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UNIVERSAL QUADRATIC FORMS AND DEDEKIND ZETA FUNCTIONS

VÍTĚZSLAV KALA AND MENTZELOS MELISTAS

Abstract. We study universal quadratic forms over totally real number fields using Dedekind
zeta functions. In particular, we prove an explicit upper bound for the rank of universal
quadratic forms over a given number field K, under the assumption that the codifferent of
K is generated by a totally positive element. Motivated by a possible path to remove that
assumption, we also investigate the smallest number of generators for the positive part of ideals
in totally real numbers fields.

1. Introduction

The study of universal quadratic forms, i.e., positive definite quadratic forms that repre-
sent all natural numbers, has a rich and very long history, involving works of mathematicians
such Diophantus, Brahmagupta, Fermat, Euler, and Gauss. Among the most important con-
tributions of the modern era to the subject are the Conway–Schneeberger theorem (also called
15-theorem) [1] and the 290-theorem of Bhargava–Hanke [2].

A natural generalization is to replace Z with the ring of integers OK of a totally real number
field K. In this more general case a quadratic form is called universal if it is totally positive
definite and represents all totally positive elements of OK . In 1941 Maaß [14] showed that the
sum of three squares is universal over Q(

√
5). Moreover, Siegel [20] in 1945 proved that if the

sum of any number of squares is universal over K, then K = Q or Q(
√
5). On the other hand,

the result of Hsia, Kitaoka, and Kneser [6] implies that there exists a universal quadratic form
over every number field. However, the question of finding the minimal number of variables
needed for a universal form in a given number field still remains open and hard.

Blomer–Kala [3], [7] showed that, given a positive number N , there exists a real quadratic
field such that any universal quadratic form over it must have rank at least N , i.e., it must have
at least N variables. In this article we are interested in extracting more precise information
concerning ranks of universal quadratic forms over a number field K using its Dedekind zeta
function ζK . Strategies and techniques employing the Dedekind zeta have already been used
by Yatsyna [21] as well as by Kala–Yatsyna [9].

Before we state our main results let us introduce some notation that will be needed below.
First, if K is a number field with ring of integers OK , then we will denote by O∨

K the codifferent
of K (see Section 2 below for any undefined notions). If d is a positive integer, then we define

(1) rd =

{

⌊

d
6

⌋

if d ≡ 1 (mod 6),
⌊

d
6

⌋

+ 1 if d 6≡ 1 (mod 6).
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Moreover, if K has degree d and discriminant ∆K , then we write

g(ℓ,∆K) = max

{

4, eγ0
ℓd

dd
∆K log log

(

ℓd

dd
∆K

)

+
0.6483 ℓd

dd
∆K

log log( ℓ
d

dd
∆K)

}

,

where γ0 is the Euler-Mascheroni constant.
In Section 2, by adapting and slightly generalizing a technique that was used by Kala–Yatsyna

[9, Proof of Theorem 5.1], we prove the following theorem.

Theorem 1.1. Let K be a totally real number field of degree d. Assume that O∨
K = (δ) with δ

totally positive and denote by rd the integer of Equation (1). If Q is a universal form of rank

R over OK , then

2

(

Rd+ 4rd − 1

4rd − 1

)

− 1 >
G(∆K)

B(d)2d
|∆K |

3

2

(

1

4π

)d

,

where

G(∆K) = min

{

1

g(ℓ,∆K)
: ℓ ≤ rd

}

and

B(d) =

{

min{ 1
bℓ(2d)

: ℓ ≤ rd and bℓ(2d) > 0}, if d is even,

min{ 1
−bℓ(2d)

: ℓ ≤ rd and bℓ(2d) < 0}, if d is odd,

for some rational numbers b1(2d), . . . , bℓ(2d) that only depend on d.

As a corollary of Theorem 1.1, we obtain the following theorem, which slightly generalizes a
theorem of Yatsyna [21, Theorem 4].

Theorem 1.2. Let d and R be positive integers. Then there exist only finitely many totally

real number fields of degree d with codifferent generated by a totally positive element that have

a universal quadratic form of rank R defined over them.

We employ quadratic lattices in the proofs of both of these theorems and, in fact, they hold
also for universal quadratic lattices.

We also obtain (in Theorem 2.4) a result on the lifting problem [9, 10, 12], i.e., on the question
of universality of quadratic forms whose coefficients lie in Z.

One may wonder whether the assumption that O∨
K = (δ) in Theorem 1.1 is really needed.

Motivated by this consideration, in Section 3, we are led to the study of the number of generators
for the positive part of ideals in rings of integers of number fields, which may be of independent
interest. To be more precise, let K be a totally real number field with ring of integers OK . For a
subset J of K, we denote by J+ the set of all totally positive elements of J , and J+,0 = J+∪{0}.
One can then ask the following question.

Question 1. Let I be a fractional ideal in K. What is the smallest number n such that there

exist α1, α2, . . . , αn ∈ K+ with

I+,0 = α1O+,0
K + · · ·+ αnO+,0

K ?

In the last section, using the notion of I-indecomposables, we show that Question 1 above
is well posed in the sense that given any ideal I of K, I+,0 is generated by a finite number of
totally positive elements. Consequently, given any ideal I, we can define κ(I) to be the smallest
number of generators for I+,0 and we can also define κ(K) = maxI κ(I) (where the maximum
is taken over all the fractional ideals I, see Definition 3.3 below). Using the narrow class group
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of K we show, in Proposition 3.6, that κ(K) is finite. After that, we focus on the case where
K is a real quadratic field and we prove a result relating κ(I) to continued fractions.

2. Siegel’s Formula

In this section, we use Siegel’s formula to study number fields that possess universal quadratic
forms and we prove Theorem 1.1. Before we proceed let us recall some background material
and fix the notation that we will use. Let K be a totally real number field with ring of integers
OK ; let us denote the norm and trace maps from K to Q by N and Tr. The codifferent of K
is defined by

O∨
K = {α ∈ K : Tr(αOK) ⊆ Z}.

For a subset J of K, we denote by J+ the set of all totally positive elements of J , and J+,0 =
J+ ∪ {0}.

We will use the language of lattices so that we can work with quadratic forms in a coordinate-
free way. We refer the reader to [16] for general background material on lattices and quadratic
forms. An r-ary quadratic K-space V is an r-dimensional vector space V over K equipped
with a symmetric bilinear form B : V × V → K. The associated quadratic form Q : V → K
is given by Q(x) = B(x, x) for every x ∈ V. The Gram matrix of vectors v1, . . . , vn ∈ V is the
matrix (B(vi, vj)) ∈ Mn×n(K).

Let V be an r-ary quadratic space over K. A quadratic OK-lattice L of rank r is a finitely
generated OK-submodule of V such that KL = V equipped with the restrictions of B and Q to
L. The rank of L is r and is denoted by rank(L). A quadratic OK-lattice L is called (totally)
positive definite if Q(x) ∈ O+

K for every 0 6= x ∈ L. By a Z-form we mean a positive definite
quadratic form with Z-coefficients, naturally considered as a quadratic form on the OK-lattice
Or

K .
Finally, a positive definite lattice L is called universal if every element of O+

K is represented
by an element of L, i.e., for every w ∈ O+

K there exists x ∈ L such that Q(x) = w.
We will need the following upper bound on the number of short vectors in a given Z-lattice,

due to Regev–Stephens-Davidowitz.

Theorem 2.1. [18, Theorem 1.1] Let L be a positive definite Z-lattice of rank R. If i is a

positive integer, then we denote by N≤i(L) the number of vectors of norm ≤ i in L. Then

N≤i(L) ≤ C(R, i) = 2

(

R + 4i− 1

4i− 1

)

− 1.

Note that [18, Theorem 1.1] concerns only classical quadratic lattices, whereas here we state
the result without the classical assumption. The transition is easy: If (L,Q) is non-classical,
then (L, 2Q) is classical, and vectors with Q(v) ≤ i correspond to vectors with 2Q(v) ≤ 2i,
giving the version of the theorem formulated above. Note also that the bound for vectors of
norm 2 (in classical lattices) can be improved, see, e.g., [11, Theorem 3.1] or [18, Section 4].

Let now K be a totally real number field of degree d > 1. We will work with its Dedekind
zeta function ζK(s), defined as the meromorphic function that is for s ∈ C,Re(s) > 1, given by

ζK(s) =
∑

I<OK

1

N(I)s
,

3



where the sum runs over all the non-zero integral ideals I in OK , and N(I) denotes the norm of
an ideal I. As is well-known, ζK satisfies a functional equation, from which we will need that

(2) ζK(−1) = (−1)d|∆K |
3

2

(

1

4π

)d

ζK(2).

Further, for any (integral) ideal I of OK we define

σ(I) =
∑

J |I
N(J).

Moreover, we define

(3) sKℓ (2) =
∑

γ∈O∨,+
K

, Tr(γ)=ℓ

σ((γ)(O∨
K)

−1).

Then we have the following theorem due to Siegel.

Theorem 2.2. [22, Page 59] Let K be a totally real number field of degree d > 1. Then

ζK(−1) = 2d
rd
∑

ℓ=1

bℓ(2d)s
K
ℓ (2),

where b1(2d), . . . , br(2d) are rational numbers that only depend on d, and rd, s
K
ℓ (2) are given in

Equations (1) and (3).

Before we proceed to the proof of Theorem 1.1, we need to provide bounds for the terms
σ((γ)(O∨

K)
−1) involved in Equation (3). We do this in the following lemma.

Lemma 2.3. Let K be a totally real number field of degree d > 1. Assume that O∨
K = (δ) with

δ totally positive. Let ℓ be a positive integer and let γ ∈ O∨,+
K such that Tr(γ) = ℓ. Then

σ((γ)(O∨
K)

−1) ≤ g(ℓ,∆K).

Proof. Since δ is totally positive, we find that O∨,+
K = δO+

K . As γ ∈ O∨,+
K , there exists α ∈ O+

K

such that γ = δα. Therefore,

σ((γ)(O∨
K)

−1) = σ((α)(δ)(O∨
K)

−1) = σ((α)O∨
K(O∨

K)
−1) = σ(αOK) =

∑

J |αOK

N(J).

However, if J is an ideal of OK with J | αOK , then N(J) divides N(αOK). Consequently,
∑

J |αOK

N(J) =
∑

N(J)|N(αOK )

N(J) ≤
∑

d|N(αOK )

d = σ′(N(αOK)) = σ′(N(α)),

where σ′ is the classical divisor function. It is a theorem of Robin [19, Théorème 2] that for
n ≥ 3 we have that

σ′(n) < eγ0n log log(n) +
0.6483n

log log(n)
,

where γ0 is the Euler–Mascheroni constant. Using this we find

σ((γ)(O∨
K)

−1) ≤ eγ0N(α) log log(N(α)) +
0.6483N(α)

log log(N(α))
.

On the other hand, a simple application of the Arithmetic–Geometric means inequality gives

ℓ = Tr(γ) ≥ d(N(γ))
1

d = d(N(δ))
1

d (N(α))
1

d .
4



Therefore,

N(α) ≤ ℓd

dd
1

N(δ)
.

Since the different ideal (O∨
K)

−1 has norm equal to the discriminant, and 1
δ

is a generator for
(O∨

K)
−1, we find that N(δ) = 1

∆K
. Finally, since

eγ0N(α) log log(N(α)) +
0.6483N(α)

log log(N(α))
≤ eγ0

ℓd

dd
∆K log log(

ℓd

dd
∆K) +

0.6483 ℓd

dd
∆K

log log( ℓ
d

dd
∆K)

and we have that σ′(2) = 3, σ′(3) = 4, we find that

σ((γ)(O∨
K)

−1) ≤ g(ℓ,∆K). �

Proof of Theorem 1.1. Fix an integral basis ω1, ω2, . . . , ωd for OK . Consider the quadratic form
q given by

q(x11, x12, . . . , xRd) = Tr(δQ(x11ω1 + · · ·+ x1dωd, . . . , xR1ω1 + · · ·+ xRdωd)),

for xij ∈ Z. Since δ ∈ O∨,+
K and Q is positive definite, we see that q is a positive definite

quadratic form over Z. By construction, we have that q has rank Rd.
For every positive integer n, let N≤i(q) be the number of vectors v ∈ ZRd such that q(v) ≤ i.

It follows from Theorem 2.1 that N≤i(q) ≤ C(Rd, i). Therefore, we have the following inequality

2

(

Rd+ 4rd − 1

4rd − 1

)

− 1 = C(Rd, rd) ≥ N≤rd(q) = #{w ∈ ZRd : q(w) ≤ rd}.

Now, if γ ∈ O∨,+
K , then γ = δα for some α ∈ O+

K . Using the assumption that Q is universal
over OK , we find that there exists (w11, . . . , wRd) ∈ ZRd such that

Q(w11ω1 + · · ·+ w1dωd, . . . , wR1ω1 + · · ·+ wRdωd) = α.

This implies that

#{w ∈ ZRd : q(w) ≤ rd} ≥ #{γ ∈ O+
K : Tr(γ) ≤ rd}.

On the other hand, Lemma 2.3 implies that for every γ ∈ O∨,+
K with Tr(γ) = ℓ we have the

inequality

1 ≥ σ((γ)(O∨
K)

−1)

g(ℓ,∆K)
.

Therefore,

#{γ ∈ O+
K : Tr(γ) ≤ rd} =

rd
∑

ℓ=1

∑

γ∈O∨,+

K
, Tr(γ)=ℓ

1 ≥
rd
∑

ℓ=1

∑

γ∈O∨,+

K
, Tr(γ)=ℓ

σ((γ)(O∨
K)

−1)

g(ℓ,∆K)
.

Let

G(∆K) = min

{

1

g(ℓ,∆K)
: ℓ ≤ rd

}

.

Assume first that d is even. Recall that in this case, we set

B(d) = min

{

1

bℓ(2d)
: ℓ ≤ rd and bℓ(2d) > 0

}

.
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Since the sum
∑

γ∈O∨,+

K
, Tr(γ)=ℓ

σ((γ)(O∨
K)

−1)

is non-negative, we find the following inequality
rd
∑

ℓ=1

∑

γ∈O∨,+

K
, Tr(γ)=ℓ

σ((γ)(O∨
K)

−1)

g(ℓ,∆K)
≥ G(∆K)

B(d)

rd
∑

ℓ=1

bℓ(2d)
∑

γ∈O∨,+

K
, Tr(γ)=ℓ

σ((γ)(O∨
K)

−1).

Moreover, using Theorem 2.2, we see that the right-hand side of the above inequality is equal
to

G(∆K)

B(d)2d
2d

rd
∑

ℓ=1

bℓ(2d)s
K
ℓ (2) =

G(∆K)

B(d)2d
ζK(−1)

(2)
= (−1)d

G(∆K)

B(d)2d
|∆K |

3

2

(

1

4π

)d

ζK(2).

As ζK(2) > 1, by combining the inequalities obtained above, we see that our theorem is proved
in the case of even d.

Assume now that d is odd. Recall that in this case, we set

B(d) = min

{

1

−bℓ(2d)
: ℓ ≤ rd and bℓ(2d) < 0

}

.

Since the sum
∑

γ∈O∨,+
K

, Tr(γ)=ℓ

σ((γ)(O∨
K)

−1)

is non-negative, we find the following inequality
rd
∑

ℓ=1

∑

γ∈O∨,+

K
, Tr(γ)=ℓ

σ((γ)(O∨
K)

−1)

g(ℓ,∆K)
≥ −G(∆K)

B(d)

rd
∑

ℓ=1

bℓ(2d)
∑

γ∈O∨,+

K
, Tr(γ)=ℓ

σ((γ)(O∨
K)

−1).

Therefore, using a similar argument as in the case where d is even we find that the right-hand
side of the above inequality is equal to

G(∆K)

B(d)2d
(−ζK(−1)) =

G(∆K)

B(d)2d
|∆K |

3

2

(

1

4π

)d

ζK(2).

This completes the proof of our theorem because we again have ζK(2) > 1. �

Proof of Theorem 1.2. The term

G(∆K)

B(d)2d
|∆K |

3

2

(

1

4π

)d

grows to infinity as |∆K | grows to infinity (while everything else is fixed). Therefore, it follows
from Theorem 1.1 that given any fixed R and d, there exist only a finite number of possi-
bilities for the discriminant ∆K of number fields of degree d with codifferent generated by a
totally positive element that have a universal quadratic form of rank R defined over them. Con-
sequently, by the Hermite–Minkowski theorem there only finitely many possibilities for such
number fields. �

We end this section by recording the following theorem, which is a more general version of a
part of a theorem of Kala–Yatsyna [9, Theorem 5.1].

6



Theorem 2.4. Let K be a totally real number field of degree d ≤ 43. Assume that O∨
K is

principal and that minγ∈O∨,+
K

Tr(γ) = rd, where rd is given by (1). If there is a universal

Z-form over K, then

|∆K | < |brd(2d)(4π2)dd| 23 .
Proof. The proof of [9, Theorem 5.1] carries over almost verbatim until the middle of Page 18
of [9]. This is because the assumption that minγ∈O∨,+

K
Tr(γ) = rd combined with Theorem 2.2

imply that ζK(−1) = 2dbrd(2d)s
K
rd
(2).

We also note that if α = α′δ ∈ O∨,+
K , with α′ ∈ OK , is such that Tr(α′δ) = rd, then [9,

Lemma 4.6] implies that α′ is a unit OK and, hence, O∨
K = (δ) = (α). From this we deduce

that
σ((α)(O∨

K)
−1) = σ(O∨

K(O∨
K)

−1) = σ(OK) = 1,

exactly as in the proof of [9, Theorem 5.1]. �

3. Generators for the positive part of ideals

One idea for extending the proof of [9, Theorem 5.1] when O∨,+
K is not principal is to consider

the direct sum of forms Tr(δ1Q), . . . ,Tr(δnQ) for suitable δ1, . . . , δn ∈ O∨,+
K , instead of just

Tr(δQ). More precisely, one can use the following approach. We can consider whether there
exists a decomposition

O∨,+,0
K = δ1O+,0

K + · · ·+ δnO+,0
K ,

where O+,0
K = O+

K ∪ {0} and O∨,+,0
K = O∨,+

K ∪ {0}, for δ1, . . . , δn ∈ K+ such that the number n
only depends on the degree of K. If it did exist, then one could employ the same proof strategy
as before, but using the form Tr(δ1Q + · · · + δnQ) = Tr(δ1Q) + · · · + Tr(δnQ) (by which we
mean the orthogonal sum of quadratic forms) instead of just Tr(δQ) for some δ ∈ O∨,+

K .
To proceed slightly more generally, let I be a fractional ideal of OK . We are now interested

in answering Question 1 of the introduction, i.e., we are interested in providing a bound for the
number of totally positive generators for I+,0. By clearing the denominators of I, we can relate
the number of totally positive generators for I+,0 to the number of totally positive generators
of an integral ideal. For this reason, we can work with integral ideals for many of our results.
However, unless we explicitly state otherwise, by an ideal we always mean a non-zero fractional
ideal.

Let now I be a (fractional) ideal and let

S = {α ∈ I+ : α cannot be written as α = β + γ with β, γ ∈ I+}.
We call each element α of this set I-indecomposable, generalizing the notion of indecomposables
(see the survey [8] for more on indecomposables and how they relate to quadratic forms). If we
let S ′ to be a set of representatives of S modulo multiplication by totally positive units of OK ,
then we have

(4) I+,0 =
∑

α∈S′

αO+,0
K .

We now proceed to obtain bounds on the cardinality of the set S ′. The following theorem is
proved using an adaptation of an argument of Kala–Yatsyna [10, Theorem 5].

Proposition 3.1. Let K be a totally real number field of discriminant ∆K and let I be an

integral ideal of OK . For every element α ∈ I+ with N(α) > ∆KN(I)
2 there exists β ∈ I such

that α ≻ β2.
7



In particular, no such element α is I-indecomposable.

Proof. Assume that the degree of the extension K/Q is d. In the Minkowski space associated

to K consider the box defined by |xi| ≤
√

σi(α)− ǫ, where σ1, . . . , σd are the embeddings of K
into R, and ǫ > 0 is small enough so that

d
∏

i=1

√

σi(α) >
√

∆KN(I).

This is possible because
d
∏

i=1

√

σi(α) =
√

N(α) >
√

∆KN(I).

The volume of the box is bigger than 2d
√
∆KN(I). Therefore, since the volume of the funda-

mental domain ι(I), where ι is the Minkowski embedding, is equal to
√
∆KN(I) [15, Proposition

(5.2)], we find using, Minkowski’s theorem [15, Page 27] we find that there exists a non-zero

lattice point in this box. Thus, there exist β ∈ I such that
√

σi(α) > σi(β) for i = 1, . . . , d.
This implies that σi(α) > σi(β

2) for i = 1, . . . , d, i.e., α ≻ β2. This proves our proposition. �

The following result will be useful in our work below.

Proposition 3.2. Let K be a totally real number field of degree d. For any positive integer

X we let VX be a set of representatives of classes of elements α ∈ O+
K with N(α) ≤ X, up to

multiplication by squares of units in OK . Then

#VX ≪ X(log (X))d−1,

where the implied constant only depends on d.

Proof. We proceed exactly as in the second part of the proof of [10, Theorem 6]. We will omit
the details. �

Definition 3.3. Let K be a totally real number field with ring of integers OK and let I be a
fractional ideal of OK . Define κ(I) as the smallest number n such that there exist αi ∈ K+ for
i = 1, 2, . . . , n with

I+,0 = α1O+,0
K + · · ·+ αnO+,0

K .

Moreover, we define

κ(K) = max
I ideal of OK

κ(I).

For example, viewing OK as an ideal, we have κ(OK) = 1, for O+,0
K = 1 · O+,0

K .
Recall that the narrow class group of a number field K is defined as the quotient IK/P

+
K ,

where IK is the group of fractional ideals of K and P+
K is the subgroup of principal fractional

ideals that have a totally positive generator. We denote the narrow class group of K by Cl+K .

Lemma 3.4. If I, J are two fractional ideals of K that belong to the same class of Cl+K , then

κ(I) = κ(J).

Proof. Since I and J belong to the same class in Cl+K , we have that I = αJ for some α ∈ K+.
Thus if {α1, α2, . . . } is a generating set for J+,0 (finite or infinite), then {αα1, αα2, . . . } is a
generating set for I+,0. This implies that κ(I) ≤ κ(J). By an entirely similar argument using
1
α

instead of α we find that κ(J) ≤ κ(I). Therefore, κ(I) = κ(J). �

8



Proposition 3.5. If I is any fractional ideal in a totally real number field K, then κ(I) is at

most the number of classes of I-indecomposables modulo multiplication by totally positive units

of OK. In particular, κ(I) is finite.

Proof. There exists c ∈ O+
K such that cI is an integral ideal of OK . Since κ(I) = κ(cI) by

Lemma 3.4, we can assume without loss of generality that I is an integral ideal. Recall that by
(4) we have

I+,0 =
∑

α∈S′

αO+,0
K ,

where S ′ is the set of I-indecomposables modulo the action by totally positive units. By
Proposition 3.1, all elements of S ′ have bounded norm, and by Proposition 3.2, there are only
finitely many such elements. �

Now we can show that κ(K) is finite thanks to the finiteness of the narrow class group.

Theorem 3.6. For every totally real number field K, the number κ(K) is finite.

Proof. Let I1, . . . , Is be fractional ideals of K that are representatives of the narrow class group
of K. It follows immediately from Lemma 3.4 that κ(K) = max{κ(I1), . . . , κ(Is)}, which proves
our theorem. �

Example 3.7. A totally real number field K has narrow class number 1 if and only if it has
class number 1 and has units of all signatures. In such a case, we can take I1 = OK as the
only representative in the proof of Theorem 3.6, and so κ(K) = κ(OK) = 1. For example, we
have that κ(Q(

√
2)) = 1 because Q(

√
2) has class number 1 and its fundamental unit is 1+

√
2,

which has negative norm (see, for example, the LMFDB [13] database for these basic facts).

Remark 3.8. Let K be a totally real field and let I be an ideal of OK . It follows from [5,
Lemma 2.1] that I has a Z-basis with basis elements in I+. Let A = {a1, . . . , ad} be such a
basis and consider the set

S(A) = {λ1a1 + · · ·+ λdad : λi ∈ Z+ for every i}.
Since S(A) is contained I+, one might hope that the above inclusion would be equality. However,
the set I+ \ S(A) is always infinite (see [5, Page 11]).

Before we focus on the case of real quadratic fields we need to introduce some notation and
terminology that will be used. Let K = Q(

√
D) be a real quadratic number field with ring of

integers OK . Write σ for the generator of the Galois group of K/Q; for α ∈ K we denote its
conjugate by α′ = σ(α).

We define the (+,−) part of OK , denoted by O(+,−)
K , as the set consisting of all elements

α ∈ OK such that α > 0 and α′ < 0. An element of α ∈ O(+,−)
K is called a (+,−)-indecomposable

if it cannot be written as α = β + γ with β, γ ∈ O(+,−)
K .

Let now

ωD =

{√
D if D ≡ 2, 3 (mod 4),

1+
√
D

2
if D ≡ 1 (mod 4).

Note that with this convention we have that OK = Z[ωD]. We also let

ξD = −ω′
D =

{√
D if D ≡ 2, 3 (mod 4),√
D−1
2

if D ≡ 1 (mod 4).
9



In the following proposition, for a principal ideal I of OK , we relate the number κ(I) with
the continued fraction expansion of ξD.

Proposition 3.9. Let K = Q(
√
D) be a real quadratic field and let ξD = [u0, u1, . . . , us] be the

periodic continued fraction expansion of ξD. Let I = (α) be a principal ideal of K for some

α ∈ K,α > 0. Then

κ(I) ≤











u1 + u2 + u3 + · · ·+ us−1 + us if s odd,

u1 + u3 + · · ·+ us−1 if s even and α′ > 0,

u2 + u4 + · · ·+ us if s even and α′ < 0.

Proof. To prove the result, we will use Proposition 3.5 thanks to which the number κ(I) is
smaller or equal to the number of classes of I-indecomposables modulo multiplication by totally
positive units.

Let ε be the fundamental unit of K. Recall that the period length s is odd if and only if the
norm N(ε) = −1. For convenience, assume that the continued fraction is ξD = [u0, u1, . . . , us] =
[u0, u1, . . . , us, us+1, . . . ], i.e., we are letting uts+i = ui for each t, i.

If I has a totally positive generator, then κ(I) = κ(OK) by Lemma 3.4. In particular, this is
always the case when s is odd. If I = (α) for α > 0, α′ < 0, then

I+ = {αβ ∈ O+
K : β ∈ OK} = {αβ : β ∈ O(+,−)

K } ≃ O(+,−)
K

(here, the last isomorphism ≃ is an isomorphism of additive semigroups). Thus the I-indecomposables
are in a bijection with (+,−)-indecomposables (and likewise for their classes up to unit multipli-
cation). Thus in both cases, we are interested in the number of unit classes of indecomposables

either in OK or in O(+,−)
K .

Luckily, in both of these cases, the indecomposables have a nice characterization as the upper
(or lower) semiconvergents to ξD. Specifically, let pi

qi
= [u0, . . . , ui] for coprime positive positive

integers pi, qi and i ≥ 0. We also write p−1 = 1 and q−1 = 0. For every i ≥ −1 we call
the algebraic integers αi = pi − qiω

′
D the convergents. We also define the semiconvergents

αi,r = αi + rαi+1 for i ≥ −1 and 0 ≤ r < ui+2. Then, up to conjugation σ, the elements αi,r

with odd i ≥ −1 are exactly all the indecomposables in OK , and these elements with even i ≥ 0
are exactly the (+,−)-indecomposables (see [3, Subsection 2.1], [4, Theorem 2], [17, §16]; note
that the first two cited references deal only with the case of odd i and indecomposables in OK ,
but the case of (+,−)-indecomposables is completely analogous).

As ε = αs−1 and εαi,r = αi+s,r, the preceding characterization immediately implies that the
numbers of unit classes of indecomposables are as follows (cf. [3, Subsection 2.1]):

CASE 1: Assume that s odd. Then we do not need to distinguish indecomposables in OK

and in O(+,−)
K (because multiplication by ε turns the former into the latter). Since we are

interested in the number of indecomposables up to multiplication of totally positive units (that
are exactly ε2n for n ∈ Z, and ε2 = α2s−1), we need to consider odd indices i in the range
−1 ≤ i < 2s− 1. These give us

u1 + u3 + · · ·+ us + us+2 + · · ·+ u2s−1 =

u1 + u3 + · · ·+ us + u2 + · · ·+ us−1 =

u1 + u2 + u3 + · · ·+ us−1 + us.

CASE 2: Assume that s even and that α′ > 0. We need to count the number of indecom-
posables in OK . We have that ε = αs−1 is the fundamental totally positive unit, and so the

10



classes of indecomposables are given by αi,r for odd i in the range −1 ≤ i < s. There are clearly
u1 + u3 + · · ·+ us−1 of them.

CASE 3: Assume that s even and that α′ < 0. We need to count the number of indecompos-

ables in O(+,−)
K . We only need to consider the even indices i in the range −1 ≤ i < s, obtaining

u2 + u4 + · · ·+ us. �

Example 3.10. In this example we show, using ideas from Proposition 3.9 above, that κ(Q(
√
3)) =

2. The class group of Q(
√
3) is trivial and the fundamental unit is 2 +

√
3, which has positive

norm (see, for example, the LMFDB [13] database for these basic facts). Let now I be any
ideal of Q(

√
3). Then I is principal and is either generated by a totally positive element or by

an element in O(+,−)

Q(
√
3)

. In the first case, we have that κ(I) = 1. So assume from now on that I

is generated by an element in O(+,−)

Q(
√
3)

. The continued fraction expansion of
√
3 is [1, 1, 2]. Using

Proposition 3.9 we find that κ(I) ≤ 2. Thus κ(Q(
√
3)) ≤ 2.

We now show that equality is achieved, i.e., that κ(Q(
√
3)) = 2. Let I = (α) be an ideal

of Q(
√
3) with α ∈ O(+,−)

Q(
√
3)

. Assume that I+ = α+O+,0

Q(
√
3)

with α+ ∈ O+

Q(
√
3)

, and we will find

a contradiction. Since α+ ∈ I, there exists β ∈ O(+,−)

Q(
√
3)

such that α+ = αβ. Consider now

the ideal I ′ = (α+). It follows that I ′ ( I because β is not a unit due to the fact that the
fundamental unit is totally positive. On the other hand, if we denote by σ the generator of

the Galois group of the extension Q(
√
3)/Q, since α ∈ O(+,−)

Q(
√
3)

, then −ασ(α) ∈ Z+ ∩ I and

α−ασ(α) ∈ O+

Q(
√
3)
∩I. Therefore α = (α−ασ(α))− (−ασ(α)) ∈ I ′, which implies that I ⊆ I ′.

This is a contradiction. Therefore, we proved that κ(I) = 2.

Note that us = 2u0 if D ≡ 2, 3 (mod 4) and us = 2u0−1 if D ≡ 1 (mod 4), and u0 = ⌊ξD⌋ in

both cases. Thus us ≫
√
D, and so the bound for κ(I) from Proposition 3.9 is growing as

√
D,

except for the case of even s and totally positive α. However, it is conjectured that infinitely
many real quadratic fields Q(

√
D) have narrow class number 1 (then s is odd), in which case

we know that κ(K) = 1. Thus we expect the bound from Proposition 3.9 to be very bad for
infinitely many D. While it may be possible to establish a similar bound also for non-principal
ideals (in terms of continued fractions of different elements), determining the correct order of
magnitude of κ(K) in general seems to be hard.

References

[1] M. Bhargava. On the Conway-Schneeberger fifteen theorem. Contemp. Math, 272:27–37, 1999. 1
[2] M. Bhargava and J. Hanke. Universal quadratic forms and the 290-theorem. Preprint. 1
[3] V. Blomer and V. Kala. Number fields without universal n-ary quadratic forms. Math. Proc. Cambridge

Philos. Soc., 159:239–252, 2015. 1, 10
[4] A. Dress and R. Scharlau. Indecomposable totally positive numbers in real quadratic orders. J. Number

Theory, 14(3):292–306, 1982. 10
[5] L. Fukshansky and S. Wang. Positive semigroups in lattices and totally real number fields. Adv. Geom.,

22(4):503–512, 2022. 9
[6] J. S. Hsia, Y. Kitaoka, and M. Kneser. Representations of positive definite quadratic forms. J. Reine Angew.

Math., 301:132–141, 1978. 1
[7] V. Kala. Universal quadratic forms and elements of small norm in real quadratic fields. Bull. Aust. Math.

Soc., 94:7–14, 2016. 1
[8] V. Kala. Universal quadratic forms and indecomposables in number fields: A survey. Commun. Math.,

Volume 31 (2023), Issue 2 (Special issue: Euclidean lattices: theory and applications), 2023. 7
11



[9] V. Kala and P. Yatsyna. Lifting problem for universal quadratic forms. Adv. Math., 377:Paper No. 107497,
24, 2021. 1, 2, 6, 7

[10] V. Kala and P. Yatsyna. On Kitaoka’s conjecture and lifting problem for universal quadratic forms. Bull.
Lond. Math. Soc., 55:854–864, 2023. 2, 7, 8

[11] V. Kala, P. Yatsyna, and B. Żmija. Real quadratic fields with a universal form of given rank have density
zero, 2023. arxiv:2302.12080. 3

[12] D. Kim and S. H. Lee. Lifting problem for universal quadratic forms over totally real cubic number fields,
2023. arxiv:2307.07118. 2

[13] The LMFDB Collaboration. The L-functions and modular forms database. http://www.lmfdb.org, 2019.
[Online; accessed 02 May 2023]. 9, 11

[14] H. Maaß. Über die Darstellung total positiver Zahlen des Körpers R(
√
5) als Summe von drei Quadraten.

Abh. Math. Sem. Univ. Hamburg, 14:185–191, 1941. 1
[15] J. Neukirch. Algebraic number theory, volume 322 of Grundlehren der mathematischen Wissenschaften.

Springer-Verlag, Berlin, 1999. 8
[16] O. T. O’Meara. Introduction to quadratic forms. Classics in Mathematics. Springer-Verlag, Berlin, 2000.

Reprint of the 1973 edition. 3
[17] O. Perron. Die Lehre von den Kettenbrüchen. B.G. Teubner, 1913. 10
[18] O. Regev and N. Stephens-Davidowitz. A simple proof of a reverse Minkowski theorem for integral lattices,

2023. arxiv:2306.03697. 3
[19] G. Robin. Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J. Math. Pures

Appl. (9), 63(2):187–213, 1984. 4
[20] C. L. Siegel. Sums of m-th powers of algebraic integers. Ann. of Math., 46:313–339, 1945. 1
[21] P. Yatsyna. A lower bound for the rank of a universal quadratic form with integer coefficients in a totally

real number field. Comment. Math. Helv., 94(2):221–239, 2019. 1, 2
[22] D. Zagier. On the values at negative integers of the zeta-function of a real quadratic field. Enseign. Math.

(2), 22(1-2):55–95, 1976. 4

Charles University, Faculty of Mathematics and Physics, Department of Algebra, Sokolov-

ská 83, 18600 Praha 8, Czech Republic

Email address, V. Kala: vitezslav.kala@matfyz.cuni.cz

Charles University, Faculty of Mathematics and Physics, Department of Algebra, Sokolov-

ská 83, 18600 Praha 8, Czech Republic

University of Twente, Department of Applied Mathematics, Drienerlolaan 5, 7522 NB En-

schede, The Netherlands

Email address, M. Melistas: mentzmel@gmail.com

12

http://www.lmfdb.org

	1. Introduction
	2. Siegel's Formula
	3. Generators for the positive part of ideals
	References

