantees for undiscounted reward (Kaufmann et al. [2012b,a]), hence in order to have a fair comparison, we compare
the performance of the three policies when higher discount factors γ̃ ∈ {0.8, 0.9, 0.99} are used to determine the
total discounted reward, while we tune the SBGIAP to γ = 0.8. An outperformance over Bayes-UCB and Thompson
sampling in terms of Bayesian total discounted reward (with discount factor γ̃ = γ) is expected for the Gittins index
policy, as it exactly maximizes this quantity. The SBGIA is however an approximation to the Gittins index, and hence
outperformance for the SBGIAP in terms of the Bayesian total discounted reward is not guaranteed, furthermore there is
no guarantee that a policy based on the Gittins index tuned to γ = 0.8 also outperforms other policies for other discount
factors γ̃. Hence, it is interesting to compare the performance of the policy using a simulation study.

For the simulation study, we set θ0 = 0, σ2
0 = 1, α0 = 13, β0 = 12, α1 = 6, β1 = 10. In order to approximate

the Bayesian total discounted reward, the parameters were sampled from the resulting prior distributions for each
simulation. The sample size of the simulation study was set to T = 300, the number of clusters d was set to 3, and
the number of arms A was set to 3. The cluster assignments Ca were sampled uniformly for each arm a. Given
the sampled parameters and cluster assignments, the vector of observations Oa ∈ R300 were sampled according
to model (50). Given the data and cluster assignments, a sequence of weights (wa,t)

300
t=1 (d2 = 100) and particles

(θa,t,σ
2
a,t, τ a,t,ua,t)

300
t=1 was generated for each arm using sequential Markov chain Monte Carlo sampling (starting

with a sample from the prior) using 5 Gibbs sampler iterations in each Markov chain Monte Carlo step. Each algorithm
then determined an interleaving of these independent Markov chain samples, where for the SBGIAP, we set K = 1,
N = 25, each n(i, k) = 1, M = 100, and d3 = 3. The above procedure, resulting in an interleaving of the sampled
Markov chain (wa,t,θa,t,ua,t,σ

2
a,t, τ a,t)

300
t=1 for each algorithm described above, is then repeated independently 2500

times to approximate the Bayesian total discounted reward. This procedure took about 10 days on a computer with 32
cores.

Figure 1 shows results for the SBGIAP with γ = 0.8. Differences (averaged over 2500 simulations) between Bayesian
total discounted reward for the SBGIAP vs. Bayes-UCB (solid, blue) and Thompson sampling vs. Bayes-UCB (dotted,
red) are shown for discount factors γ̃ = 0.8, 0.9, and 0.99, along with a point-wise 95% bootstrapped confidence
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Figure 1: Results for the SBGIAP for the Gaussian random effects Bayesian
multi-armed bandit model. The difference in running total discounted reward
for a discount factor of 0.8 (top-left), 0.9 (top-right), and 0.99 (bottom-left)
is shown for the SBGIAP vs. Bayes-UCB (solid) and Thompson sampling vs.
Bayes-UCB (dashed). The running frequency of choosing the best arm for
the SBGIAP (solid), Thompson sampling (dashed) and Bayes-UCB (dotted) is
shown on the bottom-right.

1

Figure 1: Results for the SBGIAP for the Gaussian random effects Bayesian multi-armed bandit model. The difference
in running total discounted reward for a discount factor of 0.8 (top-left), 0.9 (top-right), and 0.99 (bottom-left) is shown
for the SBGIAP vs. Bayes-UCB (solid) and Thompson sampling vs. Bayes-UCB (dashed). The running frequency of
choosing the best arm for the SBGIAP (solid), Thompson sampling (dashed) and Bayes-UCB (dotted) is shown on the
bottom-right.

interval for the mean. The total discounted rewards at each decision epoch are calculated as the discounted sum of the
expected rewards (E[Ot] = θAt + CAt,tua) from the initial decision epoch up to that time point.

Figure 1 shows that the SBGIAP significantly outperforms Bayes-UCB and Thompson sampling with a final difference
in average total discounted reward of about 1, 2 and 4 for discount factors 0.8, 0.9, and 0.99 respectively.

The average (undiscounted) frequency of choosing the best arm is calculated as the frequency each algorithm chose
a∗t = argmax

a
θa +C

⊤
atua at each decision epoch. It is seen that while the SBGIAP reaches a frequency of 60% of

optimal pulls early on, the other strategies end up at a higher frequency of optimal pulls. This might be a result of the
low discount factor used for constructing the policy, indicating that short-term gains are preferred over long-term ones.
The bottom-right graph is in line with the other graphs in Figure 1 as, when considering the sum of discounted rewards
starting at the initial state, making good choices early on has a larger benefit than outperformance in the long run.

We conclude that with the SBGIAP, significant outperformance in terms of total discounted reward with respect
to state-of-the-art policies can be attained for more complex models than usually considered in bandit literature.

6 Discussion and conclusion

In this paper, we have proposed the sampling-based Gittins index approximation (SBGIA). In Section 4, the SBGIA
was introduced, and a general error bound was shown for the Gittins index obtained when truncating the horizon and
support for the rewards using a stopping time, which can be viewed as an extension of the results presented in Wang
[1997]. Next, finite and asymptotic convergence results were shown for the SBGIA. Using the finite-time convergence
result it is possible to obtain a confidence interval for the Gittins index which holds under a finite number of stochastic
approximation samples. Next, it was shown in Theorem 6 that by making explicit choices for the width and safety
level δ2 of this confidence interval, the policy choosing the largest Gittins index estimate is an ϵ-optimal policy for
the Bayesian multi-armed bandit problem. For both the Bernoulli and Gaussian bandits, the SBGIA was seen to
yield a good approximation to the Gittins index, increasing in quality with the number of nested simulations and the
truncation parameter K, and showing the best approximation when estimating the limit as K goes to infinity. The
results indicated that an efficient strategy for Gittins index approximation using SBGIA is to first increase the number
of nested simulations, and then increase the truncation parameter K, until no significant differences in the estimate are
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seen for both steps. The SBGIA can be applied even in cases where the actual transition kernel is unknown, but where
samples from an approximation to the transition kernel can be generated. An example of this was seen in Section 5.3,
where samples from the approximate posterior were generated using sequential Monte Carlo sampling. In this case, the
SBGIAP was seen to outperform the state-of-the-art policies Bayes-UCB and Thompson sampling in terms of Bayesian
total discounted reward.

The SBGIA can be applied to any family of alternative bandit processes. For example, to compute the Gittins index
approximations in Section 5.2, only three things must be altered for each bandit, namely the transition kernel, the reward
function, and calculation of the bounds Rℓ, Ru. In contrast, for the Calibration method, an additional requirement is
that the reward support also has to be discretized and the change in state space leads to a reformulation of the backward
induction step. The benefit of a method that works in general, is that there is more flexibility in the model choice when
basing treatment allocation on the Gittins index, as there is no increased difficulty in implementing the calculation
method when assuming a more elaborate model for the data. Another benefit is that less expert knowledge is necessary
for Gittins index approximation. It might be an interesting idea to have a software library where practitioners only
have to input functions that calculate, e.g., the posterior mean, after which the package calculates the SBGIA. It is
furthermore useful to have a method that does not assume known transition probabilities, as in many real-life cases the
posterior distribution cannot be calculated in closed form because of the high dimensionality of the model or when the
assumed prior is nonconjugate.

In Section 5.3, we evaluated the performance of the SBGIA policy (SBGIAP) for a novel random effects bandit problem.
The SBGIAP was defined based on an approximation of the Markov chain (Πa

t )t describing the evolution of the
posterior distribution, based on sequential Markov chain Monte Carlo. In future research, it would be interesting to
investigate how finite-time convergence results for Markov chains (e.g., Rosenthal [1995]) can be used to construct
finite-time error bounds for the SBGIA in these situations. In this paper, the SBGIA was evaluated for a number of
Bayesian multi-armed bandit problems. In the case of Gaussian outcomes, the Gittins index was shown to result in
near-optimal frequentist undiscounted regret (Lattimore [2016]). If this result is shown to hold in general, the confidence
interval presented in Theorem 5 ensures that we have a method that can approximate, up to arbitrary precision, a
near-optimal policy, in terms of undiscounted frequentist regret, for the multi-armed bandit problem.
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A Proofs of theorems

Theorem 3. Under Assumption 1 there is a unique real number νσ(s) attaining the supremum

sup

{
ν : inf

τ∈Tσ

Es[Z̃τ (ν)] ≤ 0

}
.

In fact, νσ(s) is the unique root of

fσ
s : ν 7→ inf

τ∈Tσ

Es[Z̃τ (ν)].

The infimum in the condition is attained for some τσ(ν, s) ∈ Tσ .
Furthermore, with x+ = max(x, 0) for x ∈ R, it holds that

0 ≤ ν(s)− νσ(s) ≤
Es [γ

σν(Sσ)
+]

1− Es[γσ]
.

Proof. Let (S̃t)t be a Markov chain with states S̃t = (Su)
t
u=0. Let R̃(S̃t) = R(S̃t)I(t < σ). The pair (S̃, R̃) defines

a Markov reward process as I(t < σ) is a function of S̃t. As the filtrations and hence the set of stopping times generated
by S and S̃ are the same, we have

sup
τ∈T

Es

[
τ−1∑
t=0

γt(R̃(S̃t)− ν)

]
= sup

τ∈T
Es

[
τ∧σ−1∑
t=0

γt(R(St)− ν)

]
= sup

τ∈Tσ

Es

[
τ−1∑
t=0

γt(R(St)− ν)

]
. (52)

Note that as Assumption 1 holds for the Markov reward process defined by (S, R), it also holds for the Markov reward
process defined by (S̃, R̃). Hence from Lattimore and Szepesvári [2020] there is an unique value for ν, denoted by
νσ(s), such that the left-hand side, hence the right-hand side of (52) is zero. As fσ

s is a scaling of (52), the first two
statements of the theorem are proven. From Lattimore and Szepesvári [2020], we also have that the supremum in (52)
is attained for an unique stopping time τ(s, ν), proving the third statement.
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Now, we bound the approximation error from above (the lower bound holds trivially):

ν(s)− νσ(s) = sup
τ∈T

Es[
∑τ−1

t=0 γtR(St)]

Es[
∑τ−1

t=0 γt]
− sup

τ∈T

Es[
∑τ∧σ−1

t=0 γtR(St)]

Es[
∑τ−1

t=0 γt]

≤ sup
τ∈T

Es[
∑τ−1

t=0 γtR(St)]− Es[
∑τ∧σ−1

t=0 γtR(St)]

Es[
∑τ−1

t=0 γt]

= sup
τ∈T

Es[
∑τ−1

t=σ∧τ γ
tR(St)]

Es[
∑τ−1

t=0 γt]
= sup

τ∈T
τ≥σ

Es[
∑τ−1

t=σ γtR(St)]

Es[
∑τ−1

t=0 γt]

≤ sup
τ∈T
τ≥σ

Es[
∑τ−1

t=σ γtR(St)]

Es[
∑σ−1

t=0 γt]
= sup

τ∈T
τ≥σ

(1− γ)Es[γ
σEs[

∑τ−1
t=σ γt−σR(St)|Fσ]]

1− Es[γσ]

≤ sup
τ∈T
τ≥σ

Es

[
γσ
(

ESσ [
∑τ−σ

t=0 γtR(St)]

ESσ [
∑τ−σ

t=0 γt]

)+]
1− Es[γσ]

≤ Es [γ
σν(Sσ)

+]

1− Es[γσ]
.

The second to last inequality above holds by the strong Markov property and as (1− γ) ≤ (1− γ)/(1−ESσ [γ
τ−σ+1])

almost surely. The “positive part" of the Gittins index in the last term above comes from the fact that we can take τ = σ
in the seventh term.

Theorem 4. For ω∗ ∈ R, initial point ω0 ∈ R, and martingale difference sequence (21), let the sequence (ωm)m be
defined as

ωm+1 = ωm − αm(fs(ωm)− fs(ω
∗) + ϵm).

Assume the step-size sequence is such that supm αm ≤ 2(Ru −Rℓ) almost surely. Then for all m

E[(ω∗ − ωm+1)
2] ≤ E[(1− cαm)

2
(ω∗ − ωm)2] + E[α2

m]E[ϵ2m].

Proof. Let Fϵ
m = σ(ϵ0, . . . , ϵm) such that ωm and αm are Fϵ

m−1-measurable. Then, as E[ϵm|Fϵ
m−1] = 0 for m ≥ 1,

we have

E[(ω∗ − ωm+1)
2|Fϵ

m−1] = E[(ω∗ − ωm + αm(fs(ωm)− fs(ω
∗)) + αmϵm)2|Fϵ

m−1]

= (ω∗ − ωm + αm(fs(ωm)− fs(ω
∗))2 + α2

mE[ϵ2m]. (53)

Now, by (25), letting η(ω1, ω2) = 1 +
(

1−γ
1−γN − 1

)
1[ω2≥ω1] we have(

1− αmη(ω∗, ωm)

2(Ru −Rℓ)

)
(ω∗ − ωm) ≤ ω∗ − ωm + αm(fs(ωm)− fs(ω

∗)) ≤
(
1− αmη(ωm, ω∗)

2(Ru −Rℓ)

)
(ω∗ − ωm)

Hence

|ω∗ − ωm + αm(fs(ωm)− fs(ω
∗))|

≤ max

((
1− αmη(ω∗, ωm)

2(Ru −Rℓ)

)
(ωm − ω∗),

(
1− αmη(ωm, ω∗)

2(Ru −Rℓ)

)
(ω∗ − ωm)

)
=

(
1− αm(1− γ)

2(Ru −Rℓ)(1− γN )

)
|ω∗ − ωm|.

The last line above follows as η ∈ [0, 1], hence
(
1− αmη(x,y)

2(Ru−Rℓ)

)
≥ 0 for all x, y by the assumptions on (αm)m and

the maximum will be attained at the first argument if ωm ≥ ω∗ where η(ω∗, ωm) = 1−γ
1−γN and the maximum will be

attained at the second argument if ω∗ ≥ ωm where η(ωm, ω∗) = 1−γ
1−γN . Then, continuing (53), we have:

E[(ω∗ − ωm+1)
2|Fϵ

m−1] ≤
(
1− αm(1− γ)

2(Ru −Rℓ)(1− γN )

)2

(ω∗ − ωm)2 + α2
mE[ϵ2m].

To conclude, taking expectations, we have

E[(ω∗ − ωm+1)
2] ≤ E[(1− cαm)

2
(ω∗ − ωm)2] + E[α2

m]E[ϵ2m].

where c = 1−γ
2(Ru−Rℓ)(1−γN )

.
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Lemma 1. Let supm αm ≤ Mα < ∞ almost surely. We have almost surely that for all m

νm(s) ∈ [Rℓ −Mα/2, Ru +Mα/2].

Proof. Note that if ν > Ru it holds that irrespective of the path S

min
u∈[N ]

Z
(1)
i,u,n(ν) = min

u∈[N ]
c

(u∧σH)−1∑
w=0

γw(ν −R(Sw)) = c(ν −R(S0)) = Z
(1)
i,1,n(ν) > 0.

For k = 2, we hence have irrespective of the path S, that when ν > Ru

min
u∈[N ]

Z
(2)
i,u,n(ν) = min

u∈[N ]
Z

(1)
[i,1],u,n(ν)−

1

n(i, 2)

n(i,2)+1∑
j=2

(
min
w∈[N ]

Z
(1)
[i,j],w,n(ν)

∣∣∣{S[i,j]
J0,uK = S

i
J0,uK}

)
= min

u∈[N ]
Z

(1)
[i,1],u,n(ν)−

(
Z

(1)
[i,j],1,n(ν)

∣∣∣{S[i,j]
J0,uK = S

i
J0,uK}

)
= 0.

From this, we see that for k > 2

min
u∈[N ]

Z
(k)
i,u,n(ν) = min

u∈[N ]
Z

(k−1)
[i,1],u,n(ν)−

1

n(i, k)

n(i,k)+1∑
j=2

(
min
w∈[N ]

Z
(k−1)
[i,j],w,n(ν)

∣∣∣{S[i,j]
J0,uK = S

i
J0,uK}

)
= 0− 0 = 0.

Hence for ν > Ru we have almost surely

V (K)
s (ν) = max

−1/2, min

1/2,
1

n(K,K)

n(K,K)∑
j=1

K∑
k=1

min
u∈[N ]

Z
(k)
[k,j],u,n


= max

−1/2, min

1/2,
1

n(K,K)

n(K,K)∑
j=1

Z
(1)
[1,j],1,n

 > 0.

Similarly, observe that V (K)
s (ν) < 0 almost surely if ν < Rℓ. Hence by (18) we have almost surely for all m that

νm ∈ [Rℓ −Mα/2, Ru +Mα/2].

Lemma 4. If for all t the cumulative distribution functions of R(St) starting from S0 = s have finitely many jumps,
then for all but finitely many points ν the function f̃s is differentiable with derivative

d

dν
f̃s(ν) =

K∑
k=1

Es

[
h
(k)
[k,1],n

(
U

(k)
[k,1],n(ν), ν

)
I(Ṽs(ν) ∈ [−1/2, 1/2])

]
,

where Ṽs(ν) =
∑K

k=1 minu∈[N ] Z
(k)
[k,1],u,n(ν), U

(k)
i,n (ν) = argmin

u∈[N ]

Z
(k)
i,u,n(ν), and

h
(1)
i,n(t, ν) = (1− γt)/(2(Ru −Rℓ)(1− γN )),

h
(k)
i,n(t, ν) = h

(k−1)
[i,1],n(t, ν)−

1

n(i, k)

n(i,k)+1∑
j=2

h
(k−1)
[i,j],n(U

(k−1)
[i,j],n (ν), ν)|{S

[i,j]
J0,tK = S

i
J0,tK} (k ≥ 2).

Proof. First, we show by induction that for all k, ν, random times T and sets E in ×iσ(S
i) (the smallest product sigma

algebra measuring all versions Si) we have

Z
(k)
i,T,n(ν) | E = A

(k)
i,T,n(ν) | E + ν ·B(k)

i,T,n(ν) | E

where A
(k)
i,t,n, B(k)

i,t,n are random variables only depending on ν through the minimizers U (k′)
i,n (ν) for k′ ≤ k.
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For k = 1 the result is immediately verified for A(1)
i,t,n(ν) = − (1−γ)

(Ru−Rℓ)(1−γN )

∑t−1
u=0 γ

uR(Si
u) and B

(1)
i,t,n(ν) = bt.

Now assume the result holds up to k, then by (8), as {S[i,j]
J0,T K = S

[i]
J0,T K} ∈ ×iσ(S

i) for all j

Z
(k)
i,T,n(ν) | E = A

(k)
i,T,n | E + ν ·B(k)

i,T,n | E

for

A
(k)
i,T,n = A

(k−1)
[i,1],T,n − 1

n(i, k)

n(i,k)+1∑
j=2

A
(k−1)

[i,j],U
(k−1)

[i,j],n
(ν),n

|{S[i,j]
J0,T K = S

[i]
J0,T K},

B
(k)
i,T,n = B

(k−1)
[i,1],T,n − 1

n(i, k)

n(i,k)+1∑
j=2

B
(k−1)

[i,j],U
(k−1)

[i,j],n
(ν),n

|{S[i,j]
J0,T K = S

[i]
J0,T K}.

Second, we show that all but finitely many points ν we have

P
(
lim
ν′→ν

U
(k)
i,n (ν

′) = U
(k)
i,n (ν)

)
= 1.

For k ≥ 2 and t ∈ [N ]
∏k−1

k′=1
(1+n(i,k′)) let A(k)

i,t,n be A(k)
i,T,n where every nested random time is replaced by the elements

of t consecutively, and let b(k)i,t,n be defined similarly for B(k)
i,T,n, note that this makes b(k)i,t,n deterministic.

For ν2 < ν1

I(U (k)
i,n (ν1) ̸= U

(k)
i,n (ν2)) ≤ I(∃t, u Z

(k)
i,t,n(ν1) ≤ Z

(k)
i,u,n(ν1), Z

(k)
i,t,n(ν2) > Z

(k)
i,u,n(ν2))

≤ I

(
∃ t, u, A(k)

i,t,n + ν1 · b(k)i,t,n ≤ A
(k)
i,u,n + ν1 · b(k)i,u,n, A

(k)
i,t,n + ν2 · b(k)i,t,n > A

(k)
i,u,n + ν2 · b(k)i,u,n

)

≤
∑
t,u

I

(
A

(k)
i,t,n + ν1 · b(k)i,t,n ≤ A

(k)
i,u,n + ν1 · b(k)i,u,n, A

(k)
i,t,n + ν2 · b(k)i,t,n > A

(k)
i,u,n + ν2 · b(k)i,u,n

)

=
∑
t,u

I

(
A

(k)
i,t,n −A

(k)
i,u,n

b
(k)
i,u,n − b

(k)
i,t,n

∈ (ν2, ν1]

)

The indicators above converge to I

(
A

(k)
i,u,n−A

(k)
i,t,n

b
(k)
i,t,n−b

(k)
i,u,n

= ν1

)
when ν2 ↑ ν1 which has nonzero probability of being equal

to one for at most finitely many points ν1 by the assumption. The direction ν1 ↓ ν2 can be shown by changing the first
bound above to

I(∃t, u Z
(k)
i,t,n(ν1) < Z

(k)
i,u,n(ν1), Z

(k)
i,t,n(ν2) ≥ Z

(k)
i,u,n(ν2))

and following the same steps as above.

Third, we show for points ν1 where all functions U (k′)
i,n are continuous for k′ ≤ k that

d

dν
min
u∈[N ]

Z
(k)
[k,1],u,n(ν) = h

(k)
[k,1],n(U

(k)
[k,1],n(ν), ν). (54)

Note that, by the second step above, the complement of this set is a subset of the set V of jump points for the cumulative
distribution functions of (A(k′)

i,u,n −A
(k′)
i,t,n)(b

(k′)
i,t,n − b

(k′)
i,u,n) for all i, t,u, k′ ≤ k.

We show the result by induction. Let k = 1, then we have for ν1 > ν2

minu∈[N ] Z
(1)
[1,1],u,n(ν1)−minu∈[N ] Z

(1)
[1,1],u,n(ν2)

ν1 − ν2
≥

Z
[1,1],U

(1)

[1,1],n
(ν1),n

(ν1)− Z
[1,1],U

(1)

[1,1],n
(ν1),n

(ν2)

ν1 − ν2
= b

U
(1)

[1,1],n
(ν1)

,

minu∈[N ] Z
(1)
[1,1],u,n(ν1)−minu∈[N ] Z

(1)
[1,1],u,n(ν2)

ν1 − ν2
≤

Z
[1,1],U

(1)

[1,1],n
(ν2),n

(ν1)− Z
[1,1],U

(1)

[1,1],n
(ν2),n

(ν2)

ν1 − ν2
= b

U
(1)

[1,1],n
(ν2)

.
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By the choice of ν1 we have that the upper and lower bound almost everywhere almost surely converge to
h
(1)
[1,1],n(U

(1)
[1,1],n(ν1), ν1) = b

U
(1)

[1,1],n
(ν1)

when ν2 ↑ ν1. The case ν1 < ν2 can be shown similarly.

Let the above statement hold up to k, then for ν1 > ν2

min
u∈[N ]

Z
(k)
[k,1],u,n(ν1)− min

u∈[N ]
Z

(k)
[k,1],u,n(ν2)

= Z
(k−1)

[k,1,1],U
(k)

[k,1],n
(ν1),n

(ν1)−
1

n(i, k)

n(i,k)+1∑
j=2

(
Z

(k−1)

[k,1,j],U
(k−1)

[k,1,j],n
(ν1),n

(ν1)
∣∣∣{S[k,1,j]

J0,U(k)

[k,1],n
(ν1)K

= S
[k,1]

J0,U(k)

[k,1],n
(ν1)K

}
)

− Z
(k−1)

[k,1,1],U
(k)

[k,1],n
(ν2),n

(ν2) +
1

n(i, k)

n(i,k)+1∑
j=2

(
Z

(k−1)

[k,1,j],U
(k−1)

[k,1,j],n
(ν2),n

(ν2)
∣∣∣{S[k,1,j]

J0,U(k)

[k,1],n
(ν2)K

= S
[k,1]

J0,U(k)

[k,1],n
(ν2)K

}
)

≥ Z
(k−1)

[k,1,1],U
(k)

[k,1],n
(ν1),n

(ν1)−
1

n(i, k)

n(i,k)+1∑
j=2

(
Z

(k−1)

[k,1,j],U
(k−1)

[k,1,j],n
(ν2),n

(ν1)
∣∣∣{S[k,1,j]

J0,U(k)

[k,1],n
(ν1)K

= S
[k,1]

[U
(K)

[k,1],n
(ν1)]

}
)

− Z
(k−1)

[k,1,1],U
(k)

[k,1],n
(ν1),n

(ν2) +
1

n(i, k)

n(i,k)+1∑
j=2

(
Z

(k−1)

[k,1,j],U
(k−1)

[k,1,j],n
(ν2),n

(ν2)
∣∣∣{S[k,1,j]

J0,U(k)

[k,1],n
(ν1)K

= S
[k,1]

J0,U(k)

[k,1],n
(ν1)K

}
)

=

(
Z

(k−1)

[k,1,1],U
(k)

[k,1],n
(ν1),n

(ν1)− Z
(k−1)

[k,1,1],U
(k)

[k,1],n
(ν1),n

(ν2)

)

+
1

n(i, k)

n(i,k)+1∑
j=2

(
Z

(k−1)

[k,1,j],U
(k−1)

[k,1,j],n
(ν2),n

(ν1)− Z
(k−1)

[k,1,j],U
(k−1)

[k,1,j],n
(ν2),n

(ν2)

) ∣∣∣{S[k,1,j]

J0,U(k)

[k,1],n
(ν1)K

= S
[k,1]

J0,U(k)

[k,1],n
(ν1)K

}.

Taking ν2 ↑ ν1 above we see that

lim infν2↑ν1

minu∈[N ] Z
(k)
[k,1],u,n(ν1)−minu∈[N ] Z

(k)
[k,1],u,n(ν2)

ν1 − ν2
≥ h

(k)
[k,1],n(U

(k)
[k,1],n(ν1), ν1).

Similarly, it can be shown that

min
u∈[N ]

Z
(k)
[k,1],u,n(ν1)− min

u∈[N ]
Z

(k)
[k,1],u,n(ν2)

≤
(
Z

(k−1)

[k,1,1],U
(k)

[k,1],n
(ν2),n

(ν1)− Z
(k−1)

[k,1,1],U
(k)

[k,1],n
(ν2),n

(ν2)

)

+
1

n(i, k)

n(i,k)+1∑
j=2

(
Z

(k−1)

[k,1,j],U
(k−1),n

[k,1,j]
(ν1),n

(ν1)− Z
(k−1)

[k,1,j],U
(k−1)

[k,1,j],n
(ν1),n

(ν2)

) ∣∣∣{S[k,1,j]

J0,U(k)

[k,1],n
(ν2)K

= S
[k,1]

J0,U(k)

[k,1],n
(ν2)K

}.

Now, by the choice of ν1, we know there is a random variable ϵ(ν1) such that U (k)
[k,1],n(ν2) = U

(k)
[k,1],n(ν1) almost surely

for all ν2 such that |ν1 − ν2| ≤ ϵ(ν1). Hence, for every sample path, for ν2 close enough to ν1, we condition on
{S[k,1,j]

J0,U(k)

[k,1],n
(ν1)K

= S
[k,1]

J0,U(k)

[k,1],n
(ν1)K

} above. From this it follows that almost surely

lim supν2↑ν1

minu∈[N ] Z
(k)
[k,1],u,n(ν1)−minu∈[N ] Z

(k)
[k,1],u,n(ν2)

ν1 − ν2
≤ h

(k)
[k,1],n(U

(k)
[k,1],n(ν1), ν1)

hence (54) holds. The case ν1 < ν2 works similarly.

By induction it can be verified that the right-hand side of (54) is bounded for each k.

We have for ν1 ∈ V and ν1 > ν2

f̃s(ν1)− f̃s(ν2)

ν1 − ν2
= E

 K∑
k=1

minu∈[N ] Z
(k)
[1,j],u,n(ν1)−minu∈[N ] Z

(k)
[1,j],u,n(ν2)

ν1 − ν2
I((Ṽs(ν1), Ṽs(ν2)) ∈ [−1/2, 1/2]2)


+ E

[
Vs(ν1)− Vs(ν2)

ν1 − ν2
I((Ṽs(ν1), Ṽs(ν2)) /∈ [−1/2, 1/2]2)

]
.
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When ν2 ↑ ν1 by continuity and boundedness of the derivative the first term goes to

K∑
k=1

Es

[
h
(k)
[k,1],n

(
U

(k)
[k,1],n(ν), ν

)
I(Ṽs(ν) ∈ [−1/2, 1/2])

]
while the second term goes to zero by continuity (of Ṽs) and boundedness, where in both cases the dominated
convergence theorem was used.

Theorem 9. Let h(k)
m,[k,1],n, U

(k)
m,[k,1],n be independent versions (in m) of h(k)

[k,1],n, U
(k)
[k,1],n, and

hm : ν 7→
K∑

k=1

h
(k)
m,[k,1],n(U

(k)
m,[k,1],n(ν), ν).

Let
αm =

1

|
∑m

ℓ=1 hℓ(νℓ(s))|
.

Let V be the set of points where f̃s is differentiable. If infν∈V d/dνf̃s(ν) > 0, then there is a unique point ν̃(s) such
that f̃s(ν̃(s)) = 0. If the derivative of f (K)

s,n exists at ν̃(s) and E[Vs(ν̃(s))
2] > 0, we have

√
m(νm(s)− ν̃(s))

d→ N

0,
E[Vs(ν̃(s))

2](
d
dν f

(K)
s,n (ν̃(s))

)2
 . (55)

Proof. The first statement is trivial as f̃s has a positive derivative wherever the derivative is defined. We show the
second statement by first verifying that the Robbins-Monro conditions hold almost surely, hence by Corollary 1 we have
that νm(s) converges almost surely to ν̃(s). As for a constant H < ∞ we have |hℓ| ≤ H we have that

∑m
ℓ=1 αℓ ≥∑m

ℓ=1 1/(ℓH) → ∞ almost surely. We verify that
∑m

ℓ=1 α
2
ℓ ≤ ∞ almost surely. Let ξℓ = hℓ(νℓ(s)) − E[h1(νℓ(s))]

and σ2
ℓ = E[ξ2ℓ |νℓ(s)]. By the strong law of large numbers for martingales we have (by boundedness of ξℓ) that almost

surely

lim
m→∞

∑m
ℓ=1 ξℓ∑m
ℓ=1 σ

2
ℓ

= 0 (56)

Letting Hσ be such that |σ2
ℓ | ≤ Hσ for all ℓ we can choose ϵ ∈ (0, infν E[h1(ν)]/Hσ) and have an M ∈ N such that

for all m > M
1

m

m∑
ℓ=1

hℓ(νℓ(s)) > inf
ν
E[h1(ν)]− ϵHσ > 0.

We then conclude
∞∑
ℓ=1

α2
ℓ ≤

M∑
ℓ=1

α2
ℓ +

∞∑
ℓ=M+1

1

m2( 1
m

∑m
ℓ=1 hℓ(νℓ(s)))2

<

M∑
ℓ=1

α2
ℓ +

∞∑
ℓ=M+1

1

m2(infν E[h1(ν)]− ϵHσ)2
< ∞.

Hence it follows by Corollary 1 that νm(s)
a.s.→ ν̃(s).

Now, if P(hℓ((ν̃(s))
−) ̸= hℓ((ν̃(s))

+)) > 0 the derivative of f̃s at ν̃ would not exist, hence almost surely for all ℓ
we have hℓ((ν̃(s))

−) = hℓ((ν̃(s))
+) and combined with the above result it follows that hℓ(νℓ(s)) → h(ν̃(s)) (with

h
d
= h1 independently) almost surely by continuous mapping (noting that the set of discontinuity points of h is restricted

to a deterministic set). By boundedness we also have E[hℓ(νℓ(s))] → E[h(ν̃(s))]. Similarly, it can be shown that
σ2
ℓ → E[ξ21 |ν̃(s)] = σ2 which is deterministic. Hence 1

m

∑m
ℓ=1 σ

2
ℓ → σ2 and by (56) and continuous mapping we have

mαm =
m

|
∑m

ℓ=1 hℓ(νℓ(s))|
→ 1/E[h1(ν̃(s))].

The result follows along the lines of Lai and Robbins [1978], with three additional remarks.

• In order to use the representation (17) in Lai and Robbins [1978] the recursion of the stochastic approximation
has to be truncated earlier, to make sure that the iterates νℓ(s) remain in an interval around ν̃(s) where f̃s is
differentiable, so as to use the mean value theorem.
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• The martingale central limit theorem (Theorem 2 in Brown [1971]) can be used to show a central limit theorem
result for the martingale

∑
ℓ ϵℓ, as the running mean of the quadratic variation process converges to a constant,

we can show a central limit theorem result by just dividing by
√
m.

• A supremum law of iterated logarithm for martingales Fisher [1986] can be used to show that the middle term
in (29) in Lai and Robbins [1979] goes to zero when divided by

√
m.

B Notation Table

Symbol Definition Defined in

a Markov chain/arm Sec. 2
t, u Time index Sec. 2
sa
h, s

a, s Initial state of an arm Sec. 2
Es,Ps Transition kernel and expectation for the Markov chains, conditional on initial state s Sec. 2
H Set of histories (1)
R Common reward function for the arms Sec. 2
π, π∗ Policy and optimal policy (resp.) for the family of alternative bandit processes Sec. 2
C(sa) Total discounted absolute reward for sampling arm a, starting from state sa Sec. 2
Eπ Expectation operator under a fixed policy π Sec. 2
γ Discount factor Sec. 2
ν(s) Gittins index for state s Sec. 2
Fa

t ,Ft Natural filtration generated by Sa and S (resp.), including starting state Sec. 2, 3.1
T a, T Set of stopping times w.r.t. (Fa

t )t or (Ft)t (resp.) Sec. 2, 3.1
Sa

t ,St State of Markov chain/arm a and general arm (resp.) at time t Sec. 2, 3.1
τ Stopping time, used to determine optimal stopping value Sec. 2
N Sampling horizon for optimal stopping value Sec. 3.1
TN Set of stopping times adapted to Ft and bounded by N Sec. 3.1
gt Measurable real-valued cost function Sec. 3.1
Zt, Z

(1)
t Cost gt(SJ0,tK) of an arm up to time t Sec. 3.1

Z
(k+1)
t Z

(k)
t − E[minu∈[N ] Z

(k)
u | Ft] Sec. 3.1

K Truncation point of number of nested expectations in optimal stopping approximation Sec. 3.1
Z

(k+1)
i,t,n Sampling-based approximation of Z(k+1)

t Sec. 3.2
n(i, k) Number of simulated paths used to determine Z

(k+1)
i,t,n Sec. 3.2

V
(K)
n , Vs(ν), Vs,m(ν) Sampling-based approximation of

∑K
k=1 E[minu∈[N ] Z

(k)
u ] and

∑K
k=1 Es[minu∈[N ] Z

(k)
u (ν)] Sec. 3.2, 4

σ Stopping time, used to truncate the support of the rewards (15)
Ru, Rℓ Upper and lower bound for reward support (resp.), induced by stopping time σ Sec. 4
c Constant, equal to (1− γ)/(2(Ru −Rℓ)(1− γN )) Sec. 4
Zt(ν) Cost c

∑t∧σ−1
u=0 γu(ν −R(Su)) of an arm up to the minimum of time t and σ Sec. 4

νσ(s) Gittins index approximation found by truncation of horizon and reward support (16)
νm(s) Stochastic approximation iterates for determining SBGIA (18)
αm Step-size sequence Sec. 4
νM (s) Sampling-based Gittins index approximation Sec. 4
f̃s(ν) Expectation of Es[Vs(ν)] (19)
fs(ν) Optimal stopping value infτ∈TN Es[Zτ (ν)] (19)
B(δ, ξ) Domain error bound, equal to ξ + δ (20)
ϵm Martingale difference sequence (21)
ν̄m,

¯
νm Stochastic approximation iterates bounding νm from above and below (resp.) (22), (23)

Rs Set of roots of f̃s Sec. 4.2
ν̃(s) Root of f̃s Sec. 4.2
hm Derivative of Vs,m(ν) Th. 9
Ψt Sufficient statistics Sec. 5.2.1
κt Effective number of observations Sec. 5.2.1
Oa

t Outcome t for distribution a Sec. 5.1
θa Parameter for distribution a Sec. 5.1
Πa

t , Π̂
a
t Posterior and approximate posterior (resp.) for θa based on (Oa

u)
t
u=1 Sec. 5.1, (51)
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