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Abstract

3D building generation with low data acquisition costs,
such as single image-to-3D, becomes increasingly impor-
tant. However, most of the existing single image-to-3D
building creation works are restricted to those images with
specific viewing angles, hence they are difficult to scale
to general-view images that commonly appear in practical
cases. To fill this gap, we propose a novel 3D building shape
generation method exploiting point cloud diffusion models
with image conditioning schemes, which demonstrates flex-
ibility to the input images. By cooperating two conditional
diffusion models and introducing a regularization strategy
during denoising process, our method is able to synthesize
building roofs while maintaining the overall structures. We
validate our framework on two newly built datasets and ex-
tensive experiments show that our method outperforms pre-
vious works in terms of building generation quality.

1. Introduction

Buildings play a role in various applications including

urban modeling [34], industrial design [28], and virtual re-

ality [38]. Since buildings usually have far more compli-

cated 3D shapes than the clean models in common 3D ob-

ject datasets, e.g., ShapeNet [2], efficient acquisition of 3D

buildings remains an open problem in both synthetic and

real scenarios. On one hand, designers typically use CAD

technologies to create crafted 3D building models for syn-

thetic scenarios (e.g., games and films), which inevitably

requires tremendous manual effort. On the other hand, 3D

shapes of real-world buildings are mostly acquired using

mobile platforms such as airplanes, which are equipped

with LiDAR sensors that capture the 3D coordinates of ob-

served objects. Despite the recent release of several 3D

city models where buildings are the primary components

[14, 26], obtaining high-quality 3D building models is still a

costly process, leading to limited availability in many parts

of the world. Therefore, there is an urgent need for auto-

mated methods to generate realistic 3D buildings.

As an alternative to LiDAR point clouds, optical im-

ages obtained by regular cameras that have a lower ac-

quisition cost, capture rich information about buildings as

well. Over the past few decades, image-based 3D building

reconstruction has long been a research focus [36, 6, 44].

Most of the existing works rely on photogrammetric tech-

nologies (e.g., Structure-from-Motion) leveraging multiple

overlapping images taken from different viewpoints. Such

requirements, however, restrict the applicability of those ap-

proaches to certain situations where multi-view images are

infeasible to obtain. In contrast, single-image 3D recon-

struction [20, 47, 24] offers a low-cost solution towards ef-

ficient 3D building shape generation, which could reduce

the time-consuming manual design of synthetic buildings

and facilitate the digital simulations of real buildings.

Driven by deep learning techniques, generative models

[15, 10, 30, 12] have shown promising results on 3D com-

puter vision, e.g., single image-to-3D point cloud [8, 9, 39].

However, these methods are mainly designed and trained

on synthetic and symmetric 3D objects like airplanes, and

they have limited applicability when generating 3D build-

ing models with complex structures in real-world scenar-

ios. Besides, it is observed that single image-to-3D build-

ing methods [35, 20, 17] mostly require remote sensing im-

ages taken from specific perspectives, e.g., nadir-view, and

the generated building models exhibit low level-of-details

(LoDs) [26] without roof structures.

In this work, we present BuilDiff that takes a step

into single general-view image-to-3D building synthesis by

leveraging diffusion models in a coarse-to-fine manner. Our

main contributions are summarized as follows:

• A novel hierarchical framework named BuilDiff is

proposed to generate realistic 3D shapes of buildings

with roof structures, i.e., at LoD2, given their single

general-view images.

• Guided by an image auto-encoder, a base diffusion

model coarsely identifies the overall structures of
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Figure 1. Overall pipeline of BuilDiff. (a) First, a CNN-based image auto-encoder is pre-trained to derive image embedding zI in the latent

space. (b) Second, a point cloud diffusion model θ conditioned on zI is trained for denoising from noise, i.e., xT , to a desired shape x0. (c)

Finally, another point cloud diffusion model is trained to sample a high-resolution shape conditioned on zI and the low-resolution shape

inferred by the previous diffusion model.

buildings, and a upsampler diffusion then derives

higher resolution point clouds.

• A weighted building footprint-based regularization

loss is introduced to constrain building structures and

avoid ambiguous guidance during denoising process.

Experiments demonstrate the effectiveness of the proposed

method on synthetic and real-world scenarios.

2. Related Work

Single Image 3D Reconstruction. Reconstructing the 3D

shape of an object from its single-view image is a long-

standing research problem in computer vision [3, 8]. This is

motivated by human perception: given a single object im-

age, humans can infer its potential 3D structure based on

the cue image as well as prior knowledge of the 3D world.

Many deep learning-based methods [9, 42, 40, 39] explore

such prior knowledge by learning from abundant pairs of

3D shapes and single images. However, most of these meth-

ods concentrate on 3D benchmarks such as ShapeNet [2],

which are restricted to synthetic objects with simple and

symmetric 3D shapes. To capture the complexity of real-

world objects, recent works [7, 21] exploit camera poses of

images to reconstruct 3D shapes that are well aligned with

the input images. While the camera poses contribute to 2D-

3D correspondences, this formulation usually suffers from

inflexibility for images without pose information. There can

potentially be multiple solutions for pose estimation, but an

inaccurate pose may result in low-resolution geometries.

Unlike common objects, buildings have much more chal-

lenging structures [33]. For real-world 3D building re-

construction from a single remote sensing image, exist-

ing works [35, 20, 17] roughly regard it as a combination

of building footprint extraction and height prediction from

nadir-view images. To generate more detailed 3D buildings,

[24] performs image-to-mesh by leveraging street-view im-

ages aided by nadir-view images, and [47] develops implicit

representations of object-level buildings. A recent work

[29] specifically focuses on generating 3D point clouds of

building roofs. Although these methods could generate rela-

tively simple buildings, they fail to deal with complex build-

ings. Moreover, the applicability remains limited to view-

specific input images, and general-purpose single-image 3D

building reconstruction is less explored.

Deep Generative Models for 3D Point Cloud. In recent

years, many generative models have been proposed and de-

veloped, including Variational Autoencoders (VAE) [15],

Generative Adversarial Networks (GANs) [10], Normaliz-

ing Flows (NFs) [30], and Diffusion models [12, 31], which

have achieved impressive results on data synthesis, espe-

cially for image synthesis tasks [27]. With great success in

the 2D domain, deep generative models are gradually ap-

plied in the 3D domain. Besides using GANs [1] and NFs

[43], a growing number of works [19, 48, 46, 23, 21] lever-

age diffusion models for 3D point cloud synthesis.

Parameterized by two Markov chains, denoising diffu-

sion probabilistic models (DDPMs) [12] consist of a for-

ward process and a reverse process. The former gradually

adds random noise to input data x0, and the latter recon-
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Figure 2. The architecture of image auto-encoder network. The input is RGB image I ∈ R
H×W×3, and the output contains reconstruction

Î ∈ R
H×W×3 and an image embedding zI ∈ R

d. The channel numbers and sizes of the feature maps are annotated above and inside

them, respectively. ⊕ indicates addition process, and the black arrows between encoder and decoder are skip connections.

structs x0 starting from the random noise xT where T indi-

cates the total number of time steps. Compared with other

generative models, denoising diffusion models demonstrate

the advantages of high quality and diversity, which offer a

promising avenue for the 3D shape synthesis of complex

objects such as buildings. Hence, we perform 3D build-

ing reconstruction from a single image by scaling diffusion

models from unconditional to conditional settings. To de-

crease the diversity while increasing the quality of each in-

dividual sample, two types of guidance are presented for

diffusion models: classifier guidance [5] and classifier-free

guidance [13].

3. Method

Instead of only exploiting images from specific perspec-

tives, e.g., nadir- or street-views, our goal is to generate 3D

point clouds of buildings from a single general-view im-

age, aiming to improve the applicability of the proposed

method. As shown in Fig. 1, we introduce a hierarchical

framework BuilDiff which consists of three components:

(a) image auto-encoder, (b) image-conditional point cloud

base diffusion, and (c) image-conditional point cloud up-

sampler diffusion.

3.1. Image Auto-encoder Pre-training

A common and straightforward way to condition dif-

fusion models is to compress the cue images into a latent

space. Rather than using an encoder pre-trained on public

image databases (e.g., ImageNet [4]) directly map an input

image to a latent feature vector that serves as ambiguous

conditions from buildings, we instead fine-tune the encoder

and train an additional decoder with the building images of

the training set. As shown in Fig. 2, the overall network can

be regarded as an image auto-encoder, which learns to re-

construct the input building images and extracts the features

of buildings acting as representative conditions.

Taking an RGB image I of size H × W as input, our im-

age auto-encoder employs a ResNet-34 [11] based encoder

to output feature maps of size H/32 × W/32, which is then

fed into stacked dilated convolution layers [45] (denoted as

D*). There are four dilated convolution layers with dilation

rates of 1, 2, 4, 8, which are stacked in cascade mode and

parallel mode to aggregate features from different scales.

For the feature maps derived from D*, there are two pro-

cessing ways in the decoding stage. Through transposed

convolution layers, the feature maps can be upsampled to Î
that exhibits the same size of the input image I . On the other

hand, they are linearly projected into a 1-D image embed-

ding zI with a dimensionality of d via a 1×1 convolution

layer and a linear layer.

The image auto-encoder is trained by minimizing LAE

defined as,

LAE = Lrec(I, Î) + Lcon(zI , z
a
I ) (1)

where Lrec is a reconstruction loss between I and Î , Lcon

is a consistency loss which encourages the embedding zI of

an image I to be as close as possible to the embedding zaI
of the augmented version Ia of the image I . After training,

we use the frozen pre-trained image auto-encoder to map

the image to an embeddings zI , which acts as the image-

dependent conditions for the following diffusion models.
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Figure 3. The architecture of the image conditional denoising network θ.

3.2. Image-conditional Point Cloud Diffusion

A conditional diffusion model contains a forward diffu-

sion process (see orange arrows in Fig. 1) and a denoising

diffusion process (see blue arrows in Fig. 1). Given 3D

point cloud x0 ∼ q(x0) of a building with K points, the

forward diffusion gradually adds noise by q(xt|xt−1) using

a sequence of increasing noise schedules βt ∈ {β1, ...βT }
where T is the final time step. Assuming αt := 1− βt and

ᾱt :=
∏t

s=1 αs, noisy point cloud xt can be represented by,

xt =
√
ᾱtx0 +

√
1− ᾱtε (2)

where the time step t is sampled from discrete values

{1, ..., T − 1, T}.

The denoising diffusion starts from a random noise ten-

sor xT ∈ R
K×3 sampled from a Gaussian prior distri-

bution p(xT ) ∼ N (0, I). The noise is progressively re-

moved by q(xt−1|xt, zI), which can be approximated by

pθ(xt−1|xt, zI) parameterized with a denoising network θ.

For each denoising step, θ takes as input noisy point cloud

xt ∈ R
K×3, time step t and image embedding zI ∈ R

d.

It outputs a noise εθ(xt, t, zI) ∈ R
K×3 and the target is a

standard Gaussian noise ε ∼ N (0, I). The denoising loss

Leps, which is commonly used as a simplified training ob-

jective in DDPMs, is denoted as,

Leps = ‖ε− εθ(xt, t, zI)‖2 (3)

As shown in Fig. 3, θ is basically built on PVCNNs [18]

with two major components, i.e., set abstraction (SA) mod-

ules and feature propagation (FP) modules. SA modules

typically consist of point-voxel convolutions (PVConvs)

and multi-layer perceptrons (MLPs); while FP modules

typically consist of nearest neighbor interpolation, MLPs

and PVConvs. By using both point-based and voxel-based

branches, PVConvs can capture global and local structures

of point clouds. Before sending input into the SA or FP

modules, the image embedding zI is concatenated with the

temporal embedding (denoted as zt) derived from t. Simi-

lar to [48], we employ sinusoidal positional embedding [37]

to produce zt that consists of pairs of sines and cosines

with varying frequencies, followed by two linear layers with

LeakyReLU activation function. Here, zI and zt have the

same dimension d, and they are concatenated after being ex-

panded to the size of K×d where K is the number of points.

We feed the fused feature map (K×2d) through two convo-

lution layers with LeakyReLU activation function, resulting

in a feature map of size K × d which are then concatenated

with point features in SA and FP modules.

During training, we additionally introduce a weighted

building footprint-based regularization strategy. Based on

the predicted εθ, the desired x0 can be reconstructed by,

x̂0 = 1√
ᾱt
(xt −

√
1− ᾱtεθ(xt, t, zI)) (4)

Considering the nature of buildings standing on the ground,

the reconstructed x̂0 and the target x0 are projected (de-

noted as proj) to the ground, i.e., z = 0, to obtain footprints

proj(x̂0) and proj(x0). Then, we adopt a point-based met-

ric Ω to measure the similarity between two footprints. The

regularization loss Lreg can be formulated as,

Lreg = λ(t)Ω(proj(x0), proj(x̂0)) (5)

where λ is the weight depending on time step t. When t is

close to T , xt could be noisy as xT is standard Gaussian

noise, so Ω is assigned with lower weight λ. On the con-

trary, Ω is assigned with higher weight λ when t is close to

1. Overall, the denoising network θ is optimized by mini-

mizing,

Lθ = Leps + ρLreg (6)

where regularization weight ρ balances these two terms.

The overall training process is described in the Algo-

rithm 1. Similar to [23], we employ a classifier-free guid-

ance strategy [13] which jointly learns a conditional and
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an unconditional model. The conditioning image embed-

ding zI is randomly dropped, thus the conditional output

εθ(xt, t, zI) is randomly replaced by the unconditional one

εθ(xt, t,∅).

Algorithm 1 Training of conditional diffusion model

while not converge do
sample x0 ∼ q(x0), ε ∼ N (0, I)
sample t ∼ U({1, ..., T − 1, T})
xt =

√
ᾱtx0 +

√
1− ᾱtε

Leps = ‖ε− εθ(xt, t, zI)‖2
x̂0 = 1√

ᾱt
(xt −

√
1− ᾱtεθ(xt, t, zI))

Lreg = λ(t)Ω(proj(x0), proj(x̂0))
Lθ = Leps + ρLreg

update model parameter θ with ∇θLθ

end while

During sampling, the denoising diffusion begins from a

Gaussian noise (i.e., xT ∼ N (0, I)), and denoises with the

output of network θ step by step. xT−1 can be predicted by,

xt−1 = 1√
αt
(xt − 1−αt√

1−ᾱt
εguided(xt, t, zI)) + σtz (7)

where t begins from T to 1, and z is sampled from standard

Gaussian distribution when t > 1. Leveraging a guidance

scale γ, the guided noise output is,

εguided := (1 + γ)εθ(xt, t, zI)− γεθ(xt, t,∅) (8)

Eventually, the desired x0 can be sampled when t = 1.

3.3. Point Cloud Upsampler Diffusion

For point cloud base diffusion, the key objective is gen-

erating low-resolution point clouds (K points) that could

coarsely capture the overall structure of buildings. We train

another diffusion model conditioned on the image embed-

ding zI derived by a frozen pre-trained auto-encoder and

the low-resolution point cloud inferred by base diffusion.

The goal lies in generating high-resolution point cloud with

fine-grained structure. Thus, the second diffusion model is

called upsampler diffusion.

Our upsampler diffusion leverages similar architecture

as our base diffusion model. Assuming the desired point

cloud x0 ∈ R
N×3 consists of N points (N > K), we ran-

domly sample a noise tensor xT ∈ R
N×3 from a Gaus-

sian prior distribution p(xT ) ∼ N (0, I). During training,

the denoising network θ takes as input K points (i.e., low-

resolution point cloud) and (N − K) points sampled from

noisy xt, time step t and conditioning image embedding zI .

At each step, the first K of N points sampled by θ is re-

placed by the low-resolution point cloud, and the updated

N points are used as input in the next time step. In short,

to arrive at N points, our upsampler conditions on K points

and denoises the rest (N −K) points.

4. Experiments
4.1. Datasets

To validate the performance of the proposed method, we

create two datasets, BuildingNet-SVI and BuildingNL3D,

providing thousands of image-3D pairs of buildings.

BuildingNet-SVI. Built on BuildingNet [33] dataset that

covers a variety of synthetic 3D building models (e.g.,

churches, houses, and office buildings), we collect the cor-

responding single-view RGB synthetic images of buildings

and obtained 406 image-3D pairs after quality checks w.r.t.

completeness and consistency. Besides, we manually anno-

tate the foreground object (i.e., individual building) at the

pixel level, and crop each image centered around the build-

ing. Each building point cloud has 100,000 uniformly dis-

tributed 3D points. We follow the official splitting rules

from BuildingNet [33], thus 321 and 85 image-3D pairs are

used for training and testing, respectively.

BuildingNL3D. We collect 2,769 pairs of aerial RGB im-

ages and Airborne Laser Scanning (ALS) point clouds of

buildings which are located in the urban area of a city in the

Netherlands. Unlike synthetic images that have individual

buildings and relatively clean backgrounds, aerial images

usually face more challenges such as multiple buildings ap-

pearing in a single image. Hence, the buildings are man-

ually labeled so that only one building of interest appears

in each image. Raw ALS point clouds are normalized from

their real geographic coordinates to xyz coordinates within

the range [−1, 1]3. The dataset is divided into 2,171 image-

3D training pairs and 598 test pairs according to tile-based

splitting rules where buildings in the training and test sets

are not repeated.

4.2. Evaluation Metrics

We adopt Chamfer distance (CD) [8], Earth mover’s dis-

tance (EMD) [32] and F1-Score [16] to evaluate the pair-

wise similarity between a generated building and its refer-

ence building. Specifically, CD and EMD are multiplied

by 102, and the threshold τ of F1 is set as 0.001. The

point clouds are normalized into [−1, 1]3 before calculating

with these metrics. The visualization of 3D point clouds is

achieved by using Mitsuba Renderer [22].

4.3. Implementation Details

The models are implemented with PyTorch [25] on a

NVIDIA A40 GPU with 45GB memory. The batch size is

set as 8. The images are resized into 1024×1024 pixels, i.e.,

H=W=1024. Each 3D point cloud has normalized 100,000

points for representing the shape of the building.

Image auto-encoder details. We adopt augmentation tech-

niques including image rotation with an angle of 90◦and

color shifting in the Hue-Saturation-Value (HSV) space
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Input image MRTNet FlowGAN PVD* BuilDiff Reference

Figure 4. Qualitative comparison of different 3D point cloud generation models on the BuildingNet-SVI dataset. The reference and

predicted point clouds are colored by orange and blue, respectively.

ranging from -255 to 255. These are based on the con-

sideration that buildings may appear upside down in the

images and building images could exhibit large color vari-

ations. The dimensionality d of image embedding zI is

128. We train the auto-encoder for 30 epochs and use the

Adam optimizer with a learning rate 0.0002. The image re-

construction loss Lrec and the embedding consistency loss

Lcon are achieved by mean squared error (MSE). During

training the following image-conditional diffusion models,

we freeze the pre-trained autoencoder to derive zI .

Base diffusion details. Given 100,000 points per building,

we randomly sample K=1024 points (representing low-

resolution point clouds) for training and testing. We set

β0=0.0001, βT =0.02 and linearly interpolate other βs. Sim-

ilar to existing works [48, 46], the total number of time steps

is set as T=1000 for the base diffusion. The dimensionality

of temporal embedding is d=128. Chamfer distance [8] is

employed as the point-based distance metrics Ω to measure

the similarity between two projections. The regularization

weight ρ is set as 0.001. Regarding the classifier-free guid-

ance strategy, we employ drop probability 0.1 for the train-

ing phase, and guidance scale γ=4 for the sampling phase.

The diffusion model is trained for 700 epochs and optimized

by Adam with a learning rate 0.0002. Specifically, λ(t) is

defined as,

λ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, t = 1

0.75, 1 < t ≤ 1
4T

0.50, 1
4T < t ≤ 1

2T

0.25, 1
2T < t ≤ 3

4T

0, 3
4T < t ≤ T

Upsampler diffusion details. For the training and testing

phases, we randomly sample N=4096 points per building.

The denoising network of the upsampler is trained for 200

epochs and the total number of time steps T is set as 500.

4.4. Quantitative and Qualitative Results

To demonstrate the performance of the proposed method,

BuilDiff is compared with several 3D point cloud genera-

tion approaches based on deep generative models. The com-

parison methods are MRTNet [9] which leverages VAEs for

single image 3D reconstruction, FlowGAN [39] which re-

constructs 3D point cloud from a single image by combin-

ing the advantages of NFs and GANs, and PVD [48] which

use diffusion models for 3D point cloud generation. As

PVD is originally designed for unconditional point cloud

synthesis, we extend its framework by introducing a global

embedding extracted from images as an auxiliary input of

denoising diffusion models, thus we note it as PVD*. Our

method differs from PVD* in three main aspects: (1) an
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Input image MRTNet FlowGAN PVD* ReferenceBuilDiff

Figure 5. Qualitative comparison of different 3D point cloud generation models on the BuildingNL3D dataset. The reference and predicted

point clouds are colored by orange and blue, respectively.

auto-encoder is pre-trained to extract more representative

conditions zI to avoid ambiguous guidance; (2) a weighted

footprint-based regularization strategy is introduced to the

training of denoising network θ; (3) a point cloud upsampler

is used to produce high-resolution point clouds of buildings.

The implementation of the comparison methods is based

on their officially released code. All the models are trained

and evaluated on the BuildingNet-SVI dataset and Build-

ingNL3D dataset, the quantitative results of which are

shown in Table 1 and Table 2. Here, we sample 4,096 points

per shape to ensure a fair comparison.

Regarding the synthetic data, it can be seen from Ta-

ble 1 that BuilDiff achieves the best EMD and F1 as well

as the second-best CD. Unlike common 3D objects (e.g.,

ShapeNet) that other methods focus on, buildings have

more complex structures that are not symmetrical. Such

natures make it difficult to learn the shape of buildings in

canonical object space. Correspondingly, directly using

VAEs or GANs to constrain the network output may pre-

vent the network from learning valuable information.

In Table 2, BuilDiff reports the lowest EMD, second-

highest F1, and comparable CD with the baseline method

PVD*. Regarding other methods, MRTNet directly em-

ploys CD loss for training, it obtains low CD while per-

forms poorly on other metrics. FlowGAN obtains the high-

Methods CD↓ EMD↓ F1↑
MRTNet [9] 6.11 49.07 6.89

FlowGAN [39] 2.00 21.21 21.17

PVD [48] * 6.18 16.08 20.02

BuilDiff 3.14 10.84 21.41

Table 1. Quantitative results on BuildingNet-SVI dataset. The best

results are indicated in bold and the second best are marked with

underlines.
Methods CD↓ EMD↓ F1↑

MRTNet [9] 2.84 44.06 5.18

FlowGAN [39] 2.33 24.06 22.26
PVD [48] * 5.69 14.74 13.01

BuilDiff 3.81 10.43 22.08

Table 2. Quantitative results on BuildingNL3D dataset. The best

results are indicated in bold and the second best are marked with

underlines.

est F1 but inferior EMD, demonstrating its preference for

generating uniform global distributed points while ignoring

local details. As EMD is stricter with local quality [41],

our results show robust performance in terms of both global

shapes and local structures.

The qualitative results of several generated 3D buildings

are shown in Fig. 4 and Fig. 5. MRTNet and FlowGAN

yield unsatisfactory results, which demonstrates their poor
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pts pre-train AE regularization upsampler CD↓ EMD↓ F1↑
1024 × × - 4.523 12.244 14.042

1024 � × - 4.759 12.847 14.631
1024 � � - 3.556 11.747 13.889

1024 � �† - 3.827 10.682 13.376

4096 × × - 6.181 16.075 20.022

4096 � �† - 3.678 15.127 21.128

4096 � �† � 3.142 10.840 21.413

Table 3. Ablation studies on the BuildingNet-SVI dataset. The

best results are shown in bold.
pts pre-train AE regularization upsampler CD↓ EMD↓ F1↑

1024 × × - 11.109 24.027 5.180

1024 � × - 6.406 16.770 8.531

1024 � � - 5.680 15.813 8.928

1024 � �† - 5.766 15.625 9.601
4096 × × - 5.691 14.735 13.012

4096 � �† - 4.046 13.373 15.227

4096 � �† � 3.810 10.427 22.081

Table 4. Ablation studies on the BuildingNL3D dataset. The best

results are shown in bold.

generalization ability in 3D building reconstruction. In con-

trast, diffusion-based methods perform better in capturing

the shape of buildings. Due to the simple conditioning strat-

egy used by PVD*, the generated 3D buildings are inconsis-

tent with the input condition images. By the proposed con-

ditioning schemes, BuilDiff decreases the diversity of dif-

fusion models and increases the quality of generated build-

ings. Furthermore, it can be observed from the last row

of Fig. 5 that our method demonstrates the robustness even

when buildings appear upside down in the input image.

4.5. Ablation Study

We verify the effectiveness of the proposed components,

i.e., pre-training image auto-encoder, weighted footprint-

based regularization, and point cloud upsampler. The com-

parison results are shown in Table 3 and Table 4. The first

four rows are tested on 1,024 points in which our upsam-

pler is not used. We sequentially compare the effects of pre-

training image auto-encoder, footprint-based regularization,

and weighted footprint-based regularization that is denoted

with †. The last three rows are tested on 4,096 points.

First, it can be observed that our image auto-encoder

greatly increases the performance on real data from Build-

ingNL3D, which means that it could alleviate the domain

gap between real-world building images and common im-

ages learned by image classification networks. Such ex-

pressive condition benefits from multi-scale features and

latent consistency performed by image augmentation. Sec-

ond, the model is further improved by introducing building

footprint-based regularization in terms of CD and EMD.

The weighted regularization guides the network focus on

later denoising steps. Finally, it can be seen from the last

two rows that our BuilDiff performs better than the baseline

(i.e., pre-train AE + regularization, without upsampling),

demonstrating the effect of our upsampler diffusion. Visual-

izations can be found in Fig. 6. Baseline method sometimes

Input image BuilDiff (Ours)

@1024pts

Baseline

@4096pts

BuilDiff (Ours)

@4096pts

Figure 6. The illustration of the effect of our upsampler diffusion.

The reference and predicted point clouds are colored by orange

and blue, respectively.

has difficulty focusing on the basic structure of the buildings

due to too many points to consider, leading to 3D buildings

that are completely unrelated to the input images. In con-

trast, BuilDiff employs a base diffusion model that coarsely

identifies the overall structure of buildings, and then uses an

upsampler diffusion to derive high-resolution point clouds

conditioned on low-resolution point clouds and input im-

ages. Our method can even generate more complete build-

ings than the reference point clouds, for example, the final

results in the last column contain realistic building facades.

5. Conclusions

In this paper, we present a diffusion-based method

BuilDiff for generating 3D point clouds of buildings from

single general-view images. To control the diffusion mod-

els generating 3D shape consistent with the input image, an

image embedding is derived by pre-training a CNN-based

image auto-encoder, which extracts multi-scale features of

buildings and constrains the latent consistency using aug-

mentation. Then, a conditional denoising diffusion network

which takes as input the image embedding and learns to

gradually remove the noise from Gaussian noise distribu-

tion assisted by weighted building footprint-based regular-

ization. A point cloud upsampler diffusion is finally lever-

aged to produce high-resolution point clouds conditioned

on the low-resolution point clouds sampled from the base

diffusion. The effectiveness of the proposed method has

been demonstrated by the experimental results on both syn-

thetic and real-world scenarios. We believe our work could

bridge the rapidly developing generative modeling tech-

niques and the urgent problem of 3D building generation.

2917



References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative

models for 3d point clouds. In International conference on
machine learning, pages 40–49. PMLR, 2018. 2

[2] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:

An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 1, 2

[3] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin

Chen, and Silvio Savarese. 3d-r2n2: A unified approach

for single and multi-view 3d object reconstruction. In Com-
puter Vision–ECCV 2016: 14th European Conference, Am-
sterdam, The Netherlands, October 11-14, 2016, Proceed-
ings, Part VIII 14, pages 628–644. Springer, 2016. 2

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 3

[5] Prafulla Dhariwal and Alexander Nichol. Diffusion models

beat gans on image synthesis. Advances in Neural Informa-
tion Processing Systems, 34:8780–8794, 2021. 3

[6] Liuyun Duan and Florent Lafarge. Towards large-scale city

reconstruction from satellites. In Computer Vision–ECCV
2016: 14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part V 14, pages

89–104. Springer, 2016. 1

[7] Shivam Duggal and Deepak Pathak. Topologically-aware de-

formation fields for single-view 3d reconstruction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1536–1546, 2022. 2

[8] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set

generation network for 3d object reconstruction from a single

image. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 605–613, 2017. 1, 2,

5, 6

[9] Matheus Gadelha, Rui Wang, and Subhransu Maji. Multires-

olution tree networks for 3d point cloud processing. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 103–118, 2018. 1, 2, 6, 7

[10] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial networks. arXiv
preprint arXiv:1406.2661, 2014. 1, 2

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 3

[12] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-

sion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020. 1, 2

[13] Jonathan Ho and Tim Salimans. Classifier-free diffusion

guidance. arXiv preprint arXiv:2207.12598, 2022. 3, 4

[14] Qingyong Hu, Bo Yang, Sheikh Khalid, Wen Xiao, Niki

Trigoni, and Andrew Markham. Towards semantic segmen-

tation of urban-scale 3d point clouds: A dataset, benchmarks

and challenges. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 4977–

4987, 2021. 1

[15] Diederik P Kingma and Max Welling. Auto-encoding varia-

tional bayes. arXiv preprint arXiv:1312.6114, 2013. 1, 2

[16] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen

Koltun. Tanks and temples: Benchmarking large-scale

scene reconstruction. ACM Transactions on Graphics (ToG),
36(4):1–13, 2017. 5

[17] Weijia Li, Lingxuan Meng, Jinwang Wang, Conghui He,

Gui-Song Xia, and Dahua Lin. 3d building reconstruction

from monocular remote sensing images. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 12548–12557, 2021. 1, 2

[18] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-

voxel cnn for efficient 3d deep learning. Advances in Neural
Information Processing Systems, 32, 2019. 4

[19] Shitong Luo and Wei Hu. Diffusion probabilistic models for

3d point cloud generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 2837–2845, 2021. 2

[20] Jisan Mahmud, True Price, Akash Bapat, and Jan-Michael

Frahm. Boundary-aware 3d building reconstruction from a

single overhead image. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 441–451, 2020. 1, 2

[21] Luke Melas-Kyriazi, Christian Rupprecht, and Andrea
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