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A B S T R A C T

The Asymmetric Inclusion Process (ASIP) tandem queue is a model of stations in series with a
gate after each station. At a gate opening, all customers in that station instantaneously move to
the next station unidirectionally. In our study, we enhance the ASIP model by introducing the
capability for individual customers to independently move from one station to the next, and
by allowing both individual customers and batches of customers from any station to exit the
system. The model is inspired by the process by which macromolecules are transported within
cells.

We present a comprehensive analysis of various aspects of the queue length in the ASIP
tandem model. Specifically, we provide an exact analysis of queue length moments and
correlations and, under certain circumstances, of the queue length distribution. Furthermore, we
propose an approximation for the joint queue length distribution. This approximation is derived
using three different approaches, one of which employs the concept of the replica mean-field
limit. Among other results, our analysis offers insight into the extent to which nutrients can
support the survival of a cell.

1. Introduction

This paper considers a broad class of queues in series, which contains the classical Jackson infinite server tandem queues as
well as the Asymmetric Inclusion Process (ASIP) tandem queues as special cases. The ASIP (see [1–6]) is a recent addition to the
family of tandem stochastic systems (TSSs), which form an important class of stochastic networks that have found widespread use
in various scientific fields.

A TSS comprises a linear stochastic network of relatively simple building blocks, with a stochastic input flow of particles
progressing through a serial array of sites. Particles may represent customers, messages, products, calls, jobs, molecules, nutrients,
etc. TSSs are governed by a set of rules characterizing the system’s law of motion and often exhibit complex stochastic dynamics.
While the isolated behavior of each building block may be well understood, predicting the behavior of the aggregate can be incredibly
challenging. Despite the inherent complexity of TSS analysis, it remains a vital area of study for a host of scientific communities.

Tandem Jackson Networks (TJNs) and the Asymmetric Exclusion Process (ASEP) are two notable examples of TSSs. TJNs are a
sequential array of 𝑛 service stations or sites. External particles arrive at station 1 according to a Poisson process. Each station has an
unlimited buffer size, and particles individually move from station 𝑖 to station 𝑖+1, leaving the system from station 𝑛. Under certain
conditions on the service disciplines at the stations and the service time distributions at each station, the number of customers at
each station are independent, resulting in a product form of the joint queue length distribution. After the pioneering work of R.R.P.
Jackson [7] and J.R. Jackson [8,9], product-form networks were studied extensively, with key contributions in [10,11] and major
applications in computer-communications; see, e.g., [12,13].
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Contrary to TJN, ASEP is a TSS where each site can hold at most a single particle, causing blocking on the (forward) movement
f particles. ASEP is a representation of a one-way driven lattice gas comprising particles that are subject to exclusion interactions.
gas–liquid system can be modeled by means of hard-core particles, which exclude one another within a non-zero range. A further

implification consists of the restriction of the particle coordinates to the vertices of a regular lattice. Moreover, the ratio of the
ard-core radius to the lattice constant can be chosen such that the exclusion is restricted to nearest-neighbor sites, represented
y the ASEP model. This results in congestion throughout the system, making its dynamics extremely complex. ASEP has been
xtensively studied, in particular, in the physics literature [14–16].

ASIP is a TSS that ‘closes the divide’ between TJNs and ASEP. ASIP is referred to as the ‘‘bosonic’’ counterpart of ASEP since the
xclusion principle that sets particles apart in the ASEP is replaced by the inclusion principle that causes them to form inseparable
lusters in ASIP, while particles in both ASEP and ASIP move unidirectionally along a one-dimensional lattice due to random events.
he ASIP’s irreversible tendency for particles to stick together makes it suitable for modeling physical systems whose behavior goes
gainst ASEP’s exclusion principle. ASIP serves, e.g., as a lattice-gas model for unidirectional transport with irreversible aggregation.
n this model’s dynamics, particles move in a unidirectional manner and each site can accommodate an arbitrary number of
articles simultaneously. The inclusion principle allows these particles to form clusters that move together to the next site. ASIP
s characterized by an unbounded buffer capacity and unlimited batch service. This means that at completion of service at a site
ll particles present at that site move as a cluster to the next site. This model can be viewed as a tandem array of growth-collapse
rocesses. Additionally, it finds application in various fields such as road-traffic analysis, where vehicles move forward to the next
raffic light when it turns green, and marine traffic analysis along a canal with locks, like the Panama Canal; see [2] for further
nformation and references therein.

oal and motivation. The goal of the present paper is to study the performance of a tandem ASIP with the following additional
eature: next to the cluster movements when a gate opens, we also allow individual particles to move either to the next queue or
ut of the system. Our motivation for this is twofold. Firstly, we aim to develop and analyze a very general tandem queue that
ontains both the original ASIP as well as 𝑀∕𝑀∕∞ queues in series as special cases. The model thus holds promising potential for

utilization within the field of computer-communications, as well as in domains such as road traffic and physical chemistry. Secondly,
we would like to enhance the ASIP model in such a way that it can represent the so-called Vesicular Transport Hypothesis. This theory
explains how macromolecules, such as proteins, are transported within cells [17]. During the process of vesicular transport, some
of the proteins that are transported within cells can be consumed and degraded, motivating our extension to including consumption
as a new feature to the classical ASIP model.

The Vesicular Transport Hypothesis theory proposes that transport vesicles, small membrane-bound sacs, move cargo between dif-
ferent compartments of a eukaryotic cell, including the endoplasmic reticulum, Golgi apparatus, lysosomes, and plasma membrane.
According to the Vesicular Transport Hypothesis, cargo molecules are packaged into transport vesicles at their site of synthesis and
then transported to the Golgi apparatus, where the cargo is sorted and modified. New vesicles then bud off and transport the cargo to
its final destination. This hypothesis has been supported by numerous experiments, including the visualization of transport vesicles
under electron microscopy and the identification of the proteins that regulate vesicle formation, fusion, and movement [18–21].
Overall, vesicular transport is a dynamic process that involves the movement of proteins between different compartments of the
cell, and some of these proteins may be consumed or secreted during the process.

While in mathematical biology, microbial cell factories is an established approach in bioengineering that considers a cell as a
production facility, the current conventional techniques (which notably led to CRISPR and earlier technologies such as Zinc-finger
nucleases) are very time consuming, are hard to analyze, and typically destroy the cells that is experimented upon. An emerging
area in mathematical biology is to use the experience built in OR in actual production facilities, by proposing suitable queueing
models that support all existing biological experiments for a specific mechanism. In particular, for the Vesicular Transport Hypothesis
theory, observations do show the general behavior of the arrival and transportation of nutrients to and from cells. However, due to
the complexity of this process a stochastic mathematical modeling of it was not analyzed prior, yielding explicit results.

The ASIP model can serve as a mathematical representation of the process of vesicular transport and transport between cells [22].
However, a new property should be introduced to the model, namely, the consumption or degradation of particles in sites during
their stay. Our proposed framework expands the movement of particles between sites in the ASIP model, beyond the conventional
cluster movement, to include individual movement between sites and consumption within sites. By introducing these additional
options, our framework offers a more comprehensive analysis of the ASIP model, enabling the exploration of a wider range of
system behaviors in the family of TSSs with unlimited storage capacity per site, bridging the gap between the two extreme cases
represented by the TJN and classical ASIP models. Including a form of consumption in the ASIP system is a crucial step towards
representing the Vesicular Transport Hypothesis. We obtain exact moment and correlation results for an 𝑛-station ASIP with two
different forms of consumption. One of the relevant questions we answer in the paper is how far down-stream, can nutrients still
sustain a cell.

Main contributions. The main contributions of the paper are: (i) We present a very general framework for TSSs with cluster
movements as well as individual movements. (ii) We show how (joint) moments of any order can be obtained in a recursive way.
(iii) We present an exact analysis of the queue length distribution for 𝑛 = 1 station, and we propose an approximation approach for
queue length distributions for general 𝑛.

We use three different reasonings to arrive at one and the same approximation; one of them is the recently developed Replica
Mean-Field limit approach [23]. The approximation gives exact mean queue lengths at all queues. We furthermore show via
2

asymptotics and numerical plots that, for a wide parameter range, second moments and correlations of queue lengths are quite
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accurately approximated. However, it should be realized that the model contains many parameters which may be totally different
when switching, say, from a road traffic application to a biological cell application. Hence, dependent on the specific application,
one might focus on different approximations or asymptotic regimes.

Organization of the paper. In Section 2, we present and analyze the extended ASIP model, where consumption is being defined by
two different parallel processes: (i) binomial consumption; and (ii) individual consumption. In Sections 3 and 4, we analyze each
of these separate cases. Section 5 contains conclusions and some suggestions for further research.

2. The general model

In this section, we consider the general ASIP tandem model with consumption. We provide the mathematical formulation of the
model in Section 2.1. The balance equations for the steady-state distribution of the numbers of particles/customers at all stations
are presented in Section 2.2, leading to a functional equation for the probability generating function (PGF) of that distribution.
Last, in Section 2.3, we show how that functional equation can be used to obtain moments and cross-correlations for the numbers
of particles at each site.

2.1. Model description

The model under consideration is a system consisting of 𝑛 stations (or queues) in series, with a Poisson(𝜆) arrival process at station
1 and with a gate after each station. Each gate opens after i.i.d. exponentially distributed intervals, at rate 𝜇𝑖 for gate 𝑖, 𝑖 = 1, 2,… , 𝑛.
When gate 𝑖 opens, all particles in station 𝑖 instantaneously move to station 𝑖 + 1, 𝑖 = 1, 2,… , 𝑛 − 1 and the gate immediately closes
again; when gate 𝑛 opens, the particles in station 𝑛 leave the system. We represent the consumption of particles (or, depending on the
application: leakage, abandonment, or service of an individual particle that subsequently leaves the system) in two different ways.
Firstly, at i.i.d. exp(𝜏𝑖) distributed intervals, each individual particle in station 𝑖 leaves the system with probability 1 − 𝑎𝑖 and stays
in station 𝑖 with probability 𝑎𝑖, 𝑖 = 1,… , 𝑛. Hence, if station 𝑖 contains 𝑗𝑖 particles at such an event, a binomially distributed number,
with parameters 𝑗𝑖 and 1 − 𝑎𝑖, leaves station 𝑖. Secondly, each particle in station 𝑖 is consumed after an exponentially distributed
amount of time with rate (1 − 𝑝𝑖)𝜈𝑖, 𝑖 = 1, 2,… , 𝑛. In addition, we assume that each particle in station 𝑖 moves to station 𝑖 + 1 after
an exponentially distributed time with rate 𝑝𝑖𝜈𝑖, 𝑖 = 1, 2,… , 𝑛, where station 𝑛+1 is interpreted as ‘out of the system’. Of course, we
could have introduced some rates 𝜃𝑖 and 𝜁𝑖 instead of (1 − 𝑝𝑖)𝜈𝑖 and 𝑝𝑖𝜈𝑖, but the two different move events of an individual particle
of station 𝑖 will give rise to very similar expressions for the PGF, which we shall combine. Finally, all interarrival times at station
1 and all consumption intervals and gate opening intervals at all stations are assumed to be independent.

Particular parameter choices lead to well-studied models. In particular, taking all 𝜈𝑖 and 𝜏𝑖 equal to zero results in the tandem
ASIP system studied by Reuveni et al. [2]; and taking all 𝜇𝑖, 1−𝑝𝑖 and 𝜏𝑖 equal to zero results in a tandem system of 𝑀∕𝑀∕∞ queues
(cf. [9,10]; and see [24] for the transient joint distribution of queue lengths and residual service times at all stations, for the case of
generally distributed service times). We observe that allowing additional independent Poisson arrival processes at stations 2,… , 𝑛
does not complicate the analysis significantly.

We consider the distribution of particles over the stations in steady state; a steady-state distribution obviously exists in view of
the unlimited capacity of the gates to transport particles.

2.2. Balance equations

Let 𝑝(𝑗1, 𝑗2,… , 𝑗𝑛) denote the steady state probability of having 𝑗1, 𝑗2,… , 𝑗𝑛 particles in stations 1, 2,… , 𝑛. It is readily verified
that the balance equations for the case of 𝑛 stations in series are given by (with 𝐼(⋅) an indicator function):

[𝜆 +
𝑛
∑

𝑖=1
𝑗𝑖𝜈𝑖 +

𝑛
∑

𝑖=1
𝜏𝑖 +

𝑛
∑

𝑖=1
𝜇𝑖]𝑝(𝑗1,… , 𝑗𝑛) = 𝜆𝑝(𝑗1 − 1, 𝑗2,… , 𝑗𝑛)𝐼(𝑗1 > 0)

+
𝑛
∑

𝑖=1
(𝑗𝑖 + 1)𝜈𝑖[(1 − 𝑝𝑖)𝑝(𝑗1,… , 𝑗𝑖−1, 𝑗𝑖 + 1, 𝑗𝑖+1,… , 𝑗𝑛)

+ 𝑝𝑖𝑝(𝑗1,… , 𝑗𝑖−1, 𝑗𝑖 + 1, 𝑗𝑖+1 − 1,… , 𝑗𝑛)𝐼(𝑗𝑖+1 > 0)]

+
𝑛
∑

𝑖=1
𝜏𝑖

∞
∑

𝑘=0
𝑝(𝑗1,… , 𝑗𝑖 + 𝑘, 𝑗𝑖+1,… , 𝑗𝑛)

(

𝑘 + 𝑗𝑖
𝑘

)

𝑎𝑗𝑖𝑖 (1 − 𝑎𝑖)𝑘

+
𝑛−1
∑

𝑖=1
𝜇𝑖

𝑗𝑖+1
∑

𝑘=0
𝑝(𝑗1,… , 𝑗𝑖−1, 𝑘, 𝑗𝑖+1 − 𝑘, 𝑗𝑖+2,… , 𝑗𝑛)𝐼(𝑗𝑖 = 0)

+ 𝜇𝑛
∞
∑

𝑘=0
𝑝(𝑗1,… , 𝑗𝑛−1, 𝑘)𝐼(𝑗𝑛 = 0). (1)

Let 𝑋1,… , 𝑋𝑛 denote the steady-state numbers of particles in stations 1,… , 𝑛. Denote their PGF as

𝑃 (𝑧 ,… , 𝑧 ) ∶= E[𝑧𝑋1 … 𝑧𝑋𝑛 ].
3
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It easily follows from (1) that

[𝜆 +
𝑛
∑

𝑖=1
𝜏𝑖 +

𝑛
∑

𝑖=1
𝜇𝑖]𝑃 (𝑧1,… , 𝑧𝑛) +

𝑛
∑

𝑖=1
𝜈𝑖𝑧𝑖

𝜕
𝜕𝑧𝑖

𝑃 (𝑧1,… , 𝑧𝑛)

= 𝜆𝑧1𝑃 (𝑧1,… , 𝑧𝑛) +
𝑛−1
∑

𝑖=1
[(1 − 𝑝𝑖)𝜈𝑖 + 𝑝𝑖𝜈𝑖𝑧𝑖+1]

𝜕
𝜕𝑧𝑖

𝑃 (𝑧1,… , 𝑧𝑛) + 𝜈𝑛
𝜕
𝜕𝑧𝑛

𝑃 (𝑧1,… , 𝑧𝑛)

+
𝑛
∑

𝑖=1
𝜏𝑖𝑃 (𝑧1,… , 𝑧𝑖−1, 𝑎𝑖𝑧𝑖 + 1 − 𝑎𝑖, 𝑧𝑖+1,… , 𝑧𝑛)

+
𝑛−1
∑

𝑖=1
𝜇𝑖𝑃 (𝑧1,… , 𝑧𝑖−1, 𝑧𝑖+1, 𝑧𝑖+1, 𝑧𝑖+2,… , 𝑧𝑛) + 𝜇𝑛𝑃 (𝑧1,… , 𝑧𝑛−1, 1), (2)

nd hence

[𝜆(1 − 𝑧1) +
𝑛
∑

𝑖=1
𝜏𝑖 +

𝑛
∑

𝑖=1
𝜇𝑖]𝑃 (𝑧1,… , 𝑧𝑛)

=
𝑛−1
∑

𝑖=1
𝜈𝑖[(1 − 𝑝𝑖)(1 − 𝑧𝑖) + 𝑝𝑖(𝑧𝑖+1 − 𝑧𝑖)]

𝜕
𝜕𝑧𝑖

𝑃 (𝑧1,… , 𝑧𝑛) + 𝜈𝑛(1 − 𝑧𝑛)
𝜕
𝜕𝑧𝑛

𝑃 (𝑧1,… , 𝑧𝑛)

+
𝑛
∑

𝑖=1
𝜏𝑖𝑃 (𝑧1,… , 𝑧𝑖−1, 𝑎𝑖𝑧𝑖 + 1 − 𝑎𝑖, 𝑧𝑖+1,… , 𝑧𝑛)

+
𝑛−1
∑

𝑖=1
𝜇𝑖𝑃 (𝑧1,… , 𝑧𝑖−1, 𝑧𝑖+1, 𝑧𝑖+1, 𝑧𝑖+2,… , 𝑧𝑛) + 𝜇𝑛𝑃 (𝑧1,… , 𝑧𝑛−1, 1). (3)

2.3. Moments

Define

𝑚(𝑘1 ,𝑘2 ,…,𝑘𝑛) =
𝑑𝑘1

𝑑𝑧𝑘11
⋯

𝑑𝑘𝑛

𝑑𝑧𝑘𝑛𝑛
𝑃 (𝑧1, 𝑧2,… , 𝑧𝑛)|𝑧1=𝑧2=⋯=𝑧𝑛=1

. (4)

Then we have from (3), by taking derivatives with respect to all the variables and subsequently taking 𝑧1 = ⋯ = 𝑧𝑛 = 1, that
( 𝑛
∑

𝑖=1
𝜏𝑖 +

𝑛
∑

𝑖=1
𝜇𝑖

)

𝑚(𝑘1 ,𝑘2 ,…,𝑘𝑛) = 𝑘1𝜆𝑚(𝑘1−1,𝑘2 ,…,𝑘𝑛)𝐼(𝑘1 > 0) −

( 𝑛
∑

𝑖=1
𝑘𝑖𝜈𝑖

)

𝑚(𝑘1 ,𝑘2 ,…,𝑘𝑛)

+
𝑛−1
∑

𝑖=1
𝑝𝑖𝜈𝑖𝑘𝑖+1𝑚(𝑘1 ,…,𝑘𝑖−1 ,𝑘𝑖+1,𝑘𝑖+1−1,𝑘𝑖+2 ,…,𝑘𝑛)𝐼(𝑘𝑖+1 > 0) +

( 𝑛
∑

𝑖=1
𝜏𝑖𝑎

𝑘𝑖
𝑖

)

𝑚(𝑘1 ,𝑘2 ,…,𝑘𝑛)

+
𝑛−1
∑

𝑖=1
𝜇𝑖

𝑘𝑖+1
∑

𝑗=0

(

𝑘𝑖+1
𝑗

)

𝑚(𝑘1 ,…,𝑘𝑖−1 ,𝑗,𝑘𝑖+1−𝑗,𝑘𝑖+2 ,…,𝑘𝑛)𝐼(𝑘𝑖 = 0) + 𝜇𝑛𝑚(𝑘1 ,𝑘2 ,…,𝑘𝑛)𝐼(𝑘𝑛 = 0). (5)

Eq. (5) can be used to recursively find (joint) factorial moments of the random variables 𝑋1, 𝑋2,… , 𝑋𝑛. In the sequel, we
illustrate this for a number of cases. Let us start with all the factorial moments of the random variable 𝑋1. Define 𝑚(𝑘)

1 = 𝑚(𝑘,0,…,0) =
E
(

∏𝑘−1
𝑖=0 (𝑋1 − 𝑖)

)

, with by definition 𝑚(0)
1 = 1. From (5), we have that

𝑚(𝑘)
1 =

𝑘𝜆𝑚(𝑘−1)
1

𝜇1 + 𝑘𝜈1 + 𝜏1(1 − 𝑎𝑘1)
, 𝑘 = 1, 2,… , (6)

and hence

𝑚(𝑘)
1 = 𝑘!𝜆𝑘

∏𝑘
𝑗=1

(

𝜇1 + 𝑗𝜈1 + 𝜏1(1 − 𝑎𝑗1)
) . (7)

Next we obtain the first moment of all the random variables 𝑋1, 𝑋2,… , 𝑋𝑛. We already have from (7) that

E𝑋1 =
𝜆

𝜇1 + 𝜈1 + 𝜏1(1 − 𝑎1)
. (8)

Taking 𝑘𝑗 = 1 and 𝑘𝑖 = 0 for 𝑖 ≠ 𝑗 in (5) yields

(𝜇𝑗 + 𝜈𝑗 + 𝜏𝑗 (1 − 𝑎𝑗 ))E𝑋𝑗 = (𝜇𝑗−1 + 𝜈𝑗−1𝑝𝑗−1)E𝑋𝑗−1, 𝑗 = 2,… , 𝑛, (9)

and hence

E𝑋𝑖 =
𝜆

𝜇1 + 𝜈1 + 𝜏1(1 − 𝑎1)

𝑖
∏

𝑗=2

𝜇𝑗−1 + 𝜈𝑗−1𝑝𝑗−1
𝜇𝑗 + 𝜈𝑗 + 𝜏𝑗 (1 − 𝑎𝑗 )

, 𝑖 = 2,… , 𝑛. (10)
4



Performance Evaluation 163 (2024) 102380Y. Yeger et al.

w
E

T

T

R
e
b

u

T
b
c
s
E
r

Remark 1. Observe that (8) (rewritten as (𝜇1 + 𝜈1 + 𝜏1(1 − 𝑎1))E𝑋1 = 𝜆) and (9) are flow balance equations: they equate the
steady-state flow out of a station and the steady-state flow into that same station.

Remark 2. If 𝜇𝑗 = 𝜇, 𝜈𝑗 = 𝜈, 𝑝𝑗 = 𝑝, 𝜏𝑗 = 𝜏 and 𝑎𝑗 = 𝑎 for all 𝑗 = 1,… , 𝑛, then E𝑋𝑖 = 𝜆
𝜇+𝜈+𝜏(1−𝑎) (

𝜇+𝜈𝑝
𝜇+𝜈+𝜏(1−𝑎) )

𝑖−1. If the mean

number of particles should stay above a critical value 𝐶 for a cell to be in good shape, then apparently 𝑖 should be smaller than
ln(𝜆∕(𝐶[𝜇 + 𝜈𝑝]))∕ ln( 𝜇+𝜈+𝜏(1−𝑎)𝜇+𝜈𝑝 ).

We next turn to the (joint) factorial moments E𝑋𝑖(𝑋𝑖 − 1) and E𝑋𝑖𝑋𝑗 . We already have from (6) that

E𝑋1(𝑋1 − 1) =
2𝜆E𝑋1

𝜇1 + 2𝜈1 + 𝜏1(1 − 𝑎21)
, (11)

and hence

Var(𝑋1) = E𝑋1[
𝜆𝜇1 + 𝜆𝜏1(1 − 𝑎1)2

[𝜇1 + 2𝜈1 + 𝜏1(1 − 𝑎21)][𝜇1 + 𝜈1 + 𝜏1(1 − 𝑎1)]
+ 1]. (12)

Furthermore, (5) with 𝑛 = 2 and 𝑘1 = 𝑘2 = 1 yields:

E𝑋1𝑋2 =
𝜆E𝑋2 + 𝜈1𝑝1E𝑋1(𝑋1 − 1)

𝜇1 + 𝜈1 + 𝜏1(1 − 𝑎1) + 𝜇2 + 𝜈2 + 𝜏2(1 − 𝑎2)

= 𝜆2

[𝜇1 + 𝜈1 + 𝜏1(1 − 𝑎1) + 𝜇2 + 𝜈2 + 𝜏2(1 − 𝑎2)][𝜇1 + 𝜈1 + 𝜏1(1 − 𝑎1)]

×

[

𝜇1 + 𝜈1𝑝1
𝜇2 + 𝜈2 + 𝜏2(1 − 𝑎2)

+
2𝜈1𝑝1

𝜇1 + 2𝜈1 + 𝜏1(1 − 𝑎21)

]

. (13)

We finally obtain the following expression for the covariance of 𝑋1 and 𝑋2:

cov(𝑋1, 𝑋2) = 1
𝜇1 + 𝜈1 + 𝜏1(1 − 𝑎1) + 𝜇2 + 𝜈2 + 𝜏2(1 − 𝑎2)

(14)

×

[

−𝜆2(𝜇1 + 𝜈1𝑝1)
(𝜇1 + 𝜈1 + 𝜏1(1 − 𝑎1))2

+
2𝜆2𝜈1𝑝1

(𝜇1 + 𝜈1 + 𝜏1(1 − 𝑎1))(𝜇1 + 2𝜈1 + 𝜏1(1 − 𝑎21))

]

.

Taking 𝑛 = 2, 𝑘1 = 0 and 𝑘2 = 2 in (5) yields

[𝜇2 + 2𝜈2 + 𝜏2(1 − 𝑎22)]E𝑋2(𝑋2 − 1) = 𝜇1E𝑋1(𝑋1 − 1) + 2(𝜇1 + 𝜈1𝑝1)E𝑋1𝑋2, (15)

here E𝑋1(𝑋1 − 1) is given in (11) and E𝑋1𝑋2 in (13). Var(𝑋2) subsequently follows by adding E𝑋2 − (E𝑋2)2 to the expression for
𝑋2(𝑋2 − 1) obtained in (15). Taking 𝑘𝑖 = 2, for arbitrary 𝑖 ≥ 2, and 𝑘𝑗 = 0 for all 𝑗 ≠ 𝑖 in (5), we obtain:

[𝜇𝑖 + 2𝜈𝑖 + 𝜏𝑖(1 − 𝑎2𝑖 )]E𝑋𝑖(𝑋𝑖 − 1)

= 2(𝜇𝑖−1 + 𝜈𝑖−1𝑝𝑖−1)E𝑋𝑖−1𝑋𝑖 + 𝜇𝑖−1E𝑋𝑖−1(𝑋𝑖−1 − 1). (16)

aking 𝑘𝑖 = 𝑘𝑗 = 1 for arbitrary 𝑖 and 𝑗 with 𝑗 > 𝑖 in (5) and furthermore 𝑘𝓁 = 0 for 𝓁 ≠ 𝑖 and 𝓁 ≠ 𝑗, we obtain:

[𝜇𝑖 + 𝜈𝑖 + 𝜏𝑖(1 − 𝑎𝑖) + 𝜇𝑗 + 𝜈𝑗 + 𝜏𝑗 (1 − 𝑎𝑗 )]E𝑋𝑖𝑋𝑗

= (𝜇𝑖−1 + 𝜈𝑖−1𝑝𝑖−1)E𝑋𝑖−1𝑋𝑗 𝐼(𝑖 > 1) + (𝜇𝑗−1 + 𝜈𝑗−1𝑝𝑗−1)E𝑋𝑖𝑋𝑗−1 𝐼(𝑗 > 𝑖 + 1)

+𝜈𝑖𝑝𝑖E𝑋𝑖(𝑋𝑖 − 1) 𝐼(𝑗 = 𝑖 + 1) + 𝜆E𝑋𝑗 𝐼(𝑖 = 1). (17)

hese relations clearly show how all Var(𝑋𝑖) and cov(𝑋𝑖, 𝑋𝑗) can be derived recursively, starting from Var(𝑋1) and cov(𝑋1, 𝑋2).

emark 3. Observe that Fiems et al. [25] obtain moments for a network that contains the present tandem system as a special case,
xcept that binomial transitions do not fit in their model; they present equations from which transient moments can be obtained,
ut they do not give explicit expressions for stationary moments.

While it would be very interesting to explicitly determine 𝑃 (𝑧1,… , 𝑧𝑛), that seems to be prohibitively hard for the general model
nder consideration in this section. For 𝑛 = 1, with 𝑃 (𝑧) the PGF of the steady-state number of particles in station 1, Eq. (3) becomes

[𝜆(1 − 𝑧) + 𝜏1 + 𝜇1]𝑃 (𝑧) = 𝜈1(1 − 𝑧) d
d𝑧

𝑃 (𝑧) + 𝜏1𝑃 (𝑎1𝑧 + 1 − 𝑎1) + 𝜇1. (18)

his equation corresponds to the equation for the PGF of the steady-state number of customers in the 𝑀∕𝑀∕∞ model with
oth binomial and total catastrophes. This model is a special case of the linear birth/immigration-death process with binomial
atastrophes considered in Kapodistria et al. [26]. There the authors give an expression for the factorial moments of the steady-
tate number of customers and an expression for the steady-state probabilities in terms of these factorial moments. See in particular
quations (7.3), (7.4) and (7.5) in Section 7.1 in [26] where they consider two or more binomial catastrophes (one of them
epresenting the total catastrophes in our case).
5
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Observe that Eq. (18), for the 1-station system only, is an inhomogeneous differential-delay equation. In the next two sections,
e turn our attention to two special cases: (i) the case in which 𝜈𝑖 = 0 ∀𝑖 (which we call ‘binomial consumption’) and (ii) the case

𝜏𝑖 = 0 ∀𝑖 (which we call ‘individual consumption’). For these two cases, we first determine an explicit expression for the PGF 𝑃 (𝑧) for
he 1-station system. The 2-station model with either 𝜏1 = 𝜏2 = 0 or 𝜈1 = 𝜈2 = 0 gives rise to a boundary value problem (cf. [27,28])
hat seems too complicated; however, we propose an approximation for both models that is shown to be very accurate for a large
arameter range and that allows an extension to the 𝑛-station model.

. Binomial consumption

In this section, we consider the general model, with one exception: all 𝜈𝑖 are assumed to be zero. In Section 3.1, we determine
he PGF of the number of particles in the first station. Section 3.2 discusses the model with two stations in series, suggesting three
ifferent approximation ideas – which turn out to lead to the same approximation – for the PGF of the steady-state joint distribution
f particles over the two stations. In Section 3.3, we show how this approximation can be extended to the 𝑛-station case.

.1. The case 𝑛 = 1

In this section, we determine the distribution of the number of particles in station 1 in steady state. Taking 𝜈1 = 0 in (18) shows
hat the PGF 𝑃 (𝑧) ≡ 𝑃 (𝑧, 1,… , 1) satisfies the following recurrence relation:

[𝜆(1 − 𝑧) + 𝜏1 + 𝜇1]𝑃 (𝑧) = 𝜏1𝑃 (𝑎1𝑧 + 1 − 𝑎1) + 𝜇1. (19)

Introducing 𝑞1 ∶=
𝜏1

𝜏1+𝜇1
and 𝑔(𝑧) ∶= 𝜏1+𝜇1

𝜏1+𝜇1+𝜆(1−𝑧)
, we rewrite (19) into

𝑃 (𝑧) = 𝑞1𝑔(𝑧)𝑃 (𝑎1𝑧 + 1 − 𝑎1) + (1 − 𝑞1)𝑔(𝑧). (20)

We solve this equation by iteration, with as first step, defining 𝑓 (𝑧) ∶= 𝑎1𝑧 + 1 − 𝑎1:

𝑃 (𝑧) = (1 − 𝑞1)𝑔(𝑧) + 𝑞1𝑔(𝑧)
[

(1 − 𝑞1)𝑔(𝑓 (𝑧)) + 𝑞1𝑔(𝑓 (𝑧))𝑃 (𝑓 (𝑓 (𝑧)))
]

. (21)

Introducing 𝑓 (0)(𝑧) ∶= 𝑧 and 𝑓 (𝑗)(𝑧) = 𝑓 (𝑓 (𝑗−1)(𝑧)) for 𝑗 = 1, 2,… , it is quickly seen that 𝑓 (𝑗)(𝑧) = 𝑎𝑗1𝑧 + 1 − 𝑎𝑗1, and that continued
iteration of (21) results in

𝑃 (𝑧) = lim
𝑀→∞

𝑀
∑

𝑗=0
(1 − 𝑞1)𝑞

𝑗
1

𝑗
∏

𝑖=0
𝑔(𝑎𝑖1𝑧 + 1 − 𝑎𝑖1) + 𝑃 (𝑎𝑀+1

1 𝑧 + 1 − 𝑎𝑀+1
1 )𝑞𝑀+1

1

𝑀
∏

𝑖=0
𝑔(𝑎𝑖1𝑧 + 1 − 𝑎𝑖1). (22)

The last term clearly converges to zero as all 𝑔(⋅) terms are bounded by one and 𝑃 (𝑎𝑗+11 𝑧 + 1 − 𝑎𝑗+11 ) tends to 𝑃 (1) = 1. For the case
of 𝑛 = 1 and no individual consumption, we have thus proven that the PGF of the steady-state number of particles is given by

𝑃 (𝑧) =
∞
∑

𝑗=0

𝜇1
𝜏1 + 𝜇1

(
𝜏1

𝜏1 + 𝜇1
)𝑗

𝑗
∏

𝑖=0

𝜏1 + 𝜇1
𝜏1 + 𝜇1 + 𝜆𝑎𝑖1(1 − 𝑧)

. (23)

This result can be easily interpreted, realizing that 𝑔(𝑧) is the PGF of the number of Poisson(𝜆) arrivals during an interval that is
exponentially distributed with rate 𝜏1 + 𝜇1. With probability 𝜇1

𝜏1+𝜇1
( 𝜏1
𝜏1+𝜇1

)𝑗 , there are exactly 𝑗 consumption epochs between two

successive gate openings. And in that event, arrivals in all the 𝑗 + 1 intervals between two successive gate openings are binomially
thinned with probabilities 𝑎𝑗1 (for those arriving before the first consumption), 𝑎𝑗−11 ,… , 𝑎01, resulting in those PGF’s 𝜏1+𝜇1

𝜏1+𝜇1+𝜆𝑎𝑖1(1−𝑧)
.

Either from the expression for 𝑃 (𝑧) or from (19), we readily obtain the mean and variance of 𝑋1 (cf. also (8), (11) and (12)):

E𝑋1 =
𝜆

𝜇1 + 𝜏1(1 − 𝑎1)
, (24)

E𝑋1(𝑋1 − 1) = 2𝜆2

(𝜇1 + 𝜏1(1 − 𝑎1))(𝜇1 + 𝜏1(1 − 𝑎21))
, (25)

and hence

Var(𝑋1) =
𝜆

𝜇1 + 𝜏1(1 − 𝑎1)
[

𝜆𝜇1 + 𝜆𝜏1(1 − 𝑎1)2

(𝜇1 + 𝜏1(1 − 𝑎1))(𝜇1 + 𝜏1(1 − 𝑎21))
+ 1]. (26)

3.2. The case 𝑛 = 2

In this section, we discuss the general model with two stations, but without the individual consumption: 𝜈1 = 𝜈2 = 0. It follows
rom (3) that the two-dimensional PGF of the steady-state joint distribution of numbers of particles (𝑋1, 𝑋2) in both stations now is
iven by

[𝜆(1 − 𝑧1) + 𝜏1 + 𝜏2 + 𝜇1 + 𝜇2]𝑃 (𝑧1, 𝑧2)
6

= 𝜏1𝑃 (𝑎1𝑧1 + 1 − 𝑎1, 𝑧2) + 𝜏2𝑃 (𝑧1, 𝑎2𝑧2 + 1 − 𝑎2) + 𝜇1𝑃 (𝑧2, 𝑧2) + 𝜇2𝑃 (𝑧1, 1). (27)
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The 𝑃 (𝑧2, 𝑧2) term makes this recursion very difficult to solve; this even holds for the one-dimensional equation that arises by taking
1 = 1:

[𝜏2 + 𝜇1 + 𝜇2]𝑃 (1, 𝑧2) = 𝜏2𝑃 (1, 𝑎2𝑧2 + 1 − 𝑎2) + 𝜇1𝑃 (𝑧2, 𝑧2) + 𝜇2. (28)

Below we suggest three approximations for the marginal PGF of 𝑋2; they will turn out to amount to the same.

Approximation 1. The arrival process at station 2 is a Poisson(𝜇1) process of batches. By PASTA (Poisson Arrivals See Time Averages),
the PGF of the number of particles in station 1 just before a gate opening is the same as the PGF of the steady-state number of particles
𝑃 (𝑧). Hence, the batch size PGF equals 𝑃 (𝑧). However, the size of a batch entering station 2 is correlated with the length of the
preceding gate opening interval. The approximation that we propose is to ignore that dependence.

Let 𝜋(𝑗) denote the steady-state probability of having 𝑗 particles in the resulting infinite server queue, and denote the (exact)
probability of a batch of size 𝑚 coming from station 1 by 𝐵𝑚. It is easily seen that the balance equations in the resulting infinite
server queue with batch arrivals are given by

[𝜇1 + 𝜏2 + 𝜇2]𝜋(𝑗) = 𝜇1
𝑗
∑

𝑖=0
𝜋(𝑖)𝐵𝑗−𝑖 + 𝜏2

∞
∑

𝑘=0
𝜋(𝑗 + 𝑘)

(

𝑗 + 𝑘
𝑘

)

𝑎𝑗2(1 − 𝑎2)𝑘 + 𝜇2𝐼(𝑗 = 0). (29)

Taking generating functions, with 𝑃 𝑎𝑝𝑝(1, 𝑧) the PGF of 𝜋(𝑗), we obtain the following equation:

[𝜇1(1 − 𝑃 (𝑧)) + 𝜏2 + 𝜇2]𝑃 𝑎𝑝𝑝(1, 𝑧) = 𝜏2𝑃
𝑎𝑝𝑝(1, 𝑎2𝑧 + 1 − 𝑎2) + 𝜇2. (30)

This equation has exactly the same structure as (19), but with the term 𝜆(1−𝑧) replaced by 𝜇1(1−𝑃 (𝑧)). Introducing 𝑓 (𝑧) ∶= 𝑎2𝑧+1−𝑎2,
so that the 𝑗th iterate 𝑓 (𝑗)(𝑧) = 𝑎𝑗2𝑧 + 1 − 𝑎𝑗2 for 𝑗 = 0, 1,… , and following exactly the same iteration procedure as in the previous
section, we obtain the following expression for the approximation of 𝑃 (1, 𝑧):

𝑃 𝑎𝑝𝑝(1, 𝑧) =
∞
∑

𝑗=0

𝜇2
𝜏2 + 𝜇2

(
𝜏2

𝜏2 + 𝜇2
)𝑗

𝑗
∏

𝑖=0

𝜏2 + 𝜇2
𝜏2 + 𝜇2 + 𝜇1(1 − 𝑃 (𝑎𝑖1𝑧 + 1 − 𝑎𝑖1))

. (31)

he interpretation is the same as the one of Eq. (23), with now 𝑔(𝑧) = 𝜏1+𝜇1
𝜏1+𝜇1+𝜆(1−𝑧)

being replaced by 𝜏2+𝜇2
𝜏2+𝜇2+𝜇1(1−𝑃 (𝑧))

, the PGF of the

number of batch arrivals during an interval that is exponentially distributed with rate 𝜏2 + 𝜇2.

Approximation 2. An alternative approach is to assume that 𝑋2 is independent of 𝑋1 – an independence that would hold when
𝜇1 = 0 and also when 𝜇1 → ∞. Under the independence assumption we have 𝑃 (𝑧1, 𝑧2) = 𝑃 (𝑧1, 1)𝑃 (1, 𝑧2), and hence (28) again
educes to (30), with 𝑃 (𝑧2) = 𝑃 (𝑧2, 1) given in (23).

pproximation 3. We now outline yet another approach for obtaining approximations for the ASIP model with consumption, viz.,
he Replica Mean-Field (RMF) limit approach. It emerges that the ordinary mean-field limit approach does not lead to a useful
pproximation, while RMF corroborates the other two approximations we propose. RMF was first suggested for different models
n [23]; see also [29].

To address the issue of correlations and dependencies between different sites in the system, we replicate the ASIP tandem queue
times to create parallel tandem queues with identical intrinsic properties. Specifically, we consider 𝑅 replicas of a 2-site ASIP

andem queue with consumptions, indexed by 𝑟 (1 ≤ 𝑟 ≤ 𝑅). The arrival process to each replica is a Poisson(𝜆) arrival process at the
irst site. Gate 𝑗 in each replica opens after independent and identically, exponentially, distributed intervals at rate 𝜇𝑗 . When the

gate of the first site in replica 𝑟 opens, all particles in that site instantaneously move to the second site in replica 𝑠 (1 ≤ 𝑠 ≤ 𝑅), with
equal probabilities 𝑝𝑟𝑠 = 1

𝑅 . When the gate of the second site in replica 𝑟 opens, all particles in that site instantaneously exit the
eplica, for all 𝑟 = 1, 2,… , 𝑅. Throughout the evolution of the replicas, particles are being consumed in each replica, as described
n the introduction and in previous sections.

Denote by 𝑋𝑟
𝑗 the number of particles in site 𝑗 in the 𝑟th replica. Focusing on transitions that influence the states of the 𝑟th

eplica, the Markovian dynamics in the RMF system leads to

(𝜆 + 𝜏1 + 𝜏2 + 𝜇1(1 +
𝑅 − 1
𝑅

) + 𝜇2)E[𝑧
𝑋𝑟
1

1 𝑧
𝑋𝑟
2

2 ]

= 𝜆𝑧1E[𝑧
𝑋𝑟
1

1 𝑧
𝑋𝑟
2

2 ] +
𝜇1
𝑅

E[𝑧
𝑋𝑟
1+𝑋

𝑟
2

2 ] +
𝜇1(𝑅 − 1)

𝑅
E[𝑧

𝑋𝑟
2

2 ] +
𝑅
∑

𝑠=1,𝑠≠𝑟

𝜇1
𝑅

E[𝑧
𝑋𝑟
1

1 𝑧
𝑋𝑠
1+𝑋

𝑟
2

2 ] + 𝜇2E[𝑧
𝑋𝑟
1

1 ]

+𝜏1E[(𝑎1𝑧1 + 1 − 𝑎1)
𝑋𝑟
1𝑧

𝑋𝑟
2

2 ] + 𝜏2E[𝑧
𝑋𝑟
1

1 (𝑎2𝑧2 + 1 − 𝑎2)
𝑋𝑟
2 ]. (32)

ote that we get a rate of 𝜇1(1 + 𝑅−1
𝑅 ) on the left-hand side because gate openings in other replicas influence the state of the 𝑟th

replica with probability 1
𝑅 . The second and third terms on the right-hand side represent transitions due to gate opening at site 1 in

eplica 𝑟. The second term represents a transfer of particles within the replica itself, whereas the third term represents a transfer
f particles into other replicas. The fourth term on the right-hand side relates to gate openings in other replicas with transfer of
7

articles into replica 𝑟.
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Now, introduce the notation 𝑃𝑟(𝑧1, 𝑧2) = E[𝑧
𝑋𝑟
1

1 𝑧
𝑋𝑟
2

2 ] and 𝑃𝑠(𝑧1, 𝑧2) = E[𝑧
𝑋𝑠
1

1 𝑧
𝑋𝑠
2

2 ]. Taking the limit 𝑅 → ∞, we assume that
he dynamics of replicas become asymptotically independent (this is usually referred to as the ‘Poisson hypothesis’). This yields
[𝑧

𝑋𝑟
1

1 𝑧
𝑋𝑠
1+𝑋

𝑟
2

2 ] = 𝑃𝑟(𝑧1, 𝑧2)𝑃𝑠(𝑧2, 1) and using the fact that 𝑃𝑠(𝑧2, 1) = 𝑃𝑟(𝑧2, 1), we obtain from Eq. (32) the following approximation:

((1 − 𝑧1)𝜆 + 𝜏1 + 𝜏2 + 𝜇1(2 − 𝑃𝑟(𝑧2, 1)) + 𝜇2)𝑃𝑟(𝑧1, 𝑧2)

= 𝜇1𝑃𝑟(1, 𝑧2) + 𝜇2𝑃𝑟(𝑧1, 1) + 𝜏1𝑃𝑟(𝑎1𝑧1 + 1 − 𝑎1, 𝑧2) + 𝜏2𝑃𝑟(𝑧1, 𝑎2𝑧2 + 1 − 𝑎2). (33)

Taking 𝑧1 = 1 reduces this last formula to Eq. (30), which makes sense: replicating the tandem queues infinitely many times and
having equal routing probabilities from all replicas of station 1 to all replicas of station 2 basically amounts to having Poisson arrivals
of batches, where the batch sizes become independent of the gate opening interval at our station 1; it also amounts to independence
of the numbers of particles in stations 1 and 2.

Moments. We now determine (higher) moments for the case 𝑛 = 2. We have that E𝑋1, E𝑋1(𝑋1−1) and Var(𝑋1) are given in Eqs. (24)–
26). Furthermore, E𝑋2, E𝑋1𝑋2 and cov(𝑋1, 𝑋2) are given in Eqs. (10), (13) and (14), and can also be obtained from Eq. (27) by
ifferentiation. In particular,

cov(𝑋1, 𝑋2) = −
𝜆2𝜇1

(𝜇1 + 𝜏1(1 − 𝑎1) + 𝜇2 + 𝜏2(1 − 𝑎2))(𝜇1 + 𝜏1(1 − 𝑎1))2
. (34)

It turns out that, not surprising, 𝑋1 and 𝑋2 are negatively correlated.

Twice differentiating (28), we see that (see also Eq. (15))

[𝜇2 + 𝜏2(1 − 𝑎22)]E𝑋2(𝑋2 − 1) = 𝜇1E𝑋1(𝑋1 − 1) + 2𝜇1E𝑋1𝑋2, (35)

and hence

Var(𝑋2) = 1
𝜇2 + 𝜏2(1 − 𝑎22)

[
2𝜆2𝜇1

(𝜇1 + 𝜏1(1 − 𝑎1))(𝜇1 + 𝜏1(1 − 𝑎21))
(36)

+
2𝜆𝜇1

𝜇1 + 𝜏1(1 − 𝑎1) + 𝜇2 + 𝜏2(1 − 𝑎2)
𝜆

𝜇1 + 𝜏1(1 − 𝑎1)
𝜇1

𝜇2 + 𝜏2(1 − 𝑎2)
]

+
𝜆𝜇1

(𝜇1 + 𝜏1(1 − 𝑎1))(𝜇2 + 𝜏2(1 − 𝑎2))
− (

𝜆𝜇1
(𝜇1 + 𝜏1(1 − 𝑎1))(𝜇2 + 𝜏2(1 − 𝑎2))

)2.

ifferentiating Eq. (30) twice w.r.t. 𝑧2 and taking 𝑧2 = 1 gives

[𝜇2 + 𝜏2(1 − 𝑎22)]E𝑋
𝑎𝑝𝑝
2 (𝑋𝑎𝑝𝑝

2 − 1) = 𝜇1E𝑋1(𝑋1 − 1) + 2𝜇1E𝑋1E𝑋2, (37)

nd thus the difference between E𝑋2(𝑋2−1) and its approximation equals 2𝜇1
𝜇2+𝜏2(1−𝑎22)

cov(𝑋1, 𝑋2), a difference which disappears when
𝑋1 and 𝑋2 are independent.

Remark 4. It is important to observe that the approximation for E𝑋2 is exact in the three approximation approaches. This follows
from the fact that E𝑋1 is exact, combined with the fact that the flow balance Eqs. (9) remain valid under the batch-size independence
(or RMF) assumption. Another way to see it is to observe that replacing 𝑃 (𝑧1, 𝑧2) in (27) by 𝑃 (𝑧1, 1)𝑃 (1, 𝑧2) (Approximation 2) leads
after differentiation to exactly the same relation between E𝑋1 and E𝑋𝑎𝑝𝑝

2 as the one between E𝑋1 and E𝑋2.

emark 5. The previous remark, in combination with (35) and (37), also implies that

E[𝑋2
2 ] − E[(𝑋𝑎𝑝𝑝

2 )2] = Var(𝑋2) − Var(𝑋𝑎𝑝𝑝
2 ) =

2𝜇1
𝜇2 + 𝜏2(1 − 𝑎22)

𝑐𝑜𝑣(𝑋1, 𝑋2). (38)

uality of the approximation. We now consider some parameter choices to investigate the quality of the approximation 𝑃 𝑎𝑝𝑝(1, 𝑧).

ase 1: 𝜇1 ↓ 0. The above formulas reveal that the covariance of 𝑋1 and 𝑋2 tends to zero as 𝜇1. The variance of 𝑋1 tends to a
positive limit, whereas the variance of 𝑋 tends to zero as 𝜇 . Hence, the correlation coefficient tends to zero as

√

𝜇 . Long time
8
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periods between openings of gate 1 enable station 1 to approach steady state, and then the numbers of particles in both stations
ndeed become independent.

ase 2: 𝜇1 → ∞. Now the covariance tends to zero as 1∕𝜇2
1 , whereas the variance of 𝑋1 tends to zero as 1∕𝜇1 and the variance of

2 tends to a constant. Hence, the correlation coefficient tends to zero as 1∕𝜇3∕2
1 .

Case 3: 𝜆 ↓ 0. The covariance tends to zero as 𝜆2, whereas both variances tend to zero as 𝜆; hence, the correlation coefficient tends
to zero as 𝜆.

Case 4: 𝜆 ↑ ∞. cov(𝑋1, 𝑋2), Var(𝑋1) and Var(𝑋2) all grow like 𝜆2. Hence, the correlation coefficient of 𝑋1 and 𝑋2 tends to some
fixed negative constant as 𝜆 ↑ ∞.

Case 5: 𝜏1 = 𝜏2 = 𝜏 → ∞. The above formulas reveal for this case of fast consumption that cov(𝑋1, 𝑋2) tends to zero as 1∕𝜏3, while
Var(𝑋1) and Var(𝑋2) tend to zero as 1∕𝜏 and 1∕𝜏2, respectively. Hence, the correlation coefficient tends to zero as 1∕𝜏3∕2.

Case 6: 𝜏1 = 𝜏2 = 0. This is a classic ASIP case without consumption. For 𝜇1 = 𝜇2 = 𝜇 and 𝜌 = 𝜆∕𝜇 we get for the correlation:
−𝜌∕2

√

(𝜌+1)(2𝜌+1)
, which decreases from zero (for 𝜌 = 0) to −1∕

√

8 (for 𝜌 → ∞); this is in agreement with [2].

Case 7: 𝜇2 → ∞. The covariance and the variance of 𝑋2 tend to zero as 1∕𝜇2, and the variance of 𝑋1 is not influenced by 𝜇2. Hence,
the correlation coefficient tends to zero as 1∕

√

𝜇2.

Case 8: 𝜇2 = 0. There are various non-zero limits.
Finally, we observe that in Cases 1, 3, 5 and 7 (i.e., cases in which the correlation coefficient tends to zero), we have that

Var(𝑋𝑎𝑝𝑝
2 ) tends to zero as fast as Var(𝑋2). In Case 2 (again, the correlation coefficient tends to zero), the exact and approximate

variance of 𝑋2 tend to exactly the same limit as 𝜇1 → ∞.

Correlation between 𝑋1 and 𝑋2 in homogeneous ASIP. Previously, a number of explicit results for expressions within the ASIP system
were derived in several publications, namely [2,30], and [6]. However, due to the computational complexity involved in evaluating
these expressions, the scope of analysis was largely restricted to the homogeneous ASIP model. The homogeneous ASIP system has
been shown to be optimal in terms of various efficiency measures, as demonstrated in [2,5]. In a homogeneous ASIP system, all gates
have exponentially distributed inter-opening times with the same rate 𝜇. We extend our investigation of the correlation between 𝑋1
and 𝑋2 to a homogeneous ASIP with consumption such that all gates have the same opening rate 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑛 = 𝜇, and the
same consumption rate 𝜏1 = 𝜏2 = ⋯ = 𝜏𝑛 = 𝜏 and 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑛 = 𝑎. Under these conditions, Var(𝑋1),Var(𝑋2) and cov(𝑋1, 𝑋2)
become

Var(𝑋1) =
𝜆

𝜇 + 𝜏(1 − 𝑎)
[

𝜆𝜇 + 𝜆𝜏(1 − 𝑎)2

(𝜇 + 𝜏(1 − 𝑎))(𝜇 + 𝜏(1 − 𝑎2))
+ 1], (39)

Var(𝑋2) = 1
𝜇 + 𝜏(1 − 𝑎2)

[

2𝜆2𝜇
(𝜇 + 𝜏(1 − 𝑎))(𝜇 + 𝜏(1 − 𝑎2))

+
2𝜆2𝜇2

2(𝜇 + 𝜏(1 − 𝑎))3

]

+
𝜆𝜇

(𝜇 + 𝜏(1 − 𝑎))2
−

𝜆2𝜇2

(𝜇 + 𝜏(1 − 𝑎))4
, (40)

and respectively

cov(𝑋1, 𝑋2) = −
𝜆2𝜇

2(𝜇 + 𝜏(1 − 𝑎))3
. (41)

Using (39)–(41), the correlation between the first two sites is found to be

Corr(𝑋1, 𝑋2) =
− 𝜆𝜇

2(𝜇+𝜏(1−𝑎))2
√

[ 𝜆𝜇+𝜆𝜏(1−𝑎)2
(𝜇+𝜏(1−𝑎))(𝜇+𝜏(1−𝑎2)) + 1][ 2𝜆𝜇

(𝜇+𝜏(1−𝑎2))2 + 𝜆𝜇2
(𝜇+𝜏(1−𝑎2))(𝜇+𝜏(1−𝑎))2 + 𝜇

𝜇+𝜏(1−𝑎) −
𝜆𝜇2

(𝜇+𝜏(1−𝑎))3 ]
. (42)

In Fig. 1, the comparison between the correlation of 𝑋1 and 𝑋2 as a function of 𝜇 is presented for the parameters 𝜏 and 𝑎 in a
omogeneous ASIP with and without consumption. The correlation between the two sites is depicted for a fixed value of 𝜆 = 1 and
ompared to the correlation in the classic homogeneous ASIP without consumption. When the consumption rate is low, indicated by
mall values of 𝜏, the correlation between the sites converges rapidly towards the correlation observed in the classic ASIP without
onsumption. Moreover, for small values of 𝜇, the correlation tends to overestimate its equivalent value in the classic ASIP. However,
hen the value of 𝜏 is large compared to 𝜇, indicating a high consumption rate relative to the rate of gate openings, the correlation
etween the two sites tends to approach zero. This observation is understandable because during periods of high consumption rates,
substantial number of particles being consumed within their respective sites leads to a reduction in the correlation between them.
9
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Fig. 1. Corr(𝑋1 , 𝑋2) as a function of 𝜇 for the parameters 𝜏 and 𝑎.

3.3. The case of general 𝑛

Taking 𝑧𝑗 = 1 for all 𝑗 unequal to 𝑖 − 1 and 𝑖 in (3) (with 𝑖 ≥ 3), and assuming that the number of customers at station 𝑖 − 2 is
independent of the numbers at the two stations 𝑖−1 and 𝑖, we obtain the following equation for the PGF 𝑅(𝑧𝑖−1, 𝑧𝑖) of the steady-state
joint distribution of numbers of particles (𝑋𝑖−1, 𝑋𝑖) in stations 𝑖 − 1 and 𝑖:

[𝜇𝑖−2(1 − E𝑧𝑋𝑖−2
𝑖−1 ) + 𝜏𝑖−1 + 𝜏𝑖 + 𝜇𝑖−1 + 𝜇𝑖]𝑅(𝑧𝑖−1, 𝑧𝑖) = 𝜏𝑖−1𝑅(𝑎𝑖−1𝑧𝑖−1 + 1 − 𝑎𝑖−1, 𝑧𝑖)

+𝜏𝑖𝑅(𝑧𝑖−1, 𝑎𝑖𝑧𝑖 + 1 − 𝑎𝑖) + 𝜇𝑖−1𝑅(𝑧𝑖, 𝑧𝑖) + 𝜇𝑖𝑅(𝑧𝑖−1, 1). (43)

This equation has the same structure as (27) for the two-station tandem queue, but with the term 𝜆(1 − 𝑧1) in the left-hand side
being replaced by 𝜇𝑖−2(1 − E𝑧𝑋𝑖−2

𝑖−1 ), representing batch arrivals from station 𝑖 − 2. If subsequently we focus on station 𝑖 and once
again employ the independence assumption (now between the numbers at stations 𝑖 − 1 and 𝑖), we get a recursion of exactly the
same form as Eqs. (19) and (30): with 𝑅𝑖−1(⋅) the already obtained approximate PGF of the number of particles in station 𝑖− 1, and
𝑅𝑖(⋅) the PGF of the number of particles in station 𝑖, the independence assumption yields

[𝜇𝑖−1(1 − 𝑅𝑖−1(𝑧𝑖)) + 𝜏𝑖 + 𝜇𝑖]𝑅𝑖(𝑧𝑖) = 𝜏𝑖𝑅𝑖(𝑎𝑖𝑧𝑖 + 1 − 𝑎𝑖) + 𝜇𝑖. (44)

This implies that successive applications of the independence assumption each time result to the same recursion, but with different
parameters and the 𝑅𝑖−1(𝑧𝑖) obtained in the preceding step. The solution of such a recursion is already provided in Eq. (31). Last, we
observe that this approximation gives the exact mean queue length at each queue, as can be seen using either of the two reasonings
in Remark 4.

4. Individual consumption

In this section, we consider the general model, again with one exception: now all 𝜏𝑖 are assumed to be zero (no binomial
consumption). In Section 4.1, we determine the PGF of the number of particles in the first station. Section 4.2 discusses the model
with two stations in series, applying the same approximation ideas as in the previous section for the PGF of the steady-state joint
distribution of particles over the two stations. They again lead to the same approximation. In Section 4.3, we show how this
approximation can be extended to the 𝑛-station case.

4.1. The case 𝑛 = 1

In this section, we determine the distribution of the number of particles in station 1 in steady state. We do this in two different
ways. First, we use (3) to conclude that 𝑃 (𝑧) ≡ 𝑃 (𝑧, 1,… , 1) satisfies the following first-order inhomogeneous differential equation
(this equation was already studied by Jenneskens [22]):

d
d𝑧

𝑃 (𝑧) = ( 𝜆
𝜈1

+
𝜇1

𝜈1(1 − 𝑧)
)𝑃 (𝑧) −

𝜇1
𝜈1(1 − 𝑧)

. (45)

This equation corresponds to the equation for the PGF of the steady-state number of customers in the 𝑀∕𝑀∕∞ model with only
total catastrophes. This model is a special case of the immigration/birth–death process with total catastrophes considered in Chao
and Zheng [31]. Formulas (35) and (56) in [31] correspond to our formulas (47) and (48) below.

A straightforward application of the variation of constants method, with boundary condition 𝑃 (1) = 1, yields:

𝑃 (𝑧) = e
− 𝜆

𝜈1
(1−𝑧)

∫

1

𝑧

𝜇1
𝜈1

(1 − 𝑡)
𝜇1
𝜈1

−1

𝜇1
e

𝜆
𝜈1

(1−𝑡)
d𝑡. (46)
10
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Using the substitution 𝑦 = 1−𝑡
1−𝑧 we rewrite this into

𝑃 (𝑧) = ∫

1

0

𝜇1
𝜈1

𝑦
𝜇1
𝜈1

−1
e
− 𝜆

𝜈1
(1−𝑦)(1−𝑧)

d𝑦. (47)

Recognizing that e−𝛾(1−𝑧) is the PGF of a Poisson(𝛾) distributed random variable, we can invert to obtain the steady-state queue
length distribution:

𝑝(𝑗) = ∫

1

0

𝜇1
𝜈1

𝑦
𝜇1
𝜈1

−1 (
𝜆
𝜈1
(1 − 𝑦))𝑗

𝑗!
e
− 𝜆

𝜈1
(1−𝑦)

d𝑦, 𝑗 = 0, 1,… (48)

We now provide a completely different derivation of this theorem. It is based on the observation that, by the PASTA principle, 𝑝(𝑗)
also equals the distribution of the number of particles in station 1 immediately before a gate opening. Considering one (regenerative)
interval between two successive gate openings of station 1, this station behaves as an 𝑀∕𝑀∕∞ queue with arrival rate 𝜆 and
ervice rate 𝜈1, starting empty. It is well known, and readily seen, that the number of customers 𝑋(𝑡) in an initially empty 𝑀∕𝐺∕∞
ueue with service time distribution 𝐺(⋅) (for which we shall later take the exp(𝜈1) distribution) is Poisson distributed with rate
𝑡 ∫ 𝑡

0 (1 − 𝐺(𝑡 − 𝑢)) d𝑢𝑡 = 𝜆 ∫ 𝑡
0 (1 − 𝐺(𝑢))d𝑢. This can, e.g., be understood by realizing that the initial Poisson arrival process is thinned,

with thinning probability ∫ 𝑡
0 (1−𝐺(𝑡−𝑢)) d𝑢𝑡 . Put differently, if there are 𝑘 arrivals at station 1 in [0, 𝑡], then these arrivals are uniformly

distributed over [0, 𝑡]; and an arbitrary arrival then is still present with the above thinning probability.
Now consider the number of customers 𝑋(𝑇 ) at the time 𝑇 ∼ exp(𝜇1) of the first gate opening of station 1. Then

𝑝(𝑗) = P(𝑋(𝑇 ) = 𝑗) = ∫

∞

0
𝜇1e−𝜇1𝑡

(𝜆 ∫ 𝑡
0 (1 − 𝐺(𝑢))d𝑢)𝑗

𝑗!
e−𝜆 ∫

𝑡
0 (1−𝐺(𝑢))d𝑢d𝑡. (49)

estricting ourselves to 1 − 𝐺(𝑡) = e−𝜈1𝑡, and introducing the transform 𝑦 ∶= e−𝜈1𝑡, we readily retrieve (48).
Using that the mean of a Poisson(𝛾) distribution equals 𝛾, it follows that the mean number of customers (for the case of general

(⋅)) equals

E𝑋(𝑇 ) =
∞
∑

𝑗=0
𝑗𝑝(𝑗) = ∫

∞

0
𝜇1e−𝜇1𝑡𝜆∫

𝑡

0
(1 − 𝐺(𝑢))d𝑢d𝑡 = 𝜆∫

∞

0
(1 − 𝐺(𝑢))e−𝜇1𝑢d𝑢. (50)

he last equality follows by swapping integrals. With 𝐺 a generic service time and 𝐸 a generic exp(𝜇1) distributed random variable,
e can rewrite this mean as follows:

E𝑋(𝑇 ) = 𝜆
𝜇1 ∫

∞

0
(1 − 𝐺(𝑢))𝜇1e−𝜇1𝑢d𝑢 = 𝜆

𝜇1
P(𝐺 > 𝐸). (51)

This formula has an obvious interpretation: There are on average 𝜆∕𝜇1 arrivals per gate interval, and an arbitrary arrival has
probability P(𝐺 > 𝐸) to be still present when the gate opens. When 1 − 𝐺(𝑡) = e−𝜈1𝑡, (51) reduces to (8) (with 𝜏1 = 0).

emark 6. Let us restrict ourselves again to the exp(𝜈1) service time distribution. Next to the mean E𝑋(𝑇 ) (which equals E𝑋1
ecause of PASTA), one can also obtain the variance of 𝑋(𝑇 ) (which equals Var(𝑋1)):

Var(𝑋(𝑇 )) = Var𝑋1 =
𝜆

𝜇1 + 𝜈1

𝜆𝜇1 + (𝜇1 + 𝜈1)(𝜇1 + 2𝜈1)
(𝜇1 + 𝜈1)(𝜇1 + 2𝜈1)

. (52)

This result also follows from (12) by taking 𝜏1 = 0. Notice that the variance is larger than the mean, whereas it would be equal to
the mean for a Poisson distributed random variable; Formula (48) shows that 𝑋(𝑇 ) is randomized Poisson( 𝜆

𝜈1
(1 − 𝑌 )) distributed,

where P(𝑌 < 𝑦) = 𝑦
𝜇1
𝜈1 for 0 ≤ 𝑦 ≤ 1.

4.2. The case 𝑛 = 2

In this section, we discuss the general model with two stations. It follows from (3) that the two-dimensional PGF of the
steady-state joint distribution of numbers of particles (𝑋1, 𝑋2) in both stations is given by

[𝜆(1 − 𝑧1) + 𝜇1 + 𝜇2]𝑃 (𝑧1, 𝑧2) = 𝜈1[(1 − 𝑝1)(1 − 𝑧1) + 𝑝1(𝑧2 − 𝑧1)]
𝜕
𝜕𝑧1

𝑃 (𝑧1, 𝑧2)

+𝜈2(1 − 𝑧2)
𝜕
𝜕𝑧2

𝑃 (𝑧1, 𝑧2) + 𝜇1𝑃 (𝑧2, 𝑧2) + 𝜇2𝑃 (𝑧1, 1). (53)

he 𝑃 (𝑧2, 𝑧2) term makes this partial differential equation prohibitively difficult to solve. That even seems to hold for the
ne-dimensional differential equation that arises by taking 𝑧1 = 1:

[𝜇1 + 𝜇2]𝑃 (1, 𝑧2) = 𝜈1𝑝1(𝑧2 − 1) 𝜕
𝜕𝑧1

𝑃 (𝑧1, 𝑧2)|𝑧1=1 + 𝜈2(1 − 𝑧2)
d
d𝑧2

𝑃 (1, 𝑧2) + 𝜇1𝑃 (𝑧2, 𝑧2) + 𝜇2. (54)

Below we apply the same approximation ideas as suggested in the previous section, to approximate the marginal PGF of 𝑋2;
gain, they lead to the same equation. This time we firstly assume that 𝑋2 is independent of 𝑋1. This independence would hold
11

hen 𝜇1 = 0; a model of two infinite-server queues in series (with a gate at the second one) results, for which it is known that the
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steady-state queue length in the second queue of infinite-server queues in series does not depend on the queue length of the first
queue. When 𝜇1 = ∞, the queue lengths are also independent, as then 𝑋1 ≡ 0. At the end of the section, we investigate the accuracy
of the independence assumption in much more detail.

Under the independence assumption we have 𝑃 (𝑧1, 𝑧2) = 𝑃 (𝑧1, 1)𝑃 (1, 𝑧2), and hence, with 𝑃 (𝑧2) = 𝑃 (𝑧2, 1) given in (47),

d
d𝑧2

𝑃 (1, 𝑧2) =
𝜈1𝑝1
𝜈2

E𝑋1𝑃 (1, 𝑧2) + [
𝜇1(1 − 𝑃 (𝑧2))
𝜈2(1 − 𝑧2)

+
𝜇2

𝜈2(1 − 𝑧2)
]𝑃 (1, 𝑧2) −

𝜇2
𝜈2(1 − 𝑧2)

. (55)

olving this differential equation, with boundary condition 𝑃 (1, 1) = 1, gives the following approximation for 𝑃 (1, 𝑧2):

𝑃 𝑎𝑝𝑝(1, 𝑧2) = ∫

1

𝑧2

𝜇2
𝜈2

(1 − 𝑡)
𝜇2
𝜈2

−1

(1 − 𝑧2)
𝜇2
𝜈2

e
𝜇1
𝜈2

∫ 𝑧2
𝑡

1−𝑃 (𝑣)
1−𝑣 d𝑣

e
𝜈1𝑝1
𝜈2

E𝑋1(𝑧2−𝑡)d𝑡. (56)

Application of l’Hôpital confirms that this expression indeed satisfies 𝑃 (1, 1) = 1.
For our second approximation approach, we observe the following. The arrival process at station 2 is a sum of individual arrivals

and arrivals of batches; the latter have PGF 𝑃 (𝑧) = 𝑃 (𝑧, 1) as given in Eq. (47) and occur according to a Poisson process with rate 𝜇1.
However, the size of a batch is correlated with the length of the preceding gate opening. It implies that we cannot apply the same
solution procedure as for the 1-station case of the previous section: if there are 𝑘 batch arrivals at station 2 between two successive
gate openings of that station, then we need to take the interarrival times of those batches into account instead of just reasoning that
each batch arrival is uniformly distributed in the interval between those two gate openings. The approximation that we propose
again is to ignore the dependence between the size of a batch and the preceding interarrival time. In addition, we assume that
individual arrivals to station 2 occur according to a Poisson process with rate 𝜈1𝑝1E𝑋1 = 𝜈1𝑝1

𝜆
𝜇1+𝜈1

. It is easily seen that the balance
quations for the steady-state probability 𝜋(𝑗) of having 𝑗 particles in the resulting infinite server queue for all 𝑗 = 0, 1,… are given
y

[𝜈1𝑝1E𝑋1 + 𝜇1 + 𝑗𝜈2 + 𝜇2𝐼(𝑗 > 0)]𝜋(𝑗) = 𝜈1𝑝1E𝑋1𝜋(𝑗 − 1) + 𝜇1
𝑗−1
∑

𝑘=0
𝜋(𝑘)𝑝(𝑗 − 𝑘)𝐼(𝑗 > 0)

+(𝑗 + 1)𝜈2𝜋(𝑗 + 1) + 𝜇2
∞
∑

𝑘=1
𝜋(𝑘)𝐼(𝑗 = 0), (57)

ith 𝑝(𝑗) the probability of a batch arrival having size 𝑗. With 𝛱(𝑧) the PGF of the 𝜋(𝑗) and 𝑃 (𝑧) the PGF of the 𝑝(𝑗) (as given
n Eq. (47)), we obtain that 𝛱(𝑧) satisfies the following differential equation, with boundary condition 𝛱(1) = 1:

d
d𝑧

𝛱(𝑧) =
𝜈1𝑝1
𝜈2

E𝑋1𝛱(𝑧) + [
𝜇1(1 − 𝑃 (𝑧))
𝜈2(1 − 𝑧)

+
𝜇2

𝜈2(1 − 𝑧)
]𝛱(𝑧) −

𝜇2
𝜈2(1 − 𝑧)

. (58)

Comparison with (55) reveals that this is exactly the same differential equation. In other words: both approximations 1 and 2 amount
to the same. The second approximation apparently implies that the two numbers of particles become independent.

Moments. Below we determine higher moments for the case 𝑛 = 2. We see that E𝑋1 and E𝑋2 are given in Eqs. (8) and (10)
ith 𝜏1 = 𝜏2 = 0 respectively, while Var(𝑋1) is given in Eq. (12). Incidentally, just like in Remark 4, it can be readily seen that
ifferentiating 𝑃 𝑎𝑝𝑝(1, 𝑧2) gives the exact mean queue length at station 2.

Differentiating (53) w.r.t. both 𝑧1 and 𝑧2 and taking 𝑧1 = 𝑧2 = 1 yields

(𝜇1 + 𝜇2 + 𝜈1 + 𝜈2)E𝑋1𝑋2 = 𝜆E𝑋2 + 𝜈1𝑝1E𝑋1(𝑋1 − 1), (59)

nd hence

E𝑋1𝑋2 =
𝜆2

𝜇1 + 𝜈1 + 𝜇2 + 𝜈2

[

1
𝜇2 + 𝜈2

𝜇1 + 𝜈1𝑝1
𝜇1 + 𝜈1

+
2𝜈1𝑝1

(𝜇1 + 𝜈1)(𝜇1 + 2𝜈1)

]

, (60)

and finally

cov(𝑋1, 𝑋2) = 𝜆2

(𝜇1 + 𝜈1 + 𝜇2 + 𝜈2)(𝜇1 + 𝜈1)
[
𝜇1 + 𝜈1𝑝1
𝜇2 + 𝜈2

+
2𝜈1𝑝1

𝜇1 + 2𝜈1
]

− 𝜆2

(𝜇1 + 𝜈1)(𝜇2 + 𝜈2)
𝜇1 + 𝜈1𝑝1
𝜇1 + 𝜈1

= −
𝜆2𝜇1

(𝜇1 + 𝜈1 + 𝜇2 + 𝜈2)(𝜇1 + 𝜈1)2
𝜇1 + 2𝜈1 − 𝜈1𝑝1

𝜇1 + 2𝜈1
. (61)

This covariance, which could also have been derived from (14) by taking 𝜏1 = 𝜏2 = 0, is non-positive, and becomes zero if 𝜇1 = 0.
The negative correlation makes sense, because a relatively large number of particles in station 1 typically suggests that the last
gate opening from station 1 occurred relatively long ago, leading to relatively few particles in station 2. The zero correlation when
urthermore 𝜇1 = 0 also makes sense, because 𝜇1 = 0 corresponds to the first station being an ordinary infinite-server queue without
ate openings.

Differentiating (54) twice w.r.t. 𝑧2 and taking 𝑧2 = 1 yields
12

(𝜇2 + 2𝜈2)E𝑋2(𝑋2 − 1) = 𝜇1E𝑋1(𝑋1 − 1) + 2(𝜇1 + 𝜈1𝑝1)E𝑋1𝑋2, (62)
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and after some further calculations we obtain

Var(𝑋2) = 2𝜆2
(𝜇2 + 2𝜈2)(𝜇1 + 𝜈1)

[
𝜇1

𝜇1 + 2𝜈1

+
(𝜇1 + 𝜈1𝑝1)2

(𝜇2 + 𝜈2)(𝜇1 + 𝜇2 + 𝜈1 + 𝜈2)
+

2𝜈1𝑝1(𝜇1 + 𝜈1𝑝1)
(𝜇1 + 2𝜈1)(𝜇1 + 𝜇2 + 𝜈1 + 𝜈2)

]

+
𝜆(𝜇1 + 𝜈1𝑝1)

(𝜇1 + 𝜈1)(𝜇2 + 𝜈2)
− (

𝜆(𝜇1 + 𝜈1𝑝1)
(𝜇1 + 𝜈1)(𝜇2 + 𝜈2)

)2. (63)

Let us now turn once more to Approximation 1 above. Differentiating (55) twice w.r.t. 𝑧2 and taking 𝑧2 = 1 gives

(𝜇2 + 2𝜈2)E𝑋
𝑎𝑝𝑝
2 (𝑋𝑎𝑝𝑝

2 − 1) = 𝜇1E𝑋1(𝑋1 − 1) + 2(𝜇1 + 𝜈1𝑝1)E𝑋1E𝑋2. (64)

he difference between the exact result and the approximation, in the righthand sides of (62) and (64), is a factor (here 2(𝜇1 + 𝜈1𝑝1)
ov(𝑋1, 𝑋2)) which disappears when 𝑋1 and 𝑋2 are independent. Because E𝑋2 = E𝑋𝑎𝑝𝑝

2 , we have

E[𝑋2
2 ] − E[(𝑋𝑎𝑝𝑝

2 )2] = Var(𝑋2) − Var(𝑋𝑎𝑝𝑝
2 ) =

2(𝜇1 + 𝜈1𝑝1)
𝜇2 + 2𝜈2

cov(𝑋1, 𝑋2). (65)

uality of the approximation. We consider some parameter choices to investigate the quality of the approximation 𝑄𝑎𝑝𝑝(1, 𝑧2).

ase 1: 𝜇1 ↓ 0. The above formulas reveal that the covariance of 𝑋1 and 𝑋2 tends to zero as 𝜇1. The variances of 𝑋1 and 𝑋2 (the
atter as long as 𝑝1 > 0) tend to positive limits. Hence, the correlation coefficient tends to zero as 𝜇1. Long openings of gate 1
nable station 1 to approach steady state, and then the numbers of particles in both stations indeed become independent. Notice
hat 𝜇1 = 𝜇2 = 0 corresponds to the classic 𝑀∕𝑀∕∞ − .∕𝑀∕∞ tandem queue (in particular when 𝑝1 = 1), in which the numbers of
ustomers are independent.

ases 2: 𝜇1 → ∞, 3: 𝜆 ↓ 0, 4: 𝜆 ↑ ∞, 7: 𝜇2 → ∞. The conclusions are exactly the same as for Cases 2, 3, 4, and 7 in Section 3.2.

ase 5: 𝜈1 = 𝜈2 = 𝜈 → ∞. The above formulas reveal for this case of fast consumption that cov(𝑋1, 𝑋2) tends to zero as 1∕𝜈3, while
ar(𝑋1) and Var(𝑋2) both tend to zero as 1∕𝜈. Hence, the correlation coefficient tends to zero as 1∕𝜈2.

ase 6: 𝜈1 = 𝜈2 = 0. This is a classic ASIP case without consumption. For 𝜇1 = 𝜇2 = 𝜇 and 𝜌 = 𝜆∕𝜇 we get for the correlation:
−𝜌∕2

√

(𝜌+1)(2𝜌+1)
, which decreases from zero (for 𝜌 = 0) to −1∕

√

8 (for 𝜌 → ∞); this is in agreement with [2].

Case 8: 𝜇2 = 0. There are various non-zero limits.
Finally, we observe that in Cases 3, 5 and 7 (i.e., cases in which the correlation coefficient tends to zero) Var(𝑋𝑎𝑝𝑝

2 ) tends to zero
s fast as Var(𝑋2). In Cases 1 and 2 (again, the correlation coefficient tends to zero), the exact and approximate variance of 𝑋2 tend
o exactly the same limit as 𝜇1 ↓ 0, respectively 𝜇1 → ∞.

orrelation and variance approximation in a homogeneous ASIP. As in the previous section, we extend our analysis of the sites
orrelation and the variance approximation to a homogeneous ASIP with consumption such that all gates have the same opening
ate 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑛 = 𝜇, and the same consumption rate 𝜈1 = 𝜈2 = ⋯ = 𝜈𝑛 = 𝜈 and 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑛 = 𝑝. Under these conditions,
ar(𝑋1),Var(𝑋2) and cov(𝑋1, 𝑋2) become

Var(𝑋1) =
𝜆

𝜇 + 𝜈
(

𝜆𝜇
(𝜇 + 𝜈)(𝜇 + 2𝜈)

+ 1), (66)

Var(𝑋2) = 2𝜆2
(𝜇 + 2𝜈)(𝜇 + 𝜈)

[

𝜇
𝜇 + 2𝜈

+
(𝜇 + 𝜈𝑝)2

2(𝜇 + 𝜈)2
+

𝜈𝑝(𝜇 + 𝜈𝑝)
(𝜇 + 2𝜈)(𝜇 + 𝜈)

]

+
𝜆(𝜇 + 𝜈𝑝)
(𝜇 + 𝜈)2

−
𝜆2(𝜇 + 𝜈𝑝)2

(𝜇 + 𝜈)4
, (67)

and respectively

cov(𝑋1, 𝑋2) = −
𝜆2𝜇

2(𝜇 + 𝜈)3
𝜇 + 2𝜈 − 𝜈𝑝

𝜇 + 2𝜈
. (68)

The exact expression of Var(𝑋2) for a homogeneous ASIP system with consumption (which is obtained in Eq. (67)) and its
approximation (which can be derived from Eq. (64)) are compared in Fig. 2. The comparisons between Var(𝑋2) and its approximation
are illustrated as a function of 𝜇 for the set of parameters 𝜈 and 𝑝 and for 𝜆 = 1. Note that for the different values of 𝜈 and 𝑝 when
the value of 𝜇 is small compared to 𝜆, the approximation tends to overestimate the true value of Var(𝑋2), otherwise although the
ssumption of independence between sites is not accurate, it still yields a reasonably accurate approximation for the variance.

Using Eqs. (66), (67) and (68), the correlation between the first two sites is found to be

Corr(𝑋1, 𝑋2) =
− 𝜆𝜇

2(𝜇+𝜈)2 (
𝜇+2𝜈−𝜈𝑝
𝜇+2𝜈 )

√

( 𝜆𝜇
(𝜇+𝜈)(𝜇+2𝜈) + 1)( 2𝜆

𝜇+2𝜈 [
𝜇

𝜇+2𝜈 + (𝜇+𝜈𝑝)2
2(𝜇+𝜈)2 + 𝜈𝑝(𝜇+𝜈𝑝)

(𝜇+2𝜈)(𝜇+𝜈) ] +
𝜇+𝜈𝑝
𝜇+𝜈 − 𝜆(𝜇+𝜈𝑝)2

(𝜇+𝜈)3 )
. (69)
13
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Fig. 2. 𝑉 𝑎𝑟(𝑋2) compared to its approximation.

Fig. 3. Corr(𝑋1 , 𝑋2) as a function of 𝜇 for the parameters 𝜈 and 𝑝.

The correlation between 𝑋1 and 𝑋2 that is obtained in Eq. (69) for a homogeneous ASIP with consumption is evaluated and
illustrated in Fig. 3. This correlation is presented as a function of 𝜇 for the set of parameters 𝜈 and 𝑝 and for 𝜆 = 1 and compared to
the classic homogeneous ASIP (without consumption). Similar to the previous section, when considering small values of 𝜈, indicating
a low consumption rate, the correlation between the sites converges rapidly to the correlation observed in the classic ASIP without
consumption. This behavior is reasonable since a decrease in the consumption rate causes the system to resemble more closely
an ASIP without consumption. It is worth noting that for small values of 𝜇, the correlation tends to overestimate its equivalent
value in the classic ASIP. However, for large values of 𝜈, representing a high consumption rate, the correlation between the two
sites approaches zero. This observation is plausible because during periods of high consumption rates, the substantial amount of
particles being consumed within their respective sites reduces the correlation between them.

4.3. The case of general 𝑛

Taking 𝑧𝑗 = 1 for all 𝑗 unequal to 𝑖 − 1 and 𝑖 in Eq. (3) (with 𝑖 ≥ 3), and assuming that the number of customers at station
𝑖 − 2 is independent of the numbers at the two stations 𝑖 − 1 and 𝑖, we obtain the following equation for the PGF 𝑅(𝑧𝑖−1, 𝑧𝑖) of the
steady-state joint distribution of numbers of particles (𝑋𝑖−1, 𝑋𝑖) in stations 𝑖 − 1 and 𝑖:

[𝜇𝑖−2(1 − E𝑧𝑋𝑖−2
𝑖−1 ) + 𝜈𝑖−2𝑝𝑖−2E𝑋𝑖−2(1 − 𝑧𝑖−1) + 𝜇𝑖−1 + 𝜇𝑖]𝑅(𝑧𝑖−1, 𝑧𝑖)

= 𝜈𝑖−1[(1 − 𝑝𝑖−1)(1 − 𝑧𝑖−1) + 𝑝𝑖−1(𝑧𝑖 − 𝑧𝑖−1)]
𝜕

𝜕𝑧𝑖−1
𝑅(𝑧𝑖−1, 𝑧𝑖)

+𝜈𝑖(1 − 𝑧𝑖)
𝜕
𝜕𝑧𝑖

𝑅(𝑧𝑖−1, 𝑧𝑖) + 𝜇𝑖−1𝑅(𝑧𝑖, 𝑧𝑖) + 𝜇𝑖𝑅(𝑧𝑖−1, 1). (70)

This equation has the same structure as (53) for the two-station tandem queue, but with the term 𝜆(1−𝑧1) in the left-hand side being
replaced by the sum of the 𝜇𝑖−2 and 𝜈𝑖−2 terms, which represent batch and individual arrivals from station 𝑖−2. If, subsequently, we
focus on station 𝑖 and once again employ the independence assumption (now between the numbers at stations 𝑖−1 and 𝑖), we get a
differential equation of exactly the same form as (55) and (58): with 𝑅𝑖−1(⋅) the already obtained approximate PGF of the number
of particles in station 𝑖 − 1, and 𝑅𝑖(⋅) the PGF of the number of particles in station 𝑖, the independence assumption yields

d 𝑅𝑖(𝑧𝑖) =
𝜈𝑖−1𝑝𝑖−1 E𝑋𝑖−1𝑅𝑖(𝑧𝑖) + [

𝜇𝑖−1(1 − 𝑅𝑖−1(𝑧𝑖)) +
𝜇𝑖 ]𝑅𝑖(𝑧𝑖) −

𝜇𝑖 . (71)
14

d𝑧𝑖 𝜈𝑖 𝜈𝑖(1 − 𝑧𝑖) 𝜈𝑖(1 − 𝑧𝑖) 𝜈𝑖(1 − 𝑧𝑖)
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This implies that successive applications of the independence assumption each time yield the same differential equation, with
different parameters and the 𝑅𝑖−1(𝑧𝑖) obtained in the preceding step. Eq. (71) has exactly the same structure as (55), and its solution
eads (cf. (56)):

𝑅𝑖(𝑧𝑖) = ∫

1

𝑧𝑖

𝜇𝑖
𝜈𝑖

(1 − 𝑡)
𝜇𝑖
𝜈𝑖
−1

(1 − 𝑧𝑖)
𝜇𝑖
𝜈𝑖

e
𝜇𝑖−1
𝜈𝑖

∫ 𝑧𝑖
𝑡

1−𝑅𝑖−1(𝑣)
1−𝑣 d𝑣e

𝜈𝑖−1𝑝𝑖−1
𝜈𝑖

E𝑋𝑖−1(𝑧𝑖−𝑡)d𝑡. (72)

. Conclusions and suggestions for further research

In this paper, we have introduced a very general tandem queueing model that contains the infinite-server TJN and ASIP models
s special cases. We have shown how to obtain (joint) moments (of any order) of numbers of customers at all stations, and we have
resented an approximation for the queue length distributions at the various stations.

In future research, it would be interesting to study other performance measures, such as (i) the probability for a particle to be
onsumed and (ii) the time it takes a particle to be either consumed or to travel through all 𝑛 stations. Next, we intend to study ASIP
andem queues with additional individual consumptions or movements that are modeled via single servers at each station (next to
ates that allow transfer of all particles to the next station). Further, we will apply the Power-Series Algorithm (PSA) (see [32] for
survey), which is a analytic-numerical approach, to ASIP. Due to the curse of dimensionality that hampers PSA, the applicability

f this method may be restricted to small systems, but yields accurate and fast approximations. We also want to explore other
pproximations for the queue length distribution in ASIP tandem queues, e.g. by fitting the first few moments (using that we can
ecursively obtain these moments from Eq. (5) in Section 2.3). In some application areas, it may be more natural to let the input
o the ASIP be a fluid flow of constant rate. Still allowing random gate openings at all stations and allowing consumption, it would
hen be interesting to study the buffer contents (workloads) of all stations. One such case was treated in [30, Section 3]: a two-queue
SIP with Lévy input processes (which contains the case of fluid input) and with a constant (hence non-proportional) consumption
ate at the first station.

Finally, let us elaborate a bit more on one research direction that we consider to be particularly interesting. In Sections 3.3
nd 4.3, we already briefly indicate that the approximation methods are applicable to 𝑄2,… , 𝑄𝑛 in an 𝑛-queue tandem ASIP with
onsumption (𝑛 ≥ 3). Our approach can also be extended to an ASIP feed-forward network with consumption. In such a network,
articles arrive at 𝑄11,… , 𝑄𝑀1 according to independent Poisson processes. This is layer 1. The gate of 𝑄𝑖1 opens at exp(𝜇𝑖1)
ntervals. Its content then moves as a batch to 𝑄𝑗2 of layer 2, with probability 𝑝𝑖1,𝑗2. Similarly, gates of the queues in layer 2
pen at exponentially distributed intervals, and their content moves as a batch to one of the queues of layer 3, etc. One could also
llow movements from a layer 𝑘 to a layer 𝑘 + 𝑚 with 𝑚 > 1; but we do not allow feedback to lower layers. Such feed-forward
etworks arise naturally in a host of applications, including the transport of macromolecules from cell to cell.

Again, one can get exact expressions for moments and correlations. Furthermore, in such networks RMF again coincides with the
ssumption that the size of a batch is independent of the corresponding gate opening interval. We conjecture that this independence
ssumption becomes more and more accurate when the number of stations per layer grows. Our approximation methods again yield
he exact mean queue lengths; and we believe that there is a convincing intuitive explanation for our conjecture, along the following
ines. When 𝑄𝑗𝑘 in layer 𝑘 receives batches, this still occurs according to a Poisson process. The size of a batch still depends on the
orresponding gate opening interval, but if there are many queues in layer 𝑘−1, then the batch can come from many different queues
nd the effect of the above-mentioned dependence becomes negligible. This is very similar to the famous Independence Assumption
f Kleinrock [33, Section 3.4] for message-switching communication networks. In such networks, messages maintain their size
hile traveling through the network. Kleinrock ignored the (in his case obviously very strong) dependence, assuming that the

orresponding service times in successive queues are all independent. His Independence Assumption results in a bad approximation
or tandem queues, but the approximation becomes better and better, the larger or more complex the network becomes — just like
n our case, the effect of dependence becomes negligible if a message can come from many different stations.
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