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Abstract—Nowadays, various memory-hungry applications like
machine learning algorithms are knocking “the memory wall”.
Toward this, emerging memories featuring computational capac-
ity are foreseen as a promising solution that performs data pro-
cess inside the memory itself, so-called computation-in-memory,
while eliminating the need for costly data movement. Recent
research shows that utilizing the custom extension of RISC-V
instruction set architecture to support computation-in-memory
operations is effective. To evaluate the applicability of such meth-
ods further, this work enhances the standard GNU binary utilities
to generate RISC-V executables with Logic-in-Memory (LiM)
operations and develop a new gem5 simulation environment,
which simulates the entire system (CPU, peripherals, etc.) in a
cycle-accurate manner together with a user-defined LiM module
integrated into the system. This work provides a modular testbed
for the research community to evaluate potential LiM solutions
and co-designs between hardware and software.

Index Terms—RISC-V, Logic-in-Memory, Simulation, Gem5

I. INTRODUCTION

The performance gap between memories and computing
units, known as “the memory wall” has been a long-lasting
issue in computing systems [18]. Along with the rise of appli-
cation domains such as machine learning and the internet of
things, this issue becomes exceedingly pressing in the conven-
tional von Neumann computing paradigm. In addition to the
ever-worsening performance gap, the data movement between
these components consumes more than 60% of the total system
energy [3]. To overcome this issue, several Computation-in-
Memory (CiM) techniques have been proposed, and research
from different computing layers is actively involved [21], [29].
Specifically, Logic-in-Memory (LiM) is one promising CiM
solution [6], [5], where the computation can be performed by
additional logic inside the memory array1.

To utilize such CiM architectures, the CPU must be able
to coordinate the corresponding operations and let the data
processing perform by the memory itself. A few recent stud-
ies have shown that the custom encoding space of RISC-V

1The literature offers a wide range of LiM definitions [21], [22], and we
follow the typology used in [22] and [5]. Nevertheless, this work’s insight shall
generally apply to memory architectures with specific computation capacities.

Fig. 1. Overview of the evaluation environment developed in this work. Our
contributions are within the scope of the dashed block. The outputs of the
environment include simulation logs and instruction execution logs.

Instruction Set Architectures (ISA) serves this purpose very
well, in which additional instructions can be introduced and
mapped to various functionalities provided by CiM architec-
tures. For example, Lin et al. [17] propose specific instructions
with the support of Tensor Virtual Machine (TVM) to aid
Processing-in-Memory architectures for accelerating binarized
neural network [4]. Considering the standard RISC-V core
architecture [25], RISC-Vlim provides a general solution to
enable the communication between the microprocessor and
the LiM array without altering the bus interface [5]. With
such customized instructions, the coordination of the com-
puting process can be automated, and more optimizations are
potentially allowed.

However, computing systems with the CiM capacities are
still rarely available at the market. With commodity memories
like DRAM, indeed some prominent examples have been
emerging, e.g., Samsung’s FIMDRAM [15], UPMEM
architecture [9], SK Hynix’s AiM [16]. Most researchers so
far still rely on simulations to evaluate their approaches, based
on detailed models at different layers. Under this context,
the gem5 simulator [2] is widely used nowadays and serves
several research directions, especially for emerging memories
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Fig. 2. LiM memory architecture, adapted from [5]

and HW/SW co-designs [10], [19], [11]. It is a cycle
accurate full-system simulator, which provides the functional
simulation of the underlying hardware. Many simulation tools
are also possible to be integrated as modules or plugins with
the gem5 simulator, such as NVMain2.0 [20] for non-volatile
memories and RTSim [14] specifically for racetrack memories.

Our Contributions: In this work, we develop a new simula-
tion environment, where the customized RISC-V instructions
defined in [5] can be integrated into a C program via the inline
assembly functions, and the developed gem5 simulator is able
to run the generated executable and report the execution de-
tails, such as execution time in cycles and executed instructions
logs. Figure 1 shows the overview of this work. In a nutshell,
the contributions of this work are:

• Introducing the customized RISC-V instructions, defined
by [5], into the standard GNU binary utilities, by which
the inline assembly functions in the C program for LiM
operations can be compiled (See Section II-C).

• The gem5 simulation setup with an enhanced decoder for
the customized RISC-V instructions, which simulates the
LiM operations with a user-defined LiM module on a
functional level (See Section III).

• Evaluation of the developed simulation environment with
real-world algorithms, in comparison to the simulation
results derived from RISC-Vlim [5] (See Section IV).

The enhanced toolchains and the developed environment in
this work will be publicly available once the paper is accepted.

Fig. 3. The considered system architecture, simulated in the developed gem5
simulation environment. As a proof of concept, we disable the cache hierarchy
in this work and focus on the CPU and LiM modules.

II. SYSTEM ARCHITECTURE AND RISC-V INSTRUCTIONS

In this section, we introduce the system architecture and the
customized RISC-V instructions considered in this work. We
follow the insight of Coluccio et al. [5] to consider a standard
memory interface, by which different LiM architectures are
compatible, regardless of the underlying memory technologies.

A. System Architecture

Figure 2 shows the considered LiM memory design [5].
Noted that the CPU used in [5] ri5cy access instruction
and data from the same memory, so the instruction flow is
also considered in the memory design. Each memory cell is
considered a LiM cell, while access data, bit-wise operations
like AND, OR, and XOR will be operated with the mask data,
which is from the register. All the LiM cells are connected
with the MAX-MIN Logic, which determines the MAX or
MIN value over the cells. In this simulation, we realize the
functionality of range logic with its peripherals and LiM cells.
MAX-MIN logic is considered as the future work.

Figure 3 illustrates the system architecture we considered
in this work. Based on the default design of gem5, the
communication over the hardware components as modules
in the simulated system is implemented via packets and
ports. The CPU has the instruction cache port and the data
cache port connected with the memory bus, and the memory
bus received data from CPU and control the LiM memory
architecture. The corresponding portions of the LiM memory
can then be activated via the information contained in the
packet, such as opcode and offset of the memory address
(introduced below). Any further interface modification, such as
the memory interface, can also be easily introduced. Although
gem5 has memory subsystems such as cache hierarchy, they
are disabled in this work to avoid involving side effects, which
are considered out of the scope.
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B. Customized RISC-V Instructions for LiM Operations

For the completeness, we recap the customized RISC-V
instructions introduced in [5], which support the LiM solution
proposed in [27]. Since the LiM memory could also be
utilized as a classic memory, two customized instructions are
introduced for adjusting the status of the LiM memory cells,
namely STORE ACTIVE LOGIC and LOAD MASK, as
shown in Figure 4. The original STORE instruction could
also be involved in the operations of LiM process. If the
memory region is activated for LiM operations, a normal store
instruction will be interpreted as a logic store instruction.

There are three fields for STORE ACTIVE LOGIC:
BASE REG, RANGE REG and MEM OP. The BASE REG
field determines the base memory address, and the range
size (i.e., RANGE REG) of cells are active. The MEM OP
field gives the active operation type: NONE, AND, OR, XOR,
NAND, NOR and XNOR. For LOAD MASK, data from the
BASE REG field will be masked by the MEM OP with the
input mask in the SOURCE REG field first. Afterward, the
result is stored at the destination register DEST REG. Note
that LOAD MASK must always be placed after the activation
of the LiM operation, which is handled by compilation.

Here we give a running example to demonstrate the sys-
tem behavior with the instruction STORE ACTIVE LOGIC
with STORE. Suppose that every LiM memory cell has an
initial status, NONE, meaning that this cell is inactivated for
any LiM operation yet and data is merely loaded into the
memory. As shown in Figure 5, STORE ACTIVE LOGIC
executed with BASE REG equal to 0x08, RANGE REG equal
to 0x03, and MEM OP is OR. The LiM memory switches the
cell status to OR for 3 cells starting from the address 0x08.
The STORE ACTIVE LOGIC instruction must cooperate
with a STORE instruction, which is treated as a logic store
operation here. Note that the BASE REG field must have
the same value and the value of IMME12 field must be zero.
Therefore, the data from the SOURCE REG then are operated
with MEM OP and written back to the same memory cell.

C. Enhancement of GNU Binary Utilities

Here we present how we generate the executable binary
with the customized instructions via the enhancement of the
GNU binary utilities. We consider an agile development flow
with the usage of inline assembly functions to enable the LiM
operations in a given program.

In a typical end-to-end compilation flow, the source code is
first translated into the assembly code and converted into the
object code by the assembler. Afterward, the linker binds and
links runtime information to generate the executable binary.
To serve the objective of this work, the enhancement of the
assembler is sufficient without revamping all the steps above.

Figure 6 illustrates the compilation flow we adopted: Given
an application source code, the LIM operations are enabled
by users through inline assembly functions. To process the
additional customized instructions, the new opcodes have to be
registered in the assembler. The RISC-V GNU binary utilities
provide the repository of RISC-V Opcode to reserve the

opcodes for customized instructions in the repository:. Since
there is no automatic detection for collisions, a potential pitfall
here is that the introduced opcodes might overlap with the
existing opcodes. With the auxiliary of the RISC-V opcode, we
can introduce new instructions into the GNU binary utilities
with unique opcodes.

III. GEM5 SIMULATION ENVIRONMENT

In this section, we present the design of our gem5 simula-
tion environment, where the RISC-V decoder is extended to
process additional instructions introduced previously. Figure 7
shows the overview, considering one LiM architecture in the
simulated system suggested by [5].

A. RISC-V Decoder for LiM Instructions

To use the LiM memory architecture, at first two
new customized instructions, STORE ACTIVE LOGIC
and LOAD MASK are additionally introduced into
the RISC-V decoder of gem5. Under 32-bit RISC-V
ISA, STORE ACTIVE LOGIC belongs to I-type, and
LOAD MASK is the SB-type [1]. Figure 8 shows the
instruction format of RISC-V I type and SB type.

The ISA Parser (so-called decoder) adopts a nested structure
to decode instructions, based on the code segments (i.e., the
brackets in Figure 8). The format is defined from left to right
and match the QUADRANT, OPCODE, and FUNC3. For all
the instructions, the memory and the registers exchange data
to each other. For STORE ACTIVE LOGIC, the activation
size of memory stored in the RANGE REG is sent to the mem-
ory via the packet, i.e., Mem ub is assigned with Rd ub. For
the simplicity of presentation, the other detailed handling such
as the memory address in RANGE REG and the MEM OP
are not introduced here.

B. Design of LiM Module

Along with the convention of gem5, we introduce a module
to describe the functionalities of the LiM memory architecture
into the environment, as shown in Figure 3, where the CPU
communicates with the memory controller through the packets.
Based on the information contained in the packets, the memory
controller modifies the state of the memory cells accordingly
and updates the data stored in the memory.

Figure 7 illustrates the gem5 simulator, integrated with
one LiM memory architecture. By the design of gem5, every
hardware component, such as CPU, is considered as an object,
and the objects communicate with each other via packets and
signals. After decoding, all the information is packed into
the LiM packet, and the CPU module sends this packet to
the memory controller by the response port. Afterward, the
memory controller alters the state of the LiM memory. Each
cell inside the memory holds the current states of LiM memory
as NONE, AND, OR, XOR, NAND, NOR, or XNOR. After
the simulation, instruction count, simulation time, and detailed
instruction log is obtained by the gem5.
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Fig. 4. RISC-V customized instructions to use the LiM memory cells, adapted from [5].

Fig. 5. Running example for STORE ACTIVE LOGIC

Fig. 6. Overview from a given C program to the target code

IV. EVALUATION AND DISCUSSION

In this section, we present the required runtime for sim-
ulating the execution of benchmarks with the introduced
customized instructions, in comparison to the RTL simulation
environment provided by [5]. Please note that, the simulations
conducted in [5] are based on Vsim (as known as ModelSim),
where a hardware description language is utilized and wave-
forms for signals are generated for circuit validation. Once
the designed architecture is proven to work well with the
customized instructions, the gem5 simulation environment de-
veloped in this work can be utilized to efficiently evaluate the

effectiveness of customized instructions and LiM architecture.
The resulted speedup is thus expected and helpful.

A. Experimental Setup

Table I shows the details of experiment environment. We
simulated a system with a LiM memory architecture in Gem5
v22.0.0.2. The customized instructions were introduced by the
enhanced GNU Binutils 11.1.0 (see Section II-C). We compare
the performance of the simulation environments with the same
benchmarks adopted in [5], i.e., The source code with inline
assemblies were provided by the repository2, and we used the
enhanced GNU Binutils to generate the target code in elf
with the LiM operations as the input of the gem5 simulations.

Since the Vsim-based evaluation conducted in [5] merely
simulates the hardware behavior, only the physical memory
space is considered, and thus an actual physical address is
given into the tested application, shown as Listing 1. However,
our gem5-based simulation environment works with a virtual
memory space towards the need of operating systems, where
we adopt the malloc function to settle the virtual memory
space, as shown in Listing 2.

i n t main ( i n t argc , char * a rgv [ ] ) {
/ * i n p u t v a r i a b l e s d e c l a r a t i o n * /
i n t (* s t a t e s ) [ 4 ] [ 4 ] = 0 x30000 ;
. . .
re turn EXIT SUCCESS ;

}

Listing 1. Address definition example for vsim

i n t main ( i n t argc , char * a rgv [ ] ) {
/ * Other v a r i a b l e s * /
i n t i ;
/ * i n p u t v a r i a b l e s d e c l a r a t i o n * /
i n t row = 4 , c o l = 4 ;
i n t * s t a t e s [ row ] ;
f o r ( i = 0 ; i < row ; i ++)

s t a t e s [ i ] = ( i n t *) ma l lo c ( c o l * s i z e o f ( i n t ) ) ;
. . .
re turn EXIT SUCCESS ;

}

Listing 2. Address definition example for Gem5

B. Experimental Results

Table II shows the required time of two simulation environ-
ments for running different benchmarks on average. For each
simulation environment, we ran 20 times per benchmark. We

2https://github.com/vlsi-nanocomputing/risc-v-lim-architecture
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Fig. 7. The developed gem5 simulation environment, integrated with the considered LiM memory architecture

Fig. 8. RISC-V instruction type and corresponding Gem5 decode format

Fig. 9. Gem5 decoder example for STORE ACTIVE LOGIC

Experiment environment
Architecture x86 64
CPU(s) 24
Model name 12th Gen Intel(R) Core(TM) i9-12900K
CPU max MHz 6700
CPU min MHz 800
Main Memory Size 128 GiB
Operating System Ubuntu 22.04.1 LTS

TABLE I
EXPERIMENT ENVIRONMENT

can see that for running software applications, the gem5-based
environment is much efficient. For xnor_net.c, due to the
limited time, we cannot finish all the experiments.

Overall, as long as the introduced customized instructions
have been validated by, for example, the Vsim environment
in [5], the gem5-based environment is more suitable for
massive testing for capturing the numbers of memory accesses
and the performance improvement.

V. RELATED WORK

Several CiM solutions have been proposed [21], [29],
especially in recent years due to the emerging non-volatile
memories [26], [30], [28]. Using customized RISC-V instruc-
tions to support various architectures such as accelerators has
also been studied widely [17], [5]. RISC-V is conceived to
be expandable so that unused opcodes can be introduced to
accommodate custom extensions; some extensions become
standard, while others can remain a specific feature of vendors.
This characteristic allows RISC-V processors to have ad-hoc
instructions while keeping compatibility with the global RISC-
V ecosystem. This approach has been, for example, leveraged
by the PULP processors [8] [24] [23].

While several instruction set simulators for RISC-V have
been developed to speed up the functional verification, most
of them can hardly be extended to support system-level use
cases. Different full system simulators have been proposed to
fill this gap, such as SoCRocket [7] and RISC-V VP [12],
just to name a few. As one popular full system simulator,
gem5 has been attractive to computing system researchers [2],
[11], [13]. This work serves as the first step to support the
customized RISC-V instructions in the gem5 fashion for LiM
memory architectures, by which more LiM solutions, HW/SW
co-designs and software automation can be evaluated.

VI. CONCLUSION

Towards the pressing issue of ”the memory wall”, various
CiM solutions have been proposed in the literature. Recent
research shows that utilizing the custom extension of RISC-V
instruction set architecture (ISA) to support the coordination of
CPU and CiM, especially for LiM architectures, is effective. In
this work, we develop a new gem5 simulation environment to
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Simulation time
Benchmark Gem5 Vsim
aes128 arkey.c 0.0149s 53s
bitmap search.c 0.0148s 57s
bitwise.c 0.013s 36s
max min.c 0.0232s 116s
xnor net.c 0.0886s -

TABLE II
SIMULATION TIME COMPARISON

provide a cycle-accurate simulation to support such research.
The results show that the gem5-based simulation can be used
for massively testing the impacts of introduced instructions,
and its flexibility provides foreseen potentials for testing
CiM/LiM solutions. In the future, we plan to maintain this
tool set and include, for example, more LiM architectures and
customized instructions like reduction algorithms.
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[14] A. A. Khan, F. Hameed, R. Bläsing, S. Parkin, and J. Castrillon. Rtsim:
A cycle-accurate simulator for racetrack memories. IEEE Computer
Architecture Letters, 18(1):43–46, 2019.

[15] S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee,
K. Lim, H. Shin, J. Kim, S. O, A. Iyer, D. Wang, K. Sohn, and N. S. Kim.
Hardware architecture and software stack for pim based on commercial
dram technology. In Proceedings of the 48th Annual International
Symposium on Computer Architecture, ISCA ’21, page 43–56, 2021.

[16] S. Lee, K. Kim, S. Oh, J. Park, G. Hong, D. Ka, K. Hwang, J. Park,
K. Kang, J. Kim, J. Jeon, N. Kim, Y. Kwon, K. Vladimir, W. Shin,
J. Won, M. Lee, H. Joo, H. Choi, J. Lee, D. Ko, Y. Jun, K. Cho,
I. Kim, C. Song, C. Jeong, D. Kwon, J. Jang, I. Park, J. Chun,
and J. Cho. A 1ynm 1.25v 8gb, 16gb/s/pin gddr6-based accelerator-
in-memory supporting 1tflops mac operation and various activation
functions for deep-learning applications. In 2022 IEEE International
Solid- State Circuits Conference (ISSCC), volume 65, pages 1–3, 2022.

[17] C.-C. Lin, C.-L. Lee, J.-K. Lee, H. Wang, and M.-Y. Hung. Accelerate
binarized neural networks with processing-in-memory enabled by risc-
v custom instructions. In 50th International Conference on Parallel
Processing Workshop, ICPP Workshops ’21, New York, NY, USA, 2021.
Association for Computing Machinery.

[18] S. A. McKee. Reflections on the memory wall. In Proceedings of the
1st Conference on Computing Frontiers, CF ’04, page 162, New York,
NY, USA, 2004. Association for Computing Machinery.

[19] C. Menard, J. Castrillon, M. Jung, and N. Wehn. System simulation with
gem5 and systemc: The keystone for full interoperability. In 2017 In-
ternational Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), pages 62–69, 2017.

[20] M. Poremba, T. Zhang, and Y. Xie. Nvmain 2.0: A user-friendly memory
simulator to model (non-)volatile memory systems. IEEE Computer
Architecture Letters, 14(2):140–143, 2015.

[21] S. Rai, M. Liu, A. Gebregiorgis, D. Bhattacharjee, K. Chakrabarty,
S. Hamdioui, A. Chattopadhyay, J. Trommer, and A. Kumar. Perspec-
tives on emerging computation-in-memory paradigms. In 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages
1925–1934, 2021.

[22] G. Santoro, G. Turvani, and M. Graziano. New logic-in-memory
paradigms: An architectural and technological perspective. Microma-
chines, 10(6), 2019.

[23] F. Schuiki, F. Zaruba, T. Hoefler, and L. Benini. Stream semantic
registers: A lightweight risc-v isa extension achieving full compute
utilization in single-issue cores. IEEE Transactions on Computers,
70(2):212–227, 2021.

[24] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini. Design
and evaluation of smallfloat simd extensions to the risc-v isa. In 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 654–657, 2019.

[25] A. Traber, M. Gautschi, and P. D. Schiavone. Ri5cy user manual,
2019. Micrel Lab and Multitherman Lab University of Bologna, Italy
Integrated Systems Lab ETH Zürich, Switzerland.
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