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A B S T R A C T   

In recent years, construction companies have been pressured by clients to deliver infrastructure that are not only 
affordable, but also more environmentally friendly. Flexible road pavements are an example. These are multi- 
layered systems where each layer has its own type of mixture and thickness. The number of asphalt mixtures 
available to contractors is increasing in size, creating a wide range of flexible pavement design alternatives. 
These increases make it difficult for the pavement designer to find simultaneously the most affordable and 
environmentally friendly design, while also ensuring that pavement performance requirements are met. This 
paper employs a multi-objective optimization (MOO) approach that uses the weighted sum method and genetic 
algorithm (GA) to find optimal pavement designs by minimizing the Environmental Costs Indicator (ECI) 
alongside construction costs. The MOO approach was applied to five different pavement design settings, 
including a real-life case study, to find optimal solutions for each setting. This approach enables the reduction of 
both ECI and construction costs of pavement designs comparatively with those made by the pavement designer. 
We recommend that the design responsibility of flexible pavements be handed over from client to contractor to 
prevent the design of pavement structures that result in unnecessary environmental impacts and costs.   

1. Introduction 

It is no secret that a well-connected road network plays an important 
role in improving the economy of a country by enabling the efficient 
transportation of goods, people and services. Consequently, local, 
regional and national governmental bodies are willing to invest large 
sums of financial resources in their road network to ensure that their 
economies can improve. Since road networks predominantly consist of 
flexible pavements, these types of asphalt-paved surfaces can be 
considered as the main culprit impacting road network costs. 

In addition to the large cost involved, the construction of flexible 
pavements is also an environmentally damaging process (Espinoza et al., 
2019). As a result, while clients demand that pavement performance 
requirements are met, they are increasingly pressuring contractors to 
minimize both costs and environmental impacts during the production, 
transportation and construction stages of flexible pavements. Bid as-
sessments now deviate from the traditional cost-based approach to one 
that includes environmental aspects in the bidding criteria (Garbarino 
et al., 2016). 

One promising way to enable affordable and environmentally 
friendly flexible pavement structures is to optimize the pavement design 
process. Multi-layered flexible pavement structures can consist of up to 
seven layers, where the design considers the type of mixtures and 
thickness assigned to each layer as variables (Abaza, 2021). The number 
of alternative designs depends on the range of mixtures a contractor has 
access to. The numbers involved can be large, making it difficult for a 
human decision-maker (DM) to find the most environmentally friendly 
and cheapest option that still meets pavement performance 
requirements. 

Usually, pavement performance requirements are determined by the 
bottom-up fatigue cracking caused by the horizontal tensile strain at the 
bottom of the asphalt layers and the permanent deformation caused by a 
vertical compressive strain on top of the subgrade layer (Strickland, 
2015). Traditional design methods, as described in The Bitumen Shell 
Handbook (Huang, 2004; Strickland, 2015; Vasudevan et al., 2015), are 
commonly used to ensure that critical strain values are not exceeded. 
These methods are an iterative and trial-and-error way of determining 
the structure of a flexible pavement that satisfy these performance 
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requirements. Further, there is not an integrated approach that simul-
taneously accounts for costs and environmental impacts. As such, a 
sub-optimal design is frequently selected over a cheaper and more 
environmentally sound design. 

Optimization studies have assessed the effect of layer resilient 
moduli and thicknesses on pavement performance (Peddinti et al., 2020; 
Saride et al., 2019). The reliability of the design based on rutting and 
fatigue failure was optimized for a four-layered flexible pavement sys-
tem by varying layer moduli and thicknesses. An analysis was made on 
which layer properties were deemed to influence pavement performance 
reliability significantly. Sahis and Biswas (2021) considered a 
three-layered flexible pavement system and attempted to optimize the 
thickness of both the bituminous and unbound sub-base layer in order to 
improve pavement performance. This was done using Boussinesq’s 
theory and Odemark’s method (Odemark, 1949) to determine the crit-
ical strains and transform the three-layered system into a homogenous 
system, respectively. 

In addition to the exclusive consideration of pavement performance 
in optimization approaches, the scientific community has steadily 
adopted a more integrated approach using cost models as the objective 
function to be minimized (Abaza and Abu-Eisheh, 2003; Mamlouk et al., 
2000). Rajbongshi and Das (2008) adopted such an approach to mini-
mize costs, while also meeting pavement performance reliability re-
quirements. The development of cost-effective design charts depicting 
optimal layer thicknesses proved to be an improved methodology when 
compared to traditional flexible pavement design methods. Gaurav et al. 
(2011) integrated a costs-based model with pavement performance 
constraints based on the Mechanistic-Empirical Pavement Design Guide 
(MEPDG). This led to optimized layer thicknesses. Similarly, Ghaniza-
deh (2016) optimized the flexible pavement layer configuration and 
thicknesses for costs minimization, while also adhering to Iranian design 
code. Other optimization studies have been performed to minimize costs 
and to meet design criteria for rigid (Hadi and Arfiadi, 2001) and flex-
ible pavement design (Pryke et al., 2006). Both these studies showed 
that construction costs can be reduced, while still meeting pavement 
performance criteria. 

Another literature stream addresses the joint optimization of pave-
ment design and maintenance and rehabilitation (M&R). In this context, 
McDonald and Madanat (2012) proposed a life-cycle cost optimization 
model for mechanistic-empirical (M-E) pavement design. Here, the 
objective is to minimize the sum of the initial construction and future 
maintenance costs. The maintenance method they assumed was limited 
only to resurfacings and the optimal pavement design was determined 
by nonlinear mathematical programming. 

Lee and Madanat (2014) also proposed a methodology for the joint 
optimization of pavement design and M&R strategies. Their objective 
was to minimize the net present value of discounted life cycle costs over 
an infinite time horizon. This included initial construction costs, agency 
investments for maintenance activities and resurfacings, and user cost. 
Further, no distinction was made between the different pavement layers 
and mixtures, as the total structural number was the only decision 
variable related to the pavement structure. Similarly, Bai et al. (2015) 
developed a pavement design and rehabilitation optimization frame-
work based on the M-E analysis of pavement response and performance 
prediction. A finite horizon, single pavement design and rehabilitation 
problem was formulated to address the trade-off between agency and 
user costs. A dynamic programming approach was used to solve the 
optimization problem to minimize the net present value of the life cycle 
cost. This consisted of agency and user costs over the planning horizon. 

The consideration of cost models in the objective function of system 
reliability-based design optimization (SRBDO) of flexible pavements has 
also been explored by the research community. Sanchez-Silva et al. 
(2005) presented such a model based on economic and operation con-
siderations. Dilip and Babu (2021) developed this type of approach to 
determine optimal layer thicknesses that lead to low costs, while 
maintaining acceptable pavement reliability levels for fatigue and 

rutting. More recently, Dilip and Babu (2023) developed a SRBDO 
approach to define the optimum combination of pavement layer thick-
nesses and moduli that meet the target levels of reliability, given the 
expected traffic demand and subgrade strength at a pavement site. They 
relied on surrogate models to speed up the reliability estimation, as well 
as the global optimization process. 

The literature reviewed above makes clear that the current state of 
the optimization-based flexible pavement design approaches focuses 
only on costs and pavement performance. These are ill-prepared to 
accommodate the new and pressing needs of contractors who see in the 
minimization of the environmental impacts of their flexible pavement 
construction projects an opportunity to leapfrog directly to address the 
needs of a greener construction sector. Despite such developments, no 
optimization study yet has attempted to fill this gap in knowledge. 
Hence, a constrained multi-objective optimization (CMOO) approach is 
needed that considers the concomitant minimization of construction 
costs and environmental impacts, while ensuring that pavement per-
formance requirements are met. This approach would enable the se-
lection of mixtures and thicknesses used in each layer to reach a globally 
optimal pavement design for any given traffic volume. 

Thus, the objectives of the research work presented in this paper are 
twofold: (1) to develop a CMOO approach for the design of flexible 
pavement structures that considers costs, environmental impact in-
dicators and pavement performance requirements. This using the Dutch 
context as an example; and, (2) to propose optimal flexible pavement 
structures that meet performance requirements at the lowest construc-
tion costs and environmental impacts scores for different traffic 
volumes. 

The following outline is used to achieve these objectives. Section 2 
presents the model formulation used by the solution method. This de-
scribes the mathematical formulations of the objective functions and 
constraints. Section 3 elaborates on the solution method used to solve 
the CMOO problem. Section 4 presents the pavement design settings and 
sensitivity analysis to illustrate and give context to the applicability of 
the proposed approach. Section 5 details the results of the application of 
the CMOO approach to the pavement design settings and sensitivity 
analysis. These are discussed in Section 6. Finally, Section 7 provides 
concluding remarks on the main advancements presented in this paper. 

2. Constrained multi-objective optimization (CMOO) model 
formulation 

The proposed CMOO approach for the flexible pavement design 
problem described in this paper consists of several models and compo-
nent to calculate the objective functions values and constraints as 
illustrated in Fig. 1. Further details on the several models and compo-
nents are presented in later sub-sections. 

2.1. Nomenclature 

The abbreviations used for outlining the model formulation and 
respective definition can be found in Table 1. 

2.2. Decision variables 

The flexible pavement design can be changed by varying the thick-
ness and mixture of each layer. In the Netherlands, the design of a 
flexible pavement can consist of up to six asphalt layers. Usually, one 
subbase layer is added in between the subgrade layer and the asphalt 
structure (Bouman et al., 2012). The natural subgrade layer is fixed and, 
therefore, is not considered a decision variable. Since each of the seven 
layers can have both a thickness and mixture assigned to it, the decision 

vector X
⇀ 

consists of 14 decision variables, each being represented by a 

real number. In mathematical language, X
⇀

⊂Rn with n being equal to 14. 
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2.3. Objective functions 

The two objective functions to be minimized in the CMOO approach 
are the cradle-to-laydown environmental impacts and corresponding 
costs of the Dutch flexible pavement construction process. The mathe-
matical formulation is elaborated upon in this section. 

2.3.1. Minimization of the environmental cost indicator (ECI) 
The environmental impact minimization is based on the Environ-

mental Costs Indicator (ECI) methodology described by de Bruyn et al. 
(2017). The ECI expresses all environmental impacts as one single value 
in euro per ton. More specifically, it corresponds to the costs of pre-
ventive measures for the government to avoid these environmental 
impacts. Examples of impact categories include: climate change (€/kg 
CO2-eq.), ecotoxicity (€/kg 1,4 DB-eq.), acidification of soil and water 
(€/kg SO2-eq.), ozone depletion (€/kg CFC-11-eq.), amongst others. The 
ECI methodology can be seen as a weighting methodology of the impact 

assessment stage of a typical Life Cycle Assessment (LCA) study. The 
weighting factors used in the Netherlands are the so-called ECI weights, 
which are based on the shadow price methodology. Once quantified, the 
environmental impacts of a product are multiplied by their respective 
ECI weights and summed. The resulting value is the ECI. The system 
boundaries of the LCA study underlying to the calculation of the present 
objective function only comprise the phases A1–A5 (Fig. 2). 

The Dutch asphalt sector incorporates the ECI methodology in the 
Product Category Rules for asphalt mixtures also known as NL-PCR 
Asfalt 2.0 (Van der Kruk and Overmars, 2022). This report contains 
the methodology that explains how ECIs are calculated for asphalt 
mixtures by using Environmental Product Declarations (EPDs) within 
the Ecochain software (Ecochain Helix, 2022). The ECI related to the 
production stages (i.e., A1-A3) are retrieved from the Ecochain software. 
In turn, the ECI related to the transportation and construction stages, (i. 
e., A4 and A5, respectively) are retrieved from Bak et al. (2022). This 
shows average ECI values for the different LCA stages per mixture in the 

Fig. 1. Architecture of the CMOO approach for the flexible pavement design problem.  
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Dutch asphalt sector by using a representative asphalt plant and pave-
ment project location. These ECI values are used by default by con-
tractors when specific A4 or A5 ECI values are not available. This is also 
the case in the CMOO problem described in this paper. The ECI objective 
function is mathematically expressed in Eq. (1). 

Minimize ECI=
∑L

i=1
hi × ρi

(
ECIA1− 3

i +ECIA4 ×Di+ECIA5
i

)
(1)  

2.3.2. Minimization of construction costs 
Similarly, the cost minimization of the construction process of flex-

ible pavements is also based on the production, transportation and 
construction stages, i.e. A1 until A5 (Fig. 2). The construction rate per 
mixture (tonnes/day) for the cost calculation of stage A5 is retrieved 
from Bak et al. (2022). The cost objective function is mathematically 
expressed in Eq. (2). 

Minimize C=
∑L

i=1
hi × ρi

(

CA1− 3
i +CA4 ×Di +

CA5

Ri

)

(2)  

2.4. Constraints 

The Dutch context for the design of flexible pavements follows the 
guidelines proposed by Bouman et al. (2012). They intended to help the 
pavement designer in designing flexible pavements that cope with 
common flexible pavement failure mechanisms. These guidelines can be 
seen as the Dutch equivalent of the AASTHO method (AASTHO, 1993). 
The optimization constraints in the proposed methodology accord with 
these guidelines, unless specifically mentioned otherwise. There are 
three constraints to be discussed in this section: (1) decision variable 
constraints, (2) the constraint related to bottom-up fatigue cracking, and 
(3) the constraint related to rutting. 

2.4.1. Decision variable constraints 
The Dutch asphalt sector considers four standard traffic classes based 

on the daily truck intensity (TI) and the traffic speed (v) (CROW, 2020). 
These are presented in Table 2. Each traffic class represents the so-called 
performance class of the road (PCroad) (Eq. (3)). Asphalt mixtures are 
also assigned performance classes (PCi) that indicate whether they can 
be used in a given pavement structure. The complete dataset of all 
mixtures and their PCs considered in the pavement design settings used 

Table 1 
Nomenclature adopted in the formulation of the CMOO approach for the flexible pavement design problem.  

Abbreviation Definition (unit) Abbreviation Definition (unit) 

Objective functions 
ECI Environmental Costs Indicator of the pavement designs (euro/m2) C Construction costs of the pavement designs (euro/m2) 
ECIA1− 3

i The ECI for LCA stages A1, A2 and A3 for the mixture used in layer i 
(euro/ton) 

CA1− 3
i Costs of LCA stages A1, A2 and A3 for the mixture used in layer i (euro/ton) 

ECIA4 The ECI for LCA stage A4 (euro/tkm). Linearly deduced from Bak 
et al. (2022) 

CA4 Costs of LCA stage A4 (euro/tkm) 

ECIA5
i The ECI for LCA stage A5 for the mixture used in layer i according to  

Bak et al. (2022) (euro/ton) 
CA5 Costs of LCA stage A5 (euro/day) 

L Number of layers in the pavement structure, where the maximum 
value is equal to 7 (− ) 

i Layer number with i = 1 being the surface layer and i = 7 being the subbase 
layer (− ) 

hi Thickness of layer i (m) ρi In-situ density of layer i (tonnes/m3) 
Di Transportation distance from the plant where the mixture used in 

layer i is produced to the project location (km) 
Ri Construction rate for the mixture used in layer i according to Bak et al. 

(2022) (tonnes/day) 
Constraints    
TI Truck intensity in one direction (trucks/day) v Vehicle speed (km/h) 
PCroad The performance class of the road based on the TI and v (− ) PCi The performance class of the mixture in layer i (− ). Values are given in 

Appendix A (also in case of base, binding, or a binding layer underneath 
porous asphalt). 

h(L)
i 

Lower boundary thickness value of the mixture in layer i (m) h(U)

i 
Upper boundary thickness value of the mixture in layer i (m) 

Mc
f Miner’s number for fatigue failure that is calculated (− ) Mc

r Miner’s number for rutting failure that is calculated (− ) 
Ma

f Allowable Miner’s number for fatigue failure (− ) Ma
r Allowable Miner’s number for rutting failure (− ) 

nf
lj 

Number of design load repetitions for fatigue failure for axle load 
category l and tire configuration j (− ) 

nr
lj Number of design load repetitions for rutting failure for axle load category l 

and tire configuration j (− ) 
Nf

lj 
Allowable number of design load repetitions to prevent fatigue 
failure for axle load category l and tire configuration j (− ) 

Nr
lj Allowable number of design load repetitions to prevent rutting failure for 

axle load category l and tire configuration j (− ) 
SDBf

j 
Relaxation factor for scattered driving behaviour i.e., not all traffic 
drives over the same spot, for fatigue failure for tire configuration j 
(− ) 

SDBr
j Relaxation factor for scattered driving behaviour i.e., not all traffic drives 

over the same spot, for rutting failure for tire configuration j (− ) 

εt
lj Horizontal tensile strain at the bottom of the asphalt structure for 

axle load category l and tire configuration j (μm/m)

εc
lj Vertical compressive strain at the top of the subgrade layer for axle load 

category l and tire configuration j (μm/m)

Df Allowable damage factor given by the client to determine Ma
f (− ) Hf Healing factor against fatigue failure (− ) 

Ea Equivalent stiffness of the entire asphalt structure (MPa). It depends 
on stiffness parameters of each mixture (see Appendix A) 

cE
1 Stiffness coefficient of which there are four in total (− ). 

TE Temperature at the lab when stiffness of a mixture is tested (◦C). fE Loading frequency at the lab when stiffness of a mixture is tested (Hz). 
CKE Experimentally defined constant used in the lab when stiffness of a 

mixture is tested (K) 
AL Number of axle load categories, where the maximum value is equal to ten 

(− ) 
TC Number of tire configurations, where the maximum value is equal to 

four (− ) 
l Axle load category (− ) 

Pl Contribution of axle load category l to Nd (%) j Tire configuration category (− ) 
Nd Total number of design load repetitions (− ) Pj Contribution of tire configuration j to Nd (%) 
T Percentage of trucks in the ADT (%) ADT Average daily traffic (veh/day)
W Number of working days that the road is active (days) aaxle Average number of axles on a single truck (− ) 
Lf Lane distribution factor of truck traffic (− ) Dirf Directional distribution factor of truck traffic (− ) 
t Design life of the flexible pavement design (years) Gf Growth factor of truck traffic over the entire design life of the road (− ) 
U Correction factor for uncertainty in counting data (− ) vf Correction factor for traffic speed (− )  
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to illustrate the proposed CMOO approach presented in this paper are 
shown in Appendix A. 

PCroad ∈ {PC1,…,PC4} (3) 

The order in which layers are presented is important for the validity 
of the design of flexible pavement structures. Typically, flexible pave-
ment structures consist of at least a surface, base and subbase layer, in 
that order. The compulsory layers, their order and required data are 
shown in Table 3. 

Finally, each mixture is allowed to have a certain thickness ranging 
between a lower and upper boundary. This is based on the Dutch asphalt 
pavements design specifications (Rijkswaterstaat, 2016), henceforth, 
referred to as SOA. The dataset in Appendix A shows these boundaries, 
which are mathematically described in Eq. (4). 

h(L)i ≤ hi ≤ h(U)i , ∀i ∈ L (4)  

2.4.2. The bottom-up fatigue cracking failure constraint 
The pavement structure in the optimization approach is subject to a 

range of different axle loads and tire configurations (ALTC) that amount 
to 40. The damage contribution of each combination to the pavement 
performance can be calculated and combined with all the other con-
figurations using Miner’s law (Miner, 1945). 

For bottom-up fatigue cracking, the horizontal tensile strain at the 
bottom of the asphalt pavement structure needs to be calculated for 
every ALTC. For this purpose, the Adaptive Layered Viscoelastic Anal-
ysis (ALVA) model is used (Skar and Andersen, 2020). The ALVA model 
allows the calculation of the pavement response at any given point 
within the pavement, making it suitable for the optimization of the 
design of flexible pavement structures. 

Miner’s law, in the context of bottom-up fatigue cracking failure and 
how it relates to the tensile strain at the bottom of the asphalt structure, 

is mathematically expressed in Eqs. (5)–(10). For definitions and units of 
each parameter, the reader is referred to Section 2.1. In these equations, 
Eq. (5) ensures that the calculated Miner’s number for fatigue failure 
does not exceed the allowed Miner’s number. Eq. (6) defines the allowed 
Miner’s number based on the allowable damage factor defined by the 
pavement designer. Eq. (7) represents the calculation of the Miner’s 
number for a given pavement structure. Eq. (8) describes the calculation 
of the number of design load repetitions for fatigue failure. Eq. (9) de-
fines the allowable number of design load repetitions. Finally, Eq. (10) 
describes the total number of design load repetitions. 

Mc
f ≤ Ma

f (5)  

Ma
f =

1
0.75 × 100.38×Df

(6)  

Mc
f =

∑AL

l=1

∑TC

j=1

nflj
Nflj

,∀l ∈ AL,∀j ∈ TC (7)  

nflj=Pl × Pj × Nd × SDB
f
j , ∀l ∈ AL, ∀j ∈ TC (8)  

Nflj=Hf × exp
(
cf1 + c

f
5 ×

{
ln
[
εtlj
]
+ cf2 × ln

2[Ea] + cf3 × ln[Ea] + cf4
}2

)

,

∀l∈AL, ∀j ∈ TC
(9)  

Nd =ADT × T × aaxle ×W × Dirf × Lf × Gf × t × vf × U (10)  

2.4.3. The rutting failure constraint 
Similarly, the rutting constraint is also calculated using Miner’s law. 

Instead of the horizontal tensile strain at the bottom of the asphalt 
pavement structure, the rutting constraint requires the ALVA model to 
calculate the vertical compressive strain on top of the subgrade layer. 
The relation between Miner’s law and the vertical compressive strain on 
top of the subgrade layer is mathematically expressed in Eq. (11)–(15), 
where Eq. (11)–(14) are the rutting failure counterpart of Eqs. (5)–(8). 
The allowable number of design load repetitions per ALTC for the rutting 
constraint is determined following Eq. (15). This is calculated using the 
vertical compressive strain on top of the subgrade layer. 

Mc
r ≤ Ma

r (11)  

Ma
r = 1 (12)  

Mc
r =

∑AL

l=1

∑TC

j=1

nrlj
Nrlj

,∀l ∈ AL,∀j ∈ TC (13)  

nrlj=Pl × Pj × Nd × SDB
r
j , ∀l ∈ AL, ∀j ∈ TC (14)  

Nrlj= 10
(

17.289− 4 log
(
εclj
))

, ∀l∈AL, ∀j ∈ TC (15)  

3. Solution method 

3.1. The constrained multi-objective optimization (CMOO) approach 

Although the ECI and cost objective functions are expressed in the 
same unit, the simple addition of objectives to create a single objective 
optimization (SOO) problem is not correct. The reason being is that both 
objectives are valued differently i.e., 1 EUR in construction costs is not 
equal to 1 EUR in ECI, since each client values the ECI differently during 
the bidding procedure and these values also change over time. Instead, 
an adequate MOO approach is needed to provide a solution method to 
evaluate the fitness of potential solutions based on both objectives. 

Since the DM will put a certain emphasis on each objective function, 
preference-based MOO approaches are suitable for the flexible pave-

Table 2 
Dutch traffic classes.  

Truck intensity (TI) (trucks/day) Traffic speed (v) (km/h) PCroad 

TI < 50 v > 15 1 
50 ≤ TI ≤ 2500 v > 15 2 
TI > 2500 v > 15 3 
TI > 250 v ≤ 15 4  

Fig. 2. System boundaries of the LCA considered in the CMOO approach for the 
flexible pavement design problem. 
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ment design problem. For this reason, the weighted sum method (WSM) 
is chosen, as it can account for preference information, both before and 
after solving the flexible pavement design problem, making it an a priori, 
as well as an a posteriori, method (Miettinen, 2008, 2012). The a priori 
version can be used, if the DM is sure about the weights to be assigned to 
the objective functions, whereas the a posteriori version determines, 
firstly, the Pareto Front (PF), by calculating the objective functions 
scores over several weighting sets, after which the DM can analyse the 
trade-offs between objective functions scores by looking at the PF. In a 
nutshell, the WSM transforms the MOO problem into a SOO problem. 
The SOO translation by using the WSM is mathematically expressed in 
Eq. (16). Here, K is the total number of objective functions, k is objective 
function in question, wk is the weight applied to objective function k, f′

k 

is the normalized score of objective function k, X
⇀ 

is the decision variable 
vector and S is the feasible solution search space. This equation aims to 
find a feasible solution, such that the weighted sum of the objectives is 
minimized for a given weighting set. 

Minimize :
∑K

k=1
wk × f ′k

(
X
⇀)

subject to : X
⇀
∈ S (16)  

wk ≥ 0, k = 1,…,K,
∑K

k=1
wk = 1 

The model formulation is computationally expensive, in particular, 
the calculation of the critical strain values through the ALVA model. The 
computational load can be reduced by increasing the step size between 
the different weight sets. Therefore, the step size of 0.1 was chosen. 

Since the different objective functions might be of different orders of 
magnitude, it was necessary to normalize their scores (Deb, 2001). By 
minimizing and maximizing each objective separately i.e., with an 
extreme weight set, the normalization boundaries (i.e., 0–1) can be 
obtained. The normalized score for each objective function were ob-
tained using Eq. (17). Here, fk is the score of objective function k and, 
fmin
k and fmax

k are the absolute objective scores when minimizing and 
maximizing objective function k, respectively. The normalized objective 
score was calculated by dividing the difference between the objective 
score and the minimum objective score over the difference between the 
maximum and minimum objective score. 

Finally, the formulation of the CMOO model was written in MAT-
LAB® programming software (Matlab R2021b, 2021). 

f ′k
(
X
⇀)

=
fk
(
X
⇀)

− f mink

f maxk − f mink
(17)  

3.2. Solution algorithm 

Many real-life MOO problems consist of non-differentiable or 

discontinuous functions, making it very difficult for exact algorithms not 
to fall in local optima (Deb, 2001; Sivanandam and Deepa, 2008). 
Additionally, other studies have argued that these real-life problems are 
highly complex and difficult for exact algorithms to solve (Talbi, 2009; 
Yu and Gen, 2010). Consequently, the use of metaheuristic algorithms in 
such cases is favoured. Hence, for the CMOO flexible pavement design 
problem described in this paper, metaheuristics will be applied. 

Within the category of metaheuristics, a wide variety of optimization 
algorithms exist, e.g., Genetic Algorithm (GA), Particle Swarm Optimi-
zation (PSO), Simulated Annealing (SA), to name a few. These are also 
called evolutionary algorithms (EA). The comparison between EA and 
their variants has proven to be difficult and a choice for one specific EA 
variant can never be fully justified (LaTorre et al., 2020). Since GA is 
particularly easy to use and has broad applicability (Deb, 2001), 
including in the pavement sector (Ferreira and Santos, 2012; Santos 
et al., 2016, 2017a, 2017b, 2018), the approach proposed in this paper, 
GA, will also be applied to solve the CMOO flexible pavement design 
problem. Its working mechanism is illustrated in Fig. 3 and described in 
the upcoming sub-sections, whereas the adopted parameters are sum-
marized in Table 4. 

3.2.1. Population initialization 
GA implements a stochastic search procedure to find the global 

optimal solution. The first step is to initialize the population randomly 
based on the decision variable constraints. In doing so, a population with 
N solution individuals is created. 

3.2.2. Selection method 
The second step consists of selecting the parents to go through the 

recombination stage. The idea behind the selection step is to stimulate 
the reproduction of fit parents with the objective of producing even fitter 
offspring. Tournament selection was chosen as the selection method 
because it is used in NSGA-II (Deb et al., 2002). This is a widely used GA 
variant. The steps of tournament selection are described below:  

1. Calculate the weighted sum objective function value of each parent.  
2. Calculate the constraint violation (CV) using Eqs. (18) and (19). 

CV
(
X
⇀)

=
∑Z

z=1
gz
(
X
⇀)

(18)  

gz
(
X
⇀)

=
gz
(
X
⇀)

− gminz
gmaxz − gminz

(19)  

where X
⇀ 

is the solution individual, gz is the zth normalized CV. The 
normalized CV is calculated using a similar approach as described in Eq. 
(17), but here the normalization boundaries are considered to be those 
of the population (Deb, 2011). 

Table 3 
Layer order and required data for constraint violation calculations.  

Layer no. Layer type Compulsory Thickness Stiffness parameters Fatigue parameters Poisson’s ratio 

1 Surface X X X  X 
2 Bind  X X  X 
3 Base  X X  X 
4 Base  X X  X 
5 Base  X X  X 
6 Base X X X X X 
7 Subbase X X X1  X 
82 Subgrade (sand) X  X1  X  

1 For subbase and subgrade stiffness, a single value is assumed in MPa. No stiffness calculation based on parameters is needed. 
2 Subgrade layer type and thickness are not considered as decision variables, since they are always present and pre-established in practice. Thickness of the subgrade 

is fixed, as it is always assumed to be infinite. 
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3. Create N tournaments with each tournament having size TS for 
parent selection. An increase in TS, results in higher selection pres-
sure. Additionally, each tournament pool is randomly filled with TS 
parents.  

4. Determine the winners based on the same approach as proposed in 
NSGA-II. This includes defining three possible scenarios.  
a. All tournament solutions are feasible solutions, and the winner is 

selected based on the lowest weighted sum value.  
b. All tournament solutions are infeasible solutions and the solution 

with the lowest CV is the winner. 
c. Tournament solutions include both feasible and infeasible solu-

tions. Only the feasible solutions can win and among them the 
solution with the lowest weighted sum value is the winner.  

5. Produce parent sets of size two based on tournament winners to go 
through the recombination stage. 

3.2.3. Offspring generation 
During the recombination phase, the two parents in each parent set 

will mate and produce offspring through crossover. Furthermore, the 
genes of offspring will be changed randomly through the mutation 
operator. Finally, a repair operator is applied to fix solutions that violate 
the decision variable constraints, after the crossover and mutation op-
erators have been applied. There are two parameters that influence 
optimization quality. These are the crossover probability (Pc) and mu-
tation probability (Pm). Offspring generation will occur using the 
following procedure:  

1. The two parents within a parent set will exchange genetic material 
using single point crossover (SPC). Whether or not crossover will 
take place between the two parents is based on the Pc. Either way, 
two offspring individuals are created. As a result, an offspring pop-
ulation of size N is created.  

2. The created offspring solutions in step 1 will also be mutated, based 
on the Pm. Because the decision vector consists only of real numbers 
and is non-binary, the mutated gene in question will be assigned a 
random value that meets the decision variable constraints.  

3. The crossover and mutation operator can cause invalid solutions to 
occur (Talbi, 2009). Consequently, a repair operator is used to check 
for invalid solutions and repairs them afterwards. 

For the crossover operator, two-point crossover (TPC) and uniform 
crossover (UC) were also tested, but resulted in worse optimization 
quality than SPC. When the order matters in the decision variable vec-
tors, these last two crossover operators are more likely to disrupt fitter 
chromosomes than to improve their fitness (Reeves, 2010; Sivanandam 
and Deepa, 2008). Two SPC operators are applied simultaneously and 
independently on both the mixture type and thickness decision vectors. 
This way, mixture type and thickness variables for a particular layer are 
not interlocked. This allows for more breathing room with the intention 
of finding a more diverse offspring population. 

3.2.4. Replacement strategy 
At this point, there are two populations i.e., the parent and offspring 

populations, both of size N. Combining these two populations into one 
creates a population size of 2N. Traditional GA maintain a fixed popu-
lation size, meaning that not all parents and offspring can go to the next 
generation. For this purpose, a replacement strategy is needed that al-
lows for fitter offspring solutions to replace worse parent solutions. The 
GA in the proposed approach incorporates a replacement strategy that 
includes a tournament for each spot in the next generation with tour-
nament size TR. Additionally, an elitism preserving operator (pe) is 
included similarly to the NSGA-II approach. The idea is that during the 

Fig. 3. Working mechanism of GA.  

Table 4 
Nomenclature adopted for GA parameters of the CMOO flexible pavement 
design problem.  

Abbreviation Definition 

N Population size 
CV Constraint violation 

X
⇀ Decision variable vector, also known as the solution 

z Constraint number 
Z Total number of constraints 
gz The zth normalized constraint violation 
gz The zth absolute constraint violation 
gmin

z Lowest zth absolute constraint violation within the population 
gmax

z Highest zth absolute constraint violation within the population 
TS Tournament size for parent selection 
Pc Crossover probability 
Pm Mutation probability 
TR Tournament size for the replacement strategy 
pe Elitism preservation operator 
itmax Maximum number of iterations  
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replacement process peN spots (rounded up) are reserved for the best 
solutions within that iteration. This way the best solution(s) across all 
iterations will never get lost. The remaining N − peN spots will be filled 
using the tournament method discussed earlier. All the steps from Sec-
tion 3.2.2. until 3.2.4 will be repeated for itmax iterations. 

3.2.5. GA parameters calibration 
Traditionally, GAs are computational expensive search algorithms 

whose quality of the “optimal” solutions depends on the parameter’s 
values adopted. By calibrating the GA parameters, a balance between 
computational time and optimization quality can be found. The best- 
found GA configuration for the CMOO flexible pavement design prob-
lem discussed in this paper is summarized in Table 5 and was obtained 
through a combinatorial trial-and-error approach. 

4. Illustration of the applicability of the developed CMOO 
approach 

The developed CMOO approach was applied to a total of five pave-
ment designs. Four designs were dedicated to the PCs shown in Table 2, 
whereas the fifth is a real-life case study for a municipal road in the city 
of Enschede, The Netherlands. 

All pavement designs used the same input parameters as shown in 
Table 6. The values of the OIA parameters are based on SOA that 
specifies the values to use if the client’s quantification is not provided. 
The pavement designs are different from each other in terms of, either 
the TI, v, plant-project distances, or a combination of those. An overview 
of the differences between the characteristics of the pavement designs is 
given in Table 7. The dataset can be found in Appendix A. Due to 
confidentiality reasons, only the rankings of material properties can be 
disclosed. Finally, each asphalt mixture can be produced with two types 
of fuel: natural gas (mixtures 12–22) or green gas (mixtures 1–11). 
Subbase mixtures (mixtures 23 and 24) are produced using an 
electricity-based crushing installation. An overview of all the fuel types 
and respective dataset used for mixture production is given in Table 8. 

Furthermore, a sensitivity analysis involving three input parameters 
is performed for the PC pavement designs. These are the mixture cost 
(CA1− 3

i ), transportation distances from asphalt plants (plants 1 and 2), 
and transportation distances from subbase mixture plants (plant 3). 
These input parameters are chosen for the sensitivity analysis because 
they are likely to change in practice. An overview of the sensitivity 
analysis is given in Table 9. 

5. Results 

This section presents the results of the application of the CMOO 
approach to the five pavement designs. They were obtained after 
running the optimization algorithm on a computational device featuring 
an Intel® Core™ i7-7700HQ CPU @2.80 GHz, 2808 MHz, 4 Core(s), 8 
Logical Processor(s), a NVIDIA® Quadro® M1200, 4 GB VRAM and 16 
GB of RAM. 

Fig. 4 depicts the thickness of the optimal solutions. Figs. 5–8 show 
the objective function values in the objective search space. The corre-
sponding objective function and constraint values for each weighting set 
for pavement designs 1–4 (baseline scenarios) are presented in Table 10. 
Additionally, these figures depict the SA results of the changed input 
parameters as described in Table 9. The objective function values related 
to the SA are presented in Tables 11 and 12 in absolute and relative 
values, respectively. The optimal solutions in Table 10 are determined 

Table 5 
Algorithm parameters after calibration.  

N TS Pc Pm TR pe itmax 

100 2 0.95 1/14 16 0.01 35  

Table 6 
Value of the input parameters for all pavement designs.  

OIA input parameters 

Name Value 

Design period 20 years 
Active days of road per year 270 days 
Average axles per truck 3.5 
Correction factor for directional distribution 1 
Correction factor for lane distribution 1 
Correction factor for uncertainty in counting data 1.75 
Annual growth of traffic percentage 3.5 % 
Lane width 3 m 
Distance from tire to edge of road 0.25 m 
Axle load range and distribution Normal municipal road 
Tire configuration distribution Standard 
Allowed damage percentage based on Miner’s law 15 % 
Confidence level 85 % 

Other input parameter 

Transportation ECI from plant to project (ECIA4) 8.29 × 10− 3 euro/tkm 
Transportation cost from plant to project (CA4) 0.26 euro/tkm 
Construction cost (CA5) 6546 euro/day  

Table 7 
Pavement designs characteristics and baseline scenarios for the sensitivity 
analysis.  

Item name Pavement design ID 

1 2 3 4 5 

Pavement design type PC 
1 

PC 2 PC 3 PC 
4 

Real-life 
case study 

TI (trucks/day) 40 1225 3000 500 364 
v (km /h) 50 50 50 10 50 
Distance from plant 1 to project 

(km) 
50 50 50 50 13.5 

Distance from plant 2 to project 
(km) 

50 50 50 50 94.9 

Distance from plant 3 to project 
(for subbase mixtures) (km) 

20 20 20 20 17.7  

Table 8 
Fuel types and specifications used for mixture production based on the Ecoin-
vent (2020).  

Fuel type Dataset 

Natural 
gas 

XXXX-pro&Aardgas, industrieel gebruik, per m3 (o.b.v. 31,7 MJ Heat, 
district or industrial, natural gas {Europe, without Switzerland}| heat 
production, natural gas, at industrial furnace >100 kW | Cut-off, U) 

Green gas Green gas, Ecoinvent v 3.2 cut-off, Natural gas, burned in industrial 
furnace low-NOx >100kW/RER U replaced with Methane, 96 vol-%, 
from biogas, high pressure, at consumer/CH U and Biogenic Carbon 
Dioxide 

Electricity 0124-pro&1 kWh, uit stopcontact (o.b.v. Electricity, low voltage {NL}| 
market for | Cut-off, U)  

Table 9 
Sensitivity analysis characteristics.  

Input parameter Values 
tested 

Sensitivity analysis 
(SA) ID 

Mixture cost (CA1− 3
i ) +10%, 

+20% 
1, 2 

Transportation distances from plant 1 and 2 
to the project site 

25 and 75 
km 

3, 4 

Transportation distance from plant 3 to the 
project site 

40 and 60 
km 

5, 6  
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using the GA configuration discussed in Section 3.2.5. The iteration-wise 
improvement effect of the CMOO approach is depicted in Fig. 10. This 
considers as an example the generational improvement for ECI weight 
0.5 of pavement design 2 (baseline scenario). 

From the calculated Miner’s numbers for both fatigue and rutting 
failure, fatigue failure is noted as the most enforcing constraint, since the 
allowed Miner’s numbers (Ma

f and Ma
r ) according to Eqs. (6) and (12) are 

equal to 0.54 and 1, respectively. 
The results of the application of the CMOO approach to the real-life 

case study (pavement design ID number 5) are presented in Fig. 9. This 
figure also includes the flexible pavement design defined by the pave-
ment designer. Reductions in both objective function values were 
observed when applying the CMOO approach. These reductions are 
calculated in relation to the pavement design solution defined by the 
pavement designer and implemented in the project. The ECI objective 
function was reduced from 3.34 to 2.35 euro/m2, which corresponds to a 
reduction of 30%. The C objective function was reduced from 47.33 to 
32.83 euro/m2, which corresponds to a reduction of 31%. 

Fig. 4. Graphical representation of the optimal solutions. The thickness is shown in y-axis and the mixtures ID at the bottom of the bars.  

Fig. 5. Optimal solution set of pavement design 1 for baseline and SA of mixture costs, asphalt plant distances and subbase plant distances.  
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Fig. 6. Optimal solution set of pavement design 2 for baseline and SA of mixture costs, asphalt plant distances and subbase plant distances.  

Fig. 7. Optimal solution set of pavement design 3 for baseline and SA of mixture costs, asphalt plant distances and subbase plant distances.  

Fig. 8. Optimal solution set of pavement design 4 for baseline and SA of mixture costs, asphalt plant distances and subbase plant distances.  
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6. Discussions 

6.1. Optimal solutions 

As can be seen in Figs. 5–9, all pavement designs show trade-offs 
between environmental impacts and construction costs, although to a 

different extent. The number of optimal solutions per design ranged 
between two (pavement designs 1 and 5) and five (pavement design 2). 
Pavement designs 3 and 4 resulted in four and three optimal solutions in 
the solution set, respectively. Thus, it is up to the decision maker to 
choose one of the proposed solutions based on his/her preference. 

Changing input parameters in the sensitivity analysis has not shown 

Table 10 
Pavement design results showing the sets of optimal solutions.  

ECI weights1 Pavement design ID Optimal solution ID2 ECI (euro/m2) C (euro/m2) CV Mc
f Mc

r 

0–0.1 1 1 1.77 26.93 0 0.5002 0.1272 
0.2–1 1 2 1.64 27.24 0 0.5002 0.1272 
0–0.1 2 3 2.79 38.37 0 0.4869 0.3219 
0.2 2 4 2.64 38.66 0 0.4869 0.3219 
0.3–0.5 2 5 2.46 40.28 0 0.5367 0.3420 
0.6–0.8 2 6 2.44 40.97 0 0.4470 0.3052 
0.9–1 2 7 2.43 42.68 0 0.5279 0.2500 
0–0.1 3 8 3.04 41.56 0 0.5164 0.4714 
0.2–0.4 3 9 2.90 41.85 0 0.5164 0.4714 
0.5–0.8 3 10 2.65 44.73 0 0.4674 0.4419 
0.9–1 3 11 2.64 46.45 0 0.5300 0.3595 
0–0.1 4 12 2.77 39.61 0 0.5335 0.3036 
0.2–0.4 4 13 2.54 40.06 0 0.5335 0.3036 
0.5–1 4 14 2.45 41.21 0 0.5314 0.3027 
0–0.1 5 15 2.35 32.83 0 0.4499 0.1936 
0.2–1 5 16 2.08 33.33 0 0.4499 0.1936  

1 C weights can be obtained by subtracting the ECI weights from 1 as represented by Eq. (16). 
2 The optimal solutions are depicted in Fig. 5 using this ID on the x-axis. 

Table 11 
Sensitivity analysis objective function values in euro/m2.  

ECI weights Pavement design ID SA ID 

1 2 3 4 5 6 

ECI C ECI C ECI C ECI C ECI C ECI C 

0–0.1 1 1.77 28.66 1.77 30.38 1.73 25.69 1.81 28.17 1.85 29.36 1.93 31.79 
0.2–1 1 1.64 29.00 1.64 30.75 1.60 26.00 1.68 28.48 1.72 29.67 1.79 32.10 
0–0.1 2 2.79 40.89 2.79 43.40 2.72 35.95 2.87 40.78 2.87 40.80 2.95 43.23 
0.2 2 2.64 41.21 2.64 43.76 2.56 36.25 2.72 41.08 2.72 41.09 2.79 43.52 
0.3–0.5 2 2.46 43.01 2.46 45.74 2.38 37.94 2.53 42.62 2.54 42.71 2.61 45.14 
0.6–0.8 2 2.44 43.75 2.44 46.53 2.36 38.56 2.52 43.37 2.52 43.39 2.60 45.82 
0.9–1 2 2.43 45.57 2.43 48.47 2.35 40.05 2.51 45.31 2.50 45.06 2.58 47.44 
0–0.1 3 3.04 44.31 3.04 47.06 2.96 38.85 3.13 44.28 3.12 43.99 3.20 46.42 
0.2–0.4 3 2.90 44.63 2.90 47.41 2.81 39.14 2.98 44.57 2.97 44.28 3.05 46.71 
0.5–0.8 3 2.65 47.80 2.65 50.87 2.57 42.03 2.74 47.43 2.73 47.16 2.81 49.59 
0.9–1 3 2.64 49.63 2.64 52.81 2.54 43.52 2.73 49.38 2.71 48.83 2.79 51.21 
0–0.1 4 2.77 42.26 2.77 44.91 2.69 37.21 2.85 42.01 2.85 42.04 2.92 44.47 
0.2–0.4 4 2.54 42.75 2.54 45.44 2.47 37.66 2.62 42.45 2.62 42.49 2.70 44.91 
0.5–1 4 2.45 44.02 2.45 46.83 2.37 38.82 2.52 43.60 2.52 43.64 2.60 46.07  

Table 12 
Percental change in objective function values relative to the baseline scenarios for the sensitivity analysis.  

ECI weights Pavement design ID SA ID 

1 2 3 4 5 6 

ECI C ECI C ECI C ECI C ECI C ECI C 

0–0.1 1 0.00 6.42 0.00 12.81 − 2.26 − 4.60 2.26 4.60 4.52 9.02 9.04 18.05 
0.2–1 1 0.00 6.46 0.00 12.89 − 2.44 − 4.55 2.44 4.55 4.88 8.92 9.15 17.84 
0–0.1 2 0.00 6.57 0.00 13.11 − 2.51 − 6.31 2.87 6.28 2.87 6.33 5.73 12.67 
0.2 2 0.00 6.60 0.00 13.19 − 3.03 − 6.23 3.03 6.26 3.03 6.29 5.68 12.57 
0.3–0.5 2 0.00 6.78 0.00 13.56 − 3.25 − 5.81 2.85 5.81 3.25 6.03 6.10 12.07 
0.6–0.8 2 0.00 6.79 0.00 13.57 − 3.28 − 5.88 3.28 5.86 3.28 5.91 6.56 11.84 
0.9–1 2 0.00 6.77 0.00 13.57 − 3.29 − 6.16 3.29 6.16 2.88 5.58 6.17 11.15 
0–0.1 3 0.00 6.62 0.00 13.23 − 2.63 − 6.52 2.96 6.54 2.63 5.85 5.26 11.69 
0.2–0.4 3 0.00 6.64 0.00 13.29 − 3.10 − 6.48 2.76 6.50 2.41 5.81 5.17 11.61 
0.5–0.8 3 0.00 6.86 0.00 13.73 − 3.02 − 6.04 3.40 6.04 3.02 5.43 6.04 10.87 
0.9–1 3 0.00 6.85 0.00 13.69 − 3.79 − 6.31 3.41 6.31 2.65 5.12 5.68 10.25 
0–0.1 4 0.00 6.69 0.00 13.38 − 2.89 − 6.06 2.89 6.06 2.89 6.13 5.42 12.27 
0.2–0.4 4 0.00 6.71 0.00 13.43 − 2.76 − 5.99 3.15 5.97 3.15 6.07 6.30 12.11 
0.5–1 4 0.00 6.82 0.00 13.64 − 3.27 − 5.80 2.86 5.80 2.86 5.90 6.12 11.79  
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they affect the number of optimal solutions, nor did they have any in-
fluence on the pavement design. The only change that can be observed 
are the objective function values. When varying transportation distances 
for both asphalt and subbase mixtures, construction costs are more 
affected than environmental impacts. Further, construction costs and 
environmental impacts associated with thinner asphalt pavement 
structures, e.g. pavement design 1, are less affected by changes in 
asphalt plant distances than those of thicker asphalt pavement struc-
tures. On the other hand, changes in subbase plant distances affect 
construction costs and environmental impacts of thinner asphalt pave-
ment structures in a more pronounced way. The reason being that, in the 
case of thin asphalt pavement structures, subbase layers are responsible 
for the majority of the quantity of materials to be transported. 

Pavement designs 1, 2, 3 and 5 have an increasing traffic volume. 
This leads to the increase of the thickness of the optimal pavement 
structures. Note that pavement design 4 also differs in traffic speed and, 
therefore, cannot be used to determine the relation between traffic 
volume and optimal pavement structure thickness. However, when 
comparing pavement designs 4 and 5, it becomes clear that a lower 
traffic speed with a similar traffic volume requires a thicker pavement 

structure. 
Optimal solutions tend to be characterized by a dominant set of 

mixtures. Surface mixtures 9, 10, 20 and 21 are alternatively used in all 
optimal solutions. This can be explained by the fact that surface mixtures 
have higher costs and ECI values when compared to base/bind mixtures. 
As such, the algorithm will favour designs with the thinnest surface 
layers. Within the current dataset the thinnest possible mixtures (20 
mm) are the above-mentioned mixtures. Mixtures 11 and 22 can only be 
50-mm thick, at the minimum, and are not favoured by the algorithm. 
Mixtures 9 and 20 are the cheapest and the least environmentally 
burdensome for PC1 and PC2, whereas for PC3 and PC4 these are mix-
tures 10 and 21. 

Additionally, the lowest-positioned base layer has the highest in-
fluence on total pavement thickness, since bottom-up fatigue cracking is 
initiated in this layer and propagates upwards. The mixture with the best 
fatigue parameters is predominantly chosen for this layer i.e., mixtures 4 
and 15, with the minimum allowed thickness value (55 mm). Similarly, 
for the surface layer, mixtures 4 and 15 have considerably higher ECI 
and cost values than the mixtures chosen in other base/bind layers. 
Therefore, the algorithm favours the lowest-positioned base layer to 
have the lowest possible thickness. Through selecting mixtures with 
better fatigue properties for this layer, fatigue cracking criteria can still 
be met when applying a thinner pavement thickness. This reduces the 
total pavement thickness. Further, it affects considerably the construc-
tions costs and environmental impacts, and explains why one of the 
mixtures with the best fatigue characteristics is often chosen, despite it 
being one of the most expensive base mixtures in the dataset. An 
exception to this pattern is the pavement design 1. Here mixture 1 or 12 
(depending on the weighting set) are selected instead of mixtures 4 or 
15. In these cases, the 5 mm that could be reduced from the total 
pavement thickness is not worth the additional costs and ECI of mixtures 
4 or 15 when comparing it to mixtures 1 or 12. 

The thickness of subbase mixture of optimal pavement structures is 
also always set to the lowest possible value, but due to a different reason. 
ECI and cost values related to the production of subbase mixtures are the 
lowest, but they contribute the most to the total mass of the pavement 
structure. Therefore, they have higher transportation and construction 
ECI and, more importantly, costs. For this reason, the algorithm favours 
designs with the thinnest possible subbase mixtures. When the weight-
ing set favours ECI, instead of construction costs, subbase mixture 23 is 
sometimes chosen. When the preferred weighting set favours construc-
tion costs instead of ECI, subbase mixture 24 is always chosen. 

Mixtures in layers in between the most bottom base and surface layer 

Fig. 9. Optimal solution set of pavement design 5 compared to the pavement 
designer solution. 

Fig. 10. Iteration-wise improvement example from pavement design 2 (baseline scenario) and ECI weight 0.5.  
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have their thicknesses defined in such a way that the design satisfies 
pavement performance criteria. In turn, the previously mentioned 
mixtures i.e., surface, lowest-positioned base and subbase mixtures, 
have always a thickness equal to the lower thickness boundary. The most 
common mixtures selected by the CMOO approach are mixtures 2, 3, 14, 
18 and 19. This depends on a combination of two factors. First, the al-
gorithm will favour a particular mixture because of the different ECI and 
construction costs associated with each mixture that are more suited for 
a given weighting set. Secondly, the required thickness of the in- 
between layers allows for a combination of different mixture-thickness 
possibilities in order to: 1) meet the OIA constraints, and, 2) minimize 
the weighted sum value for a given weighting set. 

Further, the optimal solutions and corresponding constraint values 
show that the CMOO approach is in line with Bouman et al. (2012). This 
states that, for most cases, fatigue failure will occur before rutting fail-
ure. This alignment with the literature partly validates the verification of 
the constraint formulations in the CMOO approach. 

It is worth mentioning the difference in restrictions applied to the 
pavement designer and CMOO approach for pavement design 5. The 
pavement designer must adhere to requirements set by the client i.e., the 
flexible pavement design should contain a certain number of layers with 
thicknesses specified beforehand. Additionally, the number of appli-
cable mixtures to be used per layer is also limited, thereby creating 
limited design freedom for the pavement designer. On the other hand, 
the CMOO approach assumes complete design freedom. This allows for a 
cheaper and more environmentally sound design, as shown by re-
ductions of the objective function values of 31% and 30%, respectively 
(for an ECI weight of 0), comparatively to the pavement designer 
approach. 

Finally, pavement performance calculation requires data on physical 
properties of mixtures to be known. Such data is only known by the 
asphalt plant owner and contractor. Notwithstanding the lack of data for 
pavement performance calculation, it is the client who prescribes the 
flexible pavement design. This confirms the inefficient approach char-
acterizing the decision-making process in the Dutch asphalt sector 
identified by the literature (Bijleveld et al., 2015; Miller et al., 2010). 
Such an approach can lead to over-designed road pavement structures 
and avoidable additional environmental impacts and construction costs, 
as is shown with pavement design 5. 

6.2. Practical implications 

From a practical point of view, the CMOO approach can be applied in 
a bidding procedure using the following steps. First, the input parame-
ters including the mixtures dataset must be updated for the bid. Running 
the algorithm will result in one or several optimal solutions. The pave-
ment designer can then choose one of the optimal solutions based on 
his/her preference for environmental and economic aspects. 

Secondly, the chosen solution must be tested again in the actual OIA 
software to ensure that no over-design has occurred. The reason being 
that the optimal pavement structures defined by the CMOO approach 
are slightly thicker than the pavement structures obtained with the 
application of the OIA software. In the case of over-design, the optimal 
pavement structure can be fine-tuned until the over-design is overcome. 

Finally, the optimal pavement structure should be sent to the con-
tractor’s sustainability department to calculate the detailed ECI and 
costs of the pavement design. ECI and costs include very detailed com-
ponents that are not included in the CMOO approach. 

6.3. Limitations of the CMOO approach 

Obtaining the optimal pareto front for a set of 24 mixtures is already 
computationally expensive. If the size of dataset increases, the proposed 
GA parameter configuration would require recalibration. Both the 
recalibration process and new configuration itself most likely will 
require even higher computational times to maintain the optimization 

quality. A possible solution to decrease the computational time might be 
by pre-eliminating dominated mixtures from the dataset. Additional 
solutions for reducing the computational time can be found in the use of 
surrogate-based optimization (Gaurav et al., 2011) or Kriging meta-
models (Dilip and Babu, 2021). 

The calculation of pavement performance in the proposed CMOO 
approach does not consider the probabilistic nature of pavement design 
input parameters. Abed et al. (2019) argued that the variability of layer 
thickness and stiffness significantly impacted pavement performance. 
Therefore, ignoring uncertainties might result in under or over-designed 
pavement structure by the CMOO approach (Bhattacharjee, 2017; Luo 
et al., 2018). One way of tackling the stochasticity affecting the pave-
ment design parameters might be to consider a reliability-based pave-
ment design optimization approach (Dilip and Babu, 2021, 2023; Xin 
et al., 2021). This approach should be enhanced by considering the 
deterioration of the pavement over the design life by using a 
time-dependent reliability framework. In this way, pavement mainte-
nance- and use-related costs and environmental impacts are also 
considered. 

The current model formulations always assume a fixed subgrade 
material type, i.e., sand, where a subbase layer can be directly applied 
above the subgrade layer. In cases where the natural subgrade is a water- 
retaining material type, an additional sand layer is required between the 
subgrade and subbase layer. The current CMOO approach does not take 
this into account, but it can be upgraded to account for this situation. 
Hence, only project locations where sand is the natural subgrade layer 
are suitable for the current version of the proposed CMOO approach. 

Finally, the algorithm can only assume a complete design freedom. 
That means that, if the client establishes beforehand any thickness- or 
mixture-related requirements, the CMOO approach becomes inappli-
cable. This also includes cases where the client requires a specified 
number of layers in the design. Additionally, only projects concerning 
complete reconstruction are suitable for the current version of the 
CMOO approach. Nevertheless, upgrading the CMOO approach to ac-
count for the pavement design circumstances previously mentioned can 
be accomplished without radical modifications. 

7. Conclusions 

The increasing number of possible flexible pavement design alter-
natives has made it difficult for pavement designers to find pavement 
designs that reduce both environmental impacts and construction costs, 
while also meeting pavement performance requirements. To solve this 
challenge, a CMOO approach has been developed that concomitantly 
minimizes environmental impacts and construction costs and uses a GA 
to find optimal pavement design solutions for different thickness- 
mixture combinations. 

The proposed CMOO approach has been applied to five pavement 
designs with varying input parameters. The results show that the 
approach is able to find sets of optimal solutions for each pavement 
design. Additionally, one of these pavement designs was based on a real- 
life project, in which the original pavement design was compared with 
the optimal pavement design determined by the CMOO approach. The 
results show a considerable reduction in both environmental impacts 
(30% reduction) and construction costs (31% reduction). 

Since pavement designers have little design freedom due to heavy 
requirements set by the client, the CMOO approach shows that a change 
in the traditional pavement design approach can be very beneficial to all 
parties involved. This implies that design responsibility should be 
handed over from the client to the contractor, since the latter has access 
to mixtures data and, therefore, it is in a more favourable position to 
design pavement structures that are less environmentally harmful and 
economically onerous. 

A. Demir et al.                                                                                                                                                                                                                                   



Journal of Cleaner Production 430 (2023) 139441

14

Role of funding resources 

This research did not receive any specific grant from funding 
agencies in the public, commercial, or not-for-profit sectors. 

CRediT authorship contribution statement 

Abrohom Demir: Conceptualization, Methodology, Software, 
Investigation, Writing – original draft, Visualization. Joao Santos: 
Conceptualization, Methodology, Resources, Writing – review & editing, 
Supervision, Project administration. Seirgei Miller: Conceptualization, 
Writing – review & editing, Supervision, Project administration. Ronald 
Diele: Conceptualization, Resources, Writing – review & editing, Su-
pervision. Gijs Naarding: Supervision. 

Declaration of competing interest 

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

The author would like to thank TWW (Twentse Weg-en Waterbouw) 
and ReintenInfra for sharing their facilities and data used in the research 
work presented in this paper. Furthermore, the author would also like to 
thank Toni Messinella for the useful insights provided on the Dutch 
flexible pavement design procedure.  

Appendix A  

Table A1 
Dataset considered in the application of the CMOO approach for the flexible pavement design problem  

Mixture 
ID 

Production 
plant 

Mixture 
position 

General mixture 
name 

Thickness 
boundaries (mm) 

Thickness step 
size (mm) 

PC PCbase PCbind PCbind, 

PA 

CA1− 3 

(euro/ton) 
ECIA1− 3 

(euro/ton) 

1 1 Base/bind AC 22 BASE/ 
BIND 

55–90 5 N/A 1–4 1–4 1–3 60.74 4.52 

2 1 Base/bind AC 22 BASE/ 
BIND 

55–90 5 N/A 1–4 1–4 2–4 55.42 4.14 

3 1 Base/bind AC 16 BASE/ 
BIND 

40–60 5 N/A 1–4 1–4 2–4 55.08 3.81 

4 1 Base/bind AC 22 BASE/ 
BIND Mod. 

55–90 5 N/A 1–4 1–4 2–4 64.58 4.78 

5 2 Base/bind AC 16 BASE/ 
BIND 

40–60 5 N/A 1–4 2–3 2–4 49.82 4.20 

6 2 Base/bind AC 22 BASE/ 
BIND 

55–90 5 N/A 1–4 2–3 2–4 49.82 4.20 

7 2 Base/bind AC 16 BASE/ 
BIND 

40–60 5 N/A 1–4 2–3 2–4 48.31 4.28 

8 2 Base/bind AC 22 BASE/ 
BIND 

55–90 5 N/A 1–4 2–3 2–4 48.31 4.28 

9 1 Surface AC 8 SURF 20–30 5 1–2 N/A N/A N/A 104.37 11.87 
10 1 Surface SMA-NL 8G 20–35 5 1–4 N/A N/A N/A 114.58 12.36 
11 1 Surface PA 16 50–60 5 1–4 N/A N/A N/A 103.46 11.37 
12 1 Base/bind AC 22 BASE/ 

BIND 
55–90 5 N/A 1–4 1–4 1–3 59.10 5.18 

13 1 Base/bind AC 22 BASE/ 
BIND 

55–90 5 N/A 1–4 1–4 2–4 53.79 4.97 

14 1 Base/bind AC 16 BASE/ 
BIND 

40–60 5 N/A 1–4 1–4 2–4 53.45 4.67 

15 1 Base/bind AC 22 BASE/ 
BIND Mod. 

55–90 5 N/A 1–4 1–4 2–4 62.94 5.64 

16 2 Base/bind AC 16 BASE/ 
BIND 

40–60 5 N/A 1–4 2–3 2–4 43.81 4.62 

17 2 Base/bind AC 22 BASE/ 
BIND 

55–90 5 N/A 1–4 2–3 2–4 43.81 4.62 

18 2 Base/bind AC 16 BASE/ 
BIND 

40–60 5 N/A 1–4 2–3 2–4 42.31 4.80 

19 2 Base/bind AC 22 BASE/ 
BIND 

55–90 5 N/A 1–4 2–3 2–4 42.31 4.80 

20 1 Surface AC 8 SURF 20–30 5 1–2 N/A N/A N/A 102.73 12.72 
21 1 Surface SMA-NL 8G 20–35 5 1–4 N/A N/A N/A 112.94 13.02 
22 1 Surface PA 16 50–60 5 1–4 N/A N/A N/A 101.82 12.00 
23 3 Subbase Mixed granulate 250–350 50 1–4 N/A N/A N/A 6.82 0 
24 3 Subbase Hydraulic mixed 

granulate 
250–350 50 1–4 N/A N/A N/A 8.46 0.36  

Mixture ID ρ1 Mixture type2 cf
1
1 cf

2
1 cf

3
1 cf

4
1 cf

5
1 Hf

1 cE
1

1 cE
2

1 cE
3

1 cE
4

1 TE1 fE1 CKE1 E1 Poisson’s ratio 

1 9 7 5 1 1 5 5 1 7 1 1 1 1 1 1 N/A 0.35 
2 7 7 1 1 1 1 1 5 3 1 1 1 1 1 1 N/A 0.35 
3 17 7 3 1 1 3 3 1 5 1 1 1 1 1 1 N/A 0.35 
4 1 8 7 1 1 11 11 15 1 1 1 1 1 1 1 N/A 0.35 

(continued on next page) 
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Table A1 (continued ) 

Mixture ID ρ1 Mixture type2 
cf

1
1 cf

2
1 cf

3
1 cf

4
1 cf

5
1 Hf

1 cE
1

1 cE
2

1 cE
3

1 cE
4

1 TE1 fE1 CKE1 E1 Poisson’s ratio 

5 3 7 9 1 1 7 7 11 9 1 1 1 1 1 1 N/A 0.35 
6 3 7 9 1 1 7 7 11 9 1 1 1 1 1 1 N/A 0.35 
7 11 7 13 1 1 13 13 5 13 1 1 1 1 1 1 N/A 0.35 
8 11 7 13 1 1 13 13 5 13 1 1 1 1 1 1 N/A 0.35 
9 15 1 N/A N/A N/A N/A N/A N/A 17 1 1 1 1 1 1 N/A 0.35 
10 19 15 N/A N/A N/A N/A N/A N/A 19 N/A N/A N/A N/A N/A N/A N/A 0.35 
11 21 10 N/A N/A N/A N/A N/A N/A 21 N/A N/A N/A N/A N/A N/A N/A 0.35 
12 9 7 5 1 1 5 5 1 7 1 1 1 1 1 1 N/A 0.35 
13 7 7 1 1 1 1 1 5 3 1 1 1 1 1 1 N/A 0.35 
14 17 7 3 1 1 3 3 1 5 1 1 1 1 1 1 N/A 0.35 
15 1 8 7 1 1 11 11 15 1 1 1 1 1 1 1 N/A 0.35 
16 3 7 9 1 1 7 7 11 9 1 1 1 1 1 1 N/A 0.35 
17 3 7 9 1 1 7 7 11 9 1 1 1 1 1 1 N/A 0.35 
18 11 7 13 1 1 13 13 5 13 1 1 1 1 1 1 N/A 0.35 
19 11 7 13 1 1 13 13 5 13 1 1 1 1 1 1 N/A 0.35 
20 15 1 N/A N/A N/A N/A N/A N/A 17 1 1 1 1 1 1 N/A 0.35 
21 19 15 N/A N/A N/A N/A N/A N/A 19 N/A N/A N/A N/A N/A N/A N/A 0.35 
22 21 10 N/A N/A N/A N/A N/A N/A 21 N/A N/A N/A N/A N/A N/A N/A 0.35 
23 24 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 2 0.35 
24 23 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1 0.35 

1Descending ranking order (from the highest to the lowest value). 
2Mixture type based on Bak et al. (2022) for the cost and ECI calculations of LCA stage A5. 
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