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A B S T R A C T

Trajectory prediction has been a long-standing problem in intelligent systems like autonomous driving and
robot navigation. Models trained on large-scale benchmarks have made significant progress in improving
prediction accuracy. However, the importance on efficiency for real-time applications has been less emphasized.
This paper proposes an attention-based graph model, named GATraj, which achieves a good balance of
prediction accuracy and inference speed. We use attention mechanisms to model the spatial–temporal dynamics
of agents, such as pedestrians or vehicles, and a graph convolutional network to model their interactions.
Additionally, a Laplacian mixture decoder is implemented to mitigate mode collapse and generate diverse
multimodal predictions for each agent. GATraj achieves state-of-the-art prediction performance at a much
higher speed when tested on the ETH/UCY datasets for pedestrian trajectories, and good performance at about
100Hz inference speed when tested on the nuScenes dataset for autonomous driving. We conduct extensive
experiments to analyze the probability estimation of the Laplacian mixture decoder and compare it with
a Gaussian mixture decoder for predicting different multimodalities. Furthermore, comprehensive ablation
studies demonstrate the effectiveness of each proposed module in GATraj.
1. Introduction

Accurately predicting the movements of agents, such as pedestrians
and vehicles, in various environments is crucial for many intelligent
systems, including autonomous driving and robot navigation. One ap-
plication is that, with accurate predictions of other agents’ trajectories
in the vicinity, an automated ego agent can safely navigate its own
path. However, predicting trajectories is challenging for several rea-
sons. First, agents’ behaviors are stochastic, as they mutually influence
each other, for instance, by avoiding collisions or staying closely in a
subgroup. Second, the information available to derive an agent’s behav-
ior is often limited, and their destination is typically unknown. In most
cases, the ego agent can only estimate other agents’ behaviors based
on their perceived past moving dynamics, such as velocity and heading
direction, and interactions depending on their relative positions with
their environments. Moreover, due to the mutual influence among
agents and their movements in both spatial and temporal dimensions,
an agent’s behavior can be multimodal in terms of moving into different
directions at various speeds. Therefore, trajectory prediction needs
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to consider both spatial–temporal dynamics and the multimodality of
agents’ behaviors.

The accuracy of trajectory prediction across multiple benchmarks
has been significantly enhanced by recent deep learning models trained
on large-scale real-world datasets, as demonstrated in Fig. 1 by the
𝑦-axis representing the displacement errors measured by Euclidean
distance. These models accomplish the prediction task by utilizing one
or more of the following sources of information:

Observations of the past trajectories. The input for trajectory pre-
diction tasks includes an agent’s past trajectory in both lateral and
longitudinal coordinates, as well as the trajectories of its neighboring
agents observed in the vicinity. In pedestrian trajectory prediction tasks
on the ETH/UCY benchmark (Pellegrini et al., 2009; Lerner et al.,
2007), a popular time horizon setting is for the model to observe eight
time steps and predict the next 12 time steps at a sampling rate of
2.5Hz. For autonomous driving on the nuScenes benchmark (Caesar
et al., 2020), the model typically observes up to four time steps and
predicts the next 12 time steps at a sampling rate of 2Hz. More recent
datasets, such as those introduced in Chang et al. (2019), Sun et al.
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Fig. 1. The inference speed and the prediction performance of the models on the Zara2 dataset (Lerner et al., 2007) computed from a single Tesla V100 GPU. GATraj runs faster
than other prediction methods and achieves superior performance. SA: self-attention (Vaswani et al., 2017); GCN: graph convolutional network (Welling and Kipf, 2017).
(2020) and Wilson et al. (2021), pose even greater challenges with
shorter observation periods and longer prediction horizons.

Interactions among agents. Modeling agent-to-agent interactions in-
volves capturing their behavior over time and space. One popular
technique is to use an occupancy map centered at the ego agent’s posi-
tion to map neighboring agents, known as the agent-centric or marginal
trajectory prediction approach (Wang et al., 2023). This approach
provides an invariant translation from a global coordinate system of
all agents to the ego agent’s local coordinate system, facilitating the
interaction modeling using the occupancy map with a fixed ego per-
spective. Hence, this approach is widely used for data augmentation
in trajectory prediction for autonomous vehicles (Varadarajan et al.,
2022; Nayakanti et al., 2022; Gu et al., 2021), as well as for pedestrian
trajectory prediction (Shi et al., 2023). However, inferring the positions
of the neighboring agents through translation to the ego agent’s local
coordinate system can be time-consuming, as it requires iterating the
translation one by one for each agent to be predicted. Another approach
is to predict the trajectories of all agents in the scene jointly, which
is also called scene-centric approach (Sun et al., 2022). This approach
can speed up the inference process significantly but requires handling
the variance in the global positions of each agent. Alternatively, inter-
actions among agents are modeled using graph models (Zhang et al.,
2019), in which agents are treated as nodes, their connections are
modeled as edges, and the interaction information among them is
conveyed via message passing.

Context constraints. Environmental scene contexts can be used to con-
strain an agent’s movement. For example, convolutional and attention-
based approaches can extract contextual information from rasterized
data like raster maps and RGB images (Sadeghian et al., 2019; Phan-
Minh et al., 2020; Yuan et al., 2021b), or vectorized data like High-
Definition (HD) maps (Gao et al., 2020; Gu et al., 2021; Ye et al., 2022).
However, maps may not be available or outdated for some areas of
interest when a vehicle drives in. Also, the scene context information
may only have limited impact on pedestrians who walk freely in open
environments or shared spaces (Shi et al., 2023). To make prediction
models applicable in any scene context settings, many models predict
trajectories without using map information (Cheng et al., 2021b; Yuan
et al., 2021b). In this work, we do not include any scene contextual
information but focus more on the interactions among agents.

Primary criteria to evaluate a prediction model’s performance are
prediction errors between the predicted trajectories and the corre-
sponding ground truth trajectories. Fig. 1 shows that many recent stud-
164

ies on trajectory prediction prioritize reducing prediction errors, often
competing to achieve centimeter-scale marginal improvement, while
model efficiency (e.g., inference time) can vary from tens to several
hundreds of milliseconds. For example, even though ScePT (Chen et al.,
2022) adopts a scene-centric encoding, the auto-regressive policy net-
work for modeling interactions among agents significantly slow down
the inference speed. Due to the sampling process and auto-regression
mechanism, the CVAE-based AgentFormer (Yuan et al., 2021b) is infe-
rior to most of the other models regarding inference speed. In compari-
son, the graph convolution-based model STAR (Yu et al., 2020) slightly
reduces the inference time, but it still takes more than 0.1 s to infer
a trajectory for each agent. However, this high latency can limit the
usage of complex trajectory prediction models in real-time scenarios,
especially for autonomous driving systems that require millisecond-
level response. In additional to prediction accuracy, more efficient
interaction modeling and inference speed are needed. Therefore, in this
paper, we aim to achieve a good balance of prediction performance and
inference speed for multi-agent multimodal trajectory prediction.

Specifically, we propose GATraj, a multi-agent trajectory prediction
model based on graph and attention mechanisms (Vaswani et al., 2017)
that considers both prediction accuracy and inference speed. GATraj
takes into account the spatial–temporal dynamics of agents and outputs
multimodal trajectories. Attention mechanisms are used to capture
agents’ dynamics, while a more simplified graph convolutional network
(GCN)-based module with message passing (Welling and Kipf, 2017)
is employed to model agent-to-agent interactions. In order to speedup
the prediction process, this interaction module is implemented in a
scene-centric fashion, requiring no further time-consuming translation
of the neighboring agent’s feature encodings to the ego agent’s local
coordinate system. Hence, unlike agent-centric models, GATraj can
jointly predict all agents’ trajectories in the given scene at a higher
frequency. Furthermore, different from most sampling-based models
with auto-regression (Yuan et al., 2021b; Chen et al., 2022; Yuan
and Kitani, 2020; Salzmann et al., 2020b), we employ a Laplacian
mixture decoder to predict diverse multimodal trajectories all at once
for each agent and a winner-takes-all training strategy to mitigate mode
collapse.

The main contributions of our work are as follows:

• We propose an end-to-end multimodal trajectory prediction
model, named GATraj, which achieves a good balance of pre-
diction performance and inference speed. It employs an efficient
scene-centric GCN module to learn agent-to-agent interactions

and an attention module to extract spatial–temporal dynamics.
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• GATraj uses a Laplacian Mixture Density Network (MDN) de-
coder and a winner-takes-all (Makansi et al., 2019) training strat-
egy, which produces more accurate probability estimation for
the multimodal prediction than the widely used Gaussian MDN
decoder.

• GATraj achieves state-of-the-art prediction performance with sig-
nificantly higher prediction speed, as demonstrated by testing
on the ETH/UCY benchmark datasets for pedestrian trajecto-
ries. Additionally, it achieves on-par prediction performance at
approximately 100Hz for real-time inference on nuScenes for
autonomous driving.

. Related work

In this section, we discuss the development of trajectory prediction
or pedestrians and vehicles based on the methods applied for modeling
equential dynamics, interactions, and multimodalities of trajectories.

.1. Modeling motion dynamics as a time sequence

The transition of an agent’s motion dynamics, namely the change
n speed profile, can be simplified as a temporal sequence of states.
ethods such as Kalman Filter (Kalman, 1960), Gaussian Process (Kim

t al., 2011), and Markov Models (Kitani et al., 2012) have been com-
only used for trajectory prediction. However, these techniques have

imited performance when it comes to cope with increased temporal
omplexity.

In recent years, data-driven models with an encoder–decoder struc-
ure have become the dominant approach to trajectory prediction
odeling. Specifically, Recurrent Neural Networks (RNNs) (Rumelhart

t al., 1986) and their variants Long Short-Term Memories (LSTMs)
Hochreiter and Schmidhuber, 1997) and Gated Recurrent Units (GRUs)
Cho et al., 2014) have been used to gate the information for updating
he states in a sequence. Additionally, attention mechanisms (Vaswani
t al., 2017), widely used in Natural Language Processing (NLP), have
hown their effectiveness in learning complex spatial–temporal inter-
onnections and have been adopted in trajectory prediction. The at-
ention mechanisms guide the interconnections between states, helping
o address long time-dependency and complex connectivity problems.
hese models have achieved state-of-the-art performance on various
rajectory prediction benchmarks (Xu et al., 2021; Liu et al., 2021;
u et al., 2022; Zhou et al., 2022; Ngiam et al., 2022). Alternatively,

he history trajectories are stored and later retrieved to identify similar
otion dynamics. This history information is later treated as reference

n the memory-based model SHENet (Meng et al., 2022) and instance-
ased model MemoNet (Xu et al., 2022) to guide the predictions in the
uture.

.2. Modeling interactions among agents

Early works in trajectory prediction often relied on hand-crafted fea-
ures to model interactions among agents. One of the most influential
ethods is the Social Force Model (SFM) (Helbing and Molnar, 1995),
hich applies different forces to determine agents’ speed and orien-

ation. These forces include a repulsive force for collision avoidance
ith obstacles and an attractive force for social connections among
gents and goals. Game theoretic models (Johora et al., 2022) have
lso been used to simulate the negotiations of right-of-way among agent
layers for decision making. However, due to the complex dynamics in
oth spatial and temporal domains, these models based on manually
elected or designed features often have limited performance in model-
ng multi-agent interactions and the multimodalities of potential future
rajectories.

In recent years, interactions among agents have been modeled by
ggregating latent variables learned from each agent’s motion dy-
amics. The pioneering work Social-LSTM (Alahi et al., 2016) ex-
lores LSTMs (Hochreiter and Schmidhuber, 1997) to encode pedes-
rians’ motion dynamics into hidden states and a pooling mechanism
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to model interactions. Many later works (Xue et al., 2018; Cheng et al.,
2021b) have extended this structure by including more features, such
as agent-to-agent and agent-to-environment interactions using LSTMs
or GRUs (Cho et al., 2014). However, the model performances heavily
depend on the hidden states, and with the increase in trajectory length
and complexity, the performances are often significantly degraded (Hug
et al., 2021).

Attention-based (Vaswani et al., 2017) and graph models, such
as Graph Convolutional Networks (GCNs) (Welling and Kipf, 2017),
have been leveraged to model agent-to-agent interactions in trajectory
prediction. The self- and cross-attention mechanisms have shown their
effectiveness in learning interaction information (Yu et al., 2020; Yuan
et al., 2021b; Zhu et al., 2021). For instance, AgentFormer (Yuan et al.,
2021b) proposes an agent-aware attention mechanism that simultane-
ously models the temporal and social dimensions among agents. In
addition to attention mechanisms, GCNs are widely used to model
interactions in trajectory prediction (Zhang et al., 2019; Shi et al.,
2020; Gilles et al., 2022; Bae et al., 2022; Shi et al., 2023). Agents are
represented as nodes, and their connections are represented as edges,
allowing for message passing between nodes to capture interactions
between agents. This paper describes an implementation of attention
mechanisms to learn salient spatial–temporal features and a GCN mod-
ule with simplified structure to more efficiently model agent-to-agent
interactions.

2.3. Multimodal prediction

Multimodal prediction refers to the task of predicting a set of
feasible trajectories for each agent, accounting for their stochastic be-
havior, such as varying speeds and directions. Deep generative models
are commonly used to address the multimodality problem, including
Generative Adversarial Nets (GANs) (Goodfellow et al., 2014), Varia-
tional Auto-Encoder (VAE) (Kingma and Welling, 2014) and its exten-
sion Conditional-VAE (CVAE) (Kingma et al., 2014), and Normalizing
Flows (Rezende and Mohamed, 2015). Social GAN (Gupta et al., 2018),
DESIRE (Lee et al., 2017), and Precog (Rhinehart et al., 2019) are
early representative trajectory prediction frameworks that apply these
designs, respectively. Recent works such as Cheng et al. (2021a), Yuan
et al. (2021b), Lee et al. (2022), Zhou et al. (2023a) and Chen et al.
(2022) have extended the CVAE-based design for multimodal trajectory
prediction due to its good performance. However, these sampling-based
approaches do not provide a straightforward mechanism to estimate the
likelihood of each prediction in the random sampling process (Shi et al.,
2023). In addition, with the success in computer vision domains, dif-
fusion models (Ho et al., 2020) have been adopted to learn road users’
behavior and generate diverse multimodal trajectory predictions (Gu
et al., 2022; Mao et al., 2023). However, these models are often time
consuming due to the chain of sampling process.

Apart from deep generative models, Mixture Density Networks
(MDNs) are proposed to learn a mixture density function, such as
Gaussian Mixture Model (GMM), for multimodal trajectory predic-
tion (Salzmann et al., 2020b; Shi et al., 2020; Varadarajan et al.,
2022; Deo et al., 2022; Shi et al., 2023). However, most bench-
marks only provide a single ground truth trajectory, making it difficult
for these models to learn the entire data distribution and generate
diverse predictions. This issue, referred to as the mode collapse prob-
lem (Richardson and Weiss, 2018), has been a challenge for these
methods. The winner-takes-all strategy is proposed to mitigate the
mode-collapse problem (Makansi et al., 2019; Zhou et al., 2022; Deo
et al., 2022), which only optimizes the loss function of the best
predicted modality to facilitate the training process and encourage
more diverse predictions.

Inspired by these previous methods, we design our model, GATraj,
which uses an encoder–decoder structure to encode past trajectories
and interactions, and extract spatial–temporal features through atten-
tion mechanisms. In addition, we utilize a GCN to model interactions

among agents. Different from the previous models, we seek for a more
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Fig. 2. The framework of the proposed model GATraj, consisting of three parts: a Temporal Encoder, a GCN-based global interaction module, and a Laplacian Decoder. It takes
as input the observed trajectory of each agent and outputs multimodal predictions of their potential future trajectories.
𝑐

efficient framework with a scene-centric GCN module to learn global
interactions among agents and jointly predict multimodal trajectories
of each agent in the given scene simultaneously. This scene-centric GCN
module avoids the time-consuming translation into the ego agent’s local
coordinate system, and significantly speed up the inference process.
Rather than relying on a GMM, we introduce a Laplacian Mixture Model
(LMM) as the decoder with the winner-takes-all training strategy that
generates multiple diverse predictions for each agent. Compared to the
recent Mean Location method (Shi et al., 2023) that employs both a
GCN module and a GMM decoder for pedestrian trajectory prediction
in an ego-centric way, our GATraj achieves joint trajectory prediction in
a scene-centric manner and demonstrates that a LMM decoder is more
effective than a GMM to model multimodal trajectories.

3. Methodology

3.1. Problem formulation

A multi-path trajectory prediction problem is defined as predicting a
set of future trajectories {�̂�𝑇+1∶𝑇+𝑇 ′

𝑖,1 ,… , �̂�𝑇+1∶𝑇+𝑇 ′

𝑖,𝐾 } given the observed
trajectory 𝐗1∶𝑇

𝑖 = {𝑋1
𝑖 ,… , 𝑋𝑇

𝑖 } of agent 𝑖. Here, 𝑇 and 𝑇 ′ denote
the total time steps of the observed and the predicted trajectories,
respectively; 𝑇+𝑇 ′ is the total sequence length. 𝐾 stands for the number
of the modes of multiple predicted trajectories. 𝑋𝑡

𝑖 = {𝑥𝑡𝑖, 𝑦
𝑡
𝑖} ∈ R2 is

the position of agent 𝑖 at time step 𝑡 in a 2D coordinate system. The
formulation can also be easily extended to a 3D coordinate system. To
simplify the notation, 𝐗 and 𝐘 denote the observed and ground truth
trajectories, respectively. The loss function aims to reduce the distance
between a predicted trajectory �̂� and the corresponding ground truth
trajectory 𝐘 for all agents.

The input trajectories are shifted before feeding the trajectory data
into the prediction model. Specifically, we follow Cheng et al. (2021a)
to use relative positions instead of absolute positions to mitigate do-
main gaps across different scenes. First, we shift the origin to each
agent’s last observed time step for data normalization. Then, we use
𝛥𝐗2∶𝑇

𝑖 = {𝛥𝑋2
𝑖 ,… , 𝛥𝑋𝑇

𝑖 } to represent agent i’s observed trajectory,
where 𝛥𝑋𝑡

𝑖 = {𝛥𝑥𝑡𝑖, 𝛥𝑦
𝑡
𝑖} is the offset from (𝑡 − 1) to the next time

step. However, this shifted representation of trajectories also loses the
relative position information between agents, which is essential for
modeling their interactions. Hence, we obtain the relative position
between agent 𝑖 and 𝑗 based on their original positions (𝑥𝑡𝑖−𝑥𝑡𝑗 , 𝑦

𝑡
𝑖−𝑦𝑡𝑖) at

each time step, where 𝑖 ≠ 𝑗. The relative position is further employed
in the global interaction modeling.

3.2. The proposed framework

Fig. 2 depicts the overview of our proposed framework GATraj. It
consists of three parts: a Temporal Encoder, a GCN-based global inter-
action module, and a Laplacian Decoder. We first utilize the encoder to
extract temporal information of each agent independently and output
rich temporal information for the subsequent modules. Then the global
interaction module, which employs a GCN adopted from Zhang et al.
(2019), aggregates the temporal context of different agents over time
and space and updates each agent’s hidden state by message passing
for interaction modeling. Finally, the learned spatial–temporal feature
map is the input of the Laplacian decoder that simultaneously predicts
diverse and multimodal future trajectories for all the agents. We explain
each part of GATraj in detail in the following.
166
Fig. 3. The Temporal Encoder of GATraj. It consists of a sequence of 1D convo-
lution layer (Conv1D) and a two-layer position-wise multilayer perceptron (MLP), a
self-attention layer, and an LSTM layer to learn salient temporal features of each agent.

Temporal encoder . The self-attention Temporal Encoder learns tem-
poral dynamic information from the observed trajectory. Concretely,
as shown in Fig. 3, the temporal encoder takes as input the rela-
tive positions 𝛥𝑋2∶𝑇

𝑖 , which is later passed to a 1D convolution layer
(Conv1D) and a two-layer position-wise multilayer perceptron (MLP).
In the following, the self-attention layer with three Transformer En-
coder blocks (Vaswani et al., 2017) learns salient temporal features
— to which time steps of the temporal sequence the encoder should
pay more attention through the self-attention layer. Specifically, the
default positional encodings of the Transformer network are added at
the bottom of the encoder blocks to retain the ordered sequential in-
formation. After that, a multi-head of self-attention is applied to jointly
attend to the information from different representation subspaces at
different positions. Eight heads of self-attention and skip-connections
are used in our implementation. Towards the end of the temporal
encoder, we utilize an LSTM to extract the temporal dependencies over
time. It should be noted that each agent’s observed trajectory is con-
sidered independently so that their temporal dynamics are processed
in parallel.

Global interaction. We build a GCN-based module, inspired by SR-
LSTM (Zhang et al., 2019), for modeling global interactions among all
the concurrent agents in a given scene. SR-LSTM introduces a States
Refinement (SR) module to refine the cell state of an LSTM by passing
messages among agents at each time step. In contrast, to reduce the
computational cost, GATraj only refines cell state once at the latest
observed time step but still maintains the ability to model interactions
among agents. More specifically, a motion gate and an agent-wise atten-
tion (Zhang et al., 2019) are adopted to preserve spatial relationships
between the ego agent and its neighbors and to select the most helpful
information from neighboring agents for message passing. The cell
state output by the LSTM in the Temporal Encoder is updated by a
social-aware information selection mechanism as follows:

̂𝑇 , 𝑙+1𝑖 = 𝜙mp[
∑

𝑗∈𝖭(𝑖)
𝛼𝑇 , 𝑙𝑖, 𝑗 (𝑔

𝑇 , 𝑙
𝑖, 𝑗 ⊙ ℎ̂𝑇 , 𝑙𝑗 )] + 𝑐𝑇 , 𝑙𝑖 , (1)

where 𝑐𝑖 denotes agent 𝑖’s cell state after message passing, 𝑙 denotes the
message passing times, ⊙ is the element-wise product operation, and
𝜙mp denotes an MLP. Namely, for the ego agent 𝑖, the cell state starts at
𝑙 = 0 with the original output of the LSTM 𝑐𝑖. All the LSTM hidden states
ℎ̂𝑇 ,𝑙𝑗 of its neighbors 𝑗 ∈ 𝖭(𝑖) are aggregated through the motion gate
𝑔𝑇 ,𝑙𝑖,𝑗 , and the agent-wise attention 𝛼𝑖,𝑗 attends to the neighbors based on
the agent-to-agent pairwise weights. In addition, a skip connection adds
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Fig. 4. The Laplacian Decoder of GATraj, which consists of a sequence of MLP, LSTM and MLP layers. It takes as input the spatial–temporal dynamic context from the temporal
encoder and the GCN module of the global interaction modeling and then outputs a set of parameters, i.e., the likelihood of the mode 𝜋, and the location 𝜇 and scale 𝑏 of a
Laplacian mixture model for each agent.
agent 𝑖’s previously refined cell 𝑐𝑇 ,𝑙𝑖 . Here, the motion gate is defined by
using the relative position between agent 𝑖 and 𝑗, and their individual
hidden states, as shown in Eqs. (2) and (3),

𝑟𝑇 , 𝑙𝑖,𝑗 = 𝜙𝑟(𝑥𝑇𝑖 − 𝑥𝑇𝑗 , 𝑦
𝑇
𝑖 − 𝑦𝑇𝑗 ), (2)

𝑔𝑇 ,𝑙𝑖,𝑗 = 𝛿(𝜙𝑚[𝑟
𝑇 ,𝑙
𝑖,𝑗 , ℎ̂

𝑇 ,𝑙
𝑗 , ℎ̂𝑇 ,𝑙𝑖 ]), (3)

where 𝜙𝑚 and 𝜙𝑟 denote MLP and 𝛿 is the Sigmoid function.
Similarly, another MLP 𝜙𝑎 is used to learn the weights 𝑢𝑇 , 𝑙𝑖, 𝑗 of the

different impacts from the neighbors by Eq. (4). The weights are nor-
malized across all the neighboring agents using the Softmax function
denoted by Eq. (5),

𝑢𝑇 , 𝑙𝑖, 𝑗 = 𝜙𝑎[𝑟
𝑇 , 𝑙
𝑖, 𝑗 , ℎ̂

𝑇 , 𝑙
𝑗 , ℎ̂𝑇 , 𝑙𝑖 ], (4)

𝛼𝑇 , 𝑙𝑖, 𝑗 =
exp(𝑢𝑇 , 𝑙𝑖, 𝑗 )

∑

𝑠∈𝖭(𝑖) exp(𝑢
𝑇 , 𝑙
𝑖, 𝑠 )

. (5)

The hidden state of agent 𝑖 then is updated using Eq. (6) after the
cell state 𝑐𝑇 , 𝑙+1𝑖 is refined by the above message passing.

ℎ̂𝑇 , 𝑙+1𝑖 = ℎ̂𝑇 , 𝑙𝑖 + tanh(𝑐𝑇 , 𝑙+1𝑖 ), (6)

where tanh stands for the hyperbolic tangent function. Different from
SR-LSTM, we use a skip-connection to avoid the vanishing gradient
problem and discard the output gate for a lightweight structure. Com-
pared to the original GCNs (Welling and Kipf, 2017) that use an
adjacency matrix to compute the normalization constant, our agent-
wise attention uses learnable MLP 𝜙𝑟 and 𝜙𝑎 to aggregate relative
spatial positional information between the ego and all its neighboring
agents and emphasize important neighbors using the attention mecha-
nism to guide the message passing. Moreover, as the interactions among
agents are automatically learned by using the above message passing
and the agent-wise attention mechanism, there is no further need to
translate the neighboring agent’s feature encodings to the ego agent’s
local coordinate system. This significantly reduces the processing time.

Laplacian decoder . We introduce a Laplacian MDN decoder to gener-
ate future multimodal trajectories, accounting for each agent’s stochas-
tic behavior, as shown in Fig. 4. The decoder takes as input the
spatial–temporal dynamic context from the temporal encoder and the
GCN module of the global interaction modeling. Its outputs are a set of
different modes of the predicted trajectory distribution. Concretely, the
predicted set of potential trajectories is {{𝜋, 𝜇, 𝑏}𝑘=1,… , {𝜋, 𝜇, 𝑏}𝑘=𝐾}
with a total of 𝐾 modes. For mode 𝑘, 𝜋 stands for the estimated
likelihood of this mode among all the potential modes and ∑𝐾

𝑘=1 𝜋𝑘 = 1.
In the Laplace distribution of the predicted mode, {𝜇, 𝑏} ∈ R𝑡𝑓×2,
the location 𝜇 and scale 𝑏 parameters represent the mean positions
and standard deviations of the predicted trajectory, respectively. To
simplify the generation of each trajectory, in this paper, we use the
sequence of the mean positions 𝜇 as the predicted trajectory.

To be more specific, in the decoding process, the decoder takes as
input the hidden state ℎ𝑇𝑖 of the LSTM from the Temporal Encoder
and the hidden state ℎ̂𝑇 , 𝑙+1 and cell state 𝑐𝑇 , 𝑙+1 after the message
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𝑖 𝑖
passing with the GCN module. {ℎ𝑇𝑖 , ℎ̂
𝑇 , 𝑙+1
𝑖 , 𝑐𝑇 , 𝑙+1𝑖 } ∈ R𝑁×𝐷, where 𝐷

is the dimension of the embedded feature space and 𝑁 is the total
number of agents in the current scene. First, an MLP projects the shape
of the input into [𝐾, 𝑁, 𝐷], where 𝐾 is the number of modes to be
predicted. With projected feature embeddings, we utilize an MLP and a
Softmax function to learn the probability �̂�𝑖, 1∶𝐾 of each mode for each
agent. Then, an LSTM decodes the aggregated and embedded hidden
states into a shape of [𝐾 × 𝑁, 𝑇 ′, 𝐷], recovering the prediction time-
step dimension 𝑇 ′. It should be noted that here we simultaneously
predict all the time steps using the hidden states instead of applying
a step-wise auto-regressing to further speed up the prediction. We
empirically found that using LSTM contributes to a more efficient
gating of the sequential information over the time axis (more details
in Section 4.6). Finally, two side-by-side MLPs predicts a mixture of
Laplace distribution with 𝐾 modes of the potential future trajectories
for each agent, i.e., the location �̂�𝑖, 1∶𝐾 ∈ R𝐾×𝑇 ′×2 and its associated
scale �̂�𝑖, 1∶𝐾 ∈ R𝐾×𝑇 ′×2, and �̂�𝑖,1∶𝐾 ∈ R𝐾 .

3.3. Loss function

The total loss of GATraj is decoupled into two parts - regression loss
and classification loss. We utilize a Winner-Takes-All strategy (Makansi
et al., 2019) for the supervision by each agent’s single ground truth
trajectory to encourage GATraj to generate diverse predictions. Namely,
for the regression loss, we only optimize the best mode 𝑘∗ of the
𝐾 predictions during training instead of the weighted strategy by
an Expectation-Maximization algorithm for a GMM. Following Zhou
et al. (2022), we employ the negative log-likelihood for the Laplace
distribution as the regression loss and the cross-entropy loss as the
classification loss for the mode optimization,

𝑘∗ = arg min
𝑘∈𝐾

‖�̂�𝑖,𝑘 − 𝐘𝑖‖
2, (7)

reg, 𝑖 =
1
𝑇 ′

𝑇+𝑇 ′
∑

𝑡=𝑇+1
− log𝑃 (𝐘𝑡

𝑖|�̂�
𝑡
𝑖, 𝑘∗ ,𝐛

𝑡
𝑖, 𝑘∗ ), (8)

cls, 𝑖 =
𝐾
∑

𝑘=1
−𝜋𝑖, 𝑘 log(�̂�𝑖, 𝑘), (9)

where log𝑃 (⋅ ∣ ⋅) is the logarithmic probability density function of
the Laplace distribution. �̂�𝑖,𝑘 is the predicted probability, and 𝜋𝑖,𝑘 is
our target probability. We employ a soft displacement error adopted
from Zhou et al. (2022) as our target probability.

4. Experiments

4.1. Datasets

The benchmarks ETH/UCY (Pellegrini et al., 2009; Lerner et al.,
2007) and nuScenes (Caesar et al., 2020) are used to train and test
the performance of our proposed model. ETH/UCY contains thousands
of pedestrian trajectories sampled in 2.5Hz in five different datasets,
i.e., Eth, Hotel, Uni, Zara1, and Zara2. The time horizon lets the model
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observe eight steps and predict the subsequent 12-step trajectories.
We follow the standard leave-one-out training and test partitioning, in
order to test the model’s generalization performance in unseen scenes.
Concretely, four of the five datasets are used for training, and the left-
out one is for the test. This partitioning is iterated for each dataset. The
nuScenes prediction task provides separate training and test sets for
vehicle trajectory prediction. In total, nuScenes includes 1000 driving
scenarios in different cities. Each scenario contains various neighboring
agents and the target vehicles for the motion prediction task. In this
dataset, a trajectory is sampled in 2Hz. The model observes up to four-
ime steps and predicts the following 12-step trajectories. We use the
rovided data partitioning, namely, 750 scenarios for training, 150
cenarios for validation, and the remaining 150 scenarios for testing.

In this work, we adhere to the default settings of the parameter
ode 𝐾, as recommended by the datasets. Specifically, 𝐾 is set to
0 for predicting multiple trajectories on the ETH/UCY datasets for
edestrians, as pedestrians have greater freedom of movement in open
paces. For the nuScenes dataset, which involves predicting vehicle
rajectories, 𝐾 is set to 5 and 10 to align with the official benchmark
etting for the evaluation. Compared to pedestrians, this distinction of

for vehicles is made because vehicles are more constrained by lane
oundaries.

.2. Evaluation metrics

We apply the two most commonly used metrics, Average Displace-
ent Error (ADE) and Final Displacement Error (FDE) in meters, to

valuate trajectory prediction accuracy. ADE measures the Euclidean
istance between the predicted and ground truth trajectories and is
veraged at each position for each agent. FDE is the Euclidean distance
f the last position between the predicted and ground truth trajectories.

DE𝐾 = 1
𝑁

1
𝑇 ′ min𝐾

𝑘=1

𝑁
∑

𝑖=1

𝑇+𝑇 ′
∑

𝑡=𝑇+1
‖�̂�𝑡𝑖, 𝑘 − 𝑦𝑡𝑖‖

2, (10)

DE𝐾 = 1
𝑁

min𝐾
𝑘=1

𝑁
∑

𝑖=1
‖�̂�𝑇+𝑇

′

𝑖, 𝑘 − 𝑦𝑇+𝑇
′

𝑖 ‖

2, (11)

where 𝑁 is the total number of agents. Here, 𝐾 denotes that we
generate 𝐾 predictions for each agent and report the best one measured
by ADE and FDE, respectively.

Moreover, to evaluate the performance of the predicted distribution
of a mixture model, we use negative log-likelihood (NLL) to compare
the likelihood estimation across different models tested on the same
data. We report the average NLL and standard deviation across all the
agents.

4.3. Baselines

We compare the performance of GATraj with a variety of recent
state-of-the-art models in the competition on the popular pedestrian
datasets and the dataset for autonomous driving introduced in Sec-
tion 4.1. To ensure a fair comparison, we exclusively benchmark our
model, GATraj, against multi-path trajectory prediction models on both
the ETH/UCY and nuScenes datasets. Our focus remains on models
that do not leverage map information in the nuScenes test set for
autonomous driving.

In general, we classify the baseline models according to their pri-
mary network architectures, as outlined in Table 1. It is worth noting
that some of the baseline models also incorporate multiple network
architectures.

4.4. Experimental setting

The hyper-parameters of GATraj are as follows. The hidden states
and the embedding dimensions are all set to 64. We apply the Adam
168
Table 1
The list of baseline models.

Architecture Model

CNN-based MTP (ICRA’19) (Cui et al., 2019),
CoverNet (CVPR’20) (Phan-Minh et al., 2020)

GAN-based Social GAN (CVPR’18) (Gupta et al., 2018),
SoPhie (CVPR’18) (Sadeghian et al., 2019)

CVAE-based DLow-AF (ECCV’20) (Yuan and Kitani, 2020),
Trajectron++ (ECCV’20) (Salzmann et al.,
2020b)

GCN-based SGCN (CVPR’21) (Shi et al., 2021),
PGP (CoRL’22) (Deo et al., 2022)
Social-BIGAT (Neurips’21) (Kosaraju et al.,
2019), ScePT (CVPR’22) (Chen et al., 2022),
GP-Graph (ECCV’22) (Bae et al., 2022)
FRM (ICLR’23) (Park et al., 2023)

Transformer with
attention-based

STAR (ECCV’20) (Yu et al., 2020),
AgentFormer (ICCV’21) (Yuan et al., 2021b),
MemoNet (CVPR’22) (Xu et al., 2022),
SHENet (Neurips’22) (Meng et al., 2022),
EqMotion (CVPR’23) (Xu et al., 2023)

Mixture Models MultiPath (CoRL’20) (Chai et al., 2020),
MeanLocation (PAMI’23) (Shi et al., 2023)

Diffusion-based MID (CVPR’22) (Gu et al., 2022),
LED (CVPR’23) (Mao et al., 2023)

Other models The flow-based LDS-AF (ICCV’21) (Ma et al.,
2021),
The clustering-based PCCSNet (ICCV’21) (Sun
et al., 2021),
The energy-based model LB-EBM (CVPR’22)
(Pang et al., 2021)

Table 2
The quantitative results on nuScenes (Caesar et al., 2020).

Model Map info. ADE5 FDE5 ADE10 FDE10

DLow-AF (Yuan and Kitani, 2020) No 2.11 4.70 1.78 3.58
LDS-AF (Ma et al., 2021) No 2.06 4.62 1.65 3.50
AgentFormer (Yuan et al., 2021b) No 1.97 4.21 1.58 3.14

MTP (Cui et al., 2019) Yes 2.93 – 2.93 –
MultiPath (Chai et al., 2020) Yes 2.32 – 1.96 –
CoverNet baseline (Caesar et al., 2020) Yes 1.96 – 1.48 –
Trajectron++ (Salzmann et al., 2020b) Yes 1.88 – 1.51 –
AgentFormer (Yuan et al., 2021b) Yes 1.86 3.89 1.45 2.86
PGP (Deo et al., 2022) Yes 1.27 – 0.94 –
FRM (Park et al., 2023) Yes 1.18 – 0.88 –

GATraj (Ours) No 1.87 4.08 1.46 2.97

optimizer (Kingma and Ba, 2015) with a learning rate of 5𝑒−4 and a
osine annealing schedule until it reaches 1𝑒−5. The batch size is set to
2, and the maximum epoch is set to 1000. On ETH/UCY, the maximum
istance of the ego and neighboring agents is set to 10m and the GCN
ayers for messaging passing are set to 𝑙 = 2. On nuScenes, given
he faster driving speed of vehicles and fewer neighboring agents than
TH/UCY, the maximum distance of the ego and neighboring agents is
et to 100m and the GCN layers for messaging passing are set to 𝑙 = 1.

Our code is released at https://github.com/mengmengliu1998/GATraj
with more detailed settings.

4.5. Results

4.5.1. Quantitative results
First, we present the quantitative prediction results on the nuScenes

benchmark. As the map context information is a strong prior to con-
strain vehicle trajectories driving on the lane of road (Caesar et al.,
2020), we compare our model to the other models without any map
information and with map information, separately. As shown in Ta-
ble 2, our model GATraj achieves the best performance measured by
ADE and FDE in predicting five and ten trajectories for each agent,

https://github.com/mengmengliu1998/GATraj
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Table 3
Quantitative results on ETH/UCY (Pellegrini et al., 2009; Lerner et al., 2007) measured by ADE20/FDE20. The best/2nd best performances are
indicated in boldface and underline.

Models Eth Hotel Uni Zara1 Zara2 Avg

Social GAN (Gupta et al., 2018) 0.81/1.52 0.72/1.61 0.60/1.26 0.34/0.69 0.42/0.84 0.58/1.18
SoPhie (Sadeghian et al., 2019) 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.54/1.15
Social-BIGAT (Kosaraju et al., 2019) 0.69/1.29 0.49/1.01 0.55/1.32 0.30/0.62 0.36/0.75 0.48/1.00
Trajectron++ (Salzmann et al., 2020b) 0.67/1.18 0.18/0.28 0.30/0.54 0.25/0.41 0.18/0.32 0.32/0.55
SGCN (Shi et al., 2021) 0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65
STAR (Yu et al., 2020) 0.36/0.65 0.17/0.36 0.31/0.62 0.26/0.55 0.22/0.46 0.26/0.53
AgentFormer (Yuan et al., 2021b) 0.45/0.75 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24 0.23/0.39
MID (Gu et al., 2022) 0.39/0.66 0.13/0.22 0.22/0.45 0.17/0.30 0.13/0.27 0.21/0.38
LB-EBM (Pang et al., 2021) 0.30/0.52 0.13/0.20 0.27/0.52 0.20/0.37 0.15/0.29 0.21/0.38
PCCSNet (Sun et al., 2021) 0.28/0.54 0.11/0.19 0.29/0.60 0.21/0.44 0.15/0.34 0.21/0.42
ScePT (Chen et al., 2022) 0.10/0.65 0.13/0.77 0.12/0.65 0.13/0.77 0.14/0.81 0.12/0.73
MemoNet (Xu et al., 2022) 0.40/0.61 0.11/0.17 0.24/0.43 0.18/0.32 0.14/0.24 0.21/0.35
GP-Graph (Bae et al., 2022) 0.43/0.63 0.18/0.30 0.24/0.42 0.17/0.31 0.15/0.29 0.23/0.39
SHENet (Meng et al., 2022) 0.41/0.61 0.13/0.20 0.25/0.43 0.21/0.32 0.15/0.26 0.23/0.36
MeanLocation (Shi et al., 2023) 0.29/0.49 0.12/0.18 0.29/0.51 0.20/0.35 0.15/0.27 0.21/0.35
EqMotion (Xu et al., 2023) 0.40/0.61 0.12/0.18 0.23/0.43 0.18/0.32 0.13/0.23 0.21/0.35
LED (Mao et al., 2023) 0.39/0.58 0.11/0.17 0.26/0.43 0.18/0.26 0.13/0.22 0.21/0.33
GATraj (Ours) 0.26/0.42 0.10/0.15 0.21/0.38 0.16/0.28 0.12/0.21 0.17/0.29
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compared to the CVAE-based models DLow-AF and AgentFormer w/o
map information, as well as the flow-based model LDS-AF. GATraj
reduces the prediction errors around ten centimeters compared to the
runner up model AgentFormer w/o map information. Interestingly,
when comparing GATraj with the map-based models, it still main-
tains a relatively good level of prediction performance. For example,
it surpasses the convolutional-based baseline CoverNet with a clear
margin and performs slightly better than the CAVE-based Trajectron++
with scene context information to constrain the predictions. More-
over, GATraj only marginally falls behind AgentFormer measured in
ADE, even though the latter benefits largely by including the scene
information. Nevertheless, due the lack of map information, such as
lane boundaries and traffic rules extracted from a vectorized HD map,
GATraj falls behind the recent HD-map based models PGP (Deo et al.,
2022) and FRM (Park et al., 2023). More discussion about the limitation
of missing map information can be found in Section 4.6.1

Next, we present the quantitative prediction results on ETH/UCY.
Different from the nuScenes dataset with most of the agents being
vehicles, the agents in the ETH/UCY datasets are all pedestrians. As
shown in Fig. 6, pedestrians move freely because the scenes depicted
in ETH/UCY consist of open spaces with few constraints on the move-
ments of pedestrians. Therefore, in these datasets, only a few models
make use of scene information, such as SoPhie and ScePT. To simplify
the comparison, we compare GATraj with the other models in Table 3
without differentiating the inclusion of scene information.2

Overall, our model achieves the best performance measured in both
DE and FDE on Hotel and Zara2, and the best FDE on Eth, Uni and

he average FDE across the datasets for predicting 20 trajectories for
ach agent. It achieves the second best on the other datasets, slightly
alling behind ScePT in terms of ADE on Eth, Uni, and the average
DE across the datasets. ScePT uses a conditional policy learning to
ecode scene-consistent predictions to reduce the average prediction
rrors, whereas GATraj only conditions on the observed trajectories
or prediction. In addition, due to the auto-regressive policy and the
artitioning of the scene-graph into cliques, ScePT requires significantly
uch longer computational time (see Table 4). Compared to the most

ecent diffusion-model based predictor LED, the performance of GATraj
s superior on most datasets, except on Zara1 in terms of FDE.

Furthermore, Fig. 1 and Table 4 show the comparison of the model
ize, training time, and prediction speed between our model and the
odels with similar prediction performance. It is evident that, in

2 The results of Trajectron++ and AgentFormer are updated according to
mplementation issue #53 (Salzmann et al., 2020a) and issue #5 (Yuan et al.,
021a), respectively.
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comparison to the other models, GATraj is of medium size and can be
trained using a single GPU in just over one day, which is much easier to
train than the other models such as AgentFormer (Yuan et al., 2021b),
ScePT (Chen et al., 2022), and ProphNet (Wang et al., 2023).

Because the settings of the model across the datasets are similar,
we conduct an experiment on Zara2 (Lerner et al., 2007) using a
single Tesla V100 GPU and a batch size of 32 to demonstrate the
inference speed. Our full model demonstrates an almost three-times
faster prediction speed (i.e., 10.1ms vs. 29.1ms) than the 2nd fastest
model Trajectron++. Due to the lack of released code, we employ a
linear function to estimate the fastest agent-centric model ProphNet’s
inference speed for a batch size of 32 and a time horizon of 12 steps
in Table 4. It can be seen that GATraj has a much lower latency
than ProphNet. Moreover, to ensure a more equitable comparison, we
aligned the batch size for GATraj at 64 and the time horizon at 30
steps, matching the settings reported for ProphNet in the original paper.
The average inference speed of GATraj stands at 1.7ms per agent,
significantly outperforming ProphNet’s 28ms per agent. The following
actors contribute to this computational difference: First, GATraj takes

scene-centric approach, concurrently predicting the trajectories of
ll agents within the same scene. Conversely, ProphNet employs an
gent-centric methodology that necessitates the normalization of tra-
ectories to each agent’s local coordinate system. Second, ProphNet
mploys multiple hydra heads as an ensemble strategy and utilizes non-
aximum suppression to consolidate all predicted trajectories into a

inal output. These steps introduce additional latency to the overall
nference speed.

In addition, by removing the GCN-based interaction module and the
ttention mechanisms, our model can reach a speed of 3.9ms, and the
ize of our model is also decreased from 276K to 183K. Later, we will
emonstrate that even without the GCN and attention mechanisms, our
odel maintains a relatively good prediction accuracy, as shown in
ables 7 and 8.

.5.2. Qualitative results
In the following, we present the visualization of the prediction

esults by GATraj on nuScenes for autonomous driving and ETH/UCY
or pedestrian trajectories.

To demonstrate the capability of predicting multimodal trajectories
f the target vehicle in nuScenes, we visualize ten potential trajectories
𝐾 = 10) in each scenario, as shown in Fig. 5. GATraj generates diverse
ultimodal predictions for the target vehicle, such as: turning into
ifferent directions while approaching the intersection in (a) and (b),
riving through the intersection in (c), and moving at different speeds
hile passing a straight road in (d).
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Table 4
Model efficiency in terms of number of parameters, training time, and inference speed with a batch size of 32. The best
performance is in boldface.

Models # Params (K) GPU training time Inference (ms)

STAR (Yu et al., 2020) 965 1 × A40, 27H 123.2
Trajectron++ (Salzmann et al., 2020b) 126 2 × GTX1080Ti, 8H 29.1
AgentFormer (Yuan et al., 2021b) 592 1 × RTX2080Ti, 72H 133.3
PCCSNet (Sun et al., 2021) 347 1 × RTX2080Ti, 9H 81.3
ScePT (Chen et al., 2022) 139 2 × A40, 100H 566.3
ProphNet (Wang et al., 2023) 7314 16 × V100, 22H 358

GATraj (Ours) w/o GCN, SA 183 1 × A40, 21H 3.9
GATraj (Ours) w/o GCN 259 1 × A40, 23H 6.6
GATraj (Ours) 276 1 × A40, 30H 10.1
Fig. 5. Qualitative results of GATraj on the nuScenes (Caesar et al., 2020) dataset.
Left: predictions, right: the ground truth. The observed trajectory is denoted as dark
rectangles with descending grayscale along the time steps – a darker color indicates an
earlier time step. The prediction is in red dotted lines, and the corresponding ground
truth is in green dotted lines. The HD map is only used for visualization and not used
as extra contextual information for prediction. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
170
As pedestrians move closely with each other in ETH/NYC, in Fig. 6,
we first only plot the best prediction of 20 trajectories (K = 20) for each
pedestrian for clear visualization. The first row shows the scenarios
in ETH. GATraj correctly predicts a pedestrian walking diagonally in
the passage way and another pedestrian turning around to the street
in (a). It also correctly predicts pedestrians walking in parallel in a
small group (two pedestrians) in (b) and a big group (five pedestrians)
in (c). Similarly, even though pedestrians move at various speeds,
we can see that the predictions of GATraj are well aligned with the
ground truth trajectories, especially for the final positions, in the second
row for the scenarios in Hotel and the third row for the scenarios in
Uni. Interestingly in (i), GATraj can generate reasonable non-linear
predictions, such as turning around or changing direction suddenly.
The last row shows the predictions of the scenarios in Zara01/02.
GATraj demonstrates that it can generate good predictions for multiple
pedestrians walking closely to each other, and it also correctly predicts
a pedestrian curving around a parked vehicle in (k).

Furthermore, in Fig. 7, we showcase the multimodal predictions for
pedestrian trajectory prediction, i.e., 20 trajectories for each pedestrian.
It can be observed from the predictions that GATraj is capable of
generating highly diverse predictions in terms of moving direction and
speed. It is intriguing to note that some of the predictions capture
potential intentions of the pedestrian. For instance, in (b), certain
predictions indicate the tram station along the road, and one prediction
even suggests that the pedestrian might turn around. Similarly, in (d),
one prediction points towards the shop window, while other predictions
indicate different directions as the pedestrian moves further into the
intersection of the road.

4.6. Ablation studies

In this subsection, we carry out a series of ablation studies to
provide a comprehensive insight of GATraj’s performance.

First, we start with analyzing the performance of the Laplacian
MDN decoder (LMM). We compare it with a Gaussian MDN decoder
(GMM) using negative log-likelihood for the multimodal predictions.
Both decoders use the same layers of neural network, except for the
parameterization of the outputted distributions.

As shown in Fig. 8, it is clear that the LMM decoder achieves
a much lower negative log-likelihood (NLL) than the GMM decoder
for predicting both ten modes (𝐾 = 10) and five modes (𝐾 = 5)
on nuScenes for vehicle trajectory prediction. the LMM decoder also
achieves evidently lower NLL across all the datasets in ETH/UCY for
pedestrian trajectory prediction with 20 modes (see Fig. 9).

Moreover, Tables 5 and 6 show the comparison of the predictions
errors measured by ADE and FDE on nuScenes and ETH/UCY, respec-
tively, between GMM and LMM using the same network configuration
except for the outputted distributions. Both tables clearly show that the
LMM decoder generate better predictions measured in lower ADE and
FDE on each dataset.

To summarize, these consistently better results in terms of NLL and
prediction errors of LMM compared to GMM validate that the LMM
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Fig. 6. Qualitative results tested on the ETH/UCY (Pellegrini et al., 2009; Lerner et al., 2007) datasets. From the first row to the forth rows, they are the scenarios in Eth, Hotel,
Uni, and Zara1/2.

Fig. 7. Qualitative results with multimodal predictions tested on the ETH/UCY (Pellegrini et al., 2009; Lerner et al., 2007) datasets.
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Fig. 8. The negative log-likelihood (NLL) between LMM and GMM tested on nuScenes.
The error bars stand for the standard deviations.

Table 5
The comparison of the prediction errors between LMM and GMM on nuScenes.

Decoder 𝐴𝐷𝐸5 𝐹𝐷𝐸5 𝐴𝐷𝐸10 𝐹𝐷𝐸10

GMM 2.08 4.67 1.64 3.45
LMM 2.00 4.46 1.57 3.28

Table 6
The comparison of the prediction errors (ADE/FDE) between LMM and GMM on
ETH/UCY.

Models Eth Hotel Uni Zara1 Zara2 Avg.

GMM 0.27/0.47 0.11/0.18 0.22/0.40 0.18/0.34 0.12/0.23 0.18/0.32
LMM 0.26/0.42 0.10/0.15 0.21/0.38 0.16/0.28 0.12/0.21 0.17/0.29

Table 7
The ablation study of the self-attention (SA) mechanism and the GCN module on
nuScenes.

SA GCN 𝐴𝐷𝐸5 𝐹𝐷𝐸5 𝐴𝐷𝐸10 𝐹𝐷𝐸10

– – 2.00 4.45 1.57 3.29
√

– 2.00 4.46 1.57 3.28
√ √

1.87 4.08 1.46 2.97

decoder is more accurate in estimating the probability of multimodal
predictions.

Next, we conduct the ablation study to analyze the effectiveness of
the self-attention mechanism (SA) to enhance the learning of spatial–
temporal information and the GCN module to model interactions
among agents. The effectiveness of the self-attention mechanisms is not
so obvious on nuScenes (as shown in Table 7), while the model’s perfor-
mance decreases without the self-attention mechanisms on ETH/UCY
(as shown in Table 8). The reason could be that nuScenes only lets the
model observe a short trajectory, i.e., from two to four-time steps, while
ETH/UCY provides eight-time steps for observation; The self-attention
mechanisms may work better on longer sequences. After removing the
GCN module, the performance drops clearly on both datasets.

In addition, we substitute the LSTM layer by an MLP layer in the
decoder to analyze the effect of the hidden states in the LSTM for
temporal information. It can be seen from Tables 9 and 10, replacing
the LSTM layer with an MLP in the decoder leads to an apparent
decrease in performance on both nuScenes and ETH/UCY.

In the following, we investigate the effect of different trajectory
inputs, namely, position sequences and offset sequences. As shown in
Tables 11 and 12, our model using offset sequences achieves better
performance than position sequences on ETH/UCY, but similar per-
formance on nuScenes. Our conjecture is that the offset sequences
are less sensitive to the absolute position in a given scene and using
the offset sequences can mitigate the domain gaps across different
scenes. It explains why we observe a clear performance drop when
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substituting the offset sequences by the position sequences in testing
on the ETH/UCY datasets using the leave-one-out cross validation. In
addition, combining both position and offset sequences yield similar
performances as that of using the offset sequences alone, leading to
no joint benefit. Therefore, based on the empirical findings, we decide
to use the offset sequences as the trajectory input of our model for
trajectory prediction.

Different from the ETH/UCY datasets that only contain pedestrian
road users, the nuScenes dataset contains a mixture of vehicle types.
To explore the impact of road user types on prediction performance,
we conduct an additional ablation study by incorporating road user
type information into the training of the GATraj model on the nuScenes
dataset. Specifically, the target vehicles to be predicted in the test set
are further categorized into types such as bus, car, truck, emergency
vehicle, and construction vehicle. Firstly, as demonstrated in Table 13,
prediction performance for buses, cars, and trucks exhibits slight vari-
ations. These vehicle types are commonly observed and share similar
driving behaviors. However, prediction errors for emergency vehicles,
such as ambulances and police cars, are notably larger than those of
the others. This type of vehicles only accounts for less than 1% of
the total vehicles, making the data samples very unbalanced. Also,
the disparity of prediction performance arises from emergency vehi-
cles having priority over other vehicles and traffic signals, and their
ability to travel at higher speeds to interact with other road users
in a larger range, introducing a greater challenge for prediction. In
contrast, construction vehicles are usually constrained to lower speeds,
making their trajectories easier to predict compared to the other types.
Secondly, it is evident that the errors for 𝐾 = 10 are smaller than those
for 𝐾 = 5, indicating that a larger 𝐾 can more precisely capture the
uncertain driving patterns across all vehicle types. The performance
difference with respect to the mode number 𝐾 is particularly signif-
icant, especially for emergency vehicles. This is because emergency
vehicles on duty are frequently driving hastily and can abruptly disrupt
the normal traffic flow, thereby making their behavior more uncertain.
Consequently, additional modalities might be necessary to effectively
capture the uncertain driving behavior of emergency vehicles. It is also
interesting to observe that with the incorporation of vehicle types, the
average performance for 𝐾 = 5 is slightly better than that without this
type of information. For instance, FDE5 reduces from 4.08 to 4.02 (see
Table 2). While the performance difference for 𝐾 = 10 is relatively
small, e.g. FDE5 slightly increases from 2.97 to 3.00. Our conjecture
is that with a larger number of modalities, the model can already
capture an agent’s behavior effectively without requiring knowledge of
its vehicle type.

We further analyze the performance of GATraj by increasing the
number of components. The results shown in Fig. 10 demonstrate that
increasing the number of components of the MDN decoder evidently
leads to a gain in prediction accuracy. This trend indicates that the
Laplacian MDN decoder can generate diverse multimodal predictions.
However, many benchmarks limit the maximum number of predictions
for each agent, i.e., ETH/UCY recommends 20, and nuScene only
allows up to ten predictions for each agent. The limited computational
resources of real-time applications may only allow a small number of
predictions as well. Some recent works, such as Chai et al. (2020) and
Wang et al. (2023), have explored ensembling strategies to decrease a
larger 𝐾 to a much smaller value using post-processing techniques like
clustering or non-maximum suppression. Nonetheless, these strategies
often introduce additional computational burdens and latency. This
finding and constraint motivate us to work on aggregation strategies
to effectively pool out the best prediction in future.

4.6.1. Discussion of limitations and future work
Our model does not utilize scene information, making it more

challenging to achieve multimodal predictions that are all compliant
with the scene. This is because the model solely relies on the motion
dynamics of agents. We assume that all agents behave rationally,
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Fig. 9. The negative log-likelihood (NLL) between LMM and GMM tested on ETH/UCY. The error bars stand for the standard deviations.
Table 8
The ablation study of the self-attention (SA) mechanism and the GCN module on ETH/UCY.

SA GCN Eth Hotel Uni Zara1 Zara2 Avg.

– – 0.29/0.49 0.11/0.17 0.22/0.40 0.17/0.32 0.12/0.22 0.18/0.32
√

– 0.29/0.45 0.10/0.15 0.21/0.40 0.17/0.32 0.12/0.22 0.18/0.31
√ √

0.26/0.42 0.10/0.15 0.21/0.38 0.16/0.28 0.12/0.21 0.17/0.29
Table 9
The comparison between the LSTM and MLP layers in the decoder on nuScenes.

Decoder layer 𝐴𝐷𝐸5 𝐹𝐷𝐸5 𝐴𝐷𝐸10 𝐹𝐷𝐸10

LSTM 2.00 4.46 1.57 3.28
MLP 2.03 4.51 1.58 3.28

Table 10
The comparison between the LSTM and MLP layers in the decoder on ETH/UCY.

Decoder
layer

Eth Hotel Uni Zara1 Zara2 Avg.

LSMT 0.26/0.42 0.10/0.15 0.21/0.38 0.16/0.28 0.12/0.21 0.17/0.29
MLP 0.27/0.43 0.11/0.16 0.21/0.39 0.17/0.31 0.12/0.22 0.18/0.30

Table 11
The comparison of different input features on nuScenes.

Position Offset 𝐴𝐷𝐸5 𝐹𝐷𝐸5 𝐴𝐷𝐸10 𝐹𝐷𝐸10
√

– 1.86 4.05 1.48 3.00
–

√

1.87 4.08 1.46 2.97

Table 12
The comparison of different input features on ETH/UCY.

Position Offset Eth Hotel Uni Zara1 Zara2 Avg.
√

– 0.29/0.49 0.11/0.17 0.22/0.40 0.17/0.32 0.12/0.22 0.18/0.32
–

√

0.26/0.42 0.10/0.15 0.21/0.38 0.16/0.28 0.12/0.21 0.17/0.29

Table 13
Performance difference between road user types and 𝐾 modes.

Type ADE5 FDE5 ADE10 FDE10

Bus 1.76 3.99 1.39 2.89
Car 1.85 4.02 1.48 3.02
Truck 1.85 3.93 1.50 2.91
Emergency vehicle 5.00 12.33 2.86 6.40
Construction vehicle 1.21 2.62 0.89 1.77

Average 1.85 4.02 1.48 3.00

such as following scene constraints, and that the observed trajectories
include enough data samples that cover various areas within a given
scene. However, without other explicit scene cues, there is a limitation
in associating predictions with unseen areas, which can result in limited
performance in achieving consistent predictions that align with the
scene. Fig. 11 illustrates this issue, although some predicted trajectories
closely match the ground truth trajectory, other predictions deviate
from the lanes or violate scene constraints. GATraj’s lack of scene
173
Fig. 10. The prediction results on nuScenes with increasing the number of components
in the Laplacian MDN decoder. GATraj w/o GCN achieves 2.00/4.46 of ADE5/FDE5 and
1.57/3.28 of ADE10/FDE10, respectively.

Fig. 11. An example of limited performance of GATraj when scene information is
not considered. Left: predictions, right: the ground truth. The observed trajectory
is denoted as dark rectangles with descending grayscale along the time steps – a
darker color indicates an earlier time step. The prediction is in red dotted lines, and
the corresponding ground truth is in green dotted lines. The HD map is only used
for visualization and not used as extra contextual information for prediction. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

information is the main reason behind its inability to achieve scene-
consistent predictions for vehicles driving on dedicated lanes in the
nuScenes dataset.

Some recent models in trajectory prediction for autonomous driv-
ing, such as DenseTNT (Gu et al., 2021), HiVT (Zhou et al., 2022),
and QCNet (Zhou et al., 2023b), have shown superior performance
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on trajectory prediction for autonomous driving by exploiting HD
maps with lane segment information. For these models to function
optimally, it is necessary to have access to HD maps that are obtained
in advance and are kept up-to-date. However, the acquisition and
maintenance of high-quality and up-to-date HD maps is a costly and
time-consuming endeavor. To address these limitations and enhance
generalizability while reducing the burden of HD map annotation
and acquisition, perception-based approaches using multiview cam-
era images are gaining more and more attention. These approaches
generate scene information on-the-fly and project it onto the ground
plane from a bird’s-eye view, facilitating the trajectory prediction task.
Most recent examples of such approaches include BEVFormer by Li
et al. (2022) and planning-based approaches by Hu et al. (2023).
In future research, we will explore strategies to incorporate scene
information, favorably through perception-based approaches, aiming to
achieve scene-compliant multimodal predictions.

5. Conclusion

This paper proposes an attention-based graph model named GATraj
for multi-agent trajectory prediction with a good balance of predic-
tion accuracy and inference speed. We use attention mechanisms to
learn spatial–temporal dynamics of agents like pedestrians and vehicles
and a graph convolutional network to learn scene-centric interactions
among them. A Laplacian mixture density network decoder predicts
diverse and multimodal trajectories for each agent. GATraj achieves
performance on par with the state-of-the-art models at a much higher
prediction speed tested on the nuScenes benchmark fo autonomous
driving and state-of-ther-art performance on the ETH/UCY benchmark
for pedestrian trajectory prediction.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is partially supported by the MSCA European Postdoc-
toral Fellowships under the 101062870 – VeVuSafety project and
partially performed in the framework of project KaBa (Kamerabasierte
Bewegungsanalyse aller Verkehrsteilnehmer für automatisiertes Fahren)
supported by the European Regional Development Fund at VISCODA
company.

References

Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S., 2016.
Social LSTM: Human trajectory prediction in crowded spaces. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 961–971.

Bae, I., Park, J.-H., Jeon, H.-G., 2022. Learning pedestrian group representations for
multi-modal trajectory prediction. In: European Conference on Computer Vision.
Springer, pp. 270–289.

Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A., Pan, Y.,
Baldan, G., Beijbom, O., 2020. nuScenes: A multimodal dataset for autonomous
driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 11621–11631.

Chai, Y., Sapp, B., Bansal, M., Anguelov, D., 2020. MultiPath: Multiple probabilis-
tic anchor trajectory hypotheses for behavior prediction. In: Kaelbling, L.P.,
Kragic, D., Sugiura, K. (Eds.), Proceedings of the Conference on Robot Learning.
In: Proceedings of Machine Learning Research, vol. 100, PMLR, pp. 86–99.

Chang, M.-F., Lambert, J., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., Wang, D.,
Carr, P., Lucey, S., Ramanan, D., et al., 2019. Argoverse: 3d tracking and forecasting
with rich maps. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 8748–8757.

Chen, Y., Ivanovic, B., Pavone, M., 2022. ScePT: Scene-consistent, policy-based tra-
jectory predictions for planning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 17103–17112.
174
Cheng, H., Liao, W., Tang, X., Yang, M.Y., Sester, M., Rosenhahn, B., 2021a. Explor-
ing dynamic context for multi-path trajectory prediction. In: IEEE International
Conference on Robotics and Automation. IEEE, pp. 12795–12801.

Cheng, H., Liao, W., Yang, M.Y., Rosenhahn, B., Sester, M., 2021b. AMENet: Attentive
maps encoder network for trajectory prediction. ISPRS J. Photogramm. Remote
Sens. 172, 253–266.

Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y., 2014. On the properties of
neural machine translation: Encoder-decoder approaches. In: Eighth Workshop on
Syntax, Semantics and Structure in Statistical Translation (SSST-8).

Cui, H., Radosavljevic, V., Chou, F.-C., Lin, T.-H., Nguyen, T., Huang, T.-K., Schnei-
der, J., Djuric, N., 2019. Multimodal trajectory predictions for autonomous driving
using deep convolutional networks. In: International Conference on Robotics and
Automation. IEEE, pp. 2090–2096.

Deo, N., Wolff, E., Beijbom, O., 2022. Multimodal trajectory prediction conditioned on
lane-graph traversals. In: Proceedings of the Conference on Robot Learning. PMLR,
pp. 203–212.

Gao, J., Sun, C., Zhao, H., Shen, Y., Anguelov, D., Li, C., Schmid, C., 2020. Vectornet:
Encoding hd maps and agent dynamics from vectorized representation. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
11525–11533.

Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F., 2022. Gohome:
Graph-oriented heatmap output for future motion estimation. In: International
Conference on Robotics and Automation. IEEE, pp. 9107–9114.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y., 2014. Generative adversarial nets. Adv. Neural Inf.
Process. Syst. 27.

Gu, T., Chen, G., Li, J., Lin, C., Rao, Y., Zhou, J., Lu, J., 2022. Stochastic trajectory
prediction via motion indeterminacy diffusion. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 17113–17122.

Gu, J., Sun, C., Zhao, H., 2021. DenseTNT: End-to-end trajectory prediction from dense
goal sets. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 15303–15312.

Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A., 2018. Social GAN: Socially
acceptable trajectories with generative adversarial networks. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2255–2264.

Helbing, D., Molnar, P., 1995. Social force model for pedestrian dynamics. Phys. Rev.
E 51 (5), 4282.

Ho, J., Jain, A., Abbeel, P., 2020. Denoising diffusion probabilistic models. Adv. Neural
Inf. Process. Syst. 33, 6840–6851.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9 (8),
1735–1780.

Hu, Y., Yang, J., Chen, L., Li, K., Sima, C., Zhu, X., Chai, S., Du, S., Lin, T., Wang, W., et
al., 2023. Planning-oriented autonomous driving. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 17853–17862.

Hug, R., Becker, S., Hübner, W., Arens, M., 2021. Quantifying the complexity of
standard benchmarking datasets for long-term human trajectory prediction. IEEE
Access 9, 77693–77704.

Johora, F.T., Yang, D., Müller, J.P., Özgüner, Ü., 2022. On the generalizability of motion
models for road users in heterogeneous shared traffic spaces. IEEE Trans. Intell.
Transp. Syst..

Kalman, R.E., 1960. A new approach to linear filtering and prediction problems. Trans.
ASME–J. Basic Eng. 82 (Series D), 35–45.

Kim, K., Lee, D., Essa, I., 2011. Gaussian process regression flow for analysis of motion
trajectories. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. IEEE, pp. 1164–1171.

Kingma, D.P., Ba, J., 2015. Adam: A method for stochastic optimization. In:
International Conference on Learning Representations.

Kingma, D.P., Mohamed, S., Jimenez Rezende, D., Welling, M., 2014. Semi-supervised
learning with deep generative models. Adv. Neural Inf. Process. Syst. 27.

Kingma, D.P., Welling, M., 2014. Auto-encoding variational bayes. In: International
Conference on Learning Representations.

Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M., 2012. Activity forecasting. In:
European Conference on Computer Vision. Springer, pp. 201–214.

Kosaraju, V., Sadeghian, A., Martín-Martín, R., Reid, I., Rezatofighi, H., Savarese, S.,
2019. Social-bigat: Multimodal trajectory forecasting using bicycle-gan and graph
attention networks. Adv. Neural Inf. Process. Syst. 32.

Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M., 2017. Desire:
Distant future prediction in dynamic scenes with interacting agents. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
336–345.

Lee, M., Sohn, S.S., Moon, S., Yoon, S., Kapadia, M., Pavlovic, V., 2022. MUSE-
VAE: Multi-scale VAE for environment-aware long term trajectory prediction.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 2221–2230.

Lerner, A., Chrysanthou, Y., Lischinski, D., 2007. Crowds by example. In: Computer
Graphics Forum, Vol. 26. Wiley Online Library, pp. 655–664.

Li, Z., Wang, W., Li, H., Xie, E., Sima, C., Lu, T., Qiao, Y., Dai, J., 2022. BEVFormer:
Learning bird’s-eye-view representation from multi-camera images via spatiotem-
poral transformers. In: European Conference on Computer Vision. Springer, pp.
1–18.

http://refhub.elsevier.com/S0924-2716(23)00268-X/sb1
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb1
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb1
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb1
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb1
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb2
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb2
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb2
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb2
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb2
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb3
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb3
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb3
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb3
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb3
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb3
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb3
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb4
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb4
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb4
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb4
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb4
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb4
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb4
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb5
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb5
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb5
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb5
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb5
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb5
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb5
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb6
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb6
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb6
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb6
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb6
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb7
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb7
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb7
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb7
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb7
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb8
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb8
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb8
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb8
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb8
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb9
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb9
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb9
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb9
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb9
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb10
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb10
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb10
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb10
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb10
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb10
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb10
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb11
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb11
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb11
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb11
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb11
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb12
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb12
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb12
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb12
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb12
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb12
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb12
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb13
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb13
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb13
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb13
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb13
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb14
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb14
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb14
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb14
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb14
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb15
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb15
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb15
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb15
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb15
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb16
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb16
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb16
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb16
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb16
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb17
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb17
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb17
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb17
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb17
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb18
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb18
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb18
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb19
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb19
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb19
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb20
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb20
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb20
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb21
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb21
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb21
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb21
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb21
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb22
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb22
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb22
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb22
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb22
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb23
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb23
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb23
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb23
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb23
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb24
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb24
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb24
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb25
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb25
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb25
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb25
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb25
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb26
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb26
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb26
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb27
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb27
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb27
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb28
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb28
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb28
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb29
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb29
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb29
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb30
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb30
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb30
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb30
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb30
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb31
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb31
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb31
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb31
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb31
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb31
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb31
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb32
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb32
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb32
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb32
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb32
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb32
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb32
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb33
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb33
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb33
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb34
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb34
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb34
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb34
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb34
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb34
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb34


ISPRS Journal of Photogrammetry and Remote Sensing 205 (2023) 163–175H. Cheng et al.
Liu, Y., Zhang, J., Fang, L., Jiang, Q., Zhou, B., 2021. Multimodal motion predic-
tion with stacked transformers. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 7577–7586.

Ma, Y.J., Inala, J.P., Jayaraman, D., Bastani, O., 2021. Likelihood-based diverse
sampling for trajectory forecasting. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 13279–13288.

Makansi, O., Ilg, E., Cicek, O., Brox, T., 2019. Overcoming limitations of mixture density
networks: A sampling and fitting framework for multimodal future prediction.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 7144–7153.

Mao, W., Xu, C., Zhu, Q., Chen, S., Wang, Y., 2023. Leapfrog diffusion model for
stochastic trajectory prediction. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 5517–5526.

Meng, M., Wu, Z., Chen, T., Cai, X., Zhou, X., Yang, F., Shen, D., 2022. Fore-
casting human trajectory from scene history. Adv. Neural Inf. Process. Syst. 35,
24920–24933.

Nayakanti, N., Al-Rfou, R., Zhou, A., Goel, K., Refaat, K.S., Sapp, B., 2022. Wayformer:
Motion forecasting via simple & efficient attention networks. arXiv preprint arXiv:
2207.05844.

Ngiam, J., Vasudevan, V., Caine, B., Zhang, Z., Chiang, H.-T.L., Ling, J., Roelofs, R.,
Bewley, A., Liu, C., Venugopal, A., Weiss, D.J., Sapp, B., Chen, Z., Shlens, J.,
2022. Scene Transformer: A unified architecture for predicting future trajectories
of multiple agents. In: International Conference on Learning Representations.

Pang, B., Zhao, T., Xie, X., Wu, Y.N., 2021. Trajectory prediction with latent belief
energy-based model. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 11814–11824.

Park, D., Ryu, H., Yang, Y., Cho, J., Kim, J., Yoon, K.-J., 2023. Leveraging future
relationship reasoning for vehicle trajectory prediction. In: International Conference
on Learning Representations.

Pellegrini, S., Ess, A., Schindler, K., Van Gool, L., 2009. You’ll never walk alone:
Modeling social behavior for multi-target tracking. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. IEEE, pp. 261–268.

Phan-Minh, T., Grigore, E.C., Boulton, F.A., Beijbom, O., Wolff, E.M., 2020. Cov-
ernet: Multimodal behavior prediction using trajectory sets. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
14074–14083.

Rezende, D., Mohamed, S., 2015. Variational inference with normalizing flows. In:
International Conference on Machine Learning. PMLR, pp. 1530–1538.

Rhinehart, N., McAllister, R., Kitani, K., Levine, S., 2019. Precog: Prediction condi-
tioned on goals in visual multi-agent settings. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 2821–2830.

Richardson, E., Weiss, Y., 2018. On GANs and GMMs. Adv. Neural Inf. Process. Syst.
31.

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning representations by
back-propagating errors. Nature 323 (6088), 533–536.

Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., Savarese, S.,
2019. SoPhie: An attentive gan for predicting paths compliant to social and physical
constraints. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 1349–1358.

Salzmann, T., Ivanovic, B., Chakravarty, P., Pavone, M., 2020a. Trajectron++. URL
https://github.com/StanfordASL/Trajectron-plus-plus/issues/53.

Salzmann, T., Ivanovic, B., Chakravarty, P., Pavone, M., 2020b. Trajectron++:
Dynamically-feasible trajectory forecasting with heterogeneous data. In: European
Conference on Computer Vision. Springer, pp. 683–700.

Shi, X., Shao, X., Fan, Z., Jiang, R., Zhang, H., Guo, Z., Wu, G., Yuan, W., Shibasaki, R.,
2020. Multimodal interaction-aware trajectory prediction in crowded space. In:
Proceedings of the AAAI Conference on Artificial Intelligence. pp. 11982–11989.

Shi, L., Wang, L., Long, C., Zhou, S., Tang, W., Zheng, N., Hua, G., 2023. Representing
multimodal behaviors with mean location for pedestrian trajectory prediction. IEEE
Trans. Pattern Anal. Mach. Intell..

Shi, L., Wang, L., Long, C., Zhou, S., Zhou, M., Niu, Z., Hua, G., 2021. SGCN: Sparse
graph convolution network for pedestrian trajectory prediction. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
8994–9003.

Sun, Q., Huang, X., Gu, J., Williams, B.C., Zhao, H., 2022. M2I: From factored marginal
trajectory prediction to interactive prediction. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 6543–6552.
175
Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J.,
Zhou, Y., Chai, Y., Caine, B., et al., 2020. Scalability in perception for autonomous
driving: Waymo open dataset. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 2446–2454.

Sun, J., Li, Y., Fang, H.-S., Lu, C., 2021. Three steps to multimodal trajectory prediction:
Modality clustering, classification and synthesis. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 13250–13259.

Varadarajan, B., Hefny, A., Srivastava, A., Refaat, K.S., Nayakanti, N., Cornman, A.,
Chen, K., Douillard, B., Lam, C.P., Anguelov, D., et al., 2022. Multipath++:
Efficient information fusion and trajectory aggregation for behavior prediction. In:
International Conference on Robotics and Automation. IEEE, pp. 7814–7821.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I., 2017. Attention is all you need. In: Advances in Neural Information
Processing Systems. pp. 5998–6008.

Wang, X., Su, T., Da, F., Yang, X., 2023. Prophnet: Efficient agent-centric motion
forecasting with anchor-informed proposals. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 21995–22003.

Welling, M., Kipf, T.N., 2017. Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations.

Wilson, B., Qi, W., Agarwal, T., Lambert, J., Singh, J., Khandelwal, S., Pan, B.,
Kumar, R., Hartnett, A., Pontes, J.K., et al., 2021. Argoverse 2: Next generation
datasets for self-driving perception and forecasting. In: Thirty-Fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track (Round 2).

Xu, C., Mao, W., Zhang, W., Chen, S., 2022. Remember intentions: retrospective-
memory-based trajectory prediction. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 6488–6497.

Xu, Y., Ren, D., Li, M., Chen, Y., Fan, M., Xia, H., 2021. Tra2tra: Trajectory-to-trajectory
prediction with a global social spatial-temporal attentive neural network. IEEE
Robotics and Automation Letters 6 (2), 1574–1581.

Xu, C., Tan, R.T., Tan, Y., Chen, S., Wang, Y.G., Wang, X., Wang, Y., 2023. Eqmotion:
Equivariant multi-agent motion prediction with invariant interaction reasoning.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 1410–1420.

Xue, H., Huynh, D.Q., Reynolds, M., 2018. SS-LSTM: A hierarchical LSTM model for
pedestrian trajectory prediction. In: IEEE/CVF Winter Conference on Applications
of Computer Vision. pp. 1186–1194.

Ye, C., Zhao, H., Ma, L., Jiang, H., Li, H., Wang, R., Chapman, M.A., Junior, J.M., Li, J.,
2022. Robust lane extraction from MLS point clouds towards HD maps especially
in curve road. IEEE Trans. Intell. Transp. Syst. 23 (2), 1505–1518.

Yu, C., Ma, X., Ren, J., Zhao, H., Yi, S., 2020. Spatio-temporal graph transformer
networks for pedestrian trajectory prediction. In: European Conference on Computer
Vision. Springer, pp. 507–523.

Yuan, Y., Kitani, K., 2020. Dlow: Diversifying latent flows for diverse human motion
prediction. In: European Conference on Computer Vision. Springer, pp. 346–364.

Yuan, Y., Weng, X., Ou, Y., Kitani, K.M., 2021a. AgentFormer. URL https://github.com/
Khrylx/AgentFormer/issues/5.

Yuan, Y., Weng, X., Ou, Y., Kitani, K.M., 2021b. AgentFormer: Agent-aware transform-
ers for socio-temporal multi-agent forecasting. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 9813–9823.

Zhang, P., Ouyang, W., Zhang, P., Xue, J., Zheng, N., 2019. SR-LSTM: State refinement
for LSTM towards pedestrian trajectory prediction. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 12085–12094.

Zhou, H., Ren, D., Yang, X., Fan, M., Huang, H., 2023a. CSR: cascade conditional
variational auto encoder with socially-aware regression for pedestrian trajectory
prediction. Pattern Recognition 133, 109030.

Zhou, Z., Wang, J., Li, Y.-H., Huang, Y.-K., 2023b. Query-centric trajectory prediction.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 17863–17873.

Zhou, Z., Ye, L., Wang, J., Wu, K., Lu, K., 2022. HiVT: Hierarchical vector transformer
for multi-agent motion prediction. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 8823–8833.

Zhu, Y., Ren, D., Xu, Y., Qian, D., Fan, M., Li, X., Xia, H., 2021. Simultaneous past and
current social interaction-aware trajectory prediction for multiple intelligent agents
in dynamic scenes. ACM Transactions on Intelligent Systems and Technology (TIST)
13 (1), 1–16.

http://refhub.elsevier.com/S0924-2716(23)00268-X/sb35
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb35
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb35
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb35
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb35
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb36
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb36
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb36
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb36
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb36
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb37
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb37
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb37
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb37
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb37
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb37
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb37
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb38
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb38
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb38
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb38
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb38
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb39
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb39
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb39
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb39
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb39
http://arxiv.org/abs/2207.05844
http://arxiv.org/abs/2207.05844
http://arxiv.org/abs/2207.05844
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb41
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb41
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb41
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb41
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb41
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb41
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb41
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb42
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb42
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb42
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb42
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb42
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb43
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb43
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb43
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb43
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb43
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb44
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb44
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb44
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb44
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb44
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb45
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb45
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb45
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb45
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb45
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb45
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb45
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb46
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb46
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb46
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb47
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb47
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb47
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb47
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb47
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb48
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb48
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb48
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb49
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb49
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb49
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb50
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb50
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb50
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb50
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb50
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb50
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb50
https://github.com/StanfordASL/Trajectron-plus-plus/issues/53
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb52
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb52
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb52
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb52
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb52
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb53
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb53
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb53
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb53
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb53
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb54
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb54
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb54
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb54
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb54
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb55
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb55
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb55
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb55
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb55
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb55
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb55
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb56
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb56
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb56
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb56
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb56
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb57
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb57
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb57
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb57
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb57
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb57
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb57
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb58
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb58
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb58
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb58
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb58
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb59
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb59
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb59
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb59
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb59
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb59
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb59
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb60
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb60
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb60
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb60
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb60
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb61
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb61
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb61
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb61
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb61
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb62
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb62
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb62
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb63
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb63
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb63
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb63
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb63
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb63
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb63
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb64
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb64
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb64
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb64
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb64
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb65
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb65
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb65
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb65
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb65
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb66
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb66
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb66
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb66
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb66
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb66
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb66
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb67
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb67
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb67
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb67
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb67
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb68
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb68
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb68
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb68
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb68
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb69
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb69
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb69
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb69
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb69
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb70
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb70
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb70
https://github.com/Khrylx/AgentFormer/issues/5
https://github.com/Khrylx/AgentFormer/issues/5
https://github.com/Khrylx/AgentFormer/issues/5
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb72
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb72
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb72
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb72
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb72
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb73
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb73
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb73
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb73
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb73
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb74
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb74
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb74
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb74
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb74
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb75
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb75
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb75
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb75
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb75
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb76
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb76
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb76
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb76
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb76
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb77
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb77
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb77
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb77
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb77
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb77
http://refhub.elsevier.com/S0924-2716(23)00268-X/sb77

	GATraj: A graph- and attention-based multi-agent trajectory prediction model
	Introduction
	Related Work
	Modeling Motion Dynamics as a Time Sequence
	Modeling Interactions Among Agents
	Multimodal Prediction

	METHODOLOGY
	Problem Formulation
	The Proposed Framework
	Loss Function

	Experiments
	Datasets
	Evaluation Metrics
	Baselines
	Experimental Setting
	Results
	Quantitative Results
	Qualitative Results

	Ablation Studies
	Discussion of Limitations and Future Work


	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


