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REDUCTION AND ISOGENIES OF ELLIPTIC CURVES

MENTZELOS MELISTAS

Abstract. Let R be a complete discrete valuation ring with fraction field K and perfect
residue field k of characteristic p > 0. Let E/K be an elliptic curve with a K-rational
isogeny of prime degree ℓ. In this article, we study the possible Kodaira types of reduction
that E/K can have. We also prove some related results for elliptic curves over Q.

1. Introduction

Let K be a number field and let E/K be an elliptic curve. A K-rational isogeny φ of E/K
is an isogeny φ : E −→ E ′ which is defined over K, for some elliptic curve E ′/K. The study
of K-rational isogenies of elliptic curves (and their possible degrees) for different number
fields K is a rich topic with a long history (see e.g. [10], [14], [6], [13]). In this paper we
are interested in answering the following related question; Given an elliptic curve E/K with
a cyclic K-rational isogeny of prime degree, then can we say anything about the reduction
properties of E/K? To be more precise, if E/K is an elliptic curve with a K-rational isogeny
of prime degree ℓ > 3, then we are interested in the possible Kodaira types of reduction that
can occur. The reduction properties of elliptic curves with complex multiplication and of
elliptic curves with torsion points have been previously studied by the author in [11] and
[12], respectively.

Since determining the reduction type of an elliptic curve is a problem of local nature, we
can consider elliptic curves over complete discrete valuation rings. Our main result is the
following theorem, proved in the next section.

Theorem 1.1. Let R be a complete discrete valuation ring with fraction field K and perfect
residue field k of characteristic p > 3. Let E/K be an elliptic curve with a K-rational isogeny
of prime degree ℓ > 3 such that p 6= ℓ.

(i) If ℓ− 1 ≡ 2 or 10 (mod 12), then E/K has either semi-stable reduction or reduction
of type I∗n for some n ≥ 0.

(ii) If ℓ− 1 ≡ 4 or 8 (mod 12), then E/K has either semi-stable reduction or reduction
of type III, III∗, or I∗n for some n ≥ 0.

(iii) If ℓ− 1 ≡ 6 (mod 12), then E/K cannot have reduction of type III or III∗.

We present some examples (see Examples 2.5, 2.6, as well as the paragraph before them)
showing that all Kodaira types that appear in Parts (i) and (ii) Theorem 1.1 do indeed
occur. We also prove a partial analog (see Theorem 2.8 below) of Theorem 1.1 when p = 2
or 3 and we explain, in Remark 2.4, why the restriction that ℓ > 3 is natural in the context
of Theorem 1.1. We note that Theorem 1.1 is false when ℓ = p. Indeed, in Example 2.9
below we present examples of elliptic curves E/Q with a Q-rational isogeny of degree ℓ = 5
that have modulo 5 reduction of type II, II∗, III, III∗, IV, IV∗, I∗0, I∗1, and I1.
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We now turn our attention to elliptic curves over Q. In this case, a celebrated theorem
of Mazur (see [10, Theorem 1]) provides a classification for the possible prime degrees of
Q-rational isogenies. Namely, if E/Q is an elliptic curve with a Q-rational isogeny of prime
degree ℓ, then ℓ ∈ {2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163}. A selection of our results from
Section 3 concerning elliptic curves over Q is the following theorem (See Theorems 3.3, 3.4.
3.6, and 3.7 below).

Theorem 1.2. Let E/Q be an elliptic curve with a Q-rational isogeny of prime degree ℓ.

(i) If ℓ = 11, 19, 43, 67, or 163, and p is a prime such that p 6= 2, ℓ, then E/Q has either
good reduction or reduction of type I∗0 modulo p.

(ii) If ℓ = 19, 43, 67, or 163, then E/Q has reduction of type III or III∗ modulo ℓ.
(iii) If ℓ = 11, 19, 37, 43, 67, or 163, then E/Q has either good redcution or reduction of

type II or II∗ modulo 2.
(iv) If ℓ = 17 or 37 and p 6= 2, 5, 7, 17 is a prime, then E/Q has either good reduction or

reduction of type III, III∗, or I∗0 modulo p.

For the prime numbers ℓ treated in Theorem 1.2 we also classify the possible reduction
types modulo 2 and modulo ℓ in Section 3. Moreover, by following the proof of each part of
Theorem 1.2, which involves the computation of the possible Kodaira types of elliptic curves
with a fixed j-invariant, we can see that in fact all allowed Kodaira types do indeed occur.

This article is organized as follows. In Section 2, after recalling some background material,
we prove Theorem 1.1. Then we present some examples showing that all Kodaira types that
appear in Parts (i) and (ii) Theorem 1.1 do indeed occur. Finally, Section 3 is devoted to
elliptic curves over Q and Theorem 1.2 is proved.

Acknowledgement. The author was supported by Czech Science Foundation (GAČR)
grant 21-00420M and by Charles University Research Center program No.UNCE/SCI/022.

2. Proof of Theorem 1.1

Let R be a complete discrete valuation ring with valuation v, fraction field K, and perfect
residue field k of characteristic p > 0. Let Ks be a fixed separable closure of K and let
GK = Gal(Ks/K). Assume that E/K has a cyclic K-rational isogeny φ of prime degree
ℓ > 3 with kernel denoted by C. We assume that ℓ 6= p throughout this section. Let
P ∈ E[ℓ] be a generator for C. Write L/K for the minimal field of definition of the point P ,
i.e., L is the field obtained by adjoining the coordinates of P to the field K. Extend P to
a basis {P,Q} of E[ℓ] and denote ρ̄E,ℓ : GK −→ GL(Fℓ) the mod ℓ representation of E/K
with respect to the basis {P,Q}. Let B be the Borel subgroup of GL(Fℓ), i.e.,

B =

{(
a b
0 d

)
: a, b, d ∈ Fℓ and ad 6= 0

}
,

and let B1 be the subgroup

B1 =

{(
1 b
0 d

)
: b, d ∈ Fℓ and d 6= 0

}
.

Using Galois theory we can prove the following (see also [2, Lemma 3.1]).

Lemma 2.1. The degree of the extension L/K divides ℓ− 1.
2



Proof. Since the isogeny φ is defined over K, we have that ρ̄E,ℓ(GK) is a subgroup of B.
Therefore, it follows from Galois theory that

[L : K] = [B ∩ ρ̄E,ℓ(GK) : B1 ∩ ρ̄E,ℓ(GK)] = [ρ̄E,ℓ(GK) : B1 ∩ ρ̄E,ℓ(GK)],

which divides [B : B1] = ℓ− 1.
�

Denote by EL/L the base extension of E/K to L. The following lemma will be useful in
our proofs below.

Lemma 2.2. Then the curve EL/L has semi-stable reduction.

Proof. Assume that EL/L does not have semi-stable reduction and we will find a contradic-
tion. Consequently, we assume from now on that EL/L has additive reduction. Let RL be
the integral closure of R in L, which is again a discrete valuation ring because R is complete,
and denote by kL its residue field. Pick a minimal Weierstrass equation for EL/L and de-
note by ẼL/kL the corresponding reduction. Denote also by (EL)0(L) the set of points with
nonsingular reduction and by (EL)1(L) the kernel of the reduction map.

It follows from [19, Proposition VII.2.1], that there exists a short exact sequence of abelian
groups

0 −→ (EL)1(L) −→ (EL)0(L) −→ (ẼL)ns(kL) −→ 0,

where (ẼL)ns(kL) is the set of non-singular points of ẼL/kL and the right-hand map is the
reduction map. Consider now the point P ∈ EL(L), which has order ℓ. We will first show
that P 6∈ (EL)0(L). Suppose that P ∈ (EL)0(L), and we will find a contradiction. Since ℓ is
coprime to p and P has order ℓ, we find, using [19, Proposition VII.3.1], that P 6∈ (EL)1(L).
Therefore, if P ∈ (EL)0(L), then we must have that the reduction of P must have order ℓ in
(ẼL)ns(kL). However, by [19, Exercise III.3.5] we see that (ẼL)ns(kL) is the additive group
Ga(kL), where Ga/kL is the additive group scheme over kL. Since Ga(kL) has no points of
order ℓ, we see that P 6∈ (EL)0(L).

Finally, if EL/L has additive reduction, then, using [18, Corollary IV.9.2] (or [20]), we find
that the group EL(L)/(EL)0(L) has order at most 4. However, since P 6∈ (EL)0(L), we must
have that EL(L)/(EL)0(L) has order divisible by the prime ℓ, which is bigger than 3. This
is a contradiction and, hence, EL/L has semi-stable reduction. This completes the proof of
our claim.

�

Theorem 2.3. Let R be a complete discrete valuation ring with valuation v, fraction field
K, and perfect residue field k of characteristic p > 0. Let E/K be an elliptic curve with
potentially good reduction and a K-rational isogeny of prime degree ℓ > 3 with ℓ 6= p. Denote
by ∆E/K the discriminant of a minimal Weierstrass equation for E/K. Then

12 divides (ℓ− 1)v(∆E/K).

Proof. Assume that E/K has a cyclic K-rational isogeny of degree ℓ with kernel denoted by
C. Let P ∈ E[ℓ] be a generator for C. Write L/K for the minimal field of definition of the
point P .

Let RL be the integral closure of R in L, which is again a discrete valuation ring because
R is complete. We denote by vL the associated (normalized) valuation of RL. Note that

3



the restriction vL|K of vL to K satisfies vL|K = ev where e is the ramification index of
L/K. By Lemma 2.2 the curve EL/L has semi-stable reduction. Therefore, since we assume
that E/K has potentially good reduction, we find that EL/L has good reduction. Thus, if
∆EL/L is the discriminant of a minimal Weierstrass equation of EL/L, then we must have
that vL(∆EL/L) = 0.

On the other hand, ∆E/K is the discriminant of a (not necessarily minimal) Weierstrass
equation for EL/L. Since when we perform a change of variable the valuation of the dis-
criminant changes by a factor of 12, we see that 12 divides vL(∆EL/L) − vL(∆E/K). How-
ever, from the previous paragraph we have that vL(∆EL/L) = 0 and, hence, 12 divides
vL(∆E/K) = ev(∆E/K). Moreover, it follows from Lemma 2.1 that the degree of the exten-
sion L/K divides ℓ− 1. Therefore, we find that e divides ℓ − 1 and, hence, we see that 12
divides (ℓ− 1)v(∆E/K). �

We are now ready to proceed to the proof of Theorem 1.1.

Proof of Theorem 1.1. Assume that E/K has a cyclic K-rational isogeny of degree p with
kernel denoted by C. Let P ∈ E[ℓ] be a generator for C. Write L/K for the minimal field
of definition of the point P . Lemma 2.1 tells us that [L : K] divides ℓ− 1 while Lemma 2.2
tells us that the base extension EL/L of E/K to L has semi-stable reduction.

If EL/L has multiplicative reduction, then using Tate’s algorithm [20], since p > 3, we find
that that E/K has either multiplicative reduction or reduction of type I∗n, for some n ≥ 0.
We assume from now on that EL/L has good reduction.

Proof of (i): Assume that ℓ−1 ≡ 2 or 10(mod 12). Denote by ∆E/K the discriminant of a
minimal Weierstrass equation for E/K. Theorem 2.3 tells us that 12 divides (ℓ−1)v(∆E/K).
Since ℓ− 1 ≡ 2 or 10 (mod 12), we find that

0 ≡ (ℓ− 1)v(∆E/K) ≡ 2v(∆E/K) or 10v(∆E/K) (mod 12).

Since p > 3, this is only possible when v(∆E/K) = 0 or 6. Therefore, using [18, Page 365],
we see that E/K has either good reduction or reduction of type I∗0. This proves part (i).

Proof of (ii): Assume that ℓ−1 ≡ 4 or 8 (mod 12). Denote by ∆E/K the discriminant of a
minimal Weierstrass equation for E/K. Theorem 2.3 tells us that 12 divides (ℓ−1)v(∆E/K).
Since ℓ− 1 ≡ 4 or 8 (mod 12), we find that

0 ≡ (ℓ− 1)v(∆E/K) ≡ 4v(∆E/K) or 8v(∆E/K) (mod 12).

Since p > 3, this is only possible when v(∆E/K) = 0, 3, 6, or 9. Therefore, using [18, Page
365], we find that E/K has either good reduction or reduction of type III, III∗, or I∗0. This
proves part (ii).

Proof of (iii): Assume now that ℓ−1 ≡ 6(mod 12). Denote by ∆E/K the discriminant of a
minimal Weierstrass equation for E/K. Theorem 2.3 tells us that 12 divides (ℓ−1)v(∆E/K).
Since ℓ− 1 ≡ 6 (mod 12), we find that

0 ≡ (ℓ− 1)v(∆E/K) ≡ 6v(∆E/K) (mod 12).

From this we obtain that v(∆E/K) 6= 3 or 9. Therefore, using [18, Page 365], we find that
E/K cannot have reduction of type III or III∗. This completes the proof of our theorem. �

Remark 2.4. We explain in this remark why the restriction that ℓ > 3 is natural in the
context of Theorem 1.1. First, for an elliptic curve E/K having a K-rational isogeny of
degree 2 is the same as having a K-rational torsion point of order 2. Thus, studying elliptic
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curves with an isogeny of degree 2 is the same as studying elliptic curves with a K-rational
point of order 2.

On the other hand, it is not hard to show that if an elliptic curve E/K has a K-rational
isogeny of degree 3, then a quadratic twist of E/K has a K-rational point of order 3 (see also
[17, Exercise 2.6]). Therefore, studying elliptic curves with an isogeny of degree 3 is the same
as studying elliptic curves whose twists have a K-rational point of order 3. We note that
when the absolute ramification index of K is 1, the possible Kodaira types of reduction of
elliptic curves E/K that have a K-rational point of order 3 have been described by Kozuma
in [5, Proposition 3.5] and [5, Lemma 3.6].

Let now K be a number field and let E/K be an elliptic curve that has a K-rational
isogeny of prime degree ℓ > 3. Let p be a prime of K which lies above a rational prime p > 3
with ℓ 6= p. Assume that E/K has reduction of Kodaira type In, for some n ≥ 0, modulo
p. By performing an appropriate quadratic twist we can construct an elliptic curve E ′/K
with a K-rational isogeny of degree ℓ and reduction of Kodaira type I∗n modulo p (see [1] for
background on Kodaira types of quadratic twists). Thus, the Kodaira types I∗n that appear
in Parts (i) and (ii) of Theorem 1.1 do indeed occur.

The following two examples show that the Kodaira types III and III∗ allowed by Part (ii)
of Theorem 1.1 also occur.

Example 2.5. Consider the elliptic curve E/Q given by the following Weierstrass equation

E : y2 + xy + y = x3 − 190891x− 36002922.

This curve has LMFDB [7] label 14450.b1. Using LMFDB it is easy to see that E/Q has a
Q-rational isogeny of degree 17 and that it has reduction of Kodaira type III modulo 5.

Example 2.6. Consider the elliptic curve E/Q given by the following Weierstrass equation

E : y2 + xy = x3 − 16513x− 916983.

This curve has LMFDB [7] label 14450.w2 and is a quadratic twist of the elliptic curve
with label 14450.b1 considered in the previous example. It is easy to see that E/Q has a
Q-rational isogeny of degree 17 and that it has reduction of Kodaira type III∗ modulo 5.

The following example illustrates two important aspects related to Theorem 1.1. Firstly,
the assumption that ℓ 6= p in Theorem 1.1 is necessary as more reduction types can occur.
Secondly, when ℓ−1 ≡ 6 (mod 12) (as is the case for ℓ = 19 below) then the reduction types
II and IV∗ can indeed occur.

Example 2.7. Consider the elliptic curve E/Q(
√
−3) given by the following Weierstrass

equation
E : y2 + xy + y = x3 + (184a− 12)x+ 101a+ 872,

where a = 1+
√
−3

2
. This curve has LMFDB [7] label 2.0.3.1-61009.7-b1 and has a Q(

√
−3)-

rational isogeny of order 19. Denote by p and q the prime ideals (4a − 3) and (−5a + 3)
of the ring of integers of Q(

√
−3), respectively. Note that p lies above 13 and q lies above

19. Using the database it is easy to see that E/Q(
√
−3) has a Q(

√
−3)-rational isogeny of

degree 19, bad reduction of Kodaira type IV∗ modulo p, and reduction of Kodaira type III
modulo q.

Let d1 = 4a − 3 and d2 = −5a + 3. It follows from [1, Proposition 1] that the quadratic
twist Ed1/Q(

√
−3) of E/Q(

√
−3) has bad reduction of Kodaira type II modulo p. Moreover,
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it follows from [1, Proposition 1] that the quadratic twist Ed2/Q(
√
−3) of E/Q(

√
−3) has

reduction of Kodaira type III∗ modulo q.

Theorem 2.8. Let R be a complete discrete valuation ring with valuation v, fraction field
K of characteristic 0, and perfect residue field k of characteristic p > 0. Let E/K be an
elliptic curve with a K-rational isogeny of prime degree ℓ > 3. Assume that v(p) = 1.

(i) If ℓ−1 ≡ 2, 4, 8, or 10 (mod 12) and p = 2, then E/K cannot have reduction of type
IV or IV∗.

(ii) If ℓ − 1 ≡ 2 or 10 (mod 12) and p = 3, then E/K has either semi-stable reduction,
reduction of type IV or II∗, or reduction of type I∗n for some n ≥ 0.

Proof. The proof is similar to the proof of Theorem 1.1, using [15] instead of [18, Page 365].
We include all the details here for completeness. Assume that E/K has a cyclic K-rational
isogeny of degree p with kernel denoted by C. Let P ∈ E[ℓ] be a generator for C. Write
L/K for the minimal field of definition of the point P . Exactly as in the proof of Theorem
1.1, Lemma 2.1 tells us that [L : K] divides ℓ − 1. Moreover, Lemma 2.2 tells us that
the base extension EL/L of E/K to L has semi-stable reduction. We denote by ∆E/K the
discriminant of a fixed minimal Weierstrass equation for E/K.

Proof of (i): We assume for contradiction that E/K has reduction of type IV or IV∗. This
implies that EL/L has good reduction. Assume first that ℓ−1 ≡ 2 or 10(mod 12). Theorem
2.3 tells us that 12 divides (ℓ− 1)v(∆E/K). Since ℓ− 1 ≡ 2 or 10 (mod 12), we find that

0 ≡ (ℓ− 1)v(∆E/K) ≡ 2v(∆E/K) or 10v(∆E/K) (mod 12).

On the other hand, since v(2) = 1 and E/K has reduction of type IV or IV∗, by [15, Tableau
IV] we have that v(∆E/K) = 4 or 8, which is a contradiction.

Assume now that ℓ − 1 ≡ 4 or 8 (mod 12). Theorem 2.3 tells us that 12 divides (ℓ −
1)v(∆E/K). Since ℓ− 1 ≡ 4 or 8 (mod 12), we find that

0 ≡ (ℓ− 1)v(∆E/K) ≡ 4v(∆E/K) or 8v(∆E/K) (mod 12).

On the other hand, since v(2) = 1 and E/K has reduction of type IV or IV∗, by [15, Tableau
IV] we have that v(∆E/K) = 4 or 8, which is again a contradiction.

Proof of (iii): Proceeding exactly in in part (i) we find that

0 ≡ (ℓ− 1)v(∆E/K) ≡ 2v(∆E/K) or 10v(∆E/K) (mod 12).

Therefore, since v(3) = 1, by [15, Tableau II] we see that E/K has either semi-stable
reduction, reduction of type IV or II∗, or reduction of type I∗n for some n ≥ 0. This proves
our theorem. �

We end this section by explaining why an analog of Theorem 1.1 for ℓ = p does not seem
to exist. Concerning the case where the characteristic of the field K is 0, even for K = Q
such a pattern does not seem to hold. This is because in Example 2.9 below among other
examples we exhibit elliptic curves E/Q with a Q-rational isogeny of degree ℓ = 5 that have
modulo 5 reduction of type II, II∗, III, III∗, IV, IV∗, I∗0, I∗1, and I1. Thus, we do not see any
pattern concerning their reduction types modulo 5.

Example 2.9. Consider the curves with LMFDB labels 75.a2, 50.b1, 175.a2, 150.a1, 50.a1,
50.a2, 275.b1, 550.f1, and 110.b1. Those curves have Q-rational isogeny of degree 5 and
reduction modulo 5 of type II, II∗, III, III∗, IV, IV∗, I∗0, I∗1, and I1, respectively.
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Suppose now that the characteristic of K is p. Let E/K be any elliptic curve. Extending
scalars using the absolute Frobenius Fr : Spec(K) −→ Spec(K), we obtain an elliptic curve
E(p)/K and a purely inseparable isogeny F : E −→ E(p) of degree p. Thus every elliptic
curve defined over K has an isogeny of degree p, and, hence, we cannot have any restrictions
on the reduction properties of elliptic curves with an isogeny of degree p. To remedy this
problem one could restrict to separable isogenies. However, we note that given any isogeny
φ of degree p and dual isogeny φ̂, the facts that φ ◦ φ̂ = [p] and that [p] is inseparable in
characteristic p combined imply that either φ or φ̂ is inseparable.

3. Elliptic curves over Q

In this section, we focus on elliptic curves over Q and we prove Theorem 1.2. Before
we proceed to our proofs we briefly explain our general strategy. A similar strategy has
been employed by Trbović in [21] to compute Tamagawa numbers of elliptic curves with
isogenies. Let ℓ ≥ 11 be a prime and consider the modular curve X0(ℓ)/Q parametrizing
elliptic curves together with an isogeny of degree ℓ (see [3] and [16] for general background on
modular curves). In [9, Table 4], we can find the j-invariants corresponding to non-cuspidal
Q-rational points of X0(ℓ)/Q, i.e., the j-invariants of elliptic curves defined over Q that have
a Q-rational isogeny of degree ℓ.

Moreover, according to [19, Corollary X.5.4.1] all elliptic curves having the same j-invariant
are twists of each other. Since all these j-invariants coming from [9, Table 4], are not equal to
0 or 1728, we need to consider only quadratic twists. Finally, we will use results on reduction
types of quadratic twists of elliptic curves.

If E/Q is an elliptic curve and d is a square-free integer, then we will denote by Ed/Q the
quadratic twist of E/Q by d. We recall now some of the results from [1] for future reference.

Lemma 3.1. (See [1, Proposition 1]) Let E/Q be an elliptic curve and d a square-free
integer. If p 6= 2 is a prime with p | d, then the reduction types of E/Q and Ed/Q modulo p
are related as follows

Reduction type of E/Q modulo p Reduction type of Ed/Q modulo p

I0 I∗0
In I∗n
II IV∗

III III∗

IV II∗

I∗0 I0
II∗ IV
III∗ III
IV∗ II

Keeping the same notation as in the previous lemma, it is well known that if p 6= 2 and
p ∤ d, then the reduction types of E/Q and Ed/Q modulo p are the same. We will also need
the following lemma.

Lemma 3.2. Let E/Q be an elliptic curve and d be a squarefree number.

(i) If E/Q has good reduction modulo 2, then Ed/Q has either good reduction or reduc-
tion of type I∗4, I∗8, II, or II∗ modulo 2.
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(ii) If E/Q has modulo 2 reduction of type In for some n ≥ 0, then Ed/Q has modulo 2
either reduction of type In or reduction of type I∗m, where m is equal to either n + 4
or n+ 8.

Proof. Both of these statements are well known to the experts. We include some references
here for completeness. Part (i) follows from either [1, Table I] and [1, Table II], or, alterna-
tively, by [4, Table 3] and keeping in mind that Ed/Q acquires good reduction after at most
a quadratic extension. On the other hand, Part (ii) follows from a theorem of Lorenzini [8,
Theorem 2.8]) �

We are now ready to proceed with our proofs.

Theorem 3.3. Let ℓ be equal to 19, 43, 67, or 163. Let E/Q be an elliptic curve with a
Q-rational isogeny of prime degree ℓ.

(i) If p 6= 2, ℓ is a prime, then E/Q has either good reduction or reduction of type I∗0
modulo p.

(ii) The curve E/Q has reduction of type III or III∗ modulo ℓ.
(iii) The curve E/Q has either good reduction or reduction of type I∗4, I∗8, II, or II∗ modulo

2.

Proof. Let E/Q be an elliptic curve with a Q-rational isogeny of degree ℓ and let p 6= 2, ℓ be
a prime number. We will proceed with a case by case analysis.

Assume first that ℓ = 19. From [9, Table 4] we see that if E/Q is an elliptic curve with a
Q-rational isogeny of degree 19, then its j-invariant is equal to −215 · 33. The curve E1 with
LMFDB label 361.a2 is a curve with the smallest conductor in the twist class with j-invariant
−21533. Using the LMFDB database it is easy to see that E1/Q has good reduction away
from 19 and that it has reduction of type III modulo 19. Let now E/Q be an elliptic curve
with j(E) = −215 ·33. Since j(E) = −215 ·33 6= 0, 1728, it follows from [19, Corollary X.5.4.1]
that there exists a square-free d such that E/Q is isomorphic over Q to Ed

1/Q.
If now p ∤ d, then Ed

1/Q and, hence, E/Q has good reduction modulo p. On the other
hand, if p | d, then it follows from Lemma 3.1 that E/Q has reduction of type I∗0 modulo
p. Moreover, if 19 ∤ d, then E/Q has reduction of type III modulo 19 while if 19 | d, then,
by Lemma 3.1, we obtain that E/Q has reduction of type III∗ modulo 19. Finally, since the
curve E1/Q has good reduction modulo 2, using Part (i) of Lemma 3.2, we find that E/Q
has either good reduction or reduction of type I∗4, I∗8, II, or II∗ modulo 2.

Assume that ℓ = 43. From [9, Table 4] we see that if E/Q is an elliptic curve with a
Q-rational isogeny of degree 43, then its j-invariant is equal to −218 · 33 · 53. The curve
E1 with LMFDB label 1849.b2 is a curve with the smallest conductor in the twist class
with j-invariant −218 · 33 · 53. Using the LMFDB database it is easy to see that E1/Q
has good reduction away from 43 and that it has reduction of type III modulo 43. Since
j(E) = −218 · 33 · 53 6= 0, 1728, it follows from [19, Corollary X.5.4.1] that there exists a
square-free d such that E/Q is Q-isomorphic to Ed

1/Q.
If now p ∤ d, then E/Q has good reduction modulo p. On the other hand, if p | d, then it

follows from Lemma 3.1 that E/Q has reduction of type I∗0 modulo p. Moreover, if 43 ∤ d,
then E/Q has reduction of type III modulo 43 while if 43 | d, then, by Lemma 3.1, we find
that E/Q has reduction of type III∗ modulo 43. Finally, the curve E1/Q has good reduction
modulo 2 and we find on the LMFDB database a minimal Weierstrass equation. Since the
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b2 invariant is even, using Part (i) of Lemma 3.2 we find that E/Q has either good reduction
or reduction of type I∗4, I∗8, II, or II∗ modulo 2.

Assume that ℓ = 67. From [9, Table 4] we see that if E/Q is an elliptic curve with a
Q-rational isogeny of degree 67, then its j-invariant is equal to −215 · 33 · 53 · 113. The curve
E1 with LMFDB label 4489.b2 is a curve with the smallest conductor in the twist class with
j-invariant −215 · 33 · 53 · 113. Using the LMFDB database it is easy to see that E1/Q has
good reduction away from 67 and that it has reduction of type III modulo 67. The rest of
the proof from the previous case carries over verbatim in this case. We will not reproduce
the details.

Assume that ℓ = 163. From [9, Table 4] we see that if E/Q is an elliptic curve with a
Q-rational isogeny of degree 163, then its j-invariant is equal to −218 · 33 · 53 · 233 · 293. The
curve E1 with LMFDB label 26569.a2 is a curve with the smallest conductor in the twist
class with j-invariant −218 · 33 · 53 · 233 · 293. Using the LMFDB database it is easy to see
that E1/Q has good reduction away from 163 and that it has reduction of type III modulo
163. The rest of the proof from the previous case carries over verbatim in this case so we
will not reproduce the details. This completes the proof of our theorem. �

Theorem 3.4. Let E/Q be an elliptic curve with a Q-rational isogeny of degree 11.

(i) If p 6= 2, 11 is a prime, then E/Q has either good reduction or reduction of type I∗0
modulo p.

(ii) The curve E/Q has reduction of type II, II∗, III, III∗, IV, or IV∗ modulo 11.
(iii) The curve E/Q has either good reduction or reduction of type I∗4, I∗8, II, or II∗ modulo

2.

Proof. Let E/Q be an elliptic curve with a Q-rational isogeny of degree 11 and let p 6= 2, 11
be a prime number. From [9, Table 4] we see that if E/Q is an elliptic curve with a Q-rational
isogeny of degree 11, then its j-invariant is equal to −11 · 1313, −215, or −112. The curves
with LMFDB labels, denoted by E1/Q, E2/Q, E3/Q, respectively, 121.a2, 121.b2, 121.c2 are
curves with the smallest conductors in each twist class corresponding to j-invariant −11·1313,
−215, and −112, respectively. It is easy to check, using the LMFDB database, that all these
curves have good reduction away from 11. It follows from [19, Corollary X.5.4.1] that there
exists a square-free d such that E/Q is Q-isomorphic to either Ed

1/Q, Ed
2/Q, or Ed

3/Q. If
p ∤ d, then E/Q has good reduction modulo p. On the other hand, if p | d, then it follows
from [1, Proposition 1] that E/Q has reduction of type I∗0 modulo p.

Moreover, the curves E1/Q, E2/Q, and E3/Q have reduction of type II, III, and IV modulo
11, respectively. Therefore, we see from Lemma 3.1 that E/Q has reduction of type II, II∗,
III, III∗, IV, or IV∗ modulo 11. Finally, since E1/Q, E2/Q, and E3/Q all have good reduction
modulo 2, using Lemma 3.2 we find that E/Q has either good reduction or reduction of type
I∗4, I∗8, II, or II∗ modulo 2. �

Example 3.5. Consider the elliptic curves with LMFDB labels 121.a2, 121.a1, 121.b2,
121.b1, 1089.c2, and 1089.c1. Those curves have Q-rational isogeny of degree 11 and re-
duction modulo 11 of type II, II∗, III, III∗, IV, and IV∗, respectively.

Theorem 3.6. Let E/Q be an elliptic curve with a Q-rational isogeny of degree 17.

(i) If p 6= 2, 5, 17 is a prime, then E/Q has either good reduction or reduction of type I∗0
modulo p.
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(ii) The curve E/Q has reduction of type I1, I17, I∗5, I∗9, I∗21, or I∗25 modulo 2.
(iii) The curve E/Q has reduction of type III or III∗ modulo 5.
(iv) The curve E/Q has reduction of type II, II∗, IV, or IV∗ modulo 17.

Proof. Let E/Q be an elliptic curve with a Q-rational isogeny of degree 17. From [9, Table
4] we see that if E/Q is an elliptic curve with a Q-rational isogeny of degree 17, then its
j-invariant is equal to −172·1013

2
or −17·3733

217
. The curves with LMFDB labels 14450.b2 and

14450.b1, denoted by E1/Q and E2/Q, respectively, are curves with the smallest conductors
in each twist class corresponding to j-invariant −172·1013

2
and −17·3733

217
, respectively. Using

the LMFDB database it is easy to see that each of those curves has good reduction away
from 2, 5 and 17. Therefore, proceeding similarly as in the proofs of the previous theorems
in this section, we can show that E/Q has either good reduction or reduction of type I∗0
modulo p, for p a prime such that p 6= 2, 5, 17. The curves E1/Q and E2/Q have reduction
of type III modulo 5. Therefore, E/Q can only have reduction of type III or III∗ modulo 5.

Moreover, using the LMFDB database we see that the curves E1/Q and E2/Q have reduc-
tion of type IV and IV∗ modulo 17, respectively. Thus, using Lemma 3.1 we find that the
curve E/Q has reduction of type II, II∗, IV, or IV∗ modulo 17. Finally, the curves E1/Q and
E2/Q have reduction of type I1 and I17 modulo 2, respectively. Therefore, using Lemma 3.2
we find that E/Q has reduction of type I1, I17, I∗5, I∗9, I∗21, or I∗25 modulo 2.

�

Theorem 3.7. Let E/Q be an elliptic curve with a Q-rational isogeny of degree 37.

(i) If p 6= 2, 5, 7 is a prime, then E/Q has either good reduction or reduction of type I∗0
modulo p.

(ii) The curve E/Q has either good reduction or reduction of type I∗4, I∗8, II, or II∗ modulo
2.

(iii) The curve E/Q has reduction of type III or III∗ modulo 5.
(iv) The curve E/Q has reduction of type II or IV∗ modulo 7.

Proof. Let E/Q be an elliptic curve with a Q-rational isogeny of degree 37. From [9, Table
4] we see that if E/Q is an elliptic curve with a Q-rational isogeny of degree 37, then its j-
invariant is equal to −7 ·113 or −7 ·1373 ·20833. The curves with LMFDB labels 1225.b2 and
1225.b1, denoted by E1/Q and E2/Q, respectively, are curves with the smallest conductors
in each twist class corresponding to j-invariant −7 · 113 and −7 · 1373 · 20833, respectively.
Using the LMFDB database it is easy to see that each of those curves has good reduction
away from 5 and 7. Therefore, proceeding similarly as in the proofs of the previous theorems
in this section, we can show that E/Q has either good reduction or reduction of type I∗0
modulo p, for p a prime such that p 6= 5, 7.

On the other hand, the curves E1/Q and E2/Q have reduction of type III modulo 5.
Therefore, E/Q can only have reduction of type III or III∗ modulo 5. Finally, both curves
E1/Q and E2/Q have reduction of type II modulo 7. Therefore, E/Q can only have reduction
of type II or IV∗ modulo 7. Finally, since E1/Q has good reduction modulo 2, using Lemma
3.2 we find that E/Q has either good reduction or reduction of type I∗4, I∗8, II, or II∗ modulo
2. �

Remark 3.8. Given any primes p, ℓ with p 6= 2 and any reduction type T that appears in
Theorem 3.3, 3.4. 3.6, or 3.7, then by using an appropriate quadratic twist one can find
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an elliptic curve with a Q-rational isogeny of degree ℓ and reduction type T modulo p. For
example, suppose we are looking for an elliptic curve E/Q with a Q-rational isogeny of
degree 17 and reduction of Kodaira type III∗ modulo 5. The curve E1/Q with LMFDB label
14450.b2, which appears in the proof of Theorem 3.6, is an elliptic curve with a Q-rational
isogeny of degree 17 and reduction of Kodaira type III modulo 5. Therefore, it follows from
Lemma 3.1 that the quadratic twist E5

1/Q is an elliptic curve with reduction of Kodaira type
III∗ modulo 5 and it has a Q-rational isogeny of degree 17. Thus we have found an example
with the required properties. We can proceed in a similar way for the other choices of primes
p, ℓ, and Kodaira types T .

References

[1] S. Comalada. Twists and reduction of an elliptic curve. J. Number Theory, 49(1):45–62, 1994. 5, 6, 7, 8,
9

[2] J. E. Cremona and F. Najman. Q-curves over odd degree number fields. Res. Number Theory, 7(4):30,
2021. 2

[3] N. M. Katz and B. Mazur. Arithmetic moduli of elliptic curves, volume 108 of Annals of Mathematics
Studies. Princeton University Press, Princeton, NJ, 1985. 7

[4] M. Kida. Variation of the reduction type of elliptic curves under small base change with wild ramification.
Cent. Eur. J. Math., 1(4):510–560, 2003. 8

[5] R. Kozuma. A note on elliptic curves with a rational 3-torsion point. Rocky Mountain J. Math.,
40(4):1227–1255, 2010. 5

[6] E. Larson and D. Vaintrob. Determinants of subquotients of Galois representations associated with
abelian varieties. J. Inst. Math. Jussieu, 13(3):517–559, 2014. With an appendix by Brian Conrad. 1

[7] The LMFDB Collaboration. The L-functions and modular forms database. http://www.lmfdb.org,
2019. [Online; accessed 11 November 2022]. 5

[8] D. Lorenzini. Models of curves and wild ramification. Pure Appl. Math. Q., 6(1, Special Issue: In honor
of John Tate. Part 2):41–82, 2010. 8

[9] Á. Lozano-Robledo. On the field of definition of p-torsion points on elliptic curves over the rationals.
Math. Ann., 357(1):279–305, 2013. 7, 8, 9, 10

[10] B. Mazur. Rational isogenies of prime degree. (With an appendix by D. Goldfeld). Invent. Math., 44:129–
162, 1978. 1, 2

[11] M. Melistas. Reduction types of CM curves. Preprint. 1
[12] M. Melistas. Purely additive reduction of abelian varieties with torsion. J. Number Theory, 239:21–39,

2022. 1
[13] P. Michaud-Jacobs. On elliptic curves with p-isogenies over quadratic fields. Can. J. Math., 75(3):945–

964, 2023. 1
[14] F. Momose. Isogenies of prime degree over number fields. Compos. Math., 97(3):329–348, 1995. 1
[15] I. Papadopoulos. Sur la classification de Néron des courbes elliptiques en caractéristique résiduelle 2 et

3. J. Number Theory, 44(2):119–152, 1993. 6
[16] G. Shimura. Introduction to the arithmetic theory of automorphic functions, volume 11 of Publ. Math.

Soc. Japan. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, NJ, 1971. 7
[17] S. Siksek. Explicit arithmetic of modular curves. https://homepages.warwick.ac.uk/~maseap/teaching/modcurves/lecturenotes.pdf.

Notes for the 2019 CMI-HIMR summer school in computational number theory. 5
[18] J. H. Silverman. Advanced topics in the arithmetic of elliptic curves, volume 151 of Graduate Texts in

Mathematics. Springer-Verlag, New York, 1994. 3, 4, 6
[19] J. H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics.

Springer, Dordrecht, second edition, 2009. 3, 7, 8, 9
[20] J. Tate. Algorithm for determining the type of a singular fiber in an elliptic pencil. In Modular functions

of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pages 33–52.
Lecture Notes in Math., Vol. 476, 1975. 3, 4

11

https://www.lmfdb.org/EllipticCurve/Q/14450/b/2
http://www.lmfdb.org
https://homepages.warwick.ac.uk/~maseap/teaching/modcurves/lecturenotes.pdf


[21] A. Trbović. Tamagawa numbers of elliptic curves with prescribed torsion subgroup or isogeny. J. Number
Theory, 234:74–94, 2022. 7

Charles University, Faculty of Mathematics and Physics, Department of Algebra, Sokolov-

ská 83, 18600 Praha 8, Czech Republic

University of Twente, Department of Applied Mathematics, Drienerlolaan 5, 7522 NB

Enschede, The Netherlands

12


	1. Introduction
	2. Proof of Theorem 1.1
	3. Elliptic curves over Q
	References

