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Abstract. A set function can be extended to the unit cube in various
ways; the correlation gap measures the ratio between two natural exten-
sions. This quantity has been identified as the performance guarantee in
a range of approximation algorithms and mechanism design settings. It is
known that the correlation gap of a monotone submodular function is at
least 1 − 1/e, and this is tight for simple matroid rank functions.

We initiate a fine-grained study of the correlation gap of matroid rank
functions. In particular, we present an improved lower bound on the cor-
relation gap as parametrized by the rank and girth of the matroid. We
also show that for any matroid, the correlation gap of its weighted rank
function is minimized under uniform weights. Such improved lower bounds
have direct applications for submodular maximization under matroid con-
straints, mechanism design, and contention resolution schemes.

1 Introduction

A continuous function h : [0, 1]E → R+ is an extension of a set function f : 2E →
R+ if for every x ∈ [0, 1]E , h(x) = Eλ[f(S)] where λ is a probability distribution
over 2E with marginals x, i.e.,

∑
S:i∈S λS = xi for all i ∈ E. Note that this

in particular implies f(S) = h(χS) for every S ⊆ E, where χS denotes the 0-1
indicator vector of S.

Two natural extensions are the following. The first one corresponds to sam-
pling each i ∈ E independently with probability xi, i.e., λS =

∏
i∈S xi

∏
i/∈S(1−

xi). Thus,
F (x) :=

∑

S⊆E

f(S)
∏

i∈S

xi

∏

i/∈S

(1 − xi) . (1)
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This is known as the multilinear extension in the context of submodular opti-
mization, see [8]. The second extension corresponds to the probability distribu-
tion with maximum expectation:

f̂(x) := max
λ

⎧
⎨

⎩

∑

S⊆E

λSf(S) :
∑

S⊆E:i∈S

λS = xi ∀i ∈ E,
∑

S⊆E

λS = 1, λ ≥ 0

⎫
⎬

⎭
. (2)

Equivalently, f̂(x) is the upper part of the convex hull of the graph of f ; we call
it the concave extension following terminology of discrete convex analysis [20].

Agrawal, Ding, Saberi and Ye [2] introduced the correlation gap as the worst
case ratio

CG(f) := min
x∈[0,1]E

F (x)

f̂(x)
. (3)

It bounds the maximum loss incurred in the expected value of f by ignoring
correlations. This quantity plays a fundamental role in stochastic optimization [2,
22], mechanism design [7,18,28], prophet inequalities [11,15,24], and a variety
of submodular optimization problems [3,12].

The focus of this paper is on weighted matroid rank functions. For a matroid
M = (E, I) and a weight vector w ∈ R

E
+, the corresponding weighted matroid

rank function is given by

rw(S) := max {w(T ) : T ⊆ S, T ∈ I} .

It is monotone nondecreasing and submodular. Recall that a function f : 2E → R

is monotone if f(X) ≤ f(Y ) for all X ⊆ Y ⊆ E, and submodular if f(X) +
f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) for all X,Y ⊆ E.

The correlation gap of a weighted matroid rank function has been identi-
fied as the performance guarantee in a range of approximation algorithms and
mechanism design settings:

Monotone Submodular Maximization. Calinescu et al. [8] considered the problem
of maximizing a sum of weighted matroid rank functions

∑m
i=1 fi subject to a

matroid constraint. Using an LP relaxation and pipage rounding [1], they gave
a (1 − 1/e)-approximation algorithm. This was extended by Shioura [26] to the
problem of maximizing a sum of monotone M �-concave functions [19]. In [9],
a (1 − 1/e)-approximation algorithm was obtained for maximizing an arbitrary
monotone submodular function subject to a matroid constraint.

A fundamental special case of this model is the maximum coverage problem.
Given m subsets Ei ⊆ E, the corresponding coverage function is defined as
f(S) = |{i ∈ [m] : Ei ∩ S 
= ∅}|. Note that this is a special case of maximizing
a sum of matroid rank functions: f(S) =

∑m
i=1 ri(S) where ri(S) is the rank

function of a rank-1 uniform matroid with support Ei. Even for maximization
under a cardinality constraint, there is no better than (1 − 1/e)-approximation
for this problem unless P = NP (see Feige [16]).

Recently, tight approximations have been established for the special case
when the function values fi(S) are determined by the cardinality of the set S.



On the Correlation Gap of Matroids 205

Barman et al. [5] studied the maximum concave coverage problem: given a mono-
tone concave function ϕ : Z+ → R+ and weights w ∈ R

m
+ , the submodular func-

tion is defined as f(S) =
∑m

i=1 wiϕ(|S ∩ Ei|).1 The maximum coverage problem
corresponds to ϕ(x) = min{1, x}; on the other extreme, for ϕ(x) = x we get the
trivial problem f(S) =

∑
j∈S |{i ∈ [m] : j ∈ Ei}|. In [5], they present a tight

approximation guarantee for maximizing such an objective subject to a matroid
constraint, parametrized by the Poisson curvature of the function ϕ.

This generalizes previous work by Barman et al. [6] which considered ϕ(x) =
min{�, x} (for � > 1), motivated by the list decoding problem in coding theory.
It also generalizes the work by Dudycz et al. [14] which considered geometri-
cally dominated concave functions ϕ, motivated by approval voting rules such as
Thiele rules, proportional approval voting, and p-geometric rules. In both cases,
the obtained approximation guarantees improve over the 1 − 1/e factor.

In the full version, we make the observation that the algorithm of Calinescu
et al. [8] and Shioura [26] actually has an approximation ratio of mini∈[m] CG(fi).
We also prove that the Poisson curvature of ϕ is equal to the correlation gap of
the functions ϕ(|S ∩ Ei|). Hence, the approximation guarantees in [5,6,14] are
in fact correlation gap bounds, and they can be obtained via a single unified
algorithm, i.e., the one by Calinescu et al. [8] and Shioura [26]. In particular, the
result of Barman et al. [6] which concerned ϕ(x) = min{�, x} (for � > 1) boils
down to the analysis of uniform matroid correlation gaps.

Sequential Posted-Price Mechanisms. Following Yan [28], consider a seller with a
set of identical services (or goods), and a set E of unit-demand agents. Each agent
i ∈ E has a private valuation vi for winning the service, and 0 otherwise, where
vi is drawn independently from a known distribution Fi with positive smooth
density function over [0, L] for some large L. The seller can only service certain
subsets of the agents simultaneously; this is captured by a matroid M = (E, I)
where I represents the feasible subsets.

Mechanisms like Myerson’s mechanism [21] or the VCG mechanism [13,17,
27] have optimal revenue or welfare guarantees, but suffer from complicated
formats [4] or high computational overhead [23]. Hence, simple mechanisms are
often favoured in practice, such as sequential posted-price mechanisms (SPM),
in which the seller makes take-it-or-leave-it price offers to agents one by one. Yan
[28] showed that the greedy SPM of Chawla et al. [10] achieves an approximation
ratio of infw∈R

E
+

CG(rw), where rw is the weighted rank function of M with
weights w.

Contention Resolution Schemes. Chekuri et al. [12] introduced contention res-
olution (CR) schemes as a tool for maximizing a (not necessarily monotone)
submodular function f subject to downward-closed constraints, such as matroid
constraints, knapsack constraints, and their intersections. Let M = (E, I) be
a matroid imposing one of these constraints. Given a fractional solution x with

1 We note that such functions are exactly the one-dimensional monotone M �-concave
functions fi : Z+ → R+.
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multilinear extension value F (x), their CR scheme randomly rounds x to an
integral solution χS where S ∈ I such that E[χS ] ≥ infw∈R

E
+

CG(rw)F (x). Here,
rw is again the weighted rank function of M with weights w.

Motivated by the significance of the correlation gap in algorithmic applica-
tions, we study the correlation gap of weighted matroid rank functions. It is
well-known that CG(f) ≥ 1−1/e for every monotone submodular function f [8].
Moreover, the extreme case 1 − 1/e is already achieved by the rank function of
a rank-1 uniform matroid as |E| → ∞. More generally, the rank function of a
rank-� uniform matroid has correlation gap 1− e−���/�! ≥ 1− 1/e [6,28]. Other
than for uniform matroids, we are not aware of any previous work that gave
better than 1 − 1/e bounds on the correlation gap of specific matroids.

First, we show that among all weighted rank functions of a matroid, the
smallest correlation gap is realized by its (unweighted) rank function.

Theorem 1. For any matroid M = (E, I) with rank function r = r1,

inf
w∈R

E
+

CG(rw) = CG(r).

For the purpose of lower bounding CG(rw), Theorem 1 allows us to ignore
the weights w and just focus on the matroid M. As an application, to bound the
approximation ratio of sequential posted-price mechanisms as in [28], it suffices
to focus on the underlying matroid. We remark that M can be assumed to be
connected, that is, it cannot be written as a direct sum of at least two nonempty
matroids. Otherwise, r =

∑m
i=1 ri for matroid rank functions ri with disjoint

supports, and so CG(r) = mini∈[m] CG(ri). For example, the correlation gap of a
partition matroid is equal to the smallest correlation gap of its parts (uniform
matroids).

Our goal is to identify the parameters of a matroid which govern its corre-
lation gap. A natural candidate is the rank r(E). However, as pointed out by
Yan [28], there exist matroids with arbitrarily high rank whose correlation gap
is still 1−1/e, e.g., partition matroids with rank-1 parts. The 1−e−���/�! bound
for uniform matroids [6,28] is suggestive of girth as another potential candidate.
Recall that the girth of a matroid is the smallest size of a dependent set. On its
own, a large girth does not guarantee improved correlation gap bounds: in the
full version, we show that for any γ ∈ N, there exist matroids with girth γ whose
correlation gaps are arbitrarily close to 1 − 1/e.

It turns out that the correlation gap heavily depends on the relative values
of the rank and girth of the matroid. Our second result is an improved lower
bound on the correlation gap as a function of these two parameters.

Theorem 2. Let M = (E, I) be a loopless matroid with rank function r, rank
r(E) = ρ, and girth γ. Then,

CG(r) ≥ 1 − 1
e
+

e−ρ

ρ

(
γ−2∑

i=0

(γ − 1 − i)
[(

ρ

i

)

(e − 1)i − ρi

i!

])

≥ 1 − 1
e

.

Furthermore, the last inequality is strict whenever γ > 2.



On the Correlation Gap of Matroids 207

Figure 1 illustrates the behaviour of the expression in Theorem 2. For any
fixed girth γ, it is monotone decreasing in ρ. On the other hand, for any fixed
rank ρ, it is monotone increasing in γ. In the full version, we also give com-
plementing albeit non-tight upper bounds that behave similarly with respect to
these parameters. When ρ = γ − 1, our lower bound simplifies to 1 − e−ρρρ/ρ!,
i.e., the correlation gap of a rank-ρ uniform matroid (proven in the full version).

Fig. 1. Our correlation gap bound as a function of the rank ρ and girth γ separately.

The rank and girth have meaningful interpretations in the aforementioned
applications. For instance, consider the problem of maximizing a sum of weighted
matroid rank functions

∑m
i=1 fi under a matroid constraint (E,J ). For every

i ∈ [m], let Mi be the matroid of fi. In game-theoretic contexts, each fi usually
represents the utility function of agent i. Thus, our goal is to select a bundle of
items S ∈ J which maximizes the total welfare. If Mi has girth γ and rank ρ,
this means that agent i is interested in γ−1 ≤ k ≤ ρ items with positive weights.
The special case ρ = γ − 1 (uniform matroids) has already found applications
in list decoding [6] and approval voting [14]. On the other hand, for sequential
posted-price mechanisms, if the underlying matroid M has girth γ and rank ρ,
this means that the seller can service γ − 1 ≤ k ≤ ρ agents simultaneously.

To the best of our knowledge, our results give the first improvement over the
(1 − 1/e) bound on the correlation gap of general matroids. We hope that our
paper will motivate further studies into more refined correlation gap bounds,
exploring the dependence on further matroid parameters, as well as obtaining
tight bounds for special matroid classes.

1.1 Our Techniques

We now give a high-level overview of the proofs of Theorem 1 and Theorem 2.

Weighted Rank Functions. The first step in proving both theorems is to deduce
structural properties of the points which realize the correlation gap. In Theo-
rem 4, we show that such a point x can be found in the independent set polytope
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P. This implies that r̂w(x) = w�x for any weights w ∈ R
E
+. Moreover, we deduce

that x(E) is integral.
To prove Theorem 1, we fix a matroid M and derive a contradiction for a non-

uniform weighting. More precisely, we consider a weighting w ∈ R
E
+ and a point

x∗ ∈ [0, 1]E which give a smaller ratio Rw(x∗)/r̂w(x∗) < CG(r). By the above, we
can use the simpler form Rw(x∗)/r̂w(x∗) = Rw(x∗)/w�x∗. We pick w such that
it has the smallest number of different values. If the number of distinct values
is at least 2, then we derive a contradiction by showing that a better solution
can be obtained by increasing the weights in a carefully chosen value class until
they coincide with the next smallest value. The greedy maximization property
of matroids is essential for this argument.

Uniform Matroids. Before outlining our proof of Theorem 2, let us revisit the
correlation gap of uniform matroids. Let M = (E, I) be a uniform matroid on
n elements with rank ρ = r(E). If ρ = 1, then it is easy to verify that the
symmetric point x = (1/n) · 1 realizes the correlation gap 1 − 1/e. Since x lies
in the independent set polytope, we have r̂(x) = 1�x = 1. If one samples each
i ∈ E with probability 1/n, the probability of selecting at least one element is
R(x) = 1− (1−1/n)n. Thus, CG(r) = 1− (1−1/n)n, which converges to 1−1/e
as n → ∞. More generally, for ρ ≥ 1, Yan [28] showed that the symmetric point
x = (ρ/n) · 1 similarly realizes the correlation gap 1 − e−ρρρ/ρ!.

Poisson Clock Analysis. To obtain the (1 − 1/e) lower bound on the correla-
tion gap of a monotone submodular function, Calinescu et al. [8] introduced an
elegant probabilistic analysis. Instead of sampling each i ∈ E with probability
xi, they consider n independent Poisson clocks of rate xi that are active during
the time interval [0, 1]. Every clock may send at most one signal from a Poisson
process. Let Q(t) be the set of elements whose signal was sent between time 0
and t; the output is Q(1). It is easy to see that E[f(Q(1))] ≤ F (x).

In [8], they show that the derivative of E[f(Q(t))] can be lower bounded as
f∗(x) − E[f(Q(t))] for every t ∈ [0, 1], where

f∗(x) := min
S⊆E

(

f(S) +
∑

i∈E

fS(i)xi

)

(4)

is an extension of f such that f∗ ≥ f̂ . The bound E[f(Q(1))] ≥ (1 − 1/e)f∗(x)
is obtained by solving a differential inequality. Thus, F (x) ≥ E[f(Q(1))] ≥ (1 −
1/e)f∗(x) ≥ (1 − 1/e)f̂(x) follows.

A Two Stage Approach. If f is a matroid rank function, then f∗ = f̂ (see
Theorem 3). Still, the factor (1− 1/e) in the analysis of [8] cannot be improved:
for an integer x ∈ P, we lose a factor (1−1/e) due to E[f(Q(1))] = (1−1/e)F (x),
even though the extensions coincide: F (x) = f̂(x).

Our analysis in Sect. 4 proceeds in two stages. Let M = (E, I) be a matroid
with rank ρ and girth γ. The basic idea is that up to sets of size γ − 1, our
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matroid ‘looks like’ a uniform matroid. Since the correlation gap of uniform
matroids is well-understood, we first extract a uniform matroid of rank γ − 1
from our matroid, and then analyze the contribution from the remaining part
separately. More precisely, we decompose the rank function as r = g + h, where
g(S) = min{|S|, �} is the rank function of a uniform matroid of rank � = γ − 1.
Note that the residual function h := f − g is not submodular in general, as
h(S) = 0 for all |S| ≤ �. We will lower bound the multilinear extensions G(x)
and H(x) separately. As g is the rank function of a uniform matroid, similarly
as above we can derive a tight lower bound on G in terms of its rank � = γ − 1.

Bounding H(x) is based on a Poisson clock analysis as in [8], but is signifi-
cantly more involved. Due to the monotonicity of h, directly applying the result
in [8] would yield E[h(Q(1)] ≥ (1− 1/e)h∗(x). However, h∗(x) = 0 whenever M
is loopless (� ≥ 1), as h(∅) = 0 and h({i}) = 0 for all i ∈ E. So, the argument of
[8] directly only leads to the trivial E[h(Q(1))] ≥ 0. Nevertheless, one can still
show that, conditioned on the event |Q(t)| ≥ �, the derivative of E[H(Q(t))] is at
least r∗(x)−�−E[H(Q(t))]. Let T ≥ 0 be the earliest time such that |Q(T )| ≥ �,
which we call the activation time of Q. Then, solving a differential inequality
produces E[h(Q(1))|T = t] ≥ (1 − e−(1−t))(r∗(x) − �) for all t ≤ 1.

To lower bound E[h(Q(1))], it is left to take the expectation over all possible
activation times T ∈ [0, 1]. Let h̄(x) = (r∗(x) − �)

∫ 1

0
Pr[T = t](1 − e−(1−t))dt

be the resulting expression. We prove that h̄(x) is concave in each direction
ei − ej for i, j ∈ E. This allows us to round x to an integer x′ ∈ [0, 1]E such
that x′(E) = x(E) and h̄(x′) ≤ h̄(x); recall that x(E) ∈ Z by Theorem 4.
After substantial simplification of h̄(x′), we arrive at the formula in Theorem 2,
except that ρ is replaced by x(E). So, the rounding procedure effectively shifts
the dependency of the lower bound from the value of x to the value of x(E).
Since x(E) ≤ ρ by Theorem 4, the final step is to prove that the formula in
Theorem 2 is monotone decreasing in ρ.

2 Preliminaries

We denote Z+ and R+ as the set of nonnegative integers and nonnegative reals
respectively. For n, k ∈ Z+,

(
n
k

)
= n!

k!(n−k)! if n ≥ k, and 0 otherwise. For a set S

and i ∈ S, j /∈ S, we use the shorthand S − i = S \ {i} and S + j = S ∪ {j}. For
a function f : 2E → R, a set S ⊆ E and an element i ∈ E, let fS(i) denote the
marginal gain of adding i to S, i.e., fS(i) := f(S + i) − f(S). For x ∈ R

E and
S ⊆ E, we write x(S) =

∑
i∈S xi.

Matroids. Let M = (E, I) be a matroid with rank function r : 2E → Z+. Its
independent set polytope P(r) is the convex hull of incidence vectors of indepen-
dent sets in I. Equivalently, P(r) =

{
x ∈ R

E
+ : x(S) ≤ r(S) ∀S ⊆ E

}
, as shown

by Edmonds [25, Theorem 40.2]. We need another classical result by Edmonds [25,
Theorem 40.3] on intersecting the independent set polytope with a box.

Theorem 3. For a matroid rank function r : 2E → Z+ and x ∈ R
E
+,

max{y(E) : y ∈ P(r), y ≤ x} = min{r(T ) + x(E \ T ) : T ⊆ E}.
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Probability Distributions. Let Bin(n, p) denote the binomial distribution with n
trials and success probability p. Let Poi(λ) denote the Poisson distribution with
rate λ. Recall that Pr(Poi(λ) = k) = e−λλk/k! for any k ∈ Z+.

Definition 1. Given random variables X and Y , we say that X is at least
Y in the concave order if for every concave function ϕ : R → R, we have
E[ϕ(X)] ≥ E[ϕ(Y )] whenever the expectations exist. It is denoted as X ≥cv Y .

Lemma 1 ([6]). For any n ∈ N and p ∈ [0, 1], we have Bin(n, p) ≥cv Poi(np).

Properties of the Multilinear Extension. For a set function f : 2E → R, let
F : [0, 1]E → R denote its multilinear extension. We will use the following
well-known properties of F , see e.g. [9].

Proposition 1. If f is monotone, then F (x) ≥ F (y) for all x ≥ y.

Proposition 2. If f is submodular, then for any x ∈ [0, 1]E and i, j ∈ E, the
function φ(t) := F (x + t(ei − ej)) is convex.

3 Locating the Correlation Gap

In this section, given a weighted matroid rank function rw, we locate a point x∗ ∈
[0, 1]E on which the correlation gap CG(rw) is realized, and derive some structural
properties. Using this, we prove Theorem 1, i.e., the smallest correlation gap over
all possible weightings is attained by uniform weights. We start with a more
convenient characterization of the concave extension of rw.

Lemma 2. Let M = (E, I) be a matroid with rank function r and weights
w ∈ R

E
+. For any x ∈ [0, 1]E, we have r̂w(x) = max{w�y : y ∈ P(r), y ≤ x}.

Next, we show that x∗ can be chosen to lie in the independent set polytope
P(r); and that supp(x∗) is a tight set w.r.t. x∗, meaning x∗(E) = r(supp(x∗)).

Theorem 4. Let M = (E, I) be a matroid with rank function r. For any weights
w ∈ R

E
+ \{0}, there exists a point x∗ ∈ P(r) such that CG(rw) = Rw(x∗)/r̂w(x∗)

and x∗(E) = r(supp(x∗)).

Proof (of Theorem 1). For the purpose of contradiction, suppose that there exist
weights w ∈ R

E
+ and a point x∗ ∈ [0, 1]E such that Rw(x∗)/r̂w(x∗) < CG(r).

According to Theorem 4, we may assume that x∗ ∈ P(r). Thus, r̂w(x∗) = w�x∗

by Lemma 2.
Let w1 > w2 > · · · > wk ≥ 0 denote the distinct values of w. For each

i ∈ [k], let Ei ⊆ E denote the set of elements with weight wi. Clearly, k ≥ 2, as
otherwise Rw(x∗)/r̂w(x∗) = w1R(x∗)/(w1x∗(E)) = R(x∗)/x∗(E) ≥ CG(r). Let
us pick a counterexample with k minimal.

First, we claim that wk > 0. Indeed, if the smallest weight is wk = 0, then
Rw(x∗) and r̂w(x∗) remain unchanged after setting we ← w1 and x∗

e ← 0 for all
e ∈ Ek; this contradicts the minimal choice of k.
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Let X be the random variable for the set obtained by sampling every element
e ∈ E independently with probability x∗

e. Let IX ⊆ X denote a maximum weight
independent subset of X. Recall the well-known property of matroids that a
maximum weight independent set can be selected greedily in decreasing order of
the weights we. We fix an arbitrary tie-breaking rule inside each set Ei.

The correlation gap of rw is given by

Rw(x∗)
r̂w(x∗)

=

∑
S⊆E Pr(X = S)rw(S)

w�x∗ =

∑k
i=1 wi

∑
e∈Ei

Pr(e ∈ IX)
∑k

i=1 wix∗(Ei)
.

Consider the set

J := argmin
i∈[k]

∑
e∈Ei

Pr(e ∈ IX)
x∗(Ei)

.

We claim that J \ {1} 
= ∅. Suppose that J = {1} for a contradiction. Define
the point x′ ∈ P(r) as x′

e := x∗
e if e ∈ E1, and x′

e := 0 otherwise. Then, we get a
contradiction from

CG(r) ≤ R(x′)
r̂(x′)

=
w1 ∑

e∈E1
Pr(e ∈ IX)

w1x∗(E1)
<

∑k
i=1 wi ∑

e∈Ei
Pr(e ∈ IX)

∑k
i=1 wix∗(Ei)

=
Rw(x

∗)
r̂w(x∗)

.

The first equality holds because for every e ∈ E1, Pr(e ∈ IX) only depends on
x∗

E1
= x′

E1
. This is by the greedy choice of IX : elements in E1 are selected based

only on X ∩ E1. The strict inequality is due to J = {1}, k ≥ 2 and w2 > 0.
Now, pick any index j ∈ J \ {1}. Since wj > 0, we have

wj
∑

e∈Ej
Pr(e ∈ IX)

wjx∗(Ej)
≤
∑k

i=1 wi
∑

e∈Ei
Pr(e ∈ IX)

∑k
i=1 wix∗(Ei)

.

So, we can increase wj to wj−1 without increasing the correlation gap. That is,
defining w̄ ∈ R

E
+ as w̄e := wj−1 if e ∈ Ej and w̄e := we otherwise, we get

Rw(x∗)
r̂w(x∗)

≥
∑

i�=j wi
∑

e∈Ei
Pr(e ∈ IX) + wj−1

∑
e∈Ej

Pr(e ∈ IX)
∑

i�=j wix∗(Ei) + wj−1x∗(Ej)

=

∑
S⊆E Pr(X = S)rw̄(S)

w̄�x∗ ≥ min
x∈[0,1]E

Rw̄(x)
r̂w̄(x)

.

The equality holds because for every S ⊆ E, IS remains a max-weight independent
set with the new weights w̄. This contradicts the minimal choice of k. ��

4 Lower Bounding the Correlation Gap

This section is dedicated to the proof of Theorem 2. Let M = (E, I) be a matroid
with rank function r, rank ρ = r(E) and girth γ > 1. By Theorem 4, there exists
a point x∗ ∈ P(r) such that CG(r) = R(x∗)/r(x∗) and x∗(E) = r(supp(x∗)).
For the sake of brevity, we denote � = γ − 1 and λ = x∗(E) ∈ Z+. Note that if
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λ < �, then supp(x∗) is independent. As x∗(E) = r(supp(x∗)) = |supp(x∗)|, we
have x∗

i = 1 for all i ∈ supp(x∗). Since x∗ is integral, the correlation gap is 1
because R(x∗) = r̂(x∗). Henceforth, we will assume that λ ≥ �.

From Lemma 2, we already know that r̂(x∗) = 1�x∗ = λ. So, it remains
to analyze R(x∗). Let g be the rank function of a rank-� uniform matroid on
ground set E, and define the function h := r−g ≥ 0. By linearity of expectation,
R(x∗) = G(x∗) + H(x∗). We lower bound G(x∗) and H(x∗) separately.

4.1 Lower Bounding G(x∗)

As g is the rank function of a uniform matroid, the arguments of Yan [28] and
Barman et al. [6] apply. In particular, since G is a symmetric polynomial, and
convex along ei − ej for all i, j ∈ E by Proposition 2, we have

G(x∗) ≥ G

(
λ

n
· 1
)

= E

[

min
{

Bin
(

n,
λ

n

)

, �

}]

≥ E [min {Poi(λ), �}] . (5)

The last inequality follows from Lemma 1. The latter expectation is equal to

�∑

j=1

Pr(Poi(λ) ≥ j) =
�∑

j=1

(

1 −
j−1∑

k=0

λke−λ

k!

)

= � −
�−1∑

k=0

(� − k)
λke−λ

k!
. (6)

4.2 Lower Bounding H(x∗)

Our analysis of H(x∗) uses the Poisson clock setup of Calinescu et al. [8], which
incrementally builds a set Q(1) as follows. Each element i ∈ E is assigned a
Poisson clock of rate x∗

i . We start all the clocks simultaneously at time t = 0,
and begin with the initial set Q(0) = ∅. For t ∈ [0, 1], if the clock on an element
i rings at time t, then we add i to our current set Q(t). We stop at time t = 1.

Clearly, Pr(i ∈ Q(1)) = 1 − e−x∗
i ≤ x∗

i for all i ∈ E. Since h is monotone,
Proposition 1 yields H(x∗) ≥ H(1 − e−x∗

) = E[h(Q(1))], where equality is due
to independence of the Poisson clocks. So, it suffices to lower bound E[h(Q(1))].

Let t ∈ [0, 1) and consider an infinitesimally small interval [t, t+dt]. For each
i ∈ E, the probability of adding i during this interval is Pr(Poi(x∗

i dt) ≥ 1) =
x∗

i dt+O(dt2). Note that the probability of adding two or more elements is also
O(dt2). Since dt is very small, we can effectively neglect all O(dt2) terms.

Definition 2. We say that Q is activated at time T if |Q(t)| < � for all t < T
and |Q(t)| ≥ � for all t ≥ T . We call T the activation time of Q.

Let S ⊆ E where |S| ≥ � and let t ≥ t′ ≥ 0. Conditioning on the events
Q(t) = S and T = t′, the expected increase of h(Q(t)) (up to O(dt2) terms) is

E[h(Q(t+ dt))− h(Q(t))|Q(t) = S ∧ T = t′] =
∑

i∈E

rS(i)x∗
i dt ≥ (λ − � − h(S))dt,
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where the inequality is due to

h(S) +
∑

i∈E

rS(i)x∗
i = r(S) − � +

∑

i∈E

rS(i)x∗
i ≥ r∗(x∗) − � = r̂(x∗) − � = λ − �.

The inequality follows from the definition of r∗ in (4), the second equality is
by Theorem 3, while the third equality is due to Lemma 2 because x∗ ∈ P(r).
Dividing by dt and taking expectation over S, we obtain for all t ≥ t′ ≥ 0,

1
dt

E[h(Q(t + dt)) − h(Q(t))|T = t′] ≥ λ − � − E[h(Q(t))|T = t′]. (7)

Let φ(t) := E[h(Q(t))|T = t′]. Then, (7) can be written as dφ
dt ≥ λ − � − φ(t).

To solve this differential inequality, let ψ(t) := etφ(t) and consider dψ
dt = et(dφ

dt +
φ(t)) ≥ et(λ − �). Since ψ(t′) = φ(t′) = 0, we get

ψ(t) =
∫ t

t′

dψ

ds
ds ≥

∫ t

t′
es(λ − �)ds = (et − et′

)(λ − �)

for all t ≥ t′. It follows that E[h(Q(t))|T = t′] = φ(t) = e−tψ(t) ≥ (1−et′−t)(λ−
�) for all t ≥ t′. In particular, at time t = 1, we have E[h(Q(1))|T = t′] ≥
(1 − et′−1)(λ − �) for all t′ ≤ 1. By the law of total expectation,

E[h(Q(1))] ≥ (λ − �)
∫ 1

0

Pr(T = t)(1 − et−1)dt. (8)

Now, the cumulative distribution function of T is given by

Pr(T ≤ t) = 1 −
∑

S⊆E:
|S|<�

∏

i∈S

(1 − e−x∗
i t)

∏

i/∈S

e−x∗
i t

	= 1 −
∑

S⊆E

(−1)|S|+�−n−1

(|S| − 1
n − �

)

e−x∗(S)t.

Any marked equality 	= indicates that several derivation steps have been
skipped, whose details can be found in the full version. Differentiating with
respect to t yields the probability density function of T

Pr(T = t) =
d

dt
Pr(T ≤ t) =

∑

S⊆E

(−1)|S|+�−n−1

(|S| − 1
n − �

)

x∗(S)e−x∗(S)t.

Plugging this back into (8) gives us

E[h(Q(1))] ≥ (λ − �)
∑

S⊆E

(−1)|S|+�−n−1

(|S| − 1
n − �

)

x∗(S)
∫ 1

0

e−x∗(S)t(1 − et−1)dt

= (λ − �)
∑

S⊆E

(−1)|S|+�−n−1

(|S| − 1
n − �

)(

1 − 1
e

− e−1 − e−x∗(S)

x∗(S) − 1

)

= (λ − �)

⎡

⎣1 − 1
e
+
∑

S⊆E

(−1)|S|+�−n

(|S| − 1
n − �

)
e−1 − e−x∗(S)

x∗(S) − 1

⎤

⎦ (9)
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In the full version, we prove that (9) is concave along ei − ej for all i, j ∈ E,
when viewed as a function of x∗. This allows us to round x∗ to an integral vector
x′ ∈ {0, 1}E such that x′(E) = x∗(E) without increasing the value of (9). Note
that x′ has exactly λ ones and n − λ zeroes because λ ∈ Z+ by Theorem 4.
Hence, (9) is lower bounded by

(λ − �)

⎡

⎣1 − 1
e
+

λ∑

i=0

n−λ∑

j=0

(
λ

i

)(
n − λ

j

)

(−1)i+j+�−n

(
i + j − 1

n − �

)
e−1 − e−i

i − 1

⎤

⎦

	= (λ − �)

[

1 − 1
e
+

�−1∑

i=0

(−1)�−i

(
λ

i

)(
λ − i − 1
� − i − 1

)
e−1 − e−(λ−i)

λ − i − 1

]

. (10)

Since (10) evaluates to 0 when λ = �, let us assume that λ > �. Then, using
1

λ−i−1

(
λ−i−1
�−i−1

)
= 1

λ−�

(
λ−i−2
�−i−1

)
, we can simplify (10) as

(λ − �)
(

1 − 1
e

)

+
�−1∑

i=0

(−1)�−i

(
λ

i

)(
λ − i − 2
� − i − 1

)(
e−1 − e−(λ−i)

)

	= λ

(

1 − 1
e

)

− � + e−λ
�−1∑

i=0

(−1)�−i−1

(
λ

i

)(
λ − i − 2
� − i − 1

)

ei . (11)

The sum in (11) can be viewed as a univariate polynomial of degree � − 1 in
α ∈ R for α = e. Taking its Taylor expansion at α = 1, we can rewrite (11) as

λ

(

1 − 1
e

)

− � + e−λ
�−1∑

i=0

(
λ

i

)

(� − i)(e − 1)i . (12)

4.3 Putting Everything Together

We are finally ready to lower bound the correlation gap of the matroid rank
function r. Recall that we assumed λ > � in the previous subsection. Combining
the lower bounds (6) and (12) gives us

CG(r) = G(x∗) + H(x∗)
1�x∗ = 1 − 1

e
+

e−λ

λ

�−1∑

i=0

(� − i)
[(

λ

i

)

(e − 1)i − λi

i!

]

. (13)

On the other hand, if λ = �, then h = 0. By (6), we obtain

CG(r) = G(x∗)
1�x∗ =

G(x∗)
�

≥ 1 −
�−1∑

k=0

(

1 − k

�

)
�ke−�

k!
= 1 − ��−1e−�

(� − 1)!
, (14)

which agrees with (13) when λ = � (proven in full version).
To finish the proof of Theorem 2, it is left to show that (13) is a decreasing

function of λ because λ ≤ ρ. We also need to prove that the final expression is
strictly greater than 1− 1/e whenever � ≥ 2. These are done in the full version.
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