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Keypoints-Based Deep Feature Fusion
for Cooperative Vehicle Detection of

Autonomous Driving
Yunshuang Yuan , Hao Cheng, and Monika Sester

Abstract—Sharing collective perception messages (CPM) be-
tween vehicles is investigated to decrease occlusions so as to im-
prove the perception accuracy and safety of autonomous driving.
However, highly accurate data sharing and low communication
overhead is a big challenge for collective perception, especially
when real-time communication is required among connected and
automated vehicles. In this letter, we propose an efficient and
effective keypoints-based deep feature fusion framework built
on the 3D object detector PV-RCNN, called Fusion PV-RCNN
(FPV-RCNN for short), for collective perception. We introduce a
high-performance bounding box proposal matching module and a
keypoints selection strategy to compress the CPM size and solve
the multi-vehicle data fusion problem. Besides, we also propose
an effective localization error correction module based on the
maximum consensus principle to increase the robustness of the
data fusion. Compared to a bird’s-eye view (BEV) keypoints fea-
ture fusion, FPV-RCNN achieves improved detection accuracy by
about 9% at a high evaluation criterion (IoU 0.7) on the synthetic
dataset COMAP dedicated to collective perception. In addition,
its performance is comparable to two raw data fusion baselines
that have no data loss in sharing. Moreover, our method also
significantly decreases the CPM size to less than 0.3 KB, and is
thus about 50 times smaller than the BEV feature map sharing
used in previous works. Even with further decreased CPM feature
channels, i. e., from 128 to 32, the detection performance does
not show apparent drops. The code of our method is available at
https://github.com/YuanYunshuang/FPV_RCNN.

Index Terms—Sensor fusion, sensor networks, object detection,
segmentation and categorization.

I. INTRODUCTION

UNDERSTANDING the surrounding environment is one
of the most important tasks of autonomous driving, es-

pecially for those automated vehicles (AV) driving in complex
real-world situations. Such an AV is normally equipped with
different sensors like cameras, LiDARs, and Sonars in order to
sense the world [1]. However, perceiving the environment only
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using the data collected by these sensors mounted on a single
ego vehicle has many limitations, such as occlusion, limited
sensor observation range, and noise. In this regard, cooperative
perception based on connected and automated vehicles (CAVs)
can effectively mitigate these problems by sharing sensed infor-
mation collected from different viewing directions of multiple
AVs in a network. The perceived information is shared among
vehicles via Collective Perception Messages (CPMs). In this
way, the accuracy and reliability requirements of the sensors on
each vehicle can be relaxed, and therefore the price of each AV is
lowered as well [2]. However, the challenging part of cooperative
perception is defining the information to be shared and fusing
the shared information via a limited communication network
bandwidth. Hence, the goal is to obtain the best perception
performance with the least data transmission in the network of
cooperative agents.

Accurate data sharing and low communication overhead is
still a bottleneck for cooperative vehicle detection demanding
real-time communication in autonomous driving. In theory, shar-
ing raw data gives the best performance because no information
is lost. But this can easily congest the communication network
with heavy data loads. In contrast, sharing the fully processed
data, e.g., detected objects, needs fewer communication re-
sources. Nevertheless, object-wise fusion is very sensitive to the
localization noise of the agents. Matching the detected objects
coming from different agents can be very difficult, especially
those that are inaccurately detected by distant sensors. As a trade-
off, deep features extracted by deep neural networks from the
raw data can decrease the amount of data to be shared and at the
same time maintain a relatively high performance of data fusion.
Previous works [3]–[5] achieve this by contracting bird’s-eye
view (BEV) deep features maps which are, however, very sparse
and can be further compressed to avoid redundancy. Moreover,
due to the low resolution, fusing such feature maps may even
fail to predict accurate bounding boxes. To this end, this letter
proposes a more robust deep feature sharing and fusion frame-
work by extending the established framework PV-RCNN [6] to
colletive perception scenarios. Our framework uses PointNet [7]
and point set abstraction [8] to aggregate the information from
multi-scale receptive fields for the selected high accurate 3D
keypoints from different point clouds, which are then shared and
fused to generate more accurate detection. In comparison to the
BEV keypoints fusion, with reduced communication overhead
our 3D keypoints fusion still achieves higher detection accuracy.
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Fig. 1. The detection result of an exemplary frame with two CAVs. The
vehicle in the yellow dashed circle shares CPM to the ego vehicle (upper right).
According to the IoUs (marked in the boxes) against the ground truth, our
proposed method of the 3D keypoints fusion outperforms the BEV keypoints
fusion by a large margin for improving the ego vehicle’s detection.

An example tested on the synthetic collective perception dataset
COMAP [9] is shown in Fig. 1.

Our main contributions are summarized as follows:
1) We propose a 3D keypoints feature fusion scheme for

cooperative vehicle detection to remedy the problem of
low bounding box localization accuracy of the schemes
that are based on the BEV feature fusion.

2) We introduce a keypoints selection module to reduce the
redundancy of shared deep features so as to decrease the
communication overhead.

3) We propose an efficient and robust localization correction
module and a bounding box matching module that can
generate bounding box proposals of high quality for the
deep feature fusion in the later stage.

4) Our proposed method not only outperforms the state-of-
the-art method that uses BEV feature fusion for collective
perception with a large margin but also reduces the CPM
data size by a large scale.

II. RELATED WORK

In general, cooperative perception can be achieved by means
of Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V)
communication. V2I communication offers the opportunity to
exchange sensory information between an ego vehicle and the
infrastructure. This helps the ego vehicle go beyond the limi-
tations of its own perception system. A successful application
by Yang et al. [10] is the so-called smart intersection, where
information for object detection and tracking is shared via the
BEV observation from the static cameras at the intersection to
the ego vehicle. These cameras are easy to deploy, whereas
their perceptions are limited to traffic scenarios at the specific
intersection. In contrast, V2V communication is not limited to
the defined location. In a CAV network, each vehicle can be seen
as a node with multiple sensors, the sensed data can be shared

across the vehicles at any place [11]. Our work focuses on V2V
communication for object detection.

In V2V communication, different approaches are proposed to
communicate the data in a CAV network. In this letter, we sort
data fusion strategies as (1) raw data sharing, (2) fully processed
data, such as detected objects, and (3) half-processed data. The
study by Marvasti et al. [4] shows that raw data sharing provides
rich information for object detection. It, however, consumes
large bandwidth and is not feasible for autonomous driving
that requires real-time communication. Contrary to raw data
sharing, [12]–[14] propose to only share the detected objects for
more efficient communication. However, the work by Wang et al.
[5] has shown that this late fusion of fully processed data per-
forms worse than either early raw data fusion or half-processed
data fusion.

In order to reduce communication resource consumption
without a compromise of performance, sharing half-processed
data is further explored. In an extreme case, the objects mis-
detected by all independent sensors can be detected after this data
fusion [3]. For example, instead of fusing the detected objects,
Chen et al. [3] extend their previous work [14] by fusing voxel
features and deep features learned using a Deep Neural Network
(DNN) for cooperative perception. On the one hand, significant
performance improvement has been shown on the real-world
datasets KITTI [15] and T&J [14] only for dedicated traffic
scenarios, e.g., in a parking lot [14]. On the other hand, these
datasets are not dedicated to collective perception but rather
to a single egocentric perspective. This is because collective
perception requires multiple vehicles to share a certain degree
of field-of-view (FOV) at the same time. But acquiring such a
real-world dataset not only needs expensive equipment but also
needs numerous hours of manual labeling to obtain ground truth
information. Therefore, many recent works [4], [16] resort to
synthetic data for a more comprehensive empirical study. Data
generator and simulation tools e.g., CARLA and SUMO [17],
can not only be manipulated to generate a large amount of real-
istic data in various traffic situations for cooperative perception,
but also provide accurate ground truth information. In [4], the
comparison of different data fusion strategies on a simulated
point cloud dataset generated by CARLA indicates that both
the raw data and deep feature fusion outperform the object-wise
fusion by a big margin, especially when vehicle localization
errors are introduced. In addition, [5] also confirms that on the
simulated dataset LiDARsim [16], sharing compressed deep
feature maps achieves high accurate object detection while
satisfying communication bandwidth requirements.

Despite the preliminary success of deep feature fusion, the
shared feature maps still contain too much redundancy due to
their sparsity. These deep features are highly abstract, which are
difficult to be selected, compressed, and finally fused by a neural
network. For example, [3]–[5] tried to share intermediate feature
maps for vehicle detection. It was found that this strategy is not
robust in providing highly accurate bounding box predictions
because the shared feature maps are of low resolution, i. e.,
8× down-sampled from the raw data. Besides, all previous
deep feature fusion frameworks mentioned above evaluate their
performance with object-wise fusion without localization error
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Fig. 2. An overview of the keypoints deep feature fusion framework (FPV-RCNN).

correction and have not provided the implementation details
of the object-wise fusion method. However, different imple-
mentations of local object detection and object-wise fusion can
greatly influence the final result. Moreover, the localization error
can be recovered without much effort only by the geometry
of the detected vehicles in most of the situations as far as
two matchings of the detected vehicles between the ego and
cooperative vehicles are available. Hence, it is also important to
analyze the final fusion result with localization error correction,
which is proposed in this letter.

To summarize, instead of sharing deep features, we inves-
tigate sharing only the selected keypoint features, aiming to
further reduce the feature size while keeping the performance
for object detection. Moreover, we also introduce localization
errors and error correction to guarantee a fair comparison of the
performance of all fusion methods.

III. METHOD

A. Problem Formulation

We formulate the collective perception problem in an ego-
centric way. Within a communication range Rc of the ego-
vehicle C0, Nv number of cooperative CAVs {C1, C2, . . . CNv}
as well as the ego CAV have generated the point cloud
set PC = {PC0, PC1, . . . , PCNv} at time t. The bound-
ing boxes (BBoxes) of the Ni vehicles detected based on
PCi are called proposals and notated as Bi = {(bj , sj) | j =
1, . . . , Ni)}. Each instance in Bi is a pair which contains one
detected vehicle bj = (x, y, z, w, l, h, r) and its corresponding
detection confidence sj . In this notation, xyz indicates the BBox
center, wlh the dimensions, and r ∈ [−π, π] the orientation. In
our proposed framework, the cooperative CAV Ci (1 ≤ i ≤ Nv)
generates and shares to the ego CAVC0 theCPMi that contains
Bi, the selected and aggregated deep feature information Fi and
the coordinates ofKi keypoints for localization error correction.
Then ego vehicle C0 fuses the information of the received
CPMs with the local information and generates the final refined
predictions of the BBoxes.

Fig. 3. Feature extraction and selection.

B. 3D Keypoints Deep Features Fusion

The fusion framework proposed is built based on the 3D
object detector PV-RCNN [6], hence we term it as Fusion
PV-RCNN, or FPV-RCNN for short in the rest of this letter.
Figure 2 demonstrates a fusion example of two CAVs. It is also
straightforward to extend this framework to an arbitrary number
of CAVs. As depicted in the figure, data flows of the two CAVs
are colored blue and yellow, respectively. We first extract deep
features separately from point clouds (Fig. 2 a) and then select
and encode the most important features for sharing (Fig. 2 b).
At last, the shared features are fused for the final detection
(Fig. 2 c).

a) Feature extraction: To extract the 3D features of point
clouds, we adopt a voxel-based sparse CNN backbone network
from [6] because of its high efficiency and accuracy. This net-
work is demonstrated in the bottom left of Fig. 3. The raw point
cloud is first voxelized and then passed to a block of 3D sparse
convolutions [18], [19]. The original voxel features are encoded
and 8×down-sampled to 3D deep features. The features from the
last sparse convolution layer are then compressed and projected
to BEV features.

b) Feature selection and encoding: The ego-detection module
adopts the detection head from CIA-SSD [20] since it has a
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simple structure and can generate better proposals than the
proposal generation module in PV-RCNN. Besides, CIA-SSD
calibrates the detection scores with IoUs which is critical for
our matching in Algorithm 1 that uses the scores for merging.
This module generates proposals Bi which are then utilized
for selecting feature points. Only the feature points inside the
proposals are selected, further encoded, and compressed to the
CPM format to decrease the CPM size.

The details of the feature selection are shown in Fig. 3.
Furthest Points Sampling (FPS) is used to sample a pre-defined
number Nkpts of evenly distributed sparse keypoints (step 1©
to 2©). Based on the selected keypoints in 2©, the Voxel Set
Abstraction (VSA) module with the same parameters is adopted
from [6] to aggregate deep features for each selected key-
point. This module aggregates neighboring voxel-wise features
of different resolutions and abstract levels for each keypoints
with a PointNet [7]. The aggregated keypoint features are then
split into two paths. On the first path, these points are further
down-sampled by only selecting the keypoints that are inside
the proposal Bi (step 3© to 4©) for generating CPMs. On the
second path, they are classified and selected for localization error
correction. For the point cloud PCi, we compose the CPMi

with the sensor pose of CAV Ci, proposals Bi, coordinates and
features of keypointsFi for fusion andKi keypoints coordinates
for localization error correction, as shown in the dash-line box
in Fig. 2.

c) Fusion and detection: In the fusion step, the ego-vehicle
transforms all received proposal boxes and keypoints to the
same local coordinate system. The transformed proposals are
then clustered and merged using algorithm 1. If the IoU of
two proposals in set B is above a pre-defined threshold (e. g.,
0.3), they are clustered into the same subsets Ck (step 1-5).
In each Ck, we first align the direction ri of each BBox bi to
the dominant direction of all BBoxes in this cluster in order
to prevent erroneous orientation merging caused by conflicting
BBox directions (step 8-13). At last, we merge BBoxes in each
cluster to one single proposal by weighing the BBox parameters
with their prediction confidence si (step 14-16). After merging
the BBoxes in each cluster, we end up withK merged proposals,
which are collected in the set M .

As shown in Fig. 2(c), the merged proposals M (black box)
are refined by aggregating the information around this proposal,
namely, the neighboring keypoints (darker colored points) com-
ing from different CPMs (blue and orange). This aggregation
is achieved by a VSA-based RoI-grid pooling module which
is originally proposed by [6]. It divides the proposal box into
regular grids and summarizes the neighboring keypoints infor-
mation for each grid center. The aggregated grid features are
then stretched to a vector and fed to the fully connected layers
to generate the final cooperative detection result which contains
a binary classification between positive and negative proposals
and the proposal box refinement regression. Different to [6], we
replaced the batch normalization (BN) [21] in the fully con-
nected layers with dropout [22]. Because of the computational
overhead of multiple point clouds in each frame, we are only
able to set the batch size to one during training, which does not
satisfy the condition of BN.

Algorithm 1: Cooperative BBox Matching.

Ensure: ℬ = B1 ∪B2 ∪ . . . ∪BNv , cluster set C = ∅,
cluster index k = 1, iouthr = 0.3, merged proposal set
M = ∅.
1: while B �= ∅ do
2: Select one BBox b from set B
3: Ck = {(b,′ s′)|(b,′ s′) ∈B, IoU(b,′ b) > iouthr}
4: B←B \ Ck, C ← C⋃{Ck}, k = k + 1
5: end while
6: for each Ck ⊂ Cdo
7: I ← {i | (si, bi) ∈ Ck}
8: rmax = argmaxr S, S = {si|i ∈ I}
9: Sdir1 =

∑
I1
si1, I1 = {i1 | |ri1 − rmax|a > π

2 , i1 ∈
I}

10: Sdir2 =
∑

I2
si2, I2 = {i2 | |ri2 − rmax|a ≤

π
2 , i2 ∈ I} �| · |a is the angle difference and
normalized to [0, π]

11: Imax ← argmax{I1,I2} (Sdir1, Sdir2)
12: for all i ∈ Imax ri ← ri + π
13: end for
14: si,norm = si/

∑
j si, i, j ∈ I

15: m∗ =
∑

i bi∗ · si,norm, ∗ ∈ {x, y, z, w, l, h}, i ∈ I
16: mr = arctan2(

∑
i si,norm · sin ri,

∑
i si,norm ·

cos ri), i ∈ I
17: M ←M ∪ {(mx,my,mz,ml,mw,mh,mr)}
18: end for
19: return M

C. CPM Compression

We follow [5] to compress the encoded CPM features using
DRACO1 in order to take compression also into consideration
when comparing the CPM size of sharing original feature maps
and keypoint features. For both feature formats, we first write
the 2D points of feature maps or the 3D keypoints to PLY2 file
format and then compress this file with Draco.

D. Localization Error Correction

Since our 3D fusion model relies on highly accurate 3D key-
points, localization error will drastically reduce the performance
of FPV-RCNN. To avoid this, a localization error correction
module is introduced before the BBox matching (Algorithm 1).
Firstly, we add the semantic classification head upon the deep
features of the selected keypoints as described in Fig. 3. Then,
the keypoints are classified into classes of wall, fence, pole,
vehicle, and others. Based on the semantic classes, we select all
Kp points of poles and Kfw points of walls and fences through
down-sampling with the FPS. In addition to Ci, Bi and Fi, only
the x- and y-coordinate of the selected Ki = Kp +Kfw points
are shared to correct the localization error. This is described in
the dialog box in Fig. 2 as the 3 rd content of CPM. Based on
the selected keypoints of poles, fences, walls and the vehicle

13D data compression. [Online]. Available: https://google.github.io/draco/
2Polygon File Format. [Online]. Available: http://paulbourke.net/dataforma

ts/ply
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centers, we use the maximum consensus algorithm [23] with a
rough searching resolution to find the corresponding vehicles
centers and poles points, and then use these correspondences to
calculate the accurate error estimation. We do not use wall and
fence points for the final error calculation because matching on
them leads to inaccurate result.

IV. EXPERIMENTS

A. Dataset

To evaluate the performance of the proposed method, we use
a synthetic cooperative perception dataset called COMAP [9],
which is simulated by CARLA [24] and SUMO [17]. Many
existing real-world datasets, e. g., KITTI [15], nuScenes [25],
and Waymo [26], are more suited for ego-perception, whereas
collective perception requires multiple CAVs to observe the
same scene simultaneously with enough FOV overlaps. On
the contrary, the synthetic dataset containing various realistic
cooperative vehicle scenarios with accurate ground truth infor-
mation is easy to acquire and needs no further manual work
of data labeling. In addition, the lack of benchmark datasets
leads to difficulty in comparing the performance of different
fusion methodologies. Hence, in this letter, we follow many
other works [4], [5], [16] to use such a synthetic dataset for
the empirical studies.

In total, there are 7788 frames of samples in COMAP—4155
frames for training and 3633 frames for the test. Each frame con-
tains the point cloud from an ego vehicle, the point clouds from
the cooperative vehicles in the ego vehicle’s communication
range within 40m, and the corresponding GT BBoxes of each
CAV. The GT BBoxes are selected according to the detection
range 57.6m as the same in [9] to guarantee a minimum safety
distance for an emergency brake. For communication efficiency,
only up to four point clouds of the cooperative vehicles are
loaded. To facilitate the feature fusion step, the orientation of
all the point clouds is aligned to the world coordinate system.
Besides, the z-coordinates (heights) are also aligned to avoid
a big performance drop of the object detection caused by the
LiDARs mounted on vehicles of different heights. After this
alignment, all the point clouds are filtered by the detection range
on the x-y plane and the height range [−0.1, 3.9]m. During
training, the occluded GT BBoxes with no observed reflected
points are removed. In the end, the pre-processed point clouds
are voxelized to a size of 0.1m before they are fed to the DNNs
in the framework (see Fig. 2).

B. Comparative Model and Baseline

a) BEV keypoints deep features fusion: Since the works that
fuse deep features mentioned in Sec. II all share BEV features,
we also build a comparative model for the BEV feature fusion.
However, different from previous works, we only select features
that are inside the proposals Bi for sharing to ensure a fair
comparison between the BEV and 3D feature fusion with a
similar magnitude of CPM size. We notate this framework as
BEV. The pipeline of BEV feature fusion is compatible with
the one depicted in Fig. 2 a-c. The details of the modules

Fig. 4. An overview of BEV deep feature fusion.

that are different from FPV-RCNN are shown in Fig. 4. The
BEV features generated by feature extraction are passed to
a Spatial-Semantic Feature Aggregation (SSFA) [20] module,
which can extract more robust features for generating accurate
predictions. This feature map is further encoded and compressed
by two convolutional layers and then selected by the proposals
Bi. In addition to the selected BEV keypoints, the CPMs in this
case also contain the sensor pose but no proposals because they
are not needed for a single-stage detector. In the fusion step, the
shared feature maps are first up-sampled to a higher resolution
by several transposed convolution layers and then merged by
a summation of weighted feature maps. The weights are auto-
matically adaptable as they are learned by a convolutional layer.
The merged feature maps are then further fused and contracted
by three convolutional layers to the detection resolution for the
final detection.

b) Baseline: We take the raw data fusion strategy as a baseline.
This strategy avoids any data loss during sharing, hence is more
likely to perform best. Namely, two corresponding raw data
fusion networks are taken as baselines—one for BEV-keypoints
fusion (noted as Bbev) and another for 3D-keypoints fusion
(noted as Bfpvrcnn). Bbev takes CIA-SSD as the base object
detector. Its fusion framework is adopted from [9] and is partially
taken from the FPV-RCNN framework that only contains the
feature extraction and ego-detection module. For Bfpvrcnn, we
add VSA and RCNN (RoI-grid pooling and detection head)
module to Bbev to refine the proposals as similar to FPV-RCNN
as possible.

C. Experiment Setup

a) Training setting: The targets for training are generated rela-
tive to the pre-defined anchors. For Bbev , BEV, the ego detection
of Bfpvrcnn, and FPV-RCNN, we generate two anchors respec-
tive to rotations 0 and π/2 on each location of the 8× down-
sampled feature maps. These anchors are of [4.41, 1.98, 1.64]m
in length, width, and height. An anchor is defined as positive
if its IoU against the GT BBox is over 0.6, negative if under
0.45, and is ignored otherwise for the classification. For the co-
operative detection of Bfpvrcnn and FPV-RCNN, we generate
targets relative to the merged proposals by the ego detection
(see Algorithm 1). But a single IoU threshold of 0.3 is used to

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on November 22,2023 at 14:07:02 UTC from IEEE Xplore.  Restrictions apply. 



YUAN et al.: KEYPOINTS-BASED DEEP FEATURE FUSION FOR COOPERATIVE VEHICLE DETECTION OF AUTONOMOUS DRIVING 3059

separate the positive (≥ 0.3) and negative (< 0.3) samples. For
the ego detection, we supervise the prediction results of all the
incoming point cloudsPC (see Sec. III-A) separately. However,
for the cooperative perception, we only supervise the detection
results from the perspective of the ego point cloud.

The same loss functions and parameters for SSD head from
the original work [20] are adopted for object classification. But
positive and negative samples are weighted differently, i. e.,
50 vs. 1, to prevent the network from classifying all samples
as negative. For the RCNN head, a binary cross-entropy loss is
used for classification and a smooth L1-loss for regression. They
are normalized over all samples. Since the CAVs also share their
own poses with each other, we also add the GT BBoxes of the ego
vehicle and all the selected cooperative vehicles to the detection
before feeding them to the Non-Maximum-Suppression (NMS).
The thresholds for the classification scores and the NMS IoUs
are set to 0.3 and 0.01, respectively, and kept the same in the test
phase.

We run all the experiments only on a single Nvidia 1080Ti
GPU to simulate a restricted computational resource in an AV.
Bbev is trained from scratch for 50 epochs with a batch size of 8
frames. The trained weights are used for initializing the weights
of the feature extraction and ego detection module in Bfpvrcnn,
BEV, FPV-RCNN. These three networks are then further fine-
tuned for 10 epochs with a batch size of 4 for Bfpvrcnn and 1 for
the other two. The Adam optimizer (coefficients of 0.95&0.999)
is applied to optimize the losses by stochastic gradient descent.
Its learning rate and decay both are set to 1e−4. We provide
the detailed settings in our https://github.com/YuanYunshuang/
FPV_RCNN repository for reproducing our models.

b) Test setting: Different numbers of cooperative vehicles are
tested for analyzing the performance of cooperative perception.
This is done by fixing the number of cooperative vehicles Nv

in each test run. Namely, Nv varies from 0, 2 to 4. In each run,
only the frames having at least Nv cooperative point clouds are
selected as a test set for evaluation. If there are more than Nv

cooperative point clouds, we randomly select Nv out of them to
simulate the random geometric distribution of CAVs.

Moreover, different CPM feature channels are analyzed for
the keypoints feature fusion. We set CPM feature channels to
128 to compare with both the BEV and 3D keypoints fusions
under the condition of no information loss during the CPM
compression process. To further investigate the possibility of
decreasing the size of CPMs in the FPV-RCNN framework, we
conduct a series of experiments by setting differentNkpts for FPS
(2048 and 1024) and different CPM feature encoding channels
Nch (128, 64, and 32).

Maximum consensus algorithm is very stable against the
magnitude of the noise—different noise distributions only lead
to a change in the search range of the maximum consensus
algorithm. Therefore, we only use one fixed normal distribution
for the absolute localization error of each vehicle to investigate
the influence of pose errors on the fusion framework. This is
different from [5] which imports errors to the relative pose
between ego and cooperative vehicles and vary the translation
error from 0 to 0.4m, the rotation error from 0 to 4◦. In our
experiment we only use the biggest error setting from their work

TABLE I
AP OF DIFFERENT FUSION MODELS (IN %)

for the global localization error of both ego and cooperative
vehicles: N (0, 0.42)m in x- and y-direction and N (0, 42)◦ for
the orientation of the vehicles. This will lead to much larger rela-
tive errors. According to the error standard deviation, the search
range of maximum consensus is empirically set to [−1, 1]m for
x- and y-axis and [−6, 6]◦ for the orientation. The searching
resolution is set to 1m and 1◦ for the translation and orientation,
respectively.

c) Evaluation metrics: All results are evaluated by Average
Precision (AP) defined by the Area Under Precision-Recall
Curve. IoU criteria (0.3, 0.5, 0.7) are used for counting the
positive detection to evaluate the detection performance.

V. RESULT AND EVALUATION

A. Comparison With Baselines

Table I shows the AP scores of the baselines (in the gray
cell) and the fusion models. With cooperative vehicles (Nv > 0),
compared to the Bbev and Bfpvrcnn fusion baselines (bold font in
the gray cell), BEV-fusion has an acceptable small performance
drop at the low IoU threshold (0.3). It is worth noting that the
performance of FPV-RCNN even surpasses that of Bfpvrcnn

with a small AP gain at different IoUs. For example, when
there are only two cooperative vehicles, the AP of BEV at
IoU = 0.3 drops 0.72% while that of 3D-fusion even increases
0.43%, compared to their respective baselines. However, as
the IoU threshold increases to 0.5, the gap between BEV and
Bbev slightly increases. At IoU = 0.7, the gap between them
even increases to 8.34%. In contrast, the performance of FPV-
RCNN is slightly better than its baseline Bfpvrcnn, and their
performance gaps are small and remain consistent. This implies
that the additional RCNN-head helps improve the localization
accuracy of the BBoxes at lower IoU thresholds, but not the
recall of the BBoxes. This is because the RoI-grid pooling can
better aggregate the 3D keypoints features learned from the
point cloud for high accurate BBox predictions. In other words,
compared to BEV, our model is more suitable for feature fusion
of cooperative object detection with respect to highly accurate
and reliable BBox predictions.

Nevertheless, when there are no cooperative vehicles, our
FPV-RCNN performs much worse than the other two baselines.
This is because these self-dependent detection results are gen-
erated only by the feature extraction and ego-detection module.
The weights of these two modules are fine-tuned during the
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TABLE II
PERFORMANCE OF FPV-RCNN WITH DIFFERENT NUMBER OF KEYPOINTS AND

CPM ENCODING CHANNELS (AP IN %)

Fig. 5. CPM size comparison.

training of the whole BEV and 3D fusion framework. This
observation indicates that BEV tends to learn features that are
more helpful for detection tasks on a single point cloud. Thus, it
overfits under such a configuration with better performance than
that of the more generalized Bbev (e. g., 61.59% vs. 57.98%
at IoU = 0.7). In contrast, FPV-RCNN focuses on learning
features that are useful for the later fusion, and therefore are
counter-affected by the original pre-trained weights for non-
cooperative detection. It should be noted that this issue can be
circumvented by loading different pre-trained weights according
to the requirements in real applications.

B. FPV-RCNN Performance With Variate CPM Sizes

Table II shows the results of FPV-RCNN with different CPM
encoding parameters. Nkpts stands for the number of keypoints
for FPS and Nch stands for the number of channels for encod-
ing the CPM features. Besides, the results are evaluated with
two different numbers of cooperative vehicles (Nv = {2, 4}).
In general, the better performance is mostly associated with a
larger Nkpts and all best AP scores (bold blue font) appear when
Nv = 2048. But for a specific IoU and Nv, the performance
only varies within a range of less than 1% for different Nch.
Interestingly, in most cases, the best AP even appears at the
smallest Nch (bold font).

Furthermore, we compare the CPM sizes of the compressed
deep features averaged over all CPMs and CAV numbers. Fig. 5
gives a quantitative comparison between BEV and 3D (FPV-
RCNN, noted with a different Nkpts) keypoints feature sharing.
It can be seen that the average CPM size of the compressed
keypoints features is decreased to around 0.3 KB, which is
about 50 times smaller than the CPM generated by compressing
the whole feature maps (ca. 14 KB). With the same number
of feature channels (Nch = 128), 3D keypoints fusion transmits

TABLE III
ABLATION STUDY WITH AND WITHOUT NOISE (AP IN %)

less data than the BEV keypoints fusion but achieves an en-
hanced performance by a big margin (90.88% vs. 82.21%, see
Table I). Besides, our framework also generates CPMs with sizes
in the same order of magnitude as the object-based standardized
CPM [27] evaluated in a low traffic density scenario by [28].

These observations above indicate that our proposed frame-
work is relatively stable against the variation of the CPM feature
encoding size. Hence, if the communication network is not fully
consumed and the wireless network can handle larger CPMs, it
is preferable to increase Nkpts rather than increase the feature
encoding channels. On the other hand, as a big advantage,
if the communication network is already heavily loaded, the
CPMs can be compressed as small as possible with only a slight
performance drop.

C. Ablation Study With Respect to Localization Noise

In order to show the effectiveness of the matching module we
proposed in Algorithm 1, we compare the result of this module
with the NMS object fusion used in V2Vnet [5]. As shown in
the bold font in Table III, our matching module outperforms the
NMS fusion in most of the cases. Especially, when localization
noise exists, matching using Algorithm 1 is more stable. In
addition, we also studied the performance gain of the 3D feature
fusion of FPV-RCNN in the second stage. The best-performed
results are marked in blue, which clearly indicates that our fusion
module of FPV-RCNN can refine the results. Moreover, by
observing the detection results, we found that most of the false
positive detection is removed by RCNN in the second 3D feature
fusion stage. However, this effect can hardly influence the result
of AP. Therefore, we do not observe large AP improvement
between the results of the full FPV-RCNN and Algorithm 1.
Moreover, as shown in Table III, our 3D model with localization
noise, as expected, performs worse than the no-noise version.
But the performance at lower IoU thresholds is only slightly
dropped. However, as shown in Fig. 6, with localization noise,
our 3D model still performs better than the BEV fusion model.
Since the raw data fusion baselines do not have the keypoints
selection and classification module, it is difficult to correct
localization error and their results are not plotted in Fig. 6.

Nevertheless, the current model also has several limitations.
First, we only carried out the empirical studies on the synthetic
data. In our future work, first we will extend our experiment to
real-world data to further analyze the efficacy of the proposed
FPV-RCNN model. Second, the communication delay is only
reflected by the CPM sizes. This needs to be further investigated
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Fig. 6. Results with localization errors.

by analyzing the CPM communication and transmission in real-
world scenarios.

VI. CONCLUSION

In this letter, we proposed an efficient framework, called
FPV-RCNN, for point cloud-based cooperative vehicle detec-
tion of autonomous driving. The framework takes PV-RCNN [6]
as the base network of object detection for cooperative per-
ception scenarios by adding a keypoints selection module, a
bounding box proposal matching module with localization error
correction, and the keypoints fusion module. The comparison
to a 2D BEV feature fusion on a simulated dataset COMAP [9]
shows that our method improves the performance of cooperative
vehicle detection by a big margin. In comparison to previous
works that share full BEV feature maps, our method significantly
decreases the data transmission load in the CAV network for real-
time communication and is also more robust against localization
noise thanks to the noise correction module. In future work, we
plan to evaluate our method in real-world cooperative driving
scenarios.
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