
Journal of Computational Physics 497 (2024) 112639

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Data-driven reduced-order modelling for blood flow simulations 

with geometry-informed snapshots

Dongwei Ye a,b,∗, Valeria Krzhizhanovskaya b, Alfons G. Hoekstra b

a Mathematics of Imaging & AI, Department of Applied Mathematics, University of Twente, the Netherlands
b Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, the Netherlands

A R T I C L E I N F O A B S T R A C T

Keywords:

Reduced-order modelling

Surface registration

Computational fluid dynamics

Hemodynamics

Surrogate modelling

Parametric reduced-order modelling often serves as a surrogate method for hemodynamics 
simulations to improve the computational efficiency in many-query scenarios or to perform 
real-time simulations. However, the snapshots of the method require to be collected from the 
same discretisation, which is a straightforward process for physical parameters, but becomes 
challenging for geometrical problems, especially for those domains featuring unparameterised 
and unique shapes, e.g. patient-specific geometries. In this work, a data-driven surrogate model 
is proposed for the efficient prediction of blood flow simulations on similar but distinct 
domains. The proposed surrogate model leverages group surface registration to parameterise 
those shapes and formulates corresponding hemodynamics information into geometry-informed 
snapshots by the diffeomorphisms constructed between a reference domain and original domains. 
A non-intrusive reduced-order model for geometrical parameters is subsequently constructed 
using proper orthogonal decomposition, and a radial basis function interpolator is trained for 
predicting the reduced coefficients of the reduced-order model based on compressed geometrical 
parameters of the shape. Two examples of blood flowing through a stenosis and a bifurcation are 
presented and analysed. The proposed surrogate model demonstrates its accuracy and efficiency 
in hemodynamics prediction and shows its potential application toward real-time simulation or 
uncertainty quantification for complex patient-specific scenarios.

1. Introduction

The mechanical and biological interaction between blood flow and the vessel wall has a significant impact on the initiation and 
progression of vascular diseases, e.g. the development of atherosclerotic plaque [1–3], or restenosis of arteries after percutaneous 
intervention [4,5]. In-silico simulations have demonstrated significant efficiency and flexibility in those studies of hemodynamics, 
offering deep insights into mechanisms of disease, biological/pathological processes, and designs of medical devices [6–9]. Therefore 
computational fluid dynamics techniques are widely applied to perform high-fidelity simulations to mimic and predict the behaviour

of blood flow, to further support the clinical practice or in-depth study of physiology and pathology [10–13].

However, owing to the complexity and scale of biofluid problems, the evaluation of the model using numerical methods, such as 
finite element methods (FEM), could be computationally expensive or even becomes prohibitive in the many-query scenarios, such 
as design and optimisation, reliability analysis and uncertainty quantification [14–16]. Reduced order modelling (ROM) provides a 
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high-fidelity framework to reduce the computational complexity for solving parametric partial differential equations (PDEs) [15,17]. 
It exploits the intrinsic correlation of the full-order model (FOM) solution over a physical domain, time evolution, or parameter space, 
and projects the system to a low-dimensional reduced space. Owing to efficient and reliable prediction based on the reduced systems, 
such surrogate models also enable the real-time performance of the simulation [18–20]. One of the widely applied reduced-order 
methods is Proper Orthogonal Decomposition (POD) [21]. The POD can be realised using principal component analysis (PCA), or the 
singular value decomposition (SVD). The projection coefficients can be computed either in an intrusive manner by manipulating the 
governing equations with Galerkin methods [22,23] or in a non-intrusive manner by formulating it as an interpolation problem [24,

17]. Dynamic mode decomposition is another projection-based method for the temporal decomposition of fluid dynamics [25–27]. 
The empirical interpolation method [28] and the discrete empirical interpolation method [29] were proposed to recover an affine 
expansion for the nonlinear problem.

One of the essential parts of parametric ROM is collecting snapshots from high-fidelity simulations. The magnitudes of these 
snapshots reflect the influence of parameter variations on the solution manifolds. The collecting procedure is straightforward for 
the problems related to physical parameters since the snapshots are generated from the simulations sharing the same discretisation. 
However, it becomes challenging for geometrical problems, especially those associated with domains featuring unparameterised and 
unique shapes, a common scenario in hemodynamic simulations. The geometric shapes of domains in hemodynamic simulations 
are either generated artificially based on a simplification of the anatomical geometry or directly segmented and reconstructed from 
clinical image data [30], i.e. patient-specific geometries. These anatomical geometries of a kind, such as the segments of arteries and 
organs are similar in terms of general shape but different in details. In order to leverage those snapshots associated with different 
discretisations to construct parametric ROM for flow field predictions under geometric variation, two issues must be addressed. First, 
the spatial compatibility over the snapshots has to be guaranteed for the construction of reduced bases. Meanwhile, the geometric 
shapes of domains have to be parameterised in a consistent manner such that the mapping between the geometric parameters and 
reduced coefficients of flow bases can be approximated, and subsequently utilised in the prediction.

The existing methods primarily seek a corresponding transformation between distinct geometrical configurations, i.e. original 
domains and a reference domain, via shape reconstruction, and embed the transformation into the parametric PDEs such that all 
the snapshots are generated on a single reference domain. Parameter identification methods, e.g. radial basis functions interpolation 
[31,32], inverse distance weighting interpolation [33] or free-form deformation [34–36] are applied to parameterise the geometries 
before the shape reconstruction. However, those parametrisation methods heavily depend on the selection of control points, the 
smoothness of polynomials and the choice of the reference shape. The complexity of the parametrisation increases significantly when 
dealing with intricate geometries, such as patient-specific data, and consequently influences the precision of shape reconstruction.

In this work, a data-driven surrogate model based on the non-intrusive reduced order modelling method and surface registration 
is proposed. The surrogate model aims to approximate the fluid dynamics of blood flow within domains of distinct but similar shapes 
efficiently. Different from the existing approaches mentioned above, the proposed surrogate model performs surface registrations 
based on the form of currents to approximate the diffeomorphism between the shapes of the original domains and the reference 
shape. The currents-based registration method enables registration without point-to-point correspondence [37,38] and does not 
require upfront parametrisation. On the contrary, the registration process itself offers a means to parameterise these shapes, obviating 
additional procedures. The diffeomorphisms constructed during surface registrations provide the mappings between the reference 
domain and the original domains. The evaluations are subsequently performed on the reference domain by projection using the 
diffeomorphisms to ensure the spatial compatibility over the snapshots, namely geometry-informed snapshots. Therefore a reduced-

order model of geometrical parameters can be formulated. POD is applied to construct reduced bases and the reduced coefficients 
are computed via a radial basis function (RBF) interpolation method. A schematic diagram of the proposed surrogate model is shown 
in Fig. 1. The proposed data-driven reduced-order model with geometry-informed snapshots resolves the spatial compatibility and 
parametrisation issues for geometric ROM problems and enables efficient and accurate prediction of hemodynamics within similar 
geometries of domains.

2. Method

2.1. Surface registration with currents

Here we introduce an approach based on non-parametric representation of surfaces using currents and its deformation framework 
[37–39]. The method characterises shapes in the form of currents which enables quantification of the dissimilarity between two 
shapes without point correspondences, and subsequently can be applied in registration. We assume that the shapes of domains in 
the blood flow simulations are similar and can be achieved by deformation from a reference domain. A diffeomorphic registration, 
which transforms shapes from a source coordinate system to a target coordinate system, is performed via minimising the difference 
between two surfaces and geodesic energy.

2.1.1. Represent surfaces using currents

Given a continuous vector field 𝝎 ∶ ℝ𝑑 → ℝ𝑑 in the ambient space ℝ𝑑 , where 𝑑 = 2 or 3, an oriented piecewise-smooth surface 
𝑆 in ℝ3 can be characterised by the flux going through the surface,

[𝑆](𝝎) = ⟨𝝎(𝒙),𝒏(𝒙)⟩𝑑𝑆(𝒙), (1)
2

∫
𝑆
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where 𝒏(𝒙) denotes the unit normal vector of the surface 𝑆 at point 𝒙. For a curve in the two-dimensional case (𝑑 = 2), 𝒏(𝒙) is 
replaced by a tangent vector. The computation of the flux defines a linear mapping from a space of vector field 𝑊 to ℝ. This 
mapping is called the current associated with surface 𝑆 . We denote the space of currents as 𝑊 ′. By defining the space 𝑊 as a 
Reproducing Kernel Hilbert Space (RKHS), the vector field can be represented in the form of a kernel function 𝐾 ∶ ℝ3 × ℝ3 → ℝ, 
therefore a vector field 𝝎 in 𝑊 can be reformulated with fixed points {𝒙∗

𝑖
}𝑖=1,2,⋯,𝑛 and their corresponding vectors 𝛽,

𝝎(𝒙) =𝐾𝑊 (𝒙,𝒙∗)𝛽. (2)

The space 𝑊 equips with inner product ⟨𝐾(⋅, 𝒙)𝛼, 𝐾(⋅, 𝒙′)𝛽⟩𝑊 = 𝛼T𝐾(𝒙, 𝒙′)𝛽. Generally a Gaussian kernel 𝐾𝑊 (𝒙𝑖, 𝒙𝑗 ) =

exp(− ||𝒙𝑖−𝒙𝑗 ||2
𝜆𝑊

) is applied, where 𝜆𝑊 denotes the scale at which 𝑊 may spatially vary. By substituting the expression of equation (2), 
the inner product of space 𝑊 can be written as ⟨𝐾(⋅, 𝒙)𝛼, 𝝎⟩𝑊 = 𝛼T𝝎(𝒙), which is known as reproducing property. Consequently, 
equation (1) can be reformulated into,

[𝑆](𝝎) = ∫
𝑆

⟨𝝎,𝐾(⋅,𝒙)𝒏(𝒙)⟩𝑊 𝑑𝑆(𝒙) =
⟨
∫
𝑆

𝐾(⋅,𝒙)𝒏(𝒙)𝑑𝑆(𝒙),𝝎
⟩
𝑊
. (3)

It shows that ∫
𝑆
𝐾(⋅, 𝒙)𝒏(𝒙)𝑑𝑆(𝒙) is a unique Riesz representation in 𝑊 of current [𝑆] in 𝑊 ′ [40]. Therefore, the inner product of 

two currents [𝑆1] and [𝑆2] can be obtained by,

⟨[𝑆1], [𝑆2]⟩𝑊 ′ = ∫
𝑆1

∫
𝑆2

𝐾(𝒙,𝒙′)⟨𝒏1(𝒙),𝒏2(𝒙′)⟩𝑑𝑆1(𝒙)𝑑𝑆2(𝒙′). (4)

The associated norm can be applied to measure the dissimilarity between two shapes,

‖[𝑆1] − [𝑆2]‖2𝑊 ′ = ⟨[𝑆1], [𝑆1]⟩2𝑊 ′ − 2⟨[𝑆1], [𝑆2]⟩𝑊 ′ + ⟨[𝑆2], [𝑆2]⟩2𝑊 ′ . (5)

2.1.2. Diffeomorphism construction

The shape of a reference domain can be represented by a series of control points (CPs) {𝒙cp

𝑖
}𝑖=1,...,𝑁cp

on a boundary (e.g. the 
boundary vertices in a finite element mesh). The surface registration of a reference shape 𝑆ref to a target shape 𝑆tar can be performed 
by finding a flow of diffeomorphism 𝜑(⋅, 𝑡) ∶ ℝ𝑑 → ℝ𝑑 such that the dissimilarity of the shapes, as well as geodesic energy of the 
process, are minimised. The trajectory of these points at a given artificial time 𝑡, can be described using a flow differential equation:

𝜕𝜑(𝒙, 𝑡)
𝜕𝑡

= 𝒗(𝜑(𝒙, 𝑡)), (6)

where 𝒗(𝜑(𝒙, 𝑡)) is a vector field representing the velocity of the deformation. Similar to equation (2), the velocity vector field can 
be approximated by a summation of kernel function at discrete CPs,

𝒗(𝒙) =
𝑁cp∑
𝑖=1

𝐾(𝒙,𝒙cp

𝑖
)𝜶𝑖, (7)

where 𝜶𝑖 denotes the basis vector of the field and 𝐾(⋅, ⋅) is a kernel function that decides the weights of each basis based on the 
distance between two points. Together with equation (6), the flow of diffeomorphism can be reformulated as the motion of CPs,

𝜕𝜑𝑡(𝒙𝑗 )
𝜕𝑡

=
𝑁cp∑
𝑖=1

𝐾(𝒙𝑗 ,𝒙
cp

𝑖
)𝜶𝑖(𝑡), 𝑗 = 1,⋯ ,𝑁cp. (8)

To perform a surface registration from a reference shape 𝑆ref to a target shape 𝑆tar, a proper velocity vector field can be computed 
via an optimisation problem formulated as,

argmin
𝒗

J(𝒗) = ‖[𝜑(𝑆ref)] − [𝑆tar]‖2𝑊 ′ +

1

∫
0

‖𝒗‖2
𝑊

d𝑡, (9)

where ‖[𝜑(𝑆ref)] − [𝑆tar]‖2𝑊 ′ measures the difference between the deformed shape and target shape using currents; ∫ 1
0 ‖𝒗‖2𝑊 d𝑡

denotes the total kinetic energy required to deform the shape from its initial state. For further details of surface registration with 
currents, see [39,40].

Note that the direct outcome of equation (8) is the position of the CPs after the diffeomorphism 𝜑(𝒙cp

𝑖
) rather than the complete 

diffeomorphism itself. Therefore, the diffeomorphism has to be approximated by leveraging the known data {(𝒙cp

𝑖
, 𝜑(𝒙cp

𝑖
))}𝑁cp

𝑖=1 . Such 
an approximation is achieved by radial basis function interpolation. We denote the approximation function as (⋅; 𝜸), where 𝜸 is the 
3

associated geometric parameters discussed in the next section.
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2.2. Parametrisation of geometries

The constructed diffeomorphism has a twofold application in the proposed method. First, if the domains of different shapes can 
be achieved by diffeomorphisms from the same reference domain, those shapes can therefore be parameterised by the displacement 
of the CPs of the reference shape before and after the deformation. Consider the shape of the reference domain is represented by 
a set of CPs, 𝑋∗ = {𝒙∗,𝑖}

𝑏∗
𝑖=1 ∈ ℝ𝑏∗×𝑑 , where 𝑏∗ and 𝑑 denote the number of CPs and spatial dimension (𝑑 = 2 or 3), respectively. 

For any target shape considered as a result of deformation of the reference shape by a particular diffeomorphism 𝜑, the geometrical 
parametrisation of such a shape can be expressed as,

𝜸 = [𝒆T1 (𝜑(𝑋∗) −𝑋∗)T,⋯ ,𝒆T
𝑑
(𝜑(𝑋∗) −𝑋∗)T]T (10)

where 𝜸 ∈ℝ𝑑𝑏∗ and {𝒆𝑖}𝑑𝑖=1 denote unit vectors of 𝑑-dimensional Euclidean space. The expression essentially means the geometry is 
parameterised by a stack of displacements of the CPs (of the reference shape) in each spatial dimension. However, such an approach 
to parameterise the shape may lead to the high dimensionality of parameter space owing to the number of the CPs of a two- or 
three-dimensional shape. Besides, correlations can be found between the displacements of those CPs. Therefore, a dimensionality 
reduction technique can be employed to further extract the latent low-dimensional representation of these parameters,

𝜸 ≈
𝑁𝑘∑
𝑖=1

𝛾rb
𝑖
𝝔𝑖 =𝑄𝜸rb, (11)

where 𝑁𝑘 denotes the number of the truncated reduced basis of geometrical parameters. 𝛾 rb
𝑖

and 𝝔𝑖 denote the reduced coefficients 
and reduced bases of the geometrical parameters, respectively. 𝑄 = [𝝔𝟏| ⋯ |𝝔𝑁𝑘

] ∈ ℝ𝑏∗×𝑁𝑘 and 𝜸rb = [𝛾 rb1 , ⋯ , 𝛾 rb
𝑁𝑘

]T ∈ ℝ𝑁𝑘 are cor-

responding matrix and vector representation. POD is applied to extract the reduced basis of geometrical parameters. Consequently, 
the reduced coefficients of the geometrical parameters 𝜸rb can be viewed as a compressed representation of 𝜸 and 𝑁𝑘 ≪ 𝑑𝑏∗. In 
the construction of non-intrusive ROM for blood flow simulation, we consider the reduced coefficients of the flow fields as a latent 
function of reduced geometric parameters 𝜸rb and train an RBF interpolator for the corresponding prediction.

2.3. Geometry-informed snapshots based on FOM on a reference domain

Apart from parametrisation, the constructed diffeomorphisms are also applied to generate all the geometry-informed snapshots 
with different shapes of domains by projecting and solving the FOMs onto a reference domain. Consider blood flow with a moderate 
Reynolds number as an incompressible Newtonian fluid to be modelled with the steady Navier-Stokes equations. Within a parametric 
vessel lumen as the spatial domain Ω(𝜸) ∈ℝ𝑑 , where 𝑑 = 2 or 3, such problem can be formulated as: find the vectorial velocity field 
𝒖(𝒙; 𝜸) ∶ Ω(𝜸) →ℝ𝑑 , and scalar pressure field 𝑝(𝒙; 𝜸) ∶ Ω(𝜸) →ℝ, such that:

(𝒖 ⋅∇)𝒖− 𝜈∇2𝒖+∇𝑝 = 𝐟 ,

∇ ⋅ 𝒖 = 0,
(12)

and subject to boundary conditions:

𝒖 = 𝐠D, 𝒙 ∈ 𝜕ΩD(𝜸), (13a)

−𝑝𝒏+ 𝜈(𝒏 ⋅∇)𝒖 = 𝐠N, 𝒙 ∈ 𝜕ΩN(𝜸), (13b)

where 𝜸 ∈  ⊂ℝ𝑁𝑝 stands for the geometric parameters; 𝜈 denotes the kinematic viscosity; 𝐟 denotes the body force. Equation (13a)

and (13b) represent Dirichlet and Neumann boundary condition on 𝜕ΩD and 𝜕ΩN, respectively. Dirichlet boundary condition is 
generally defined for the inlet and wall boundary of a vessel, while the Neumann boundary condition is applied to the outlet. For the 
sake of simplicity, the body force term is taken to be zero.

As mentioned before, the governing equations should be solved on a parameter-independent reference domain Ω∗ to ensure the 
spatial compatibility of the snapshot through a parameterised mapping (𝝃; 𝜸), i.e. 𝒙 = (𝝃; 𝜸). The variational form of the system is 
therefore obtained by introducing two functional spaces  ∶= {𝒘 ∈1(Ω∗) ∣𝒘 = 0 on 𝜕Ω∗

D
)} of weighting functions for momentum 

conservation and  ∶= {𝑞 ∈ 2(Ω∗)} for incompressible constraint over the reference domain.  can be also applied as the solution 
space for pressure. Besides, solution spaces  ∶= {𝒖 ∈1(Ω∗) ∣ 𝒖 = 𝒈D on 𝜕Ω∗

D
} is defined over the domain for velocity. The governing 

equations are then projected to the weighting spaces by multiplying weighting functions and integrating over the domain, which 
reformulates the problem (12) to: find 𝒖(𝝃) ∈  and 𝑝(𝝃) ∈ such that for all 𝒘 and 𝑞,

𝑎(𝒘,𝒖;𝜸) + 𝑐(𝒖,𝒘,𝒖;𝜸) + 𝑏(𝒘, 𝑝;𝜸) = (𝒘,𝐠N),

𝑏(𝒖, 𝑞;𝜸) = 0
(14)

where

𝑎(𝒘,𝒖;𝜸) =
𝑑∑ 𝑑∑ 𝜕𝒖

𝜅𝑖𝑗 (𝝃;𝜸)
𝜕𝒘dΩ∗, 𝑏(𝒘, 𝑝;𝜸) = − 𝑝

𝑑∑ 𝑑∑
𝜁𝑖𝑗 (𝝃;𝜸)

𝜕𝑤𝑗 dΩ∗,
4

∫
Ω∗ 𝑖=1 𝑗=1 𝜕𝜉𝑖 𝜕𝜉𝑗 ∫

Ω∗ 𝑖=1 𝑗=1 𝜕𝜉𝑖
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𝑐(𝒖,𝒘,𝒖;𝜸) = ∫
Ω∗

𝑑∑
𝑖=1

𝑑∑
𝑗=1

𝑑∑
𝑘=1

𝑢𝑖𝜁𝑖𝑗 (𝝃;𝜸)
𝜕𝑤𝑘

𝜕𝜉𝑗
𝑢𝑘dΩ∗.

These are the bilinear and trilinear forms for diffusion term, pressure-divergence term and convection term of the system, respectively. 
The elements 𝜅𝑖𝑗 (𝝃; 𝜸) and 𝜁𝑖𝑗 (𝝃; 𝜸) in the compact forms come from the tensor representation of functions associated with coordinate 
transformation,

𝜿(𝝃,𝜸) = 𝜈(𝐽 (𝝃;𝜸))−1(𝐽 (𝝃;𝜸))−T|𝐽 |, (15a)

𝜻(𝝃,𝜸) = (𝐽 (𝝃;𝜸))−1|𝐽 |, (15b)

where 𝐽 (𝝃; 𝜸) denotes Jacobian matrix of mapping (⋅; 𝜸) and |𝐽 | is the determinant of the matrix.

Galerkin spatial discretisation approximates the solution by seeking solutions within corresponding finite dimensional subspace 
ℎ ⊂  and ℎ ⊂ , and the problem is subsequently reformulated to: seek velocity field 𝒖ℎ ∈ ℎ and pressure 𝑝ℎ ∈ ℎ, such that 
for all (𝒘ℎ, 𝑞ℎ) ∈ ℎ ×ℎ,

𝑎(𝒘ℎ,𝒖ℎ;𝜸) + 𝑐(𝒖ℎ,𝒘ℎ,𝒖ℎ;𝜸) + 𝑏(𝒘ℎ, 𝑝ℎ;𝜸) = (𝒘ℎ,𝐠ℎ
N
),

𝑏(𝒖ℎ, 𝑞ℎ;𝜸) = 0.
(16)

The discrete solution of finite element approximation to the problem can be obtained by solving the system above with the given 
boundary conditions. The computational accuracy of the discretised system derived is related to the degrees of polynomial chosen 
for shape functions and the size of the elements. In the remaining part of the paper, we denote the discrete solutions in general of a 
FOM blood flow simulation with geometric parameters 𝜸 on a reference domain Ω∗ as 𝐮ℎ(𝝃; 𝜸), namely geometry-informed snapshots 
in context of ROM.

2.4. Reduced order model

ROM seeks hidden low-dimensional patterns behind the FOM and approximates the FOM with high fidelity. Here ROM is applied 
to extract the low-dimensional representation over geometric parameter space and the FOM solution therefore can be approximated 
by,

𝐮ℎ(𝝃;𝜸) ≈ �̂�ℎ(𝝃,𝜸) =
𝑁𝑙∑
𝑖=1

urb
𝑖
(𝜸)𝝓𝑖(𝝃) =𝚽𝐮rb(𝜸), (17)

where 𝐮rb(𝜸) = [urb
1 (𝜸), ⋯ , urb

𝑁𝑙
(𝜸)]T denotes the reduced coefficients which provides the weighting of each reduced basis and 𝚽 =

[𝝓1(𝝃)| ⋯ |𝝓𝑁𝑙
(𝝃)] is the corresponding reduced basis. The decomposition can be applied to any flow fields such as velocities in 

different directions, pressure, and shear stress fields. We denote 𝑁 and 𝑁𝛾 as the dimension of snapshots and the number of 
snapshots available (corresponding to geometrical parameters), respectively in the ROM.

2.4.1. Proper orthogonal decomposition

Consider a snapshot matrix 𝐌 ∈ ℝ𝑁×𝑁𝛾 consisting of snapshots with respect to corresponding geometric parameters 𝐌 =
[𝐮ℎ(𝜸1)|𝐮ℎ(𝜸2)| ⋯ |𝐮ℎ(𝜸𝑁𝛾

)]. By performing SVD, such a snapshot matrix can be written in a factorization form,

𝐌 = Z𝚺VT, (18)

where Z and V denote left and right orthonormal matrices. The diagonal matrix 𝚺 consists of singular values 𝜎𝑖, where 𝑖 = 1, ..., 𝑁𝛾

and 𝜎1 ≥ 𝜎2 ≥ ... ≥ 𝜎𝑁𝛾
≥ 0. The objective of POD is to find out a set of orthogonal basis 𝚽 = {𝝓1, 𝝓2, ⋯ , 𝝓𝑁𝑙

} from the space 
 = {�̃� ∈ℝ𝑁×𝑁𝑙 ∶ �̃�T�̃� = I} containing all possible orthogonal bases, such that the projection residual is minimised:

min
�̃�∈‖𝐌− �̃��̃�T𝐌‖2

𝐹
, (19)

where ‖⋅‖𝐹 denotes the Frobenius norm. The Eckart-Young theorem [41] shows that the orthogonal bases constructed by the basis 
vectors {𝒛𝑖}

𝑁𝑙

𝑖=1 taken from the 𝑖th column of Z is the unique solution to the optimization problem. The cumulative energy captured 
by 𝑁𝑙 number of reduced bases can be evaluated by the ratio between truncated and complete singular values,

en =
‖𝐌−𝚽𝚽T𝐌‖2

𝐹

‖𝐌‖2
𝐹

=
∑𝑁𝑙

𝑖=1 𝜎
2
𝑖∑𝑁𝛾

𝑖=1 𝜎
2
𝑖

. (20)
5

The values of 𝜎𝑖 decay rapidly which means a small number of bases are sufficient to approximate the data with sufficient accuracy.
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2.4.2. Radial basis function interpolation

The RBF interpolation method is one of the state-of-the-art methods for multivariate interpolation [42,43]. The method approxi-

mates the desired function by a linear combination of basis functions based on known collocation points. See [42] for more technical 
details.

In the framework of non-intrusive ROM, RBF interpolation is applied for approximating the mapping between the reduced 
geometric parameters 𝜸rb and the reduced coefficients of flow fields 𝐮rb. Consider 𝑓 ∶ℝ𝑁𝑘 →ℝ𝑁𝑙 to be the latent functions between 
𝜸rb and 𝐮rb. The RBF interpolator 𝑓 can be trained by a collection of training samples {(𝜸rb

𝑖
, 𝐮rb(𝜸rb

𝑖
))}𝓁

𝑖=1,

𝑓 (𝜸rb) =
𝓁∑
𝑖=1

𝜆𝑖𝜓(‖𝜸rb − 𝜸rb
𝑖
‖) + 𝑃 (𝜸rb), (21)

such that 𝑓 (𝜸rb
𝑗
) = 𝐮rb

𝑗
, for 𝑗 = 1, ⋯ , 𝓁, where 𝜓 ∶ [0, +∞] → ℝ is the radial basis function; 𝜆𝑖 denotes the expansion coefficients 

(weights) for each collocation point; 𝑃 (𝒙) denotes a low-order polynomial function for conditionally positive definite radial functions.

2.4.3. Online-offline framework of ROM with geometry-informed snapshots

In the framework of ROM, there are two stages, online and offline. The offline stage prepares essential ingredients, while the 
online stage performs predictions based on those ingredients. The offline stage of our proposed method mainly consists of three 
parts: surface registration, FOM evaluations on the reference domain and the construction of ROM. The details of the offline stage 
are shown in Algorithm 1.

We are interested in predicting the flow fields on domains of different shapes. Those shapes can be considered as a group and 
are considered to be similar to each other such that all those shapes can be achieved by some small deformations from a reference 
domain. For a computational model simulating e.g. time-dependent tissue growth in the artery, the initial shape of the domain can 
be chosen as the reference shape. For more general situations, the reference shape can be chosen as the average of the shapes, namely 
the atlas construction [44,45]. Here, we denote those shapes used in the offline stage as our training data and can be presented by 
a collection of boundary points {𝑿𝑗}

𝑁𝑠

𝑗=1 = {{𝒙1,𝑖}
𝑏1
𝑖=1, {𝒙2,𝑖}

𝑏2
𝑖=1, ⋯ , {𝒙𝑁𝑠,𝑖

}
𝑏𝑁𝑠

𝑖=1 }, where 𝑏𝑖 denotes the number of boundary points for 
each shape and 𝑁𝑠 denotes the total number of shapes available for training. The reference shape can be represented in a similar 
way, 𝑿∗ = {𝒙∗,𝑖}

𝑏∗
𝑖=1. Those boundary points will serve as discrete CPs used in the kernel computation during the registration process. 

In practice, the vertices/nodes on the boundary of a mesh prepared for traditional numerical methods, e.g. FEM, can be directly 
considered as the CPs.

By performing the surface registration, (equation (8) and equation (9)) based on currents, the displacements of the CPs from the 
reference shape associated to its particular diffeomorphisms 𝜑𝑖 are computed and viewed as the geometric parameters of the shape, 
i.e. 𝜸𝑖 = [𝒆T1 (𝜑𝑖(𝑋∗) −𝑋∗)T, ⋯ , 𝒆T

𝑑
(𝜑𝑖(𝑋∗) −𝑋∗)T]T, for 𝑖 = 1, ⋯ , 𝑁𝑠. As mentioned before, such a parametrisation method may result 

in exceedingly high-dimensional parameters. Therefore POD is employed to extract their reduced representations {𝜸rb
𝑖
}𝑁𝑠

𝑖=1 based 
on equation (11). Note that this process is similar to parameter identification in statistical shape analysis [46], where the POD is 
commonly utilised for the parametrisation of a group of shapes with landmark correspondence.

On the other hand, the complete diffeomorphism between the reference domain and an arbitrary domain encompassing a shape 
from the training dataset can be approximated by RBF interpolation based on the positions of the CPs before and after the defor-

mation (registration). The approximated mapping, denoted as (⋅; 𝜸𝑖) ≈ 𝜑𝑖(⋅), is subsequently employed to project the Navier-Stokes 

Algorithm 1 Offline stage of the surrogate model.

Input: Shapes of training domains {𝑿𝑗}
𝑁𝑠

𝑗=1 = {{𝒙1,𝑖}
𝑏1
𝑖=1, ⋯ , {𝒙𝑁𝑠,𝑖

}𝑏𝑁𝑠

𝑖=1 }; Shape of the reference domain 𝑿∗ = {𝒙∗,𝑖}
𝑏∗
𝑖=1

Output: Reduced bases of geometric parameters 𝑄; Reduced bases of flow fields 𝚽; RBF-ROM interpolator, 𝑓(𝜸rb)
1. for 𝑖 = 1, ⋯ , 𝑁𝑠 do

2. 𝜑𝑖(𝑿∗), (⋅; 𝜸𝑖) ← 𝜕𝜑(𝑿∗ ,𝑡)
𝜕𝑡

= 𝒗(𝜑(𝑿∗, 𝑡)) & 𝒗 = argmin𝒗‖[𝜑(𝑿∗)] − [𝑿𝑖]‖2𝑊 ′ + ∫ 1
0 ‖𝒗‖2𝑊 d𝑡

3. 𝜸𝑖 ← [𝒆T1 (𝜑𝑖(𝑋∗) −𝑋∗)T, ⋯ , 𝒆T
𝑑
(𝜑𝑖(𝑋∗) −𝑋∗)T]T

4. 𝐮ℎ(𝝃; 𝜸𝑖) ← 𝑎(𝒘ℎ, 𝒖ℎ; 𝜸𝑖) + 𝑐(𝒖ℎ, 𝒘ℎ, 𝒖ℎ; 𝜸𝑖) + 𝑏(𝒘ℎ, 𝑝ℎ; 𝜸𝑖) = (𝒘ℎ, 𝐠ℎ
N
)

5. 𝑏(𝒖ℎ, 𝑞ℎ; 𝜸𝑖) = 0
6. end for

7. {𝜸rb
𝑖
}𝑁𝑠

𝑖=1, 𝑄 ←min�̃�∈𝛾
‖𝐌𝜸 − �̃��̃�T𝐌𝜸‖2𝐹 , 𝑀𝛾 = [𝜸1| ⋯ |𝜸𝑁𝑠

]
8. {𝐮rb(𝜸rb

𝑖
)}𝑁𝑠

𝑖=1, 𝚽 ←min�̃�∈u
‖𝐌𝐮 − �̃��̃�T𝐌u‖2𝐹 , 𝑀u = [𝐮ℎ

1 | ⋯ |𝐮ℎ
𝑁𝑠

]

9. 𝑓 (𝜸rb) ← 𝐮rb ≈∑𝓁
𝑖=1 𝜆𝑖𝜓(‖𝜸rb − 𝜸rb

𝑖
‖) + 𝑃 (𝜸rb),

Algorithm 2 Online stage of the surrogate model.

Input: Shape of prediction domain �̂� = {�̂�𝑖}�̂�𝑖=1 ; Shape of the reference domain 𝑿∗ = {𝒙∗,𝑖}
𝑏∗
𝑖=1 ;

Reduced bases of geometric parameters 𝑄; Reduced bases of flow fields 𝚽; RBF-ROM interpolator, 𝑓(𝜸rb)
Output: flow field prediction ûℎ(−1(⋅; ̂𝜸); ̂𝜸)
1. �̂�(𝑿∗), (⋅; ̂𝜸) ← 𝜕𝜑(𝑿∗ ,𝑡)

𝜕𝑡
= 𝒗(𝜑(𝑿∗, 𝑡)) & 𝒗 = argmin𝒗‖[𝜑(𝑿∗)] − [�̂�]‖2

𝑊 ′ + ∫ 1
0 ‖𝒗‖2𝑊 d𝑡

2. �̂� ← [𝒆T1 (�̂�(𝑋∗) −𝑋∗)T , ⋯ , 𝒆T
𝑑
(�̂�(𝑋∗) −𝑋∗)T]T

3. �̂�rb ← �̂� ≈𝑄�̂�rb

4. �̂�rb(�̂�) ← �̂�rb(�̂�rb) = 𝑓 (�̂�rb)
ℎ −1 ℎ rb −1
6

5. �̂� ( (⋅; ̂𝜸); ̂𝜸) ← �̂� (𝝃; ̂𝜸) =𝚽�̂� (�̂�) &  (⋅; ̂𝜸)
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Fig. 1. A schematic diagram of the proposed surrogate model for blood flow simulations. POD, proper orthogonal decomposition; NIROM, non-intrusive reduced-order 
model; RBF, radial basis function.

equations onto the reference domain using the Jacobian matrix 𝐽𝑖
of each (⋅; 𝜸𝑖) and its determinant |𝐽𝑖

| for 𝑖 = 1, 2, ⋯ , 𝑁𝑠. 
As a result, the Navier-Stokes equations with different shapes of domains can all be resolved on the reference domain Ω∗ and the 
corresponding discrete geometry-informed snapshot {𝐮ℎ(𝝃; 𝜸𝑖)}

𝑁𝑠

𝑖=1 can be generated (equation (14)). This approach ensures spatial 
compatibility over the snapshots corresponding to the geometric parameters for ROM.

The final step in the offline stage is to construct the ROM. The orthogonal reduced bases 𝚽 of the parametric ROM are computed 
by applying POD to the snapshot matrix [𝐮ℎ(𝜸1)| ⋯ |𝐮ℎ(𝜸𝑁𝑠

)] (equation (19)). 𝑁𝑙 number of the bases is selected to ensure the 
cumulative energy 𝜖 of the bases will cover 99.9% of the total energy. The corresponding reduced coefficients 𝐮rb(𝜸𝑗 ), where 𝑗 =
1, ⋯ , 𝑁𝑠, are computed via projecting the snapshots onto low-rank space. The mapping between reduced coefficients of the flow 
field {𝐮rb(𝜸rb

𝑖
)}𝑁𝑠

𝑖=1 and the reduced geometrical parameters {𝜸rb
𝑖
}𝑁𝑠

𝑖=1 is also approximated by RBF interpolation (equation (21)).

During the online stage, ROM performs the flow dynamics prediction associated with the domain of a new geometry, as shown 
in Algorithm 2. Similarly to the training procedure, the new geometry will be parameterised and compressed through registration 
and dimensionality reduction, respectively. The reduced geometric parameters are subsequently fed to the trained RBF interpolator 
to estimate the reduced coefficients of the corresponding flow fields. The estimated reduced coefficients, together with the reduced 
bases derived in the offline stage, reconstruct the entire flow field on the reference domain, which is mapped back to its original 
domain in the final step. Fig. 1 illustrates the comprehensive workflow of the proposed method.

2.5. Error estimation

In order to present the accuracy and performance of the proposed ROM, several measurements were applied. The relative error 
was employed to visualise the relative difference between two flow fields at a specific point 𝒙,

𝑒(𝒙) = |uℎ(𝒙) − ûℎ(𝒙)|
𝑚𝑎𝑥{|uℎ|} , (22)

where 𝑚𝑎𝑥{|uℎ|} denotes the maximum absolute value of the vector uℎ. Relative 𝐿2 error corresponding to geometric parameters 𝜸
is employed to measure the overall difference of the estimations between a FOM and the proposed ROM over the domain,

𝜖rb(𝜸) =
‖uℎ(𝜸) − ûℎ(𝜸)‖𝐿2

‖uℎ(𝜸)‖𝐿2
=

‖uℎ(𝜸) −𝚽urb(𝜸)‖𝐿2

‖uℎ(𝜸)‖𝐿2
, (23)

where ‖ ⋅ ‖𝐿2 denotes 𝐿2 norm. Besides, the projection error introduced by POD is also measured by the relative 𝐿2 error,

‖uℎ(𝜸) −𝚽𝚽Tuℎ(𝜸)‖𝐿2
7

𝜖POD(𝜸) = ‖uℎ(𝜸)‖𝐿2
. (24)
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Fig. 2. (a) Geometric configuration of the stenosis domain. 𝐿0 = 2 mm and 𝐿1 = 20 mm denote the height and width of the domains. 𝐿low and 𝐿up denote Gaussian 
function for upper and lower boundaries. (b) The reference mesh used for surface registration and FEM implementation. (c) One example of surface registration 
results. The reference shape deforms gradually toward the target shape using the flow of diffeomorphism. The shapes are represented by a series of boundary points.

Fig. 3. A comparison of the flow fields solved on the reference domain and its original domain. a) Velocity fields and corresponding relative error in the x direction. 
b) Velocity field and corresponding relative error in the y direction.

3. Numerical examples

3.1. Case one: blood flow in a stenosis

The simulation of blood flowing through a stenotic vessel is a common scenario in cardiovascular science to study the development 
of arteriosclerosis or in-stent restenosis. We constructed an idealised 2D example of blood flow passing through a stenotic coronary 
artery. The geometric configuration of the domain is shown in Fig. 2(a). The position and severity of the stenosis of the upper and 
lower boundaries are described by the means and standard deviations of two Gaussian functions,

𝐿low(𝑥) =
1√
2𝜋𝜎21

exp
(
−

(𝑥− 𝜇1)2

2𝜎21

)
,

𝐿up(𝑥) =𝐿0 −
1√ exp

(
−

(𝑥− 𝜇2)2
2

)
,

8

2𝜋𝜎22
2𝜎2
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Fig. 4. (a) Mean and standard deviation of the residual of surface registrations with different kernel widths 𝜆𝑊 for stenosis geometries. (b) Percentage of energy 
captured by the number of the reduced bases of geometric parameters and its corresponding relative 𝐿2 error. (c)-(d) Percentage of energy captured by the number 
of the reduced bases of the velocity fields and pressure fields and their corresponding relative 𝐿2 error.

Fig. 5. A comparison between expected and predicted 1st, 2nd, 4th, 8th and last reduced coefficients of velocity in x and y directions and pressure (absolute values). 
The predictions of reduced coefficients are provided by trained RBF interpolator in ROM. The circles represent the ROM prediction of reduced coefficients by the RBF 
9

interpolator and the diagonal lines denote the precise predictions of expected values.
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Fig. 6. A comparison between FE simulation results and ROM prediction for velocities and pressure and their corresponding relative errors. A detailed comparison of 
three properties on cross-lines C1 and C2 is presented on the left.

Table 1

Error estimation and computational time of the FOM and proposed surrogate model based on ROM with geometry-informed snapshots. The relative 𝐿2 error of POD 
and the entire surrogate model and the computational time were evaluated based on the test dataset with 50 samples. The computational time of prediction consists 
of two parts: the average computational time of surface registrations (SR) and non-intrusive reduced order model (ROM) evaluations. Note that the FOM here denotes 
performing a simulation with FOM on its original domain. All the predictions here were performed on Intel Core i7-7500U CPU@2.70 GHz.

Method Estimated Property Dimension 
of FOM/ROM

Relative 𝐿2 error

± SD (POD)

Relative 𝐿2 error

± SD (Surrogate)

Computational time of

prediction - FOM/ROM (s)
Computational time

of prediction - SR (s)
FOM 𝑢𝑥, 𝑢𝑦, 𝑝 2991 / / 4.39 /

ROM+SR 𝑢𝑥 27 0.19 ± 0.11% 0.23 ± 0.16% 8.21 ×10−5
1.03ROM+SR 𝑢𝑦 28 2.80 ± 1.52% 3.27 ± 2.23% 9.16 ×10−5

ROM+SR 𝑝 19 0.32 ± 0.21% 0.48 ± 0.50% 6.89 ×10−5

where 𝐿0 = 2 mm is the width of the inlet. 500 different shapes of domains were generated by sampling 𝜎1 and 𝜎2 within the ranges 
[0.8, 2], 𝜇1 and 𝜇2 within the range [0.3𝐿1, 0.7𝐿1] using the Latin hypercube method [47]. 400 of the samples were applied for the 
construction of the ROM in the offline stage, while the remaining 100 samples were equally split into the validation dataset and test 
dataset. The dynamic viscosity and density of the flow were set to be 3.5 ×10−3 g∕(mm ⋅s) and 1.06 ×10−3 g∕mm3. A constant parabolic 
velocity profile with a maximum velocity of 200 mm/s was prescribed at the inlet. A non-slip boundary condition was prescribed for 
the upper and lower boundaries, and a homogeneous Neumann condition was forced on the outlet. The simulation including mesh 
generation and finite element method was implemented using the open-source PDE solver FreeFEM [48]. A rectangular shape was 
chosen for the shape of the reference domain, as shown in Fig. 2(b) and a Taylor-Hood P2-P1 finite element spatial discretisation 
was applied.

The surface registration was performed via statistical analysis software Deformetrica [49,50]. The residual of registration based 
10

on different choices of kernel width was shown in Fig. 4(a). The minimum value of the residual mean was achieved when the 
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Table 2

Computational time (sec) of offline components of the proposed method for the stenosis case. 𝑁𝑠 = 400 denotes the number of data used for training. All the 
computations here were performed on Intel Core i7-7500U CPU@2.70 GHz, except that the snapshot generation was carried out on a shared AMD Rome 7H12 node 
with 16-core on Dutch supercomputer Snellius.

Registration ROM Other

surface 
registration

geometric parameters 
compression (SVD)

diffeomorphism 
approximation (RBFI)

properties reduced basis 
construction (SVD)

reduced coefficient 
mapping (RBFI)

Snapshot 
generation

Data 
processing

1.03𝑁𝑠 0.25 0.041

𝑢𝑥 0.36 0.085
12.2𝑁𝑠 68.8𝑢𝑦 0.45 0.019

𝑝 0.42 0.015

Fig. 7. (a) Basic configuration of the bifurcation domain and different shapes generated using four control points (in red) via interpolation. (b) Surface registration 
results. The reference shape deforms towards the target shape using the flow of diffeomorphism. 𝑡10 denotes the final registration result. (For interpretation of the 
colours in the figure(s), the reader is referred to the web version of this article.)

kernel width is set to one and the standard deviation was relatively small. One of the surface registration results is demonstrated in 
Fig. 2(c). The result shows that the reference shape deformed gradually toward the target shape and aligned well at the final time 
step. The average residual of the surface registration over 500 samples is 1.31 × 10−7 (measured on currents). The results of surface 
registration were subsequently applied to compute the mappings between the domains of different shapes using RBF interpolation. A 
cubic kernel is employed with a polynomial function of the first order. Owing to the limited amount of mapping information we have, 
it is difficult to validate the interpolation itself. Instead, the validation was performed based on the results of the FEM simulation. 
The result computed on the reference domain was mapped back to its original domain and compared to the result that was directly 
simulated on the target domain. The accuracy of the simulation result based on the reference domain reflects the accuracy of the 
mapping. Fig. 3 shows the comparison of one selected sample. The regions with relatively higher errors are located close to the 
deformed boundaries, which means that RBF interpolation for the mapping introduced minor errors into the snapshots. The average 
relative 𝐿2 errors of velocities in x and y directions, and pressure of 400 training samples are 0.21%, 0.42% and 0.042%, respectively. 
It implies that the overall errors introduced by mapping are small, therefore the mapping approximated by the RBF interpolation 
is accurate enough for the FE simulation. We therefore considered these FOM evaluations based on the reference domain as the 
snapshots for the reduced model.

The surface registration results have also been applied to parameterise the configuration of the domains. In this case, there are 
360 points on the boundary and therefore leads to 720 geometric parameters in a two-dimensional problem. POD was applied to 
further reduce the dimensionality of the parameters to 17, which has already captured 99.9% of the total variance. The percentage 
of the total variance captured by the number of reduced bases and their corresponding 𝐿2 error of projection is demonstrated in 
Fig. 4(b). The error decreased almost linearly on the log scale.

The discrete results of simulations on the reference domain are subsequently taken as the snapshots of ROM, and POD was 
performed to build reduced bases. The percentage of the total variance of the velocity and pressure data captured by the number of 
reduced bases is demonstrated in Fig. 4(c). Similar to the dimensionality reduction to the geometric parameters, we assume that if 
more than 99.9% of the variance has been recovered by POD, the approximation reconstructed by the first 𝑁𝑙 bases performs well 
enough. More rigorous criteria could be set but the benefits are marginal as long as the main patterns have been already covered. 
The relative 𝐿2 errors introduced by POD are visualised in Fig. 4(d). The relative 𝐿2 error of 𝑢𝑦 is slightly higher than the other two 
properties. This may due to that reduced basis constructed from POD is a linear projection of the solution manifold approximated by 
the snapshots. Therefore, the error can be further diminished by increasing the number of training snapshots or applying nonlinear 
projection.

RBF interpolation again was utilised to predict reduced coefficients of flow fields based on reduced coefficients of the geometric 
11

parameters. A comparison of the expected and predicted reduced coefficients of one test case is shown in Fig. 5. The points of the most 
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Fig. 8. (a) Mean and standard deviation of the residual of surface registrations with different kernel widths 𝜆𝑊 for bifurcation geometries. (b) Percentage of energy 
captured by the number of the reduced bases of geometric parameters and its corresponding relative 𝐿2 error. (c)-(d) Percentage of energy captured by the number 
of the reduced bases of the velocity fields and pressure fields and their corresponding relative 𝐿2 error.

Fig. 9. A comparison between FE simulation results and ROM prediction for velocities and pressure and their corresponding relative errors. A detailed comparison of 
12

three properties on cross-lines C1 and C2 are presented on the left.
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Fig. 10. Relative 𝐿2 error of POD and entire surrogate model with reduced bases of different cumulative energy in stenosis (a) and bifurcation (b) cases, respectively.

Table 3

Error estimation and computational time of the FOM and proposed surrogate model based on ROM with geometry-informed snapshots. The relative 𝐿2 error of POD 
and the entire surrogate model and the computational time were evaluated based on the test dataset with 50 samples and 99.9% cumulative energy. The computational 
time of prediction consists of two parts: the average computational time of surface registrations (SR) and non-intrusive reduced order model (ROM) evaluations. Note 
that the FOM here denotes performing a simulation with FOM on its original domain. All the predictions here were performed on Intel Core i7-7500U CPU@2.70 GHz.

Method Estimated Property Dimension 
of FOM/ROM

Relative 𝐿2 error

± SD (POD)

Relative 𝐿2 error

± SD (Surrogate)

Computational time of

prediction - FOM/ROM (s)
Computational time

of prediction - SR (s)
FOM 𝑢𝑥, 𝑢𝑦, 𝑝 6686 / / 13.22 /

ROM+SR 𝑢𝑥 17 0.45 ± 0.16% 0.74 ± 0.57% 1.17 ×10−4
1.42ROM+SR 𝑢𝑦 21 0.83 ± 0.31% 1.62 ± 1.52% 8.53 ×10−5

ROM+SR 𝑝 8 1.37 ± 0.50% 2.73 ± 2.22% 1.28 ×10−4

coefficients cluster around the diagonal line, indicating that the RBF interpolation predicted the reduced coefficients well. Obvious 
deviations can be found in the last coefficients. This is mainly due to that the latent functions of the coefficients of high-frequency 
are generally less smooth and more difficult to interpolate. Fig. 6 visualises the velocity fields reconstructed from predicted reduced 
coefficients and compares the result to the evaluation of the corresponding FOM. Note that in this comparison, the evaluations of the 
FOM were based on the reference domain. The average relative 𝐿2 errors over 50 validation samples are 0.24%, 3.42% and 0.47%
for velocity in x and y directions and pressure, respectively. The error estimations on the test dataset are shown in Table 1. The 
result shows that the prediction of the surrogate model matches the finite element simulation result well. The relative 𝐿2 error is 
comparatively large in the y direction owing to its small magnitude compared to the velocity in the x direction. Note that the error 
estimations here do not include the error introduced by the construction of the diffeomorphism, which was neglected as they were 
small enough. They only represent how well the non-intrusive ROM predicted based on given snapshot data.

A detailed comparison of FOM and proposed ROM with geometry-informed snapshots on the computational time and error 
estimations are listed in Table 1. It is obvious that the computation of ROM barely took any time, while most of the computational 
effort of the proposed surrogate model was spent on surface registration. Therefore the entire speedup of the proposed method 
heavily relies on the performance of surface registration. The error of the ROM mainly originated from POD due to the limitation of 
the amount of training data. The computational time for each offline component is presented in Table 2. The major computational 
cost for the offline stages stemmed from the snapshots generation and took 12.2 sec per evaluation on average. The additional 
computational cost compared to a direct simulation on its original domain arose from the derivative computation of projection. The 
data processing includes the time of read/save data between FreeFEM and ROM model.

3.2. Case two: blood flow in a bifurcation

We present the second example of blood flow simulations through an artery bifurcation, another common scenario in cardiovas-

cular science. The basic configuration of the flow domain is shown in Fig. 7(a), which is also considered as the reference shape. A 
series of new shapes are generated via deformations based on the basic configuration. The four red dots in Fig. 7 are the chosen 
points to control the deformation. We consider the displacement of these points in the x and y directions as random variables and 
sample within the range [−0.5, 0.5] (mm). The new shapes are therefore imposed by interpolation. Similar to case one, 500 samples 
were generated by the Latin hypercube method and the same fluid properties and boundary conditions were applied. The Reynolds 
number for the case is 60.

The surface registration was performed to compute the geometric parameters and the corresponding mapping between the ref-
13

erence shape and other shapes. The study of kernel width shown in Fig. 8(a) indicates that the average residual of the registration 
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Table 4

Computational time (s) of offline components of the proposed method for the bifurcation case. 𝑁𝑠 = 400 denotes the number of data used for training. All the 
computations here were performed on Intel Core i7-7500U CPU@2.70 GHz, except that the snapshot generation was performed on a shared AMD Rome 7H12 node 
with 16-core on Dutch supercomputer Snellius.

Registration ROM Other

surface 
registration

geometric parameters 
compression (SVD)

diffeomorphism 
approximation (RBFI)

properties reduced basis 
construction (SVD)

reduced coefficient 
mapping (RBFI)

Snapshot 
generation

Data 
processing

1.42𝑁𝑠 0.16 0.072

𝑢𝑥 0.74 0.024
41.2𝑁𝑠 262.5𝑢𝑦 0.75 0.021

𝑝 0.69 0.041

is lowest when it is set to be 1.6 and the average residual of the registration is 3.6 × 10−6. There are 580 nodes on the boundary of 
the reference shapes which leads to 1160 geometric parameters in the two-dimensional case. Owing to the POD, the dimension of 
the geometric parameters was reduced to 8, which matches the dimensions of parameters used for shape generation. It is obvious 
that both 𝐿2 error and the truncated energy visualised in Fig. 8(b) had a sharp drop with the first eight bases and became flattened 
after. The accuracy of the coordinate mapping is again measured by the accuracy of the result solved on the reference domain. The 
average relative 𝐿2 errors of velocities in x and y directions, and pressure of 400 training samples are 0.033%, 0.069%, and 0.026%, 
respectively.

The bases of the ROM were subsequently constructed. The velocities in the x and y directions require 17 and 21 reduced bases to 
capture 99.9% of the total variance of the data, while pressure needs 8 reduced bases. Fig. 8(c) and (d) demonstrate the cumulative 
energy and its corresponding error introduced by POD against the number of bases. The predictions of the ROM for one of the test 
cases are shown in Fig. 9. The average 𝐿2 errors of velocities in the x and y directions and pressure over 50 validation cases are 0.70%, 
1.53%, and 2.65%, respectively. The error estimations and computational time of the test dataset are presented in Table 3. Similar 
to the previous case, the main computational cost of the surrogate model comes from surface registration. The offline computational 
time is evaluated and presented in Table 4.

As shown in Table 1 and 3, the major discrepancy of the surrogate model originated from the POD. Nonetheless, a further increase 
of the reduced bases to cover more cumulative energy of the snapshots doesn’t necessarily improve the performance of the surrogate 
model. Fig. 10 illustrates the variation in the relative 𝐿2 error of prediction with the increase of cumulative energies in POD. In the 
case of stenosis, the surrogate model discrepancy decreased slightly with the increase of cumulative energy from 99.9% to 99.99%
and barely improved when increased from 99.99% to 99.999%. On the other hand, the surrogate model discrepancy of the bifurcation 
case stopped decreasing after 99.9%. This is mainly because the high-frequency bases, characterized by small singular values, tend 
to be challenging to interpolate (e.g. the last coefficient shown in Fig. 5).

4. Discussion

The error of the surrogate model mainly stems from three aspects: registration, decomposition, and interpolation. The diffeomor-

phisms, constructed via registration, enable the systems to be solved on a reference domain. The residual in the registration hence 
introduced an error into diffeomorphism and subsequently propagated to snapshots. The error in the two case studies was reasonably 
small as the registration aligned well enough, therefore could be neglected. However, achieving an accurate diffeomorphism through 
registration between two general shapes is a non-trivial task. Here we emphasise the assumption that the geometries can be achieved 
by small perturbation from the reference shape.

The second part of the error arises from POD where a number of reduced bases was selected to represent the original data. The 
criteria was that the cumulative energy captured by 𝑁𝑙 of reduced bases reached 99.9%. The singular values of the SVD decayed 
rapidly as shown in Fig. 4(c) and Fig. 8(c). The error introduced by POD is the majority of the overall discrepancy, as shown in Table 1, 
Table 3. To further reduce the discrepancy introduced by the Proper Orthogonal Decomposition, there are two main approaches. 
First, expand the number of reduced bases to capture more data variance. However, since the singular values of the high-frequency 
bases decay slowly, significantly more bases will be involved and the latent functions of the coefficients of those high-frequency bases 
are typically less smooth and challenging to interpolate. Therefore, it will not necessarily improve the prediction of the surrogate 
model, as shown in Fig. 10(b). On the other hand, the discrepancy of POD is also constrained by the number of snapshots available 
for training. These snapshots represent discrete approximations of the solution manifolds. Further improvement can be achieved 
by either including more snapshots or choosing the snapshots selectively with certain criteria, such as the greedy method [51] or 
active learning [52]. Note that unlike parametric problems only involving physical parameters, where a new snapshot simply means 
another evaluation of the model with particular new parameters, geometrical problems may also require you to generate a domain 
with a corresponding new shape artificially.

The third part of the error originates from the non-intrusive prediction with RBF interpolation. The RBF interpolation can be 
replaced by other interpolation methods such as polynomial interpolation [53] or a neural network [54], etc. The error of this part 
should be first evaluated and tuned against a validation dataset before employing the trained interpolator for prediction. Similar to 
POD, the error of the RBF interpolator also significantly depends on training data. Note that the boundary condition is persevered by 
the construction of the ROM, therefore the velocity error on the boundary is intrinsically small. However relatively large errors may 
14

occur on the boundary of pressure prediction since no boundary condition of pressure is enforced.
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The computational time of the surrogate model for the examples was demonstrated in Table 1 and 3. A speedup of around 3 and 
10 (not taking into account the time required for training) for online prediction was achieved in prediction by applying non-intrusive 
ROM and surface registration for each case respectively. The computational cost in prediction mainly came from surface registration 
while the non-intrusive ROM barely takes any time as the operation involved is weighted summations. This also enables the possibility 
of real-time performance in clinical practice owing to the separation of online and offline processes since the main computational 
effort was distributed to the offline part. However, the speedup shown here is only based on two-dimensional synthetic examples. 
Generally, the two-dimensional problem itself would be computationally cheap enough for a direct simulation rather than spending 
a huge amount of time on offline preparation. A three-dimensional problem with a complex domain e.g. image-based patient-specific 
simulation is much more computationally demanding and therefore closer to the purpose of the method. The corresponding time for 
prediction also increases. The computational time of surface registration increases almost linearly in log-log scale with the number of 
boundary vertices if a proper parallelisation is implemented on CPU/GPU as shown in [49]. Therefore, a further investigation on the 
speedup for a three-dimensional patient-specific dataset would be required and we aim to implement three-dimensional examples in 
our future work. Nevertheless, the examples prove the concept of the proposed method and demonstrate its accuracy and efficiency.

The surrogate model proposed in this work is in the context of biomedical science and engineering, mainly aiming at hemody-

namics. We assume that with state-of-art imaging and segmentation techniques, a large amount of geometric data of arteries are 
available. Instead of handling each geometric data to perform a simulation individually, the geometric dataset of a kind (similar but 
distinct) can be leveraged for further prediction based on ROM. The proposed method can be also applied to other physiological flow 
simulations, e.g. respiratory flow or cerebrospinal flow as long as the surface registration can be performed between the different 
shapes of the domains and construct corresponding diffeomorphisms. Likewise, such a method of course is not limited to biomed-

ical applications. For example in environmental science, fluvial bank erosion simulation always needs to solve the fluid dynamics 
problem with changing domains over time. Other fields such as design optimization especially shape optimization in automotive and 
aerospace engineering also require constant evaluations of fluid dynamics with similar shapes of domains.

In this work, we limit the scope of the problem to the physiological fluid system with moderate Reynolds’s number and steady 
situation. In practice, we will face more complex situations such as problems with time-dependency (e.g. pulsatile flow) or with 
a wide range of Reynolds numbers depending on the sections of the arteries (e.g. from 𝑅𝑒 ≈ 1 in arterioles to 𝑅𝑒 ≈ 4000 in the 
aorta). For time-dependent cases, the construction of the snapshot matrix would also include the changes of variable fields due 
to time evolution and an extra dimension for temporal coordinates should be added to the input space for the non-intrusive ROM 
interpolator. Different Reynolds numbers will lead to completely different behaviours of fluid. For instance, at Reynolds number 
around 2000, the laminar flow starts to transition into turbulent flow and becomes fully turbulent in the aorta [55]. We leave the 
study of those more complex situations to our future work.

5. Conclusion

In this work, a surrogate model based on surface registration and non-intrusive reduced-order modelling is proposed. The surface 
registration with currents provides the diffeomorphism between two coordinate systems and parameterises the shape without point-

to-point correspondence. With the diffeomorphisms, all the evaluations of FOM are subsequently performed on a reference domain, 
embedding the geometry information in the snapshots and guaranteeing the spatial compatibility of snapshots. The non-intrusive 
reduced-order model is subsequently constructed using POD and the RBF interpolator is trained for predicting the reduced coefficients 
of ROM based on reduced geometric parameters of the shape. Two examples of blood flow simulations based on stenosis vessels and 
bifurcation vessels are presented and discussed.
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