
Analysis of Lightweight Cryptographic Algorithms
on IoT Hardware Platforms

1stMohammed El-Hajj
EEMCS (SCS)

Twente University
Enschede, Netherlands

m.elhajj@utwente.nl

2nd Ahmad Fadlallah
Faculty of Arts and Science, USAL

USAL University
Beirut, Lebanon

a.fadlallah@usal.edu.lb

Abstract—Highly constrained devices that are interconnected
and interact to complete a task are being used in a diverse
range of new fields. The Internet of Things (IoT), cyber-
physical systems, distributed control systems, vehicular systems,
wireless sensor networks, tele-medicine, and smart grid are a
few examples of these fields. In any of these contexts, security
and privacy might be essential aspects. Research on secure
communication in Internet of Things (IoT) networks is a
highly contested topic. One method for ensuring secure data
transmission is cryptography. Since IoT devices have limited
resources, such as power, memory, and batteries, IoT networks
have boosted the term "lightweight cryptography". Algorithms
for lightweight cryptography are designed to efficiently protect
data while using minimal resources. In this research work,
we evaluate and benchmark lightweight symmetric ciphers for
resource-constrained devices. The evaluation is performed using
two widely used platform: Arduino and Raspberry PI. In the
first part, we implement 39 block ciphers on an ATMEGA328p
micro-controller and analyze them in terms of speed, cost,
and energy efficiency during encryption and decryption for
different block and key sizes. In the second part, the 2ndround
NIST candidates (80 stream and block cipher algorithms) were
added to the first part ciphers in a comprehensive analysis for
equivalent block and key sizes in terms of latency and energy
efficiency.

Index Terms—IoT, Constrained devices, lightweight cryptog-
raphy, Raspberry PI, Arduino.

I. INTRODUCTION

The Internet of Things (IoT) security is a strongly con-
tested research topic. IoT is a type of network paradigm that
uses sensor and Internet technology to transform everyday
items into smart devices[1]. Such devices give people the
ability to be connected any time, any where, using any
connectivity to benefit from wide spectrum of services[2]. So
digitization is not an option anymore, where it is involved in
our daily life activities including smart homes, smart cities,
wearables, e-health, etc[3]. The IoT end-devices are often
operating in vulnerable environments, which leads to several
security challenges that should be taken into consideration
[4]. To overcome such challenges, various researchers have
developed different cryptographic algorithms that can be used
to secure IoT applications in order to ensure data protection
and data privacy. But traditional cryptographic algorithms are
not suitable to be implemented in the resource-constrained
devices used in such application. The concept Lightweight
Cryptographic (LWC) schemes arose to reflect the need of

cryptographic algorithms that provide security with the use
of efficient amount of resources [5]. This resource usage is
determined by the key size, the number of rounds, the block
size, the memory usage (ROM and RAM), the structure,
and execution time. The objective of lightweight algorithms
creation is to strike a balance in several aspects such as per-
formance, low resource demand, and cryptographic algorithm
strength and stability [6]. Various LWC algorithms (stream or
block ciphers, hash functions) such as TWINE, PRESENT,
SIMON and SPECK, QARMA were proposed as alternatives
to traditional cryptographic algorithms (e.g., AES, RSA,
SHA3). In spite of the increasing demand in this research
area, few research works presented the benchmarking and
comparison of well-known LWC algorithms between differ-
ent hardware platforms of constrained devices. Moreover, no
article had presented yet involved software implementation
with analysis and comparison of any lightweight cryptog-
raphy on Raspberry-Pi compared to others. The objective of
this research work is to provide a comprehensive benchmark-
ing of well-known lightweight cryptographic algorithms.
These benchmarking results are obtained through a software
implementation of the selected algorithms, implemented on
the micro-controller ATMEGA328P-Arduino (UNO) and the
Raspberry PI.
To the best of our knowledge and based on the literature
review, this work is considered the first to evaluate the
performances of lightweight cryptographic schemes; 119
different schemes were evaluated.
The rest of this paper is structured as follows: section II
provides a literature review about the work done related to the
implementation of LWC using different hardware platforms.
Section III details the software and hardware setup done,
the measuring metrics used, and the methodology applied
to evaluate the communication and computation cost of
implementing such schemes. Section IV presents the results
of the experimentation, and section V analyzes and discusses
the results achieved. Finally, section VI concludes the paper.

II. BACKGROUND

Research and development of lightweight cryptography
for use on resource-constrained IoT devices have advanced
quickly over the past decade. The main goal is to create
and use simple cryptographic algorithms that may be applied

2022 32nd International Telecommunication Networks and Applications Conference (ITNAC)

978-1-6654-7103-9/22/$31.00 ©2022 IEEE 121

20
22

 3
2n

d
In

te
rn

at
io

na
l T

el
ec

om
m

un
ic

at
io

n
N

et
w

or
ks

 a
nd

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

(IT
N

AC
) |

 9
78

-1
-6

65
4-

71
03

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IT

N
AC

55
47

5.
20

22
.9

99
84

13

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on November 15,2023 at 09:17:32 UTC from IEEE Xplore. Restrictions apply.

to such applications while providing the appropriate levels
of security. With a focus on LED [7], Piccolo [8], and
PRESENT[9], authors in [10] investigated various software
implementations of lightweight ciphers for x86 processors.
First, they examined a table-based implementations and then
offered a theoretical model to forecast how different potential
trade-offs will behave in relation to the processor cache delay
profile.
The authors in [11] studied the lightweight properties of
HIGHT block cipher and offer the optimized implementa-
tions of both software and hardware for IoT platforms, such
as resource-constrained devices (8-bit AVR and 32-bit ARM
Cortex-M3) and Application-Specific Integrated Circuits.
The authors in [12] implemented six ciphers —AES, SI-
MON, SPECK, PRESENT, LED, and TWINE in hardware
with Register Transfer Level (RTL) design [13] and in
software with a specially designed re-configurable processor.
They presented a direct comparison of area, throughput,
power, energy, and throughput-to-area (TP/A) ratio. Both
hardware and software versions were implemented in iden-
tical Xilinx Kintex-7 FPGAs.
SIMON is a lightweight block cipher designed for hardware
implementation. Implementing, optimizing, and modeling
SIMON cipher design for resource-constrained devices with
a focus on energy and power were the goals of the research
done by authors in [14]. Scalar and pipelines design imple-
mentations FPGA technology were the two types that were
explored in this research[15].
The hardware implementation of the block cipher RECTAN-
GLE with various data-paths was the focus of the authors
in [16]. They have devised, constructed, and assessed the
five most effective RECTANGLE[17] cipher data-paths for
various data bus sizes. The same implementation conditions
were used for all of these data paths when they were
implemented on various FPGA platforms, and the results
were compared across all performance metrics. The ideal
architecture for an application can be chosen based on the
device and desired performance metrics.
In [18], the authors used the Artix-7, Spartan-6, and Cyclone-
V FPGAs to implement the six NIST LWC Round 2 can-
didate ciphers (SpoC, GIFT-COFB, COMET-AES, COMET-
CHAM, Ascon, and Schwaemm and Esch). Among all the
schemes, it was clear that SpoC had the lowest area and
power consumption, while Ascon had the highest throughput-
to-area (TPA) ratio.
Authors in [19] implemented KLEIN-80, TWINE-80,
Piccolo-80, SPECK (64, 96), and SIMON (64, 96)
lightweight block ciphers on the Atmega128 processor in
the AVR studio 5.1 simulation environment. The evaluation’s
findings indicate that the SPECK(64,96) cipher was the most
energy-efficient and is suitable for wireless sensor networks.
While the implementation of the TWINE-80 was the best
appropriate with regard to memory utilization.
Almost all cited works were interested in the implementation
of specific LWC schemes, while in this work we did a
software implementation of almost 119 different schemes and
compared their performance using two different hardware

TABLE I: 39 algorithms and AES as a relative reference
Family-cipher# Algorithm Type Structure Block size(bits) Key size(bits) rounds

Relative reference AES Block Cipher SPN 128 128/192/256 10/12/14

1-1 HIGHT Block Cipher Generalized Feistel
structure (GFS) 64 128 32

2-2/3/4 KATAN Block Cipher stream-cipher-like 32/48/64 80 254
3-5/6/7 KTANTAN Block Cipher stream-cipher-like 32/48/64 80 254

4-8/9/10 LEA Block Cipher Generalized Feistel
Network (GFN) 128 128/192/256 24/28/32

5-11 Piccolo Block Cipher GFN 64 80/128 only
80 chosen 25/31

6-12/13 PRESENT Block Cipher SPN 64 80/128 31
7-14 PRINCE Block Cipher SPN 64 128 12
8-15 QARMA Block Cipher SPN 64 64 27
9-16 RECTANGLE Block Cipher SPN 64 128 25
10-1726 SIMON Block Cipher Feistel 32128 64256 3272

11-2736 SPECK Block Cipher Addition/Rotation/XOR
(ARX) 32128 64256 2234

12-37/38 TWINE Block Cipher type-2 Generalized
Feistel Network (GFN-2) 64 80/128 36

13-39 XTEA Block Cipher ARX 64 128 64

TABLE II: Measurement of LWC and their metrics

Measurement Metrics (in) Tool of Measuring
for Arduino

Tool of Measuring
for Raspberry Pi

Key size bits Algorithm specs Algorithm specs
Block size bits Algorithm specs Algorithm specs
Rounds number number of rounds Algorithm specs Algorithm specs
ROM occupation bits or bytes Arduino IDE size command
RAM occupation bits or bytes Arduino IDE Valgrind
Code size Kbytes size occupied on memory size occupied on memory
Encryption (ENC) or
Decryption (DEC)
speed Throughput

Bytes/s programming +
Eq1

programming +
Eq1

ENC or DEC
speed Latency cycle/Block programming +

Eq??
programming +
Eq??

Key schedule
speed Throughput Bytes/s programming +

Eq2
programming +
Eq2

Key schedule
speed Latency cycle/Block programming +

Eq4
programming +
Eq4

ENC or DEC
Power (Throughput) joules/s current (power) sensor current (power) sensor

ENC or DEC
Energy (Latency) joules/bit current (power) sensor +

Eq2’
current (power) sensor +
Eq2’

platforms.

III. METHOD AND EXPERIMENTAL SETUP

A. Algorithms used for Evaluation

Lightweight Cryptography of various structures, key sizes,
and block sizes have been chosen. A wide range of dif-
ferences in key size, block size, and rounds were realized
as essential for analysis goals. Because of that, the cited
algorithms of C language found with these specifications
were reached to 39 different ciphers of 13 families shown
in Table I. Furthermore, a package of 80 algorithms of 32
families presented in NIST round 2 competition[20] have
been included in an extended study.

B. Compilation

This study was based on C language implementation
as low-language to reach an adequate elimination of any
software barrier between algorithms implementation and
execution. Hence, the study uses MinGW as a container of
GNU compiler collection (GCC) and its libraries. It is used
in this study in the Linux operating system of the Raspberry
Pi platform. Arduino IDE was used for compilation and
execution for the Arduino platform.

C. Measuring Concepts and Metrics

Measurement for Lightweight Cryptography study have
been gathered depending on related works and other similar
research studies that analyzed and compared Lightweight
Cryptography ciphers. These measuring concepts and their
metrics are summarized in Table II

Below is the briefing and the equations used in table II:

2022 32nd International Telecommunication Networks and Applications Conference (ITNAC)

122
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on November 15,2023 at 09:17:32 UTC from IEEE Xplore. Restrictions apply.

1) Arduino IDE is used during the uploading phase of C
codes onto Arduino Board to measure:
• ROM occupation: by observing “program storage

space” where the Arduino sketch is stored.
• RAM occupation: by observing the unused space for

local variables, then the used space would indicate
the “global variable” of dynamic memory that is
the SRAM (static random-access memory), which is
where the sketch creates and manipulates variables
when it runs.

2) Encryption and Decryption speed Throughput are mea-
sured in bytes/s in both platforms through programming
loops and equation 1.

Ps

τ
(bytes/s) (1)

Ps = is the size of text in ENC or DEC in bits.
τ = is the time taken during one ENC or DEC.

3) Key schedule speed Throughput concerning key ex-
pansion with and equation 2.

Ks

τ
(bytes/s) (2)

Ks = is the size of text in expansion in bits.

4) ENC and DEC speed Latency are measured in B/s
(Cycles/Block) by using speed Throughput equation 2:

f

(1)/Bs
(Cycles/Block) = f ∗ Bs ∗ τ

Ps
(Cycles/Block)

(3)

f = is the processor frequency in hertz.
Bs = is the Block size of the algorithm in bytes.

5) Key scheduling speed Latency derived from equation
2:

f ∗ K ∗ τ

Ks
(Cycles/Block) (4)

K = Key size of the algorithm in bytes.

6) ENC and DEC Power (Throughput) measured in
joules/s (j/s) by using a current sensor (power sensor).

7) ENC and DEC Energy (Power Latency) in joules/bit
is measured by using Energy Throughput and speed
Throughput as:

ETh(j/s)
(1) ∗ 8 (Jouls/bit) = ETh ∗ τ

Ps ∗ 8 (Jouls/bit) (5)

ETh = Energy Throughput in j/s of ENC and DEC.

D. Methodology

1) The following methods were used while bench-marking
the different metrics for the selected cryptographic al-
gorithms:
• Different Cryptographic Algorithms, Same plat-

form: Comparing different Algorithms on the same
platform is done by measuring the throughput in bytes
per second that would be satisfactory.

• Same Cryptographic Algorithms, Different plat-
form

• Different Cryptographic Algorithms, Different
platform: The difference in Key size and Block
among Cryptographic Algorithms, can be assessed
using bytes per second as a metric of measurement
in the same platform. However, this cannot be used
in different platforms (and neither cycles per byte).
Here comes the notion of using cycle per block as a
comprehensive measure of comparison between them.

2) Repeating the experiments: For numerous distinctive
reasons, it can be decently troublesome to obtain
measuring results like time and speed accurately in a
single iteration of coding. Frequently, internal clocks
that the software or executed program can read, have
some degree of asynchronous precision from the core
processor clock. More essentially, there is regularly a
critical overhead included in such measuring results,
such as the cost of context switches and sometimes
timing overhead. That is, finding measurement of
algorithms in this context should avoid procedure call
overhead. One method is to run the Algorithm many
times like loops in coding then, averaging the total time
to acquire the best indication of overall performance
results. Furthermore, the repetition of encryption or
decryption process would smooth out random effects
like IRQ (Interrupt request) signal due to external
activity by adjusting the loop to an experimental
number that attained.
On that account, the formulas of speed throughput of
ENC and DEC followed by Key schedule formulas
would be refined as:

Ps ∗ Nl

τ
(bytes/s) (1’)

Ks ∗ Nl

τ
(bytes/s) (2’)

Nl = is number of loops.

3) Programming Libraries: We have implemented the
needed formulas in one programming library named
metrics.h for both platforms. The metrics.h library
contains the implementation of Equations: 1’, 2’, 3, 4,
and 5 for exclusive grouping results of the Algorithms
in one hand pack. In addition, changing the number
of loops would be very easy using such a method for
simplicity in work and other tasks.

2022 32nd International Telecommunication Networks and Applications Conference (ITNAC)

123
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on November 15,2023 at 09:17:32 UTC from IEEE Xplore. Restrictions apply.

4) Hardware Platform: we used two different hardware
platform in this study for comparison and bench-
marking purposes:
• ATMEGA328P is a single-chip micro-controller of

the megaAVR family with an 8-bit RISC processor
core architecure. It is used in basic Arduino boards
like Arduino UNO.

• Raspberry Pi 3 Model B V1.2 is the third generation
of Raspberry Pi.

• Ammeter(Power measurement) used: Power (En-
ergy) is measured through the use of the Adafruit
INA219 current sensor. This measuring process re-
quires another Arduino board to read the sensor
data of measuring that is fed from the load to the
platforms. The monitoring process is combined by
PLX-DAQ software tool through EXCEL with the
necessary Arduino programming.

IV. RESULTS

This section presents the main benchmarking observations.
For each metric, the best ten and the worst five performing
algorithms are selected in a quick and brief overview. The
focus will be on the following measurements:

• ROM, RAM, code size, Key Schedule speed throughput
and Latency of the 39 ciphers.

• Number of rounds, Encryption/Decryption speed
throughput/Latency and Energy throughput/Latency of
all the 119 ciphers.

Besides, the measurement tools used are stated briefly for
each metric.

1) Analysis of the Number of Rounds: the range interval
of the number of Rounds of the studied Algorithms is
[8,254] as shown in Figure 1a . Among the five ciphers
with the largest number of rounds, the Katan-Ktantan
family is designed with the highest, while Ace-64-128
and TinyJambu family are with the least among the
smallest 10.

2) Analysis of Code Size: According to the results in
Figure 1b, the range intervals of code sizes are [3.6, 21]
and [3.49, 17.3] in Kbytes for UNO and PI respectively.
Of the 10 smallest code sizes, the least are Katan-32-80
and Present-64-128, whereas the biggest are Piccolo-64-
80 and Rectangle-64-128 in UNO and PI respectively.

3) Analysis of ROM Size: The range interval is [1.48,
6.05] and [3.81, 9.67] in Kbytes for UNO and PI
respectively. Figures 1c and 1d show the least cipher
demanding ROM among the 10 smallest that are LEA
family/Prince-64-128 and Present-64-80 respectively for
UNO and PI. While the biggest demand is Piccolo-64-
80 for both platforms.

4) Analysis of RAM Occupation: Figures 1e and 1f show
the 10 smallest and 5 largest RAM size occupations
in UNO and PI respectively. As it can be seen, the
range intervals are [264, 994] in Bytes and [1.03,
21.34] in Kbytes respectively. The least are the LEA
and the Simon-Speck families, and the largest are the

Ktantan family and Rectangle-64-128 in UNO and PI
respectively.

5) Key Scheduling Speed: Figures 1g and 1h exhibit the
10 largest and 5 smallest Algorithms for key schedule
speed in UNO and Pi respectively. The range intervals
are [0.99, 400000] in Kbytes/s and [0.029, 106.667] in
Gbytes/s for Throughput. The best is Prince-64-128, and
the worst is the Ktantan family in both platforms. The
larger the throughput value is, the faster the algorithm
is. Further, the range intervals for Latency are [0.00032,
161.34] in KCycles/Block and [0.18, 412.02] in Cy-
cles/Block. The best is XTEA-64-128, and the worst
is the Ktantan family in both platforms.

6) Encryption and Decryption Speed: Figures 1i and 1j
reveal the 10 largest and 5 smallest Algorithms for ENC
speed in UNO and PI respectively. The range intervals
are [0.1,64.1] in Kbytes/s and [0.009,6.99] in Gbytes/s
of UNO and PI respectively for Throughput. The best
are Hight-64-128 and LEA-128-128 however the worst
are Jumbo-128-128 and Ktantan-32-80 in UNO and PI
respectively. Whereas, the range intervals for Latency
are [2,2490.24] in KCycles/Block and [1.44,864.65] in
Cycles/Block of UNO and Pi respectively. The best are
Hight-64-128 and Speck-48-72 though the worst are
Jumbo-128-128 and ISAP-K-128-64-128 in UNO and
PI respectively.

7) Encryption and Decryption Power and Energy Con-
sumption: Figures 1k and 1l show the 10 smallest
and 5 largest Algorithms for ENC Power. The range
intervals are [0.959, 14.28] in mj/s and [168,303] in
mj/sfor Power. The least are SUNDAE-GIFT-0-128-128
and XTEA-64-128. However, the worst are Simon-128-
256 and DryGASCON128k56-128-128 in UNO and PI
respectively. Whereas, the range intervals for Energy
are [0.097, 67.4] in µj/Byte and [35.4, 26870] in nanoj/
Byte (or [0.035, 26.87] in µj / Byte) of UNO and PI
respectively. The least are SUNDAE-GIFT-0-128-128
and Speck-128-128 though the worst are Rectangle-64-
128 and Ktantan-32-80 in UNO and PI respectively.

V. DISCUSSION

Some of the algorithms’ measured speed and power La-
tencies (plus Key schedule) of Enc. They are presented in the
following figures as a percentage of the relative Reference
(RR) which is the AES. They are grouped in two ways: Block
or Key sizes. Some groups with their corresponding figures
are:

• 128 bits Block size and 96 bits Key size RR% groups
of Key Scheduling speed Latency presented in Figures
2a and 2b.

• 32 bits Block size and 256 bits Key size RR% groups
of ENC speed Latency presented in Figures 2c and 2d.

• 128 bits Block size (all of 128 bits key size) and 80 bits
Key size RR% groups of ENC Energy (Power Latency)
presented in Figures 2e and 2f.

After adequate observation over all these grouping and their
results between UNO and PI, it was realized that for more

2022 32nd International Telecommunication Networks and Applications Conference (ITNAC)

124
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on November 15,2023 at 09:17:32 UTC from IEEE Xplore. Restrictions apply.

(a) Number of Rounds (b) Code Size

(c) ROM size1 (d) ROM size(2)

(e) RAM Usage(1) (f) RAM Usage(2)

(g) Throughput in Key Schedule (h) Latency in Key Schedule

(i) Throughput Speed in ENC (j) Latency Speed in ENC

(k) Power Consumption in ENC (l) Energy Consumption in ENC

Fig. 1: Different measures for different metrics in UNO and
PI platforms

than 85% of the algorithm throughout, the metrics used had
gone better in PI. For example, Lea-128-192 was 1673% to
RR in Key Schedule for UNO whereas it became 47% for
PI. Statistically, in Key Schedule, there were 10 Algorithms
below 100% for UNO while they became 33 Algorithms for
PI, in ENC Speed Latency there were 28 Algorithms below
100% for UNO whereas the number became 79 Algorithms
for PI, and in ENC Energy there were 33 Algorithms below
100% for UNO whereas the number became 65 Algorithms
for PI. Consequently, Raspberry PI is revealing more Light
weighting features and behavior of the designed Lightweight
Algorithms that might be explained: “because of the Hard-
ware and Software Architecture of the Raspberry Pi”. The
67 winners in each group of Block or Key arrangement
throughout Key Scheduling Speed Latency, ENC/DEC Speed
Latency, and ENC/DEC Energy are listed in the Table 5. It
can be concluded that 36 (84%) of 39 of the Algorithms
are faster (fewer Cycles) in key schedule, 106 (94%) of 110
of the Algorithms are faster (fewer Cycles) in ENC, and 95
(86%) of 110 have taken less power in PI compared to UNO
as shown in Table 6 with additional statistical comparison.
Also, it was realized as a quick observation that most of the
algorithms that gone worse in PI compared against UNO
were of 80 bits Key like in Energy ENC, as shown in
Figure 31. That may indicate reliance on 80 bits key in
Algorithms design is not preferable, but this should take

(a) 128 Block size (b) 96 Key Size

(c) 32 Block size (d) 256 Key size

(e) 128 Block and Key sizes (f) 80 Key size

Fig. 2: Relative Reference (RR) and Block, Key Groups
Arrangement

(a) Best 3 For UNO (b) Best 3 For PI

(c) Best 3 for UNO (d) Best 3 for PI

Fig. 3: NIST best Algorithms in UNO v.s. PI

further investigation to deduce such a conclusion.
The overall comparison of Algorithms numbers and per-

centage in UNO v.s. PI is presented in TableIII.
A Score Table is presented in this section for some

measuring metrics. The scores (or cards) are given to each
Algorithm in each of the selected measures: ROM, ENC
speed (throughput and Latency), and ENC Energy (through-
put and Latency). The Algorithm with the least sum of all
scores would be considered as the best. For the first list of al-
gorithms presented in TableI, figures 3a and 3b clearly shows
that LEA-128-128, OMET-64-CHAM-64-128, and Hight-64-
128 are the best in UNO. While Speck-48-72, Speck—64-
128, and XTEA-64-128 are the best in PI. Regarding the
final list presented in Table??,figures 3c and 3d clearly
show that Schwaemm-256-128, GIFT-COFB-128-128, and
Schwaemm-128-128 are the best UNO. While Xoodyak-128-
128, TinyJAMBU-192-32-192, and TinyJAMBU-128-32-128
are the best in PI.

2022 32nd International Telecommunication Networks and Applications Conference (ITNAC)

125
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on November 15,2023 at 09:17:32 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Overall comparison of Algorithms numbers and percentage in UNO versus PI.

Condition Key Schedule speed
UNO (39)

Key Schedule speed
PI (39)

ENC speed
UNO (110)

ENC speed
PI (110)

Energy
UNO (110)

Energy
PI (110)

Unit Normal Comparison Kbytes / KCycles per s Gbytes / Cycles per s Kbytes / KCycles per s Gbytes / Cycles per s [0.097,67.4] µj/Byte [0.035,26.87] µj / Byte
Overall sum of % 30,760 6,032 77,014 6,114 68,138 42,308

Overall sum of % decreases
from UNO to PI ↘ 80% ↘ 92% ↘ 40%

of Algorithms decreases in RR % 3
(all of 64 Block size) 36 (92%) 6 (4 of key size 80) 106 (94%) 15

(8 of 9 of key size 80) 95 (86%)

of Algorithms <100% in RR % 10 (25%) 33 (84%)
(+ 23 added) 28 (25%) 79 (72%)

(+ 51 added) 33 (30%) 65 (60%)
(+ 32 added)

Overall sum of % Is the sum of all the Algorithms percentage in RR
↘ The number of Algorithms decreases
<100% Nnumber of Algorithms that are below 100% in RR

VI. CONCLUSION

In conclusion, Lightweight cryptography is a challenging
research domain through the last few years. In this work, a set
of 119 ciphers had been evaluated and bench-marked using
widely used platforms: Arduino and Raspberry PI. LEA-128-
128, COMET-64-CHAM-64-128, Hight-64-128, Speck-48-
72, Speck-64-128, and XTEA-64-128 were the most promis-
ing among the 119 compared Algorithms in power, speed,
and ROM measurements. Furthermore, Schwaemm-256-
128, GIFT-COFB-128-128, Schwaemm-128-128, Xoodyak-
128-128, TinyJAMBU-192-32-192, and TinyJAMBU-128-
32-128 are the best performing ciphers among the NIST
Finalists[20].

REFERENCES

[1] M. El-Hajj, A. Fadlallah, M. Chamoun, and A. Serhrouchni, “A survey
of internet of things (iot) authentication schemes,” Sensors, vol. 19,
no. 5, p. 1141, 2019.

[2] M. El-hajj, M. Chamoun, A. Fadlallah, and A. Serhrouchni, “Analysis
of authentication techniques in internet of things (iot),” in Cyber
Security in Networking Conference (CSNet), 2017 1st. IEEE, 2017,
pp. 1–3.

[3] M. El-Hajj, A. Fadlallah, M. Chamoun, and A. Serhrouchni,
“A taxonomy of puf schemes with a novel arbiter-based puf
resisting machine learning attacks,” Computer Networks, vol. 194,
p. 108133, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1389128621002036

[4] M. El-Haii, M. Chamoun, A. Fadlallah, and A. Serhrouchni, “Analysis
of cryptographic algorithms on iot hardware platforms,” in 2018 2nd
Cyber Security in Networking Conference (CSNet). IEEE, 2018, pp.
1–5.

[5] T. Eisenbarth, Z. Gong, T. Güneysu, S. Heyse, S. Indesteege, S. Ker-
ckhof, F. Koeune, T. Nad, T. Plos, F. Regazzoni, F.-X. Standaert,
and L. van Oldeneel tot Oldenzeel, “Compact implementation and
performance evaluation of block ciphers in attiny devices,” in Progress
in Cryptology - AFRICACRYPT 2012, A. Mitrokotsa and S. Vaudenay,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 172–
187.

[6] N. F. Ibrahim and J. I. Agbinya, “A review of lightweight cryptographic
schemes and fundamental cryptographic characteristics of boolean
functions,” Advances in Internet of Things, vol. 12, no. 1, pp. 9–17,
2021.

[7] J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw, “The led block
cipher,” in International workshop on cryptographic hardware and
embedded systems. Springer, 2011, pp. 326–341.

[8] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and
T. Shirai, “Piccolo: an ultra-lightweight blockcipher,” in Interna-
tional workshop on cryptographic hardware and embedded systems.
Springer, 2011, pp. 342–357.

[9] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. Robshaw, Y. Seurin, and C. Vikkelsoe, “Present: An ultra-
lightweight block cipher,” in International workshop on cryptographic
hardware and embedded systems. Springer, 2007, pp. 450–466.

[10] R. Benadjila, J. Guo, V. Lomné, and T. Peyrin, “Implementing
lightweight block ciphers on x86 architectures,” in International Con-
ference on Selected Areas in Cryptography. Springer, 2013, pp. 324–
351.

[11] B. Kim, J. Cho, B. Choi, J. Park, and H. Seo, “Compact imple-
mentations of hight block cipher on iot platforms,” Security and
Communication Networks, vol. 2019, 2019.

[12] W. Diehl, F. Farahmand, P. Yalla, J.-P. Kaps, and K. Gaj, “Comparison
of hardware and software implementations of selected lightweight
block ciphers,” in 2017 27th International Conference on Field Pro-
grammable Logic and Applications (FPL). IEEE, 2017, pp. 1–4.

[13] L. J. Hafer and A. C. Parker, “Register-transfer level digital design
automation: The allocation process,” in 15th Design Automation Con-
ference. IEEE, 1978, pp. 213–219.

[14] S. Abed, R. Jaffal, B. J. Mohd, and M. Alshayeji, “Fpga modeling and
optimization of a simon lightweight block cipher,” Sensors, vol. 19,
no. 4, p. 913, 2019.

[15] B. H. Dwiel, N. K. Choudhary, and E. Rotenberg, “Fpga modeling of
diverse superscalar processors,” in 2012 IEEE International Sympo-
sium on Performance Analysis of Systems & Software. IEEE, 2012,
pp. 188–199.

[16] V. Dahiphale, H. Raut, and G. Bansod, “Design and implementation
of novel datapath designs of lightweight cipher rectangle for resource
constrained environment,” Multimedia Tools and Applications, vol. 78,
no. 16, pp. 23 659–23 688, 2019.

[17] W. Zhang, Z. Bao, D. Lin, V. Rijmen, B. Yang, and I. Verbauwhede,
“Rectangle: a bit-slice lightweight block cipher suitable for multiple
platforms,” Science China Information Sciences, vol. 58, no. 12, pp.
1–15, 2015.

[18] B. Rezvani, F. Coleman, S. Sachin, and W. Diehl, “Hardware imple-
mentations of nist lightweight cryptographic candidates: A first look,”
Cryptology ePrint Archive, 2019.

[19] J. Hosseinzadeh and A. G. Bafghi, “Software implementation and
evaluation of lightweight symmetric block ciphers of the energy
perspectives and memory,” arXiv preprint arXiv:1706.03909, 2017.

[20] M. S. Turan, K. McKay, D. Chang, C. Calik, L. Bassham, J. Kang,
J. Kelsey et al., “Status report on the second round of the nist
lightweight cryptography standardization process,” National Institute
of Standards and Technology Internal Report, vol. 8369, no. 10.6028,
2021.

2022 32nd International Telecommunication Networks and Applications Conference (ITNAC)

126
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on November 15,2023 at 09:17:32 UTC from IEEE Xplore. Restrictions apply.

