2305.11586v2 [csLG] 28 May 2023

arXiv

Bayesian approach to Gaussian process regression
with uncertain inputs

Dongwei Ye* and Mengwu Guo'

Department of Applied Mathematics, University of Twente

Abstract

Conventional Gaussian process regression exclusively assumes the existence of noise in
the output data of model observations. In many scientific and engineering applications,
however, the input locations of observational data may also be compromised with
uncertainties owing to modeling assumptions, measurement errors, etc. In this work,
we propose a Bayesian method that integrates the variability of input data into
Gaussian process regression. Considering two types of observables — noise-corrupted
outputs with fixed inputs and those with prior-distribution-defined uncertain inputs, a
posterior distribution is estimated via a Bayesian framework to infer the uncertain data
locations. Thereafter, such quantified uncertainties of inputs are incorporated into
Gaussian process predictions by means of marginalization. The effectiveness of this
new regression technique is demonstrated through several numerical examples, in which
a consistently good performance of generalization is observed, while a substantial
reduction in the predictive uncertainties is achieved by the Bayesian inference of
uncertain inputs.

1 Introduction

Uncertainty estimation is essential for model validation in scientific computing, as computational
modeling in science and engineering typically involves intrinsic system variability and/or incer-
titude due to a lack of knowledge. The uncertainties propagate through the modeling process
and may lead to challenges in both forward and inverse problems. Bayesian statistics provides a
methodology for quantifying the impact of various uncertainty sources and enables a probabilistic
integration of prior knowledge into the inference process [5]. Contrary to point estimates, the
Bayesian framework facilitates model predictions with probabilistic distributions and has been
widely used in system design, analysis, and optimization under uncertainties.

Gaussian process (GP) regression is one of the state-of-the-art methods for supervised learning
[24]. Tt is frequently synergized with Bayesian inference owing to its probabilistic nature [111 ],
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and has been applied to a wide variety of tasks in computational science and engineering
[7, B2, 15l 27]. The standard GP model is established based on the assumption that the input
data have full certainty, while the output data are possibly corrupted by measurement noise
and /or perturbed by intrinsic system stochasticity. GP regression often models such uncertainties
in output data with an additive white Gaussian noise term, whose variance is calibrated as part
of the hyperparameters.

However, it is often the case that the assumption of uncertainties exclusively on output data
is too strong, and it hence becomes crucial to take uncertain data locations (inputs) into account.
An intuitive example is the sensor placement and data measurement for the predictive monitoring
of engineering assets, in which case sensors are deployed at several particular positions to examine
certain mechanical behaviors of interest. Due to possible human errors, structure deformation, or
interference of environment, the actual sensor locations can deviate from the desired placement,
and the observational data are consequently measured from uncertain input locations. Similar
circumstances also occur in mapping problems of robotic navigation [12], system identification in
marine science [6], etc.

Several strategies have been proposed to embed input uncertainties into the GP regression
framework, either during the training process or in the predicting phase, or both. [I4] proposed
that the probabilistic distribution of a test point can be integrated into model predictions
via marginalization with Gaussian approximations. The premise of this method focuses on
incorporating input uncertainties once a GP model is trained. On the other hand, to account
uncertain data locations into training, [23] tuned GP hyperparameters by maximizing a marginal
likelihood that encloses uncertain inputs, while [§] integrated input uncertainties into the GP
covariance functions. The learning process may also be proceeded without any prior distributions
defined of the input uncertainties, as the these data locations can be inferred together with
hyperparameters [22].

The existing methods tend to combine assumed input uncertainties directly into the formu-
lations of GP regression. However, it is worth noting that the collected data can be used to
probabilistically update prior assumptions on the uncertain data locations. To this end, this
work proposes a new method that integrates input variability into GP regression, aided by a
Bayesian inference of uncertain data locations. In such a supervised learning process, we assume
the availability of two types of data: noise-corrupted outputs with fixed inputs, and those with
uncertain inputs described by a prior distribution. Through the Bayes’ rule, the proposed method
estimates a posterior distribution of the uncertain inputs by leveraging all available information
from the data, and thereafter embeds such quantified input uncertainties into GP predictions
through marginalization.

2 Related work

GP modeling was first proposed by Krige for geo-statistical analysis [I7] and extensively studied
later to address regression problems. Many variations of GP regression models have been
developed for specific contexts, such as vector-valued GPs for multi-output functions [I8] [3],
sparse GPs with inducing inputs to efficiently learn from large datasets [28], and deep GPs with
a multi-layer network structure for an improved nonlinear expressive power [I0]. The GP models
have been endowed with remarkable flexibility in numerical applications [20} 2T}, [T6, 4 [33] by
their non-parametric inherent nature in probabilistic machine learning.

The studies on GP regression with uncertain input data were mainly motivated by the



demand for a robust way to quantify the propagation of uncertainties from data locations to GP
predictions, while guaranteeing a good generalization performance. Most existing methods can be
categorized into two types. The first type reflects the input uncertainties in GP kernel functions.
[13] performed a second-order Taylor expansion to correct the covariance function with uncertain
inputs, and the incertitude in both input and output data can be learned via maximum likelihood.
[8, @] directly marginalized the distribution of data inputs in the covariance functions, which
presented better generality than [I3] as the high-order terms were not omitted. The second type
of methods assumes that the input uncertainties result in an additional noise term in the output,
which aligns with the form of heterogeneous GP [22]. This method shows the intuition that the
input uncertainties have a significant influence on the area where the output changes rapidly.
An alternative is to fuse the determination of data locations into hyperparameter estimation
[23], for which gradient descent is used to optimize an evidence lower bound integrated with the
input distribution. These available methods have been applied to diverse contexts of scientific
computing, such as optimization [26] B0], active learning [34] [T9], system identification [31} [2].

3 Preliminary

3.1 Gaussian process regression

A general description of the standard GP regression [24] is presented in this section. Assume
that the model response y € R is measured from a physical process or a computer experiment as
y = f(x) + €,, given the corresponding input & € R?. Here the regression function f follows a GP
prior with certain mean function, set to be zero for simplicity in this work, and a covariance (kernel)
function kg(-,-) that represents the sample correlation between input locations. The covariance
function is featured with hyperparameters 6, i.e., f(-) ~ GP(0,kq(-,-)), and €, ~ N(0,02) is an
independent white noise term. Given the observed data collection (X,y) = {(zi,y:)}Y ,, a joint
normal distribution between the observed data and the output f*(x*) at a test point * is hence
defined by the GP prior as

ko(X,X) + 021 ke (X, 2*) D (1)

y * 2
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Note that the choice of kernel should reflect certain desired properties of the regression function.
The hyperparameters 6 in the kernel as well as the noise variance o2 are often determined by
maximizing the log-marginal likelihood:

(0,67) = argmax logp(y|X,0,07)

1 - 1 N
= arg max {f Ey—r (K(6) + o21) 1y - ilog |K(6) +o21| — ElogQW],
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in which K(6) := ko(X,X). Conditioning on the observed data, the posterior predictive
distribution of the noise-free output f* at an unobserved point x* again follows a normal
distribution: )

Frle*, X,y,0,6, ~ N(m(z* X, y), v(z*[X)), 3)
where m(z*|X,y) = kg(x*, X)[kg(X,X)+ 521 'y stands for the predictive mean and v(z*|X) =
kg(x*, @*) — kg(x*, X) [kg(X, X) + 521 _lké(X, x*) denotes the corresponding posterior variance.



3.2 Problem statement

We consider two types of available training data: (X/,yf) = {(x/,y/ )}l 1 with fixed 1nput
locations ac{ € R? and the corresponding observations y/ € R, and (X*,y*) = {(x¥, y!)}
consisting of uncertain input locations x} and the corresponding observation y;'. Note that
the extreme case with Ny = 0 fits in this setting and, contrarily, the problem degenerates to
the standard GP when N, = 0. Each uncertain input «;' is considered as a random variable
associated with an independent prior set to be a joint normal distribution,
:18?~/\/(ui,di:abg(sil,sZ%%...,s?d))7 i=1,2,..., Ny, (4)

)

where p; denotes the mean vector of the prior; the uncertain inputs are additionally assumed
to have uncorrelated entries of coordinates, and the covariance matrix can thus be written as a
diagonal matrix diag(s? i1 S 222, cee 3?@) with s?’j being the variance of the jth coordinate of the
ith uncertain data location. Therefore, the joint prior distribution of all the uncertain inputs is
given by:

Ny
p(X"(@) = [[ (@} |pi, 87 1,872, 570). (5)
i=1
where ¢ = {p;,571,575,..., s?’d}fv:“l collects all the hyperparameters for defining the uncertain

inputs’ prior. In this work, we predefine ¢ to let p; represent an initial guess of the uncertain
input location and +2s; ; reflects the 95% confidence.

4 Method

4.1 Bayesian inference of uncertain data locations

The uncertain input locations can be inferred in a Bayesian manner from the combination of
their prior distributions and the corresponding outputs, aided by the GP assumption for the
regression function. To be subsequently leveraged for predictions, the posterior distribution of
these uncertain inputs is directly given by the Bayes’ rule as follows:

(XX vy y!, 9,0,00) o p(X*|$) p(y",y!|X", X7, 0,07), (6)
in which the second term is a likelihood function defined by the GP, i.e.,
f ko(XT,XT)+ 021 ke (XI,X)
y u f 2 9( ’ n 0 )
I: yu :| ‘ X aX ,0,0’n N(07 |: kG (Xu,Xf) ke (Xu,Xu)—f—O'?LI :|> (7)

This inference [f] can barely be evaluated exactly as its marginal likelihood, given as
Py v/ XS 0,0.0%) = [ p(X"|)ply" ¥ IX", X, 0,0) X", (®)

is typically intractable to compute in practice. Therefore, the Markov Chain Monte Carlo (MCMC)
method is used to approximte the posterior distribution of uncertain data locations.

To determine the optimal values of GP hyperparameters (0,02) in @, we maximize an
approximation of the possibly intractable marginal likelihood, in which the uncertain input
locations are represented by their prior means, i.e.,

(6,57) = axg o togp (v ¥ {1124, X, 6,0,07) (9)



whose specific formulation is given by . In this way, the GP hyperparameters can be marginalized
by considering

/p(|Xf7yu7yf7¢707072L)p(0a0.3;‘xf7yu7yf) dé do’i
(10)
- / PCIX vyt 6,6,02)6(0 — 6,02 — 52) 40 do® = p(-X!,y",y!,6,0,52).

in which 0 denotes the Dirac-delta function. This marginalization applies to both @ and the
Bayesian predictions in the next subsection.

4.2 Bayesian predictions for Gaussian process regression

Once the posterior description of the uncertain inputs is achieved, the predictive distribution of
f* at a test point * can be further computed by marginalizing the posterior, i.e.,

p(f* e, Xyl vy, $,0,52)

- - 11
- /p(f*\w*,xf,xu,yf,y“,0,&,%) p(XU Xy v $,6,52) dX*. 1D

The MCMC-extracted samples for estimating the posterior of uncertain inputs can be reused in
to evaluate the integral with Monte Carlo. On the other hand, p(f*|z*, X/, X" y/, y*, 0, 72)
corresponds to the predictive distribution of a GP model conditioning on the combination of
both fixed data pairs and those with sampled locations of uncertain inputs. The first and second
moments of the marginal predictive distribution [11] are derived as follows:

E[f*|z*, X/, y7, y"] = Exujxs oy [m(a[ XS U Xy  uy™)], (12)

and similarly
Var[f*la*, X7,y y"] (13)
= Exuxs yuvys [v(z*| XS UX")] + Varguxs yu ys [m(z* X7 UX",y" uy")],

where m(-) and v(-) were defined for the mean and variance of a GP prediction, Exu|xs yu ys
and Varxu xs yu ys indicate the expectation and variance values over the posterior distribution
of X", respectively.

5 Experiments

The setting of numerical experiments and their results are provided in this section. We use the
mean squared error (MSE) to measure estimation errors of the uncertain input locations, and the
mean squared prediction error (MSPE) over Niest = 100 test points for GP predictions. These
two error metrics are defined as follows,

frX7) = fXNIP, (14)

1 N 1
MSE = —FE X, — X,I?l, MSPE=-—Fx E;-
S Nu Xu,[ || ]7 S Ntest Xu f ‘Xu[

in which X, collects the actual locations of uncertain data inputs, X* denotes the test points, f
is the ground truth function for regression, and X, may follow its prior or posterior distribution.
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Figure 1: (a) Data points with fixed and uncertain input locations generated from latent function
y = —xsin(x/3), and the result of standard GP fitting; =} to z% denote the four uncertain
input locations. (b) A comparison of GP predictions marginalized over the prior and posterior
distributions of the uncertain input locations. (c¢) Prior and posterior marginal distributions of
each uncertain input location. Note that color bands in (a) and (b) represent the +2¢ level of
GP predictions in this figure. The predictions are depicted based on 100 test points distributed
evenly over the domain of interest.

To demonstrate the details of the proposed method, an example with eight data points
is presented first. The training data are generated from a one-dimensional latent function
y = —xsin(z/3). We assume that four of the data points have fixed locations, while the other
four have uncertain inputs z¥ (i = 1,2, 3,4), for which a prior distribution is defined. The prior
means of these uncertain data locations are computed by appending a perturbation to given
locations, i.e., u; = ;' + €, where 2} denotes a given actual location on the latent function and
e ~U(0,2) is a randomly generated term to realize a perturbation. The original locations of these
eight data points are sampled by the quasi-Monte Carlo method using a Sobol sequence [29]. The
data points together with the latent function of ground truth are shown in Figure (a). We are
interested in the regression over [0, 87] with an independent prior distribution z% ~ N (u;, s?) for
each uncertain input location. Assuming that we do not have much confidence in the priors, a
relatively large variance s = 4 is presumed. The measurement noise is omitted in this example
for demonstration purpose.

Figure a) depicts the predictive distribution of a conventional GP regression, which is trained
with fixed data inputs and prior means of uncertain inputs, paired with their corresponding
observations. It is evident that this GP regression fails to incorporate the input uncertainties, and
the mean and variance of the GP predictive function are misled by the perturbed mean locations



of uncertain inputs in this interpolation task.
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Figure 2: A comparison of GP predictions marginalized over the prior and posterior distributions
of the uncertain input locations in four examples. Color bands represent the +20 level of GP
predictions in this figure. There are 30 training data points with fixed inputs and another 30 with
uncertain inputs, and the predictions are based on 100 test points distributed evenly over [0, 87].

The results of the proposed Bayesian approach to GP regression is presented in Figures (b)
and (c). A posterior estimation of uncertain data locations is performed first through Bayesian
inference. As the marginal likelihood (evidence) is computationally intractable, an MCMC
sampling with the Metropolis algorithm is employed to directly fetch samples for the posterior
distribution of uncertain inputs. The probability density functions of both the prior (in blue) and
the posterior (in green) distributions are shown in Figure[I|c), in which the posterior distributions
are approximated by the technique of kernel density estimation [25]. It is clear that the update
from prior to posterior has made the mean estimates of the uncertain inputs closer to the actual
locations, and that the prior variance has meanwhile been reduced by leveraging all existing
data. It is worth noting that, in practice, the ground truth function is generally unknown, and
thus it is typically impossible to claim if the inference has indeed improved our knowledge in
uncertain input locations. Nevertheless, the Bayesian inference of these locations exploits all the
available information from training data to reduce/update their uncertainties. Subsequently, the
samples that MCMC fetches from the posterior are further used to construct the predictions for
new (unseen) locations over the entire domain [0,87]. To show a reduction of uncertainty in GP
regression as a result of Bayesian inference for uncertain inputs, we present in Figure b) the
GP predictions marginalized over the prior (in orange) and posterior (in purple) distributions of
uncertain inputs. The former is affected by the significant uncertainties assumed in the prior and



Uncertain input locations

GP predictions

Numerical examples prior vs posterior vs relative prior vs posterior vs relative
ground truth | ground truth | reduction | ground truth | ground truth | reduction

(a) y = %1 sin(x) 1.10 0.45 59.1% 16.42 2.33 85.8%

(b)y = e’%"(sin(ﬂj) + 1) 1.10 0.84 23.6% 0.12 0.05 58.3%

(c) y = —Tsin(2) + 2sin(Lx) 1.10 0.89 19.1% 8.45 4.92 41.8%

(d)y= %log((sin@x) +2)2% +1) 1.10 0.32 70.9% 1.56 0.05 96.8%

Table 1: A comparison of mean squared error (MSE) for the uncertain inputs between prior and
posterior distributions against ground truth locations, and that of mean squared prediction error
(MSPE) between prior and posterior GP predictions against ground truth functions. The relative
reduction refers to the percentage of corresponding error reduction from prior to posterior.

results in high variance in the GP prediction. The mean function also deviates from the ground
truth. On the contrary, the predictive mean (in the latter) by the proposed method captures the
latent function well, and the corresponding predictive variance shows a good representation of the
uncertain inputs, i.e., a relatively wide uncertainty band is observed around uncertain locations
(¥ to x), while the variance pinches to a small value at fixed points. The MSPE at 100 test
locations, respectively for the prior and posterior predictions by GP, are 143.2 and 11.9.
Results for another four functions are presented in Figure[2]and Table[I] More data are utilized
in these examples — 30 each for fixed and uncertain inputs, and output measurements are assumed
to be corrupted by noise. Such existence of output noise plays a role of regularization, and the
value of 02 can be fine-tuned to prevent over- and under-fitting in GP regression. Similarly,
predictions with and without an update of input location inference are shown for comparison.
In Figure a), both predictive mean functions have captured the pattern in the latent function;
however, the one marginalized with the prior slightly underestimates at each wave peak and
trough, while the other captures these values better. On the other hand, the +2¢ level of the GP
predictions, represented by the width of color bands, has been significantly reduced because of the
update of uncertain input locations by Bayesian inference. In the cases (b) and (c), substantial
improvement in the GP predictive distribution has been observed according to the comparison
of MSPE in Table |1} Moreover, the advantage of our proposed method in Figure (d) is more
evident. The result with prior information shows a poor predictive mean estimation, while
our method captures the latent function well, and the narrow uncertainty band shows a high
confidence in the prediction. Among the four examples, in general, the proposed method with
Bayesian inference for uncertain data locations consistently achieves a meaningful reduction in the
predictive uncertainties and offers an improved predictive mean estimation for the GP regression.

6 Conclusion

In this work, a Bayesian method for Gaussian process regression with uncertain data locations
is discussed and demonstrated. Through a Bayesian inference, all available information from
the data is leveraged to update the knowledge on uncertain input locations. By marginalizing a
posterior distribution for the input uncertainties, the predictive distribution for new test points
can be achieved via Gaussian process regression. Numerical experiments show that, in comparison
with the results without Bayesian updating of data locations, the proposed method presents a



consistently improved performance in generalization and predictive uncertainty reduction.
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