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Abstract
Simple heuristics for (combinatorial) optimization problems often show a remarkable
performance in practice. Worst-case analysis often falls short of explaining this per-
formance. Because of this, “beyond worst-case analysis” of algorithms has recently
gained a lot of attention, including probabilistic analysis of algorithms. The instances
of many (combinatorial) optimization problems are essentially a discrete metric space.
Probabilistic analysis for such metric optimization problems has nevertheless mostly
been conducted on instances drawn from Euclidean space, which provides a structure
that is usually heavily exploited in the analysis. However, most instances from practice
are not Euclidean. Little work has been done on metric instances drawn from other,
more realistic, distributions. Some initial results have been obtained in recent years,
where random shortest path metrics generated from dense graphs (either complete
graphs or Erdős–Rényi random graphs) have been used so far. In this paper we extend
these findings to sparse graphs, with a focus on sparse graphs with ‘fast growing cut
sizes’, i.e. graphs for which |δ(U )| = �(|U |ε) for some constant ε ∈ (0, 1) for all
subsets U of the vertices, where δ(U ) is the set of edges connecting U to the remain-
ing vertices. A random shortest path metric is constructed by drawing independent
random edge weights for each edge in the graph and setting the distance between
every pair of vertices to the length of a shortest path between them with respect to
the drawn weights. For such instances generated from a sparse graph with fast grow-
ing cut sizes, we prove that the greedy heuristic for the minimum distance maximum
matching problem, and the nearest neighbor and insertion heuristics for the traveling
salesman problem all achieve a constant expected approximation ratio. Additionally,
for instances generated from an arbitrary sparse graph, we show that the 2-opt heuristic
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for the traveling salesman problem also achieves a constant expected approximation
ratio.

Keywords Random shortest path metrics · First-passage percolation ·
Approximation algorithms · Probabilistic analysis · Average-case analysis

1 Introduction

Large-scale optimization problems, such as the traveling salesman problem (TSP),
are relevant for many applications. Often it is not possible to solve these problems to
optimality within a reasonable amount of time, especially when instances get larger.
Therefore, in practice these kind of problems are tackled by using approximation
algorithms or ad-hoc heuristics. Even though the worst-case performance of these,
often simple, heuristics is usually rather bad, they often show a remarkably good
performance in practice.

In order to find theoretical results that are closer to the practical observations,
probabilistic analysis has been a useful tool over the last decades. One of the main
challenges here is to choose a probability distribution on the set of possible instances of
the problem: on the one hand this distribution should be sufficiently simple in order to
make the probabilistic analysis possible, but on the other hand the distribution should
somehow reflect realistic instances.

In the ‘early days’ of probabilistic analysis, random instances were either generated
by using independent random edge lengths or embedded in Euclidean space (e.g. [3,
14]). Although these models have some nice mathematical properties that enable the
probabilistic analysis, they have shortcomings regarding their realism: in practice,
instances are often metric, but not Euclidean, and independent random edge lengths
are not even metric.

Recently, Bringmann et al. [8] widened the scope of models for generating random
instances by using the following model, already proposed by Karp and Steele in 1985
[21]: given an undirected complete graph, draw edgeweights independently at random
and then define the distance between any two vertices as the total weight of the shortest
path between them, measured with respect to those random weights. Even though this
model broadens the scope of random metric spaces, the resulting instances from this
model are not very realistic.

In this paperwe adapt thismodel in the sense thatwe startwith a sparse graph instead
of a complete graph. We believe that this yields instances that are more realistic, for
instance since in practice the underlying (road, communication, etc.) networks are
almost always sparse.

1.1 RelatedWork

The model described above is known by two different names: random shortest path
metrics and first-passage percolation. It was introduced by Hammersley and Welsh
under the latter name as a model for fluid flow through a (random) porous medium
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[15, 18]. A lot of studies have been conducted on first-passage percolation, mostly on
this model defined on the lattice Z

d .
For first-passage percolation defined on complete graphs many structural results

exist. We know for instance that the expected distance between two arbitrary fixed
vertices is approximately ln(n)/n and that the distance from a fixed vertex to the
vertex that is farthest away from it is approximately 2 ln(n)/n [8, 19]. We also know
that the diameter in this case is approximately 3 ln(n)/n [16, 19]. Bringmann et al. used
this model to analyze heuristics for matching, TSP and k-median [8].

A lot of studies have been conducted on the model of random shortest path metrics
(or first-passage percolation). Many of these studies focused on first-passage perco-
lation defined on the integer lattice Z

d . Although very few precise results are known
for this model, there are many existential results available. For instance, the distance
between the origin and ne1 (where e1 is the unit vector in the first coordinate direction)
is known to be �(n). Also, the set of vertices within distance t from a given vertex
grows linearly in t and, after rescaling, converges to some convex domain [26]. The
survey by Auffinger et al. [1] contains a thorough overview.

1.2 Our Results

This paper aims at extending the results of Bringmann et al. [8] and Klootwijk et
al. [22] to the more realistic setting of random shortest path metrics generated from
sparse graphs, i.e., graphs G = (V , E) for which |E | = O(|V |). We believe that the
probabilistic analysis of simple heuristics in different random models will enhance
the understanding of the performance of these heuristics, which are used in many
applications.

In this paper we provide a probabilistic analysis of some simple heuristics in the
model of random shortest path metrics generated from sparse graphs. For most of the
results in this paper we need to restrict ourselves to classes of sparse graphs that have
‘fast growing cut sizes’. The following definition formalizes the notion of fast growing
cut sizes

Definition 1 Let G be a family of sparse connected undirected simple graphs. We say
that G has fast growing cut sizes if there exist constants c > 0 and ε, c′ ∈ (0, 1) such
that for any G = (V , E) ∈ G and any U ⊆ V with |U | ≤ c′|V | we have

|δ(U )| ≥ c|U |ε,

where δ(U ) := {{u, v} ∈ E | u ∈ U , v /∈ U } denotes the cut induced by U .

In the remainder of this paper, whenever we say that a family of sparse graphs has fast
growing cut sizes, we implicitly assume that it satisfies Definition 1 for some constants
c, ε, c′.

Intuitively, this definition implies that a family of sparse graphswith fast growing cut
sizes cannot have too many ‘bottlenecks’. Loosely speaking, a bottleneck is given by
two relatively large sets of vertices with only relatively few edges between them. Even
though Definition 1 might seem rather restrictive at first glance, many graph classes

123



3796 Algorithmica (2023) 85:3793–3815

actually have fast growing cut sizes. Examples include d-dimensional grid graphs (see
Example 2 in Sect. 2.2 for a proof), other lattice graphs and random geometric graphs
(with high probability). Empirically, also many (real-life) network graphs have fast
growing cut sizes. In particular, Definition 1 can be seen as a generalization of the
notion of expander graphs, since setting c′ = 1/2 and ε = 1 yields the definition of a
family of expander graphs [17].1

In Sect. 3 we provide some structural properties of random shortest path metrics
generated from sparse graphswith fast growing cut sizes. Partially, these properties can
be seen as a generalization of some of the structural properties found by Bringmann
et al. for random shortest path metrics generated from complete graphs [8].

For the probabilistic analyses in this paper we consider two different types of
simple heuristics. In Sect. 4 we conduct a probabilistic analysis of three greedy-like
heuristics: the greedy heuristic for the minimum-distance perfect matching problem,
and the nearest neighbor heuristic and insertion heuristic for the TSP. In Sect. 5 we
conduct a probabilistic analysis of a local search heuristic: the 2-opt heuristic for the
TSP. We show that all four heuristics yield a constant approximation ratio for random
shortest pathmetrics generated from sparse graphswith fast growing cut sizes (greedy-
like in Sect. 4) or arbitrary sparse graphs (local search in Sect. 5). We are aware that
our results regarding the 2-opt heuristic are mostly purely theoretical, because, e.g.,
cheapest insertion already achieves an approximation ratio of 2 and is often used to
initialize 2-opt [12, 27]. However, they are non-trivial results about practically used
algorithms, beyond the classical worst-case analysis.

2 Notation andModel

For n ∈ N, we use [n] as shorthand notation for the set {1, . . . , n}. Sometimes we
use exp(·) to denote the exponential function with base e. We denote by X ∼ P that
a random variable X is distributed according to a probability distribution P . Exp(λ)

denotes the exponential distribution with parameter λ. We write X ∼ ∑n
i=1 Exp(λi )

if X is the sum of n independent exponentially distributed random variables having
parametersλ1, . . . , λn . In particular, X ∼ ∑n

i=1 Exp(λ) denotes anErlang distribution
with parametersn andλ. If a randomvariable X1 is stochastically dominated by another
random variable X2, i.e., we have P(X1 ≤ x) ≥ P(X2 ≤ x) for all x , we denote this
by X1 � X2.

Furthermore, we use H (m)
n as shorthand notation for the nth generalized harmonic

number of orderm, i.e., H (m)
n = ∑n

i=1 1/i
m . Observe that form ∈ (0, 1) we can view

the generalized harmonic numbers as Riemann sums for
∫
1/xm dx and bound them

as follows:

(n + 1)1−m − 1

1 − m
≤ H (m)

n ≤ n1−m

1 − m
. (1)

1 Actually, we do not allow ε = 1 in Definition 1. The main reason for this is the fact that ε = 1 would
cause exceptions in our analysis since

∫
1/xε dx = x1−ε/(1 − ε) only holds if ε �= 1. However, observe

that c|U | ≥ c|U |ε for any ε ∈ (0, 1). Hence, if some family of graphs would satisfy Definition 1 with
ε = 1, then it also satisfies this definition for any ε ∈ (0, 1).
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In particular, for any y > 1 (and m ∈ (0, 1)) this implies that

y1−m − 1

1 − m
≤ H (m)

	y
−1 ≤ y1−m

1 − m
. (2)

2.1 Random Shortest PathMetrics

Given an undirected simple connected graph G = (V , E), the corresponding random
shortest path metric is constructed as follows. First, for each edge e ∈ E , we draw
a random edge weight w(e) independently according to the exponential distribution2

with parameter 1. Then, we define the distance function d : V × V → R≥0 as
follows: for each u, v ∈ V , d(u, v) is the total weight of a lightest u, v-path in G
(with respect to the random weights w(·)). Observe that this definition immediately
implies that d(v, v) = 0 for all v ∈ V , that d(u, v) = d(v, u) for all u, v ∈ V , and
that d(u, v) ≤ d(u, s) + d(s, v) for all u, s, v ∈ V .

We call the distance function d obtained by this process a random shortest path
metric generated from G. Note that even though the graph G is not a complete graph,
the metric d(·, ·) is complete in the sense that between each pair of vertices u, v ∈ V
it has a direct connection of distance d(u, v). It is tempting to refer to these direct con-
nections in the metric space as ‘edges’ (with weight/length/distance equal to d(u, v)).
In order to avoid potential confusion with the edges of the graph G that is used to
generate the metric space, we write quotation marks around the ‘edges’ of the metric
space.

We use the following notation to denote some properties of these random shortest
path metrics generated from G = (V , E). The diameter of the random metric is
denoted by �max := maxu,v d(u, v). The �-ball around a vertex v, B�(v) := {u ∈
V : d(u, v) ≤ �}, is the set of vertices within distance � of v. Let πk(v) denote the
kth closest vertex from v (including v itself and breaking ties arbitrarily). Note that
π1(v) = v for all v ∈ V . The distance from a vertex v to the kth closest vertex from
it is denoted by τk(v) := d(v, πk(v)) = min{� : |B�(v)| ≥ k}. Slightly abusing
notation, we let Bτk (v)(v) := {πi (v) : i = 1, . . . , k} denote the set of the k closest
vertices to v (including v itself). The size of the cut in G induced by this set, which
plays an important role in our analysis, is denoted by χk(v) := |δ(Bτk(v)(v))|.

2.2 Sparse Graphs

Throughout this paper,we consider randomshortest pathmetrics generated fromsparse
connected undirected simple graphs on n vertices. We have |E | = O(|V |) = O(n)

for any sparse graph G = (V , E). The probabilistic analysis of the 2-opt heuristic for
the TSP in Sect. 5 works for any such graph. However, for the probabilistic analyses
of the greedy-like heuristics in Sect. 4 we need to restrict ourselves to classes of sparse
graphs that have ‘fast growing cut sizes’ as defined in Definition 1.

2 Exponential distributions are technically easiest to handle since they are memoryless. A (continuous,
non-negative) probability distribution of a random variable X is said to be memoryless if and only if
P(X > s + t | X > t) = P(X > s) for all s, t ≥ 0 [28, p. 294].
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Looking at this definition, note that c|U |ε is a subadditive function. Hence, when
checking whether a family of sparse graphs has fast growing cut sizes, we can restrict
ourselves to connected subsets U ⊆ V with |U | ≤ c′n: if |δ(U )| ≥ c|U |ε for all
such connected subsets U ⊆ V , then it follows for any unconnected subset Ũ =
U1 ∪ . . . ∪Uk (where the Ui are the maximal connected subsets of Ũ ) that

|δ(Ũ )| =
k∑

i=1

|δ(Ui )| ≥
k∑

i=1

c|Ui |ε ≥ c

(
k∑

i=1

|Ui |
)ε

= c|Ũ |ε.

We end this section with showing that d-dimensional grid graphs have fast growing
grid sizes. A d-dimensional grid graph has vertex set V = [N ]d , and two vertices
(u1, . . . , ud), (v1, . . . , vd) ∈ V are connected by an edge if and only if

∑d
i=1 |ui −

vi | = 1. For such graphs we have |V | = n = Nd and |E | = dNd−1(N − 1) = O(n).

Example 2 For any integer d > 1, the family of d-dimensional grid graphs has fast
growing cut sizes. To see this, let G = (V , E) be a d-dimensional grid graph with
n = Nd vertices. It is known (cf. [6, Thm. 3]) that for anyU ⊂ V with |U | ≤ n/2 we
have

|δ(U )| ≥ min
r∈[d]

{
rn

1
r − 1

d |U |1− 1
r

}
.

Exploiting the inequality |U | ≤ n/2 (or, equivalently, n ≥ 2|U |) we now obtain that

|δ(U )| ≥ min
r∈[d]

{
r(2|U |) 1

r − 1
d |U |1− 1

r

}
= min

r∈[d]

{
r2

1
r − 1

d

}
· |U |1− 1

d = 21−
1
d · |U |1− 1

d .

hence for any d > 1, the family of d-dimensional grid graphs satisfies Definition 1
for c = 21−1/d , ε = 1 − 1/d and c′ = 1/2.

3 Structural Properties

In this section, we provide some structural properties regarding random shortest path
metrics generated from sparse graphs that are used later on in our probabilistic analyses
of the greedy heuristic for maximum matching and the 2-opt heuristic for the TSP in
such random metric spaces. We start of with some technical lemmas from known
literature and some results regarding sums of lightest edge weights in G (which hold
for arbitrary sparse graphs). After that, we consider a random growth process on sparse
graphs with fast growing cut sizes and use it to derive a clustering result and a tail
bound on the diameter �max for random shortest path metrics generated using these
graphs.

3.1 Technical Lemmas

Lemma 3 ([20, Thm. 5.1(i,iii)]). Let X ∼ ∑m
i=1 Xi with Xi ∼ Exp(ai ) independently.

Let μ = E[X ] = ∑m
i=1 1/ai and a∗ = mini ai .
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(i) For any λ ≥ 1,

P (X ≥ λμ) ≤ λ−1 exp (−a∗μ (λ − 1 − ln(λ))) .

(ii) For any λ ≤ 1,

P (X ≤ λμ) ≤ exp (−a∗μ (λ − 1 − ln(λ))) .

Corollary 4 Let X ∼ ∑m
i=1 Xi with Xi ∼ Exp(ai ) independently. Let μ = E[X ] =∑m

i=1 1/ai and a∗ = mini ai . For any x,

P (X ≤ x) ≤ exp (a∗μ (1 + ln(x/μ))) =
(
ex

μ

)a∗μ
.

Proof Let λ := x/μ. If λ ≤ 1, the result is a weaker version of Lemma 3(ii). If λ > 1,
then 1 + ln(x/μ) > 0 and hence P(X ≤ x) ≤ 1 < exp(a∗μ(1 + ln(x/μ))). ��
Lemma 5 ([7, Thm. 2(ii)]). Let X ∼ ∑m

i=1 Exp(λi ) and Y ∼ ∑m
i=1 Exp(η). Then

X � Y if and only if
m∏

i=1

λi ≤ ηm .

3.2 Sums of Lightest EdgeWeights in G

All main results in this paper make use of some observations related to sums of
the m lightest edge weights in a sparse graph G. The lemmas and corollary below
summarize some structural properties concerning these sums. They hold for arbitrary
sparse graphs G.

Lemma 6 Let Sm denote the sum of the m lightest edge weights in G. Then

m−1∑

i=0

Exp

(
e|E |
m

)

� Sm �
m−1∑

i=0

Exp

( |E |
m

)

.

Proof Let σk denote the kth lightest edge weight in G. Since all edge weights are
independent and standard exponentially distributed, we have σ1 = S1 ∼ Exp(|E |).
Using the memorylessness property of the exponential distribution, it follows that
σ2 ∼ σ1 + Exp(|E | − 1), i.e., the second lightest edge weight is equal to the lightest
edge weight plus the minimum of |E | − 1 standard exponential distributed random
variables. In general, we get σk+1 ∼ σk +Exp(|E |−k). The definition Sm = ∑m

k=1 σk
yields

Sm ∼
m−1∑

i=0

(m − i) · Exp (|E | − i) ∼
m−1∑

i=1

Exp

( |E | − i

m − i

)

.
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Now, the first stochastic dominance relation follows from Lemma 5 by observing that

m−1∏

i=0

|E | − i

m − i
= |E |!

m!(|E | − m)! =
(|E |
m

)

≤
(
e|E |
m

)m

,

where the inequality follows from applying the well-known inequality
(n
k

) ≤ (en/k)k .
The second stochastic dominance relation follows by observing that |E | ≥ m, which
implies that (|E | − i)/(m − i) ≥ |E |/m for all i = 0, . . . ,m − 1. ��
Corollary 7 Let Sm denote the sum of the m lightest edge weights in G. Then E[Sm] =
�(m2/n).

Proof From Lemma 6 we can immediately see that

E

[
m−1∑

i=0

Exp

(
e|E |
m

)]

≤ E [Sm] ≤ E

[
m−1∑

i=0

Exp

( |E |
m

)]

.

The result follows by observing that

E

[
m−1∑

i=0

Exp

(
e|E |
m

)]

= m2

e|E | and E

[
m−1∑

i=0

Exp

( |E |
m

)]

= m2

|E | ,

and recalling that |E | = �(n) by our restrictions imposed on G. ��
Lemma 8 Let Sm denote the sum of the m lightest edge weights in G. Then we have

P (Sm ≤ cn) ≤ exp

(

m

(

2 + ln

(
c|E |n
m2

)))

=
(
e2c|E |n

m2

)m

.

Proof First of all, Lemma 6 yields

Sm �
m−1∑

i=0

Exp

(
e|E |
m

)

.

Now, we apply Corollary 4 with μ = m2/e|E |, a∗ = e|E |/m, and x = cn to obtain

P (Sm ≤ cn) ≤ P

(
m−1∑

i=0

Exp

(
e|E |
m

)

≤ cn

)

≤ exp

(

m

(

1 + ln

(
ce|E |n
m2

)))

.

The result follows immediately. ��
Lemma 9 Let Sm denote the sum of the m lightest edge weights in G. Then we have
TSP ≥ MM ≥ Sn/2, where TSP and MM are the total distance of a shortest TSP tour
and a minimum-distance perfect matching, respectively.
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Proof The first inequality is trivial. For the second inequality, consider a minimum-
distance perfect matching in G, and take the union of the shortest paths between each
matched pair of vertices. This union must contain at least n/2 different edges of G.
These edges have a total weight of at least Sn/2 and at most MM. So, MM ≥ Sn/2. ��

3.3 A RandomGrowth Process

In this subsection, and the following one, we assume that G is a sparse graph with fast
growing cut sizes.

In order to understand the structure of sparse random shortest path metrics it is
important to get a feeling for the distribution of the distances in the random metric, in
particular the distribution of τk(v). However, this distribution depends heavily on the
exact position of v within G, which makes it rather complicated to derive it. In order
to overcome this, we derive instead a stochastic upper bound on τk(v) which holds for
any vertex v ∈ V . The derivation of this result is a generalization of the case in which
G is a complete graph, which has been analysed before (e.g. [8, 10, 19]). The (proof
of the) following lemma shows this generalization.

Lemma 10 Let G be a family of sparse graphs with fast growing cut sizes. Then, for
any G = (V , E) ∈ G, any v ∈ V and any k ≤ c′n we have

τk(v) �
k−1∑

i=1

Exp(ciε).

Proof The values of τk(v) are generated by a birth process as follows. For k = 1
we have τk(v) = 0 and also

∑k−1
i=1 Exp(ci

ε) = 0. For k ≥ 2 we can obtain τk(v)

from τk−1(v) by looking at all edges that ‘leave’ Bτk−1(v)(v), i.e., edges (u, x) with
u ∈ Bτk−1(v)(v) and x /∈ Bτk−1(v)(v). By definition there are χk−1(v) such edges,
and from Definition 1 it follows that χk−1(v) ≥ c(k − 1)ε for k ≤ c′n. Moreover,
conditioned on the first k − 1 phases of the birth process, these edges must have a
weight of at least τk−1(v) − d(v, u) (otherwise we would have d(v, x) ≤ d(v, u) +
d(u, x) < τk−1(v)). Using the memorylessness of the exponential distribution, it
follows that τk(v)−τk−1(v) is the minimum of χk−1(v) exponential random variables
(with parameter 1), or, equivalently, τk(v) − τk−1(v) ∼ Exp(χk−1(v)). We also know
that Exp(χk−1(v)) � Exp(c(k−1)ε) sinceχk−1 ≥ c(k−1)ε for k ≤ c′n. So,we obtain
τk(v) − τk−1(v) � Exp(c(k − 1)ε) for such k. The result follows using induction. ��

Nowwe use this stochastic upper bound on τk(v) that holds for any v ∈ V to derive
some bounds on the cumulative distribution functions of τk(v) and |B�(v)|. The final
bound on |B�(v)| is a crucial ingredient for the construction of clusterings in the next
section.

Lemma 11 Let G be a family of sparse graphs with fast growing cut sizes. Then,
for any G = (V , E) ∈ G, any � > 0, any v ∈ V and any k ∈ [n] with k ≤
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min{c′n, (c(1 − ε)�)1/(1−ε)} we have

P (τk(v) ≤ �) ≥ 1 − H (ε)
k−1

c�
· exp

(

−H (ε)
k−1

(
c�

H (ε)
k−1

− 1 − ln

(
c�

H (ε)
k−1

)))

.

Proof From Lemma 10 we can see that

P (τk(v) ≤ �) ≥ P

(
k−1∑

i=1

Exp
(
ciε

) ≤ �

)

= 1 − P

(
k−1∑

i=1

Exp
(
ciε

) ≥ �

)

.

Next, we want to apply the result of Lemma 3(i). For this purpose, set

μ := E

[
k−1∑

i=1

Exp
(
ciε

)
]

=
k−1∑

i=1

1

ciε
= H (ε)

k−1

c
and λ := �

μ
= c�

H (ε)
k−1

,

and recall from (1) that

k1−ε − 1

1 − ε
≤ H (ε)

k−1 ≤ (k − 1)1−ε

1 − ε
<

k1−ε

1 − ε
.

Moreover, since k ≤ (c(1−ε)�)1/(1−ε), we can derive that λ = c�/H (ε)
k−1 ≥ c�(1−

ε)/k1−ε ≥ 1. Lemma 3(i) now yields

1 − P

(
k−1∑

i=1

Exp
(
ciε

) ≥ �

)

≥ 1 − λ−1 exp (−cμ(λ − 1 − ln(λ))) .

Finally, we substitute the values of μ and λ to obtain the desired result. ��
By observing that |B�(v)| ≥ k if and only if τk(v) ≤ �, we can immediately derive

the following corollary.

Corollary 12 Let G be a family of sparse graphs with fast growing cut sizes. Then,
for any G = (V , E) ∈ G, any � > 0, any v ∈ V and any k ∈ [n] with k ≤
min{c′n, (c(1 − ε)�)1/(1−ε)} we have

P (|B�(v)| < k) ≤ H (ε)
k−1

c�
· exp

(

−H (ε)
k−1

(
c�

H (ε)
k−1

− 1 − ln

(
c�

H (ε)
k−1

)))

.

We now use this bound to derive a bound on the probability distribution of |B�(v)|
that is a crucial ingredient for the construction of clusterings in the next section.
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Lemma 13 Let G be a family of sparse graphs with fast growing cut sizes. Then, there
exists a constant c1 such that for any � > 0, any G = (V , E) ∈ G with n sufficiently
large, and any v ∈ V we have

P

(
|B�(v)| < min

{
c′ (c(1 − ε)�)1/(1−ε) , c′n

})
≤ c1

�1/(1−ε)
.

Proof For ease of notation, define ξ := c′(c(1 − ε))1/(1−ε) and assume w.l.o.g. that
c1 ≥ 1/ξ . Now observe that for � ≤ 1/ξ1−ε, the statement is trivial since in that case
we have c1/�1/(1−ε) ≥ c1ξ ≥ 1. So, we are left with the case where � > 1/ξ1−ε.

Let s� := min{ξ�1/(1−ε), c′n} and observe that s� > 1 (since � > 1/ξ1−ε and
since n is sufficiently large). Using Corollary 12 with k = 	s�
 we obtain

P (|B�(v)| < s�) = P (|B�(v)| < 	s�
)

≤
H (ε)

	s�
−1

c�
· exp

⎛

⎝−H (ε)
	s�
−1

⎛

⎝ c�

H (ε)
	s�
−1

− 1 − ln

⎛

⎝ c�

H (ε)
	s�
−1

⎞

⎠

⎞

⎠

⎞

⎠ .

So, it remains to show that there exists a constant c1 such that for any � > 1/ξ1−ε

we have

H (ε)
	s�
−1�

1/(1−ε)

c�
· exp

(

−H (ε)
	s�
−1

(
c�

H (ε)
	s�
−1

− 1 − ln

(
c�

H (ε)
	s�
−1

)))

≤ c1.

To do so, we consider two cases: ξ�1/(1−ε) ≤ c′n and ξ�1/(1−ε) ≥ c′n.
For the first case, suppose that ξ�1/(1−ε) ≤ c′n. Then it follows that s� =

ξ�1/(1−ε), and we need to show that the function

f (�) :=
H (ε)

	ξ�1/(1−ε)
−1
�1/(1−ε)

c�

× exp

⎛

⎜
⎝−H (ε)

	ξ�1/(1−ε)
−1

⎛

⎜
⎝

c�

H (ε)

	ξ�1/(1−ε)
−1

− 1 − ln

⎛

⎜
⎝

c�

H (ε)

	ξ�1/(1−ε)
−1

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

is bounded from above by a constant. Now, observe that λ−1− ln(λ) is an increasing
function of λ for λ ≥ 1. Combining this with the observation, following from (2), that

c�

H (ε)

	ξ�1/(1−ε)
−1

≥ c(1 − ε)�

(ξ�1/(1−ε))1−ε
= c(1 − ε)

ξ1−ε
=

(
1

c′

)1−ε

> 1,

and setting γ := (1/c′)1−ε for ease of notation, it follows that

f (�) ≤ �1/(1−ε) · exp
(
−H (ε)

	ξ�1/(1−ε)
−1
· (γ − 1 − ln(γ ))

)
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≤ �1/(1−ε) · exp
(

−ξ1−ε� − 1

1 − ε
· (γ − 1 − ln(γ ))

)

,

where the second inequality follows by using a bound for the generalized harmonic
number (cf. (2)). It is well-established that the function on the right-hand side has
a finite global maximum (since γ > 1 implies γ − 1 − ln(γ ) > 0). Therefore, we
can conclude that in this case there exists a constant c1 such that f (�) ≤ c1 for all
� > 1/ξ1−ε.

For the second case, suppose that ξ�1/(1−ε) ≥ c′n. Then it follows that s� = c′n,
and we need to show that the function

g(�, n) :=
H (ε)

	c′n
−1�
1/(1−ε)

c�
· exp

⎛

⎝−H (ε)
	c′n
−1

⎛

⎝ c�

H (ε)
	c′n
−1

− 1 − ln

⎛

⎝ c�

H (ε)
	c′n
−1

⎞

⎠

⎞

⎠

⎞

⎠

is bounded from above by a constant as long as ξ�1/(1−ε) ≥ c′n and n is sufficiently
large.Observe thatwe can rewrite the inequality ξ�1/(1−ε) ≥ c′n as c(1−ε)� ≥ n1−ε.
The first step of the proof is to show that g(�, n) ≤ g(n1−ε/(c(1 − ε)), n) for all
� ≥ n1−ε/(c(1 − ε)). To do so, we compute the partial derivative of g(�, n) with
respect to �, and show that it is non-positive for all � ≥ n1−ε/(c(1− ε)). The partial
derivative equals

∂g(�, n)

∂�
= H (ε)

	c′n
−1�
1/(1−ε)

c(1 − ε)�2 ·
(
ε − c(1 − ε)� + (1 − ε)H (ε)

	c′n
−1

)

× exp

⎛

⎝−H (ε)

	c′n
−1

⎛

⎝ c�

H (ε)

	c′n
−1

− 1 − ln

⎛

⎝ c�

H (ε)

	c′n
−1

⎞

⎠

⎞

⎠

⎞

⎠ .

Now observe that for sufficiently large n we have

c(1 − ε)� ≥ n1−ε ≥ ε + (c′n)1−ε ≥ ε + (1 − ε)H (ε)

	c′n
−1,

where we subsequently used the bound on� for this case, the fact that n is sufficiently
large, and (2) to bound the generalized harmonic number. Together with the facts
that ex > 0 for all x ∈ R and H (ε)

	c′n
−1�
1/(1−ε)/(c(1 − ε)�2) ≥ 0, this shows

that the partial derivative of g(�, n) with respect to � is indeed non-positive for all
� ≥ n1−ε/(c(1 − ε)).
Next, notice that g(n1−ε/(c(1−ε)), n) = f (n1−ε/(c(1−ε))). In the first casewe have
already shown that there exists a constant c1 such that f (�) ≤ c1 for all� > 1/ξ1−ε.
So, it follows immediately that g(�, n) ≤ g(n1−ε/(c(1 − ε)), n) = f (n1−ε/(c(1 −
ε))) ≤ c1 as long as ξ�1/(1−ε) ≥ c′n and n is sufficiently large.

Combining both cases yields the desired result. ��
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3.4 Clustering and a Tail Bound for1max

The following theorem shows that we can partition the vertices of random shortest
path metrics generated from sparse graphs from fast growing cut sizes into a suitably
small number of clusters with a given maximum diameter. Its proof follows closely
the ideas of Bringmann et al. [8], albeit with a different value of s�.

Theorem 14 LetG be a family of sparse graphs with fast growing cut sizes. Then, there
exists a constant c1 such that for any � > 0 and any G ∈ G there exists a partition
of the vertices of a random shortest path metric generated from G into clusters, each
of diameter at most 4�, such that the expected number of clusters needed is bounded
from above by

1

c′ + (c1ξ + 1)n

ξ�1/(1−ε)
= O

(
1 + n

�1/(1−ε)

)
,

where ξ = c′(c(1 − ε))1/(1−ε).

Proof Let G ∈ G with n be sufficiently large, and let s� := min{ξ�1/(1−ε), c′n}.
Consider a random shortest path metric generated from G. We call vertex v �-dense
if |B�(v)| ≥ s� and�-sparse otherwise. Using Lemma 13we can bound the expected
number of�-sparse vertices by c1n/�1/(1−ε). We put each�-sparse vertex in its own
cluster (of size 1), which has diameter 0 ≤ 4�.

Now, only the�-dense vertices remain.We cluster them according to the following
process. Consider an auxiliary graph H whose vertices are the �-dense vertices and
where two vertices u, v are connected by an edge if and only if B�(u) ∩ B�(v) �= ∅.
Consider an arbitrary maximal independent set S in H , and observe that |S| ≤ n/s�
by construction of H . We create the initial clustersC1, . . . ,C|S|, each of which equals
B�(v) for some vertex v ∈ S. Observe that these initial clusters have diameter at most
2�.

Next, consider an arbitrary �-dense vertex v that is not yet part of any cluster.
By the maximality of S, we know that there must exist a vertex u ∈ S such that
A := B�(u)∩B�(v) �= ∅. Let x ∈ A be arbitrarily chosen, and observe that d(v, u) ≤
d(v, x) + d(x, u) ≤ � + � = 2�. We add v to the initial cluster corresponding to u,
and repeat this step until all �-dense vertices have been added to some initial cluster.
By construction, the diameter of all these clusters is now at most 4�: consider two
arbitrary vertices w, y in a cluster that initially corresponded to u ∈ S; then we have
d(w, y) ≤ d(w, u) + d(u, y) ≤ 2� + 2� = 4�.

So, now we have in expectation at most c1n/�1/(1−ε) clusters containing one (�-
sparse) vertex each, and at most n/s� ≤ 1/c′ + n/ξ�1/(1−ε) clusters containing at
least s� (�-dense) vertices each, all with diameter at most 4�. The result follows. ��

This clustering result is useful as long as � is not too large. However, for large
values of �, in particular � ≥ �max/4, a ‘partition’ always requires only one cluster.
Recall that �max = maxu,v d(u, v) is the diameter of the random metric space.

For random shortest path metrics generated from complete graphs we know that
�max ≤ O(log(n)/n) with high probability [19]. For random shortest path metrics
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generated from sparse graphs the diameter is significantly larger. Intuitively this fol-
lows from the fact that in a sparse graph there are significantly fewer different paths
betweenmost pairs of vertices compared to the number of different paths in a complete
graph. Hence, it becomes significantly less likely to have a really short path between
every pair of vertices.

For random shortest path metrics generated from arbitrary graphs, the best possible
general bound is �max ≤ O(n) with high probability. Note that for random shortest
path metrics generated from a path graph on n vertices, we can easily derive that
E[�max] = �(n) (this follows from Corollary 7). Hence, the bound in the following
lemma is tight.

Lemma 15 Let G = (V , E) be an arbitrary connected graph on n vertices and con-
sider a random shortest path metric generated from G. For any x ≥ 6n we have
P(�max ≥ x) ≤ ne−x/2.

Proof Fix an arbitrary v ∈ V and let x ≥ 6n.Wefirst show thatP(τn(v) ≥ x) ≤ e−x/2.
Since G is connected, we know that |δ(U )| ≥ 1 for all ∅ �= U ⊂ V , and hence in
particular χk(v) ≥ 1 for all k ∈ [n]. Using the same approach as in the proof of
Lemma 10, we can derive that

τn(v) �
n−1∑

i=1

Exp(1).

From this, we can see that

P(τn(v) ≥ x) ≤ P

(
n−1∑

i=1

Exp(1) ≥ x

)

.

In order to bound this probability, we once more use Lemma 3(i). For this purpose,
set

μ := E

[
n−1∑

i=1

Exp(1)

]

= n − 1,

and λ := x/μ, and observe that λ ≥ 6 (since x ≥ 6n). Lemma 3(i) now yields

P(τn(v) ≥ x) ≤ λ−1e−μ(λ−1−ln(λ)) ≤ e−μ(λ/2) = e−x/2,

where we used λ − 1 − ln(λ) ≥ λ/2 (which holds for all λ ≥ 5.36) for the sec-
ond inequality. The final result follows from observing that �max = maxv τn(v) and
applying the appropriate union bound. ��
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4 Analysis of Greedy-like Heuristics for Matching and TSP

In this section,we show that three greedy-like heuristics (greedy forminimum-distance
perfect matching, and nearest neighbor and insertion for TSP) achieve a constant
expected approximation ratio on sparse random shortest path metrics generated from
sparse graphs with fast growing cut sizes. The three proofs are very alike, and the
ideas behind them are built upon ideas by Bringmann et al. [8]: we divide the steps of
the greedy-like heuristics into bins, depending on the value which they add to the total
distance of our (partial) matching or TSP tour. Using the clustering (Theorem 14)
we bound the total contribution of these bins by O(n), and using our observations
regarding sums of lightest edge weights (Lemmas 8 and 9 ) we show that the optimal
matching or TSP tour has a value of �(n) with sufficiently high probability.

4.1 Greedy Heuristic for Minimum-Distance Perfect Matching

The first problem that we consider is theminimum-distance perfect matching problem.
Even though solving the minimum-distance perfect matching problem to optimality
is not very difficult (it can be done in O(n3) time [23]), in practice this is often too
slow, especially if the number of vertices is large. Therefore, people often rely on
(simple) heuristics to solve this problem in practical situations. The greedy heuristic
is arguably the simplest one among these heuristics. It starts with an empty matching
and iteratively adds a pair of currently unmatched vertices (an ‘edge’) to the matching
such that the distance between them is minimal. Let GR denote the total distance of
the matching computed by the greedy heuristic, and let MM denote the total distance
of an optimal matching.

It is known that the worst-case approximation ratio for this heuristic on metric
instances is O(nlog2(3/2)) [25]. Moreover, for random Euclidean instances, the greedy
heuristic has an approximation ratio of O(1) with high probability [3]. For instances
with independent edge lengths (thus not necessarily metric), the greedy heuristic
returns amatchingwith an expected distance of�(ln(n)) [2] and the optimal matching
has a total distance of �(1) with high probability [30], which gives an approximation
ratio of O(ln(n)). For random shortest pathmetrics generated from complete graphs or
Erdős–Rényi random graphs the expected approximation ratio of the greedy heuristic
is O(1) [8, 22]. We show that a similar result holds for random shortest path metrics
generated from sparse graphs with fast growing cut sizes.

Theorem 16 For random shortest path metrics generated from sparse graphs with fast
growing cut sizes we have E[GR] = O(n).

Proof Weput ‘edges’ that are being added to the greedymatching into bins according to
their distance: bin i receives all ‘edges’ {u, v} satisfying d(u, v) ∈ (4(i−1), 4i]. Let Xi

denote the number of ‘edges’ that endup in bin i and setYi := ∑∞
k=i Xk , i.e.,Yi denotes

the number of ‘edges’ in the greedy matching with distance at least 4(i − 1). Observe
that Y1 = n/2. For i > 1, by Theorem 14, we can partition the vertices in an expected
number of atmostO(1+n/(i−1)1/(1−ε)) clusters (where the constant hiddenby theO-
notation does not depend on i), each of diameter atmost 4(i−1). Just before the greedy
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heuristic adds for the first time an ‘edge’ of distancemore than 4(i−1) to thematching,
it must be the case that each of these clusters contains at most one unmatched vertex
(otherwise the greedyheuristic could have chosen a shorter ‘edge’ between twovertices
in the same cluster). Therefore, we can conclude thatE[Yi ] ≤ O(1+n/(i−1)1/(1−ε))

for i > 1. On the other hand, for values of i such that 4(i − 1) ≥ 6n, it follows from
Lemma 15 that E[Yi ] ≤ (n/2) · P(�max ≥ 4(i − 1)) ≤ n2e−2(i−1).

Now we sum over all bins, bound the length of each ‘edge’ in bin i by 4i , and
subsequently use Fubini’s theorem and the derived bounds on E[Yi ]. This yields

E[GR] ≤
∞∑

i=1

4i · E[Xi ] =
∞∑

i=1

4 · E[Yi ] = 4 · E[Y1] +
2n−1∑

i=2

4 · E[Yi ] +
∞∑

i=2n

4 · E[Yi ]

≤ 2n +
2n−1∑

i=2

O

(

1 + n

(i − 1)1/(1−ε)

)

+
∞∑

i=2n

4n2e−2(i−1)

= O(n) + O(n) + o(1) = O(n),

which finishes the proof. ��
Theorem 17 For random shortest path metrics generated from sparse graphs with fast
growing cut sizes we have E[ GR

MM ] = O(1).

Proof Let ĉ > 0 be a sufficiently small constant. Then the approximation ratio of the
greedy heuristic on random shortest path metrics generated from sparse graphs with
fast growing cut sizes can be bounded by

E

[
GR
MM

]

≤ E

[
GR
ĉn

]

+ P(MM < ĉn) · O
(
nlog2(3/2)

)
,

since the worst-case approximation ratio of the greedy heuristic on metric instances
is known to be O(nlog2(3/2)) [25]. By Theorem 16 the first term is O(1). Combining
Lemmas 8 and 9, the second term can be bounded from above by (ĉ · �(1))n/2 ·
O(nlog2(3/2)) = o(1) since ĉ is sufficiently small. ��

4.2 Nearest Neighbor Heuristic for TSP

One of the most intuitive heuristics for the TSP is the nearest neighbor heuristic. This
greedy-like heuristic starts with an arbitrary vertex as its current vertex and iteratively
builds a TSP tour by traveling from its current vertex to the closest unvisited vertex
and adding the corresponding ‘edge’ to the tour (and closing the tour by going back to
its first vertex after all vertices have been visited). Let NN denote the total distance of
the TSP tour computed by the nearest neighbor heuristic, and let TSP denote the total
distance of an optimal TSP tour.

It is known that the worst-case approximation ratio for this heuristic on metric
instances is O(ln(n)) [27]. Moreover, for random Euclidean instances, the nearest
neighbor heuristic has an approximation ratio of O(1) with high probability [5]. For
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instances with independent edge lengths (thus not necessarily metric), the nearest
neighbor heuristic returns a TSP tour with an expected length of Hn−1 + n/(n −
1) = �(ln(n)),3 while the optimal TSP tour has a total length of �(1) with high
probability [13], which gives an approximation ratio of O(ln(n)). For random shortest
path metrics generated from complete graphs or Erdős–Rényi random graphs the
expected approximation ratio of the nearest neighbor heuristic is O(1) as well [8, 22].
We show that a similar result holds for random shortest path metrics generated from
sparse graphs with fast growing cut sizes.

Theorem 18 For random shortest path metrics generated from sparse graphs with fast
growing cut sizes we have E[NN] = O(n).

Proof We put ‘edges’ that are being added to the nearest neighbor TSP tour into
bins according to their distance: bin i receives all ‘edges’ {u, v} satisfying d(u, v) ∈
(4(i − 1), 4i]. Let Xi and Yi be defined as in the proof of Theorem 16. Observe that
Y1 = n. For i > 1, by Theorem 14, we can partition the vertices in an expected
number of at most O(1 + n/(i − 1)1/(1−ε)) clusters (where the constant hidden by
the O-notation does not depend on i), each of diameter at most 4(i − 1). Every time
the nearest neighbor heuristic adds an ‘edge’ of distance more than 4(i − 1), this
must be an ‘edge’ from a vertex in some cluster Ck to a vertex in another cluster C�,
and the tour must have already visited all other vertices in Ck (otherwise the nearest
neighbor heuristic could have chosen a shorter ‘edge’ to an unvisited vertex in Ck).
Therefore, we can conclude that E[Yi ] ≤ O(1 + n/(i − 1)1/(1−ε)) for i > 1. On the
other hand, for values of i such that 4(i − 1) ≥ 6n, it follows from Lemma 15 that
E[Yi ] ≤ n · P(�max ≥ 4(i − 1)) ≤ n2e−2(i−1).

Note that (except for Y1) we have derived exactly the same bounds as in the proof
of Theorem 16. Using the same calculations as in that proof, it follows now that
E[NN] = O(n). ��
Theorem 19 For random shortest path metrics generated from sparse graphs with fast
growing cut sizes we have E[ NNTSP ] = O(1).

The proof of this theorem is similar to that of Theorem 17, with the worst-
case approximation ratio of the nearest neighbor heuristic on metric instances being
O(ln(n)) [27].

4.3 Insertion Heuristics for TSP

Another group of greedy-like heuristics for the TSP are the insertion heuristics. An
insertion heuristic starts with an initial optimal tour on a few vertices that are selected
according to some predefined rule R, and iteratively chooses (according to the same
rule R) a vertex that is not in the tour yet and inserts this vertex in the current tour
such that the total distance of the tour increases the least. Usually the rule R prescribes

3 The expected distance of the kth added ‘edge’ is equal to the minimum of n−k independent edge weights,
and thus has an expected length of 1/(n − k). The final edge (connecting the nth vertex back to the starting
point) has an Exp(1) distribution, but is conditioned to be longer than the shortest edge from the starting
point. Due to memorylessness, this edge has an expected value of 1 + 1/(n − 1).
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that the initial tour is just some tour on three vertices or an edge (i.e., a tour on two
vertices) or even a single vertex. Examples of rules used for choosing a vertex to insert
in the tour are ‘nearest insertion’ (choose the vertex that has the shortest distance to
a vertex already in the tour), ‘farthest insertion’ (choose the vertex whose minimal
distance to a vertex already in the tour is maximal) and ‘cheapest insertion’ (choose
the vertex whose insertion causes the smallest increase in the length of the tour) [24].
Let INR denote the total distance of the TSP tour computed by the insertion heuristic
using rule R, and let TSP denote the total distance of an optimal TSP tour.

It is known that the worst-case approximation ratio for this heuristic for any rule R
onmetric instances is O(ln(n)) [27].Moreover, for randomEuclidean instances, some
insertion rules R have an approximation ratio of �(ln(n)/ ln ln(n)) [4]. For random
shortest path metrics generated from complete graphs or Erdős–Rényi random graphs
the expected approximation ratio of the nearest neighbor heuristic is O(1) for any
rule R [8, 22]. We show that a similar result holds for random shortest path metrics
generated from sparse graphs with fast growing cut sizes.

Theorem 20 For random shortest path metrics generated from sparse graphs with fast
growing cut sizes we have E[INR] = O(n).

Proof Weput the steps of the insertion heuristic into bins according to the distance they
add to the tour: bin i receives all steps with a contribution in the range (8(i − 1), 8i].
Let Xi and Yi be defined as in the proof of Theorem 16. Observe that Y1 ≤ n.
For i > 1, by Theorem 14, we can partition the vertices in an expected number
of at most O(1 + n/(i − 1)1/(1−ε)) clusters (where the constant hidden by the O-
notation does not depend on i), each of diameter at most 4(i − 1). Every time the
contribution of a step of the insertion heuristic is more than 8(i − 1), this step must
add a vertex to the tour that is part of a cluster Ck of which no other vertex is in the
tour yet (otherwise the contribution of this step would have been less than 8(i − 1)).
Therefore, we can conclude that E[Yi ] ≤ O(1 + n/(i − 1)1/(1−ε)) for i > 1. On the
other hand, for values of i such that 8(i − 1) ≥ 6n, it follows from Lemma 15 that
E[Yi ] ≤ n · P(�max ≥ 4(i − 1)) ≤ n2e−2(i−1).

Using the same method as in the proof of Theorem 16 (i.e., summing over all bins,
bounding the contribution of each step in bin i by 8i and using Fubini’s theorem and
the derived bounds onE[Yi ]), and adding the expected contributionE[TR] of the initial
tour, we obtain

E[INR] ≤ E[TR] +
∞∑

i=1

8i · E[Xi ] = E[TR] +
∞∑

i=1

8 · E[Yi ]

= E[TR] + 8 · E[Y1] +
n−1∑

i=2

8 · E[Yi ] +
∞∑

i=n

8 · E[Yi ]

≤ O(n) + 8n +
n−1∑

i=2

O

(

1 + n

(i − 1)1/(1−ε)

)

+
∞∑

i=n

8n2e−2(i−1) = O(n),
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where we used Theorem 18 to bound the expected contribution of the initial tour by
E[TR] ≤ E[TSP] ≤ E[NN] = O(n). Observe that this proof is independent of the
choice of rule R. ��

Theorem 21 For random shortest path metrics generated from sparse graphs with fast
growing cut sizes we have E[ INR

TSP ] = O(1).

The proof of this theorem is similar to that of Theorem 17, with the worst-case
approximation ratio of the insertion heuristic (with any rule R) on metric instances
being O(ln(n)) [27].

5 Analysis of 2-opt for TSP

In this section, we consider the arguably most famous local search heuristic for the
TSP, the 2-opt heuristic, and show that it achieves a constant expected approximation
ratio for random shortest path metrics generated from any sparse graph. Note that in
this section we do not require the sparse graphs to have fast growing cut sizes.

The 2-opt heuristic starts with an arbitrary initial solution and iteratively improves
this solution by applying so-called 2-exchanges until no improvement is possible
anymore. In a 2-exchange, the heuristic takes two ‘edges’ {u1, v1} and {u2, v2}, where
u1, v1, u2, v2 are visited in this order in the current solution, and replaces them by the
two ‘edges’ {u1, u2} and {v1, v2} to obtain a new solution. The improvement of this
2-exchange is δ = d(u1, v1)+ d(u2, v2)− d(u1, u2)− d(v1, v2). A solution is called
2-optimal if δ ≤ 0 for all possible 2-exchanges.

The actual performance of the 2-opt heuristic strongly depends on the choice of the
initial solution and the sequence of improvements. In this paper we look at the worst
possible outcome of the 2-opt heuristic, as others have been doing before (see e.g.
[9, 11]), since this decouples the actual heuristic from the initialization and therefore
keeps the analysis tractable. LetWLO denote the total distance of the worst 2-optimal
TSP tour, and let TSP denote the total distance of an optimal TSP tour.

It is known that the worst-case approximation ratio for this heuristic on metric
instances is O(

√
n) [9]. Moreover, for Euclidean instances, the 2-opt heuristic has an

expected approximation ratio of O(1) [9]. For instanceswith independent edge lengths
(thus not necessarilymetric), the 2-opt heuristic has an expected approximation ratio of
O(

√
n ln(n)) [29]. For random shortest path metrics generated from complete graphs

the expected approximation ratio of the 2-opt heuristic is O(ln(n)), but it is an open
problem whether this (almost) trivial bound can be improved or not [8]. We show
that for random shortest path metrics generated from sparse graphs, the expected
approximation ratio of the 2-opt heuristic is O(1).

The crucial observation that enables us to show this result is the fact that for any
2-optimal solution for the TSP it holds that each edge e ∈ E can appear at most twice
in the disjoint union of all shortest paths that belong to this solution. In other words,
the total distance of any 2-optimal solution can be bounded by twice the sum of all
edge weights in G. The following lemma and theorems formalize this observation and
its consequences.
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In this lemma and these theorems we consider the TSP tours as being directed and
use the following notation. For each i, j ∈ V , let Pi j denote the set of all (directed)
edges in the shortest i, j-path.

Lemma 22 Let G = (V , E) be an arbitrary connected graph and consider a random
shortest path metric generated from this graph. Also, let S denote an arbitrary 2-
optimal solution for the TSP on this random metric. Moreover, let xi j := 1 if this
solution S travels directly from vertex i to vertex j , and xi j := 0 otherwise. Then, for
any i, j, k, l ∈ V with xi j = xkl = 1 we have either Pi j ∩ Pkl = ∅ or (i, j) = (k, l).

Proof Let i, j, k, l ∈ V such that xi j = xkl = 1, and suppose that (i, j) �= (k, l).
Set A := {i, j, k, l} and observe that |A| equals either 3 or 4. (|A| = 2 would imply
(i, j) = (k, l).)

We first look at the case where |A| = 4. Suppose, by way of contradiction, that
Pi j ∩ Pkl �= ∅. Take e = (s, t) ∈ Pi j ∩ Pkl . Then d(i, j) = d(i, s) + w(e) + d(t, j)
and d(k, l) = d(k, s)+w(e)+d(t, l). Moreover, using the triangle inequality, we can
see that d(i, k) ≤ d(i, s)+d(s, k) and d( j, l) ≤ d( j, t)+d(t, l). Let δ = δ(i, j, k, l)
denote the improvement of the 2-exchangewhere {i, j} and {k, l} are replaced by {i, k}
and { j, l}. Note that δ ≤ 0 since S is a 2-optimal solution for the TSP. It follows that

0 ≥ δ = d(i, j) + d(k, l) − d(i, k) − d( j, l)

≥ d(i, s) + w(e) + d(t, j) + d(k, s) + w(e) + d(t, l) − d(i, s) − d(s, k) − d( j, t) − d(t, l)

= 2w(e) > 0,

which clearly is a contradiction. Therefore, we must have Pi j ∩ Pkl = ∅ in this case.
Now, we look at the case where |A| = 3. Since the x variables describe a solution to

the TSP, this implies that either j = k or i = l. These cases are analogous, so w.l.o.g.
we assume that j = k. Theproof that Pi j∩Pkl = ∅ in this case is similar to the proof for
|A| = 4,with the exception that herewehave δ = d(i, j)+d( j, l)−d(i, j)−d( j, l) =
0 (instead of δ ≤ 0). The desired result follows. ��
Theorem 23 For random shortest path metrics generated from arbitrary (connected)
sparse graphs we have E[WLO] = O(n).

Proof Let xi j = 1 if WLO travels directly from vertex i to vertex j , and xi j = 0
otherwise. From Lemma 22 we know that each edge e ∈ E can appear at most twice
in the disjoint union of all shortest i, j-paths that form a 2-optimal tour (at most once
per direction). This yields

WLO =
∑

i, j∈V
d(i, j)xi j =

∑

i, j∈V
xi j=1

∑

e∈Pi j

w(e) ≤
∑

e∈E
2w(e) = 2S|E |,

where Sm denotes the sum of the m lightest edge weights in G (as in Sect. 3.2).
Combining this with Corollary 7, it follows that

E[WLO] ≤ E[2S|E |] = O

( |E |2
|E |

)

= O(n),
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where the last equality follows by recalling that |E | = �(n) for (connected) sparse
graphs. ��

Theorem 24 For random shortest path metrics generated from arbitrary (connected)
sparse graphs we have E[WLO

TSP ] = O(1).

The proof of this theorem is similar to that of Theorem 17, with the worst-case
approximation ratio of the 2-opt heuristic on metric instances being O(

√
n) [9].

6 Concluding Remarks

We have analyzed simple heuristics for matching and TSP on random shortest path
metrics generated from sparse graphs, since we believe that these models yield more
realistic metric spaces than random shortest path metrics generated from dense or even
complete graphs. However, for the greedy-like heuristics we had to restrict ourselves
to sparse graphs with fast growing cut sizes (which includes many classes of sparse
graphs). We raise the question whether it is possible to extend our findings for these
heuristics to arbitrary sparse graphs.

On the other hand, especially if we consider random shortest pathmetrics generated
from grid graphs, in our view the model could be improved by using only a (possibly
random) subset of the vertices of G for defining the randommetric space, i.e., restrict-
ing the distance function d of the metric to some sub-domain V ′ ×V ′, where V ′ ⊂ V .
It would be interesting to see whether this model could be analyzed as well.

Finally, in our analysis of the 2-opt local search heuristic, we had to decouple the
actual heuristic from the initialization in order to make the analysis tractable. We leave
it as an open problem to prove rigorous results about hybrid heuristics that consist of
an initialization and a local search algorithm.
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